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Abstract Detecting and tracking people in scenes moni-
tored by cameras is an important step in many application
scenarios such as surveillance, urban planning or behavioral
studies to name a few. The amount of data produced by cam-
era feeds is so large that it is also vital that these steps be
performed with the utmost computational efficiency and of-
ten even real-time. We propose SCOOP, a novel algorithm
that reliably localizes people in camera feeds, using only the
output of a simple background removal technique. SCOOP
can handle a single or many video feeds. At the heart of our
technique there is a sparse model for binary motion detec-
tion maps that we solve with a novel greedy algorithm based
on set covering. We study the convergence and performance
of the algorithm under various degradation models such as
noisy observations and crowded environments, and we pro-
vide mathematical and experimental evidence of both its ef-
ficiency and robustness using standard datasets. This clearly
shows that SCOOP is a viable alternative to existing state-
of-the-art people localization algorithms, with the marked
advantage of real-time computations.
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1 Introduction

The present paper deals with a simple but very important
problem in computer vision: given a set of cameras observ-
ing a scene (there can be only one camera as an extreme ex-
ample), we want to automatically detect pedestrians and lo-
cate them in the scene. The detection output would generally
be used in a second step for tracking people, but we focus
here on the detection/localization problem as it appears to
be the main bottleneck (most computational complexity) of
the whole system. This problem has numerous applications,
surveillance being the most obvious, and has been the sub-
ject of intense research over the past decade. However, there
remain two important challenges to most existing solutions:

– Robustness: due to occlusions and variable lighting con-
ditions, existing algorithms tend to produce false or miss
detections. Often, robustness is achieved at the expense of
computationally complex scene modeling.

– Computational complexity: cameras operating at 25
frames per second or more generate tremendous amount
of data. In order to achieve a real-time performance, ex-
isting algorithms have to sacrifice on robustness.

This trade-off between robustness and computational effi-
ciency places unbearable constrains on real-world applica-
tions where both are desirable. The objective of this paper is
thus to propose a solution to the people detection problem
that would be at the same time robust and computationally
efficient.

In a previous paper, we have proposed a model of mo-
tion detection maps based on the assumption that the num-
ber of people in the scene is much smaller than the total
possible ground locations [1]. The model was relaxed into
a Lasso-like problem [26] and solved with a re-weighted
�1 algorithm [5]. We showed that the resulting technique,
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deemed O-Lasso, reached state-of-the-art performances in
terms of robustness. Unfortunately, O-Lasso is a computa-
tionally complex algorithm and, despite various optimiza-
tions, cannot reach a real-time operation. Acknowledging
that the excellent robustness properties reported in [1] were
due to the sparsity hypothesis, we conserve that part of the
model but we propose a completely different way of exploit-
ing it. First, where O-Lasso was based on complex floating
point calculations, we derive a new regression model that
involves only boolean arithmetics and takes full advantage
of the binary output of basic motion detection algorithms.
Second, instead of solving a difficult convex optimization
problem with iterative shrinkage, we derive a novel greedy
algorithm inspired by the set cover problem. This algorithm
uses only binary operations and is therefore extremely effi-
cient.

The relevance and performance of our model and algo-
rithm are analyzed at two different levels. First, we draw
a connection with group testing that allows us to study the
mathematical properties of the model and sate the existence
and uniqueness of solutions. We also show that these solu-
tions can be recovered by a simple thresholding algorithm.
Second, we extend these findings and propose a greedy
heuristic that also incorporates physical constrains on the
localization of detected people, the resulting algorithm is
called Set Covering Object Occupancy Pursuit or SCOOP.
We then study experimentally its performances: SCOOP
matches O-Lasso in terms of robustness but at a fraction of
the computational cost, easily reaching a real-time imple-
mentation.

2 Related Work

As hinted at above, the problem of detecting and localizing
people in networks of camera has been the subject of an in-
tense research activity. Let us review the main approaches
leading to our own model. Detection can occur indepen-
dently in each camera then fused across cameras [3, 25],
or they can be detected concurrently in a unique referen-
tial [6, 21] since cameras are calibrated to match 3D points
across image planes [20]. These approaches face difficulties
to detect people that occlude each other and a good alter-
native is to fuse features extracted from all cameras in a
unique referential and make the decision once all features
are combined. The most commonly used features are the sil-
houettes extracted from all cameras using a motion detec-
tion algorithm and a reference background image. In [17]
Khan and Shah project foreground silhouettes on a refer-
ence ground-plane given a global homography. By stacking
and normalizing the obtained re-projected silhouettes, they
construct a probability map. Alternatively probability maps
over several planes can be estimated [8, 18], which provides

more robustness. Eshel and Moses in [12] use a probability
map at head level, but when the number of cameras is small
the segmentation of grouped people becomes poor. Closer
to our model, Fleuret et al. in [2, 13] use a dictionary of
ideal silhouettes that is used to detect people in crowded
environment. Rectangular shape prototypes are used to ap-
proximate the ideal human foreground silhouettes observed
by the cameras. They then estimate the probability of oc-
cupancy map (POM) of the ground plane at each time. Re-
cently, Alahi et al. in [1] have also proposed a dictionary
based framework with a generative model to approximate
foreground silhouettes and their model is the starting point
of our investigations. The localization of people in the mon-
itored scene arises as the solution to an inverse problem re-
ferred to as O-Lasso. It outperforms previous approaches in
terms of detection rate but it is computationally costly for
real-time applications. As a result, we propose in Sect. 3 a
greedy approach that achieves the same detection rate but
with a real-time performance.

3 Dictionary-Based Boolean Regression Model

Alahi et al. in [1] propose a sparsity driven framework that
performs well with respect to the state-of-the-art. A key fea-
ture of this scheme is to cast the multi-view localization as
a sparse linear inverse problem that is followed by a quanti-
zation step. A huge collection of silhouettes of an individual
standing at various positions, that is called dictionary, is used
for this purpose. Later, inspired by the recent massive devel-
opments in sparse linear approximation tools, an algorithm
was proposed (O-Lasso) to approximate the foreground sil-
houettes by a small number of individuals. The main draw-
back of these schemes is their numerical complexity: they
are based on iterative algorithms that converge slowly.

Our proposed approach is similar to the dictionary-based
framework, however, we use a boolean (non-linear) regres-
sive formulation to model the localization problem. Using
boolean arithmetics, we design much faster and memory ef-
ficient approximation algorithms that are mainly rooted in
the old literature of group testing and set cover. The follow-
ing steps precisely describe our problem formulation:

3.1 Scene Discretization

The ground plane is discretized into 2-D grid of N cells
(sub-regions). We assume each cell can be occupied by only
one person at each time instance. To simplify notations,
the 2-D grid is concatenated into a 1-D vector x ∈ {0,1}N ,
whose elements are indicating the presence of a person in
the corresponding cell (with Id = i) if xi = 1. Typically,
we refer to this vector as the occupancy vector. An adaptive
sampling process can be used to discretize the ground plane
into non-regularly spaced grid points to take advantage of
the cameras’ topology and the scene activity [1].
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Fig. 1 Dictionary reconstruction: an atom/column di corresponds to the MSV of a half-rectangular-half-elliptical object approximating a person
standing at position Id = i

3.2 Foreground Silhouettes Arrangement

A 2-D binary mask representing the foreground pixels ob-
served by each camera c, is extracted given a background
subtraction algorithm [22]. We used the well-known mix-
ture of Gaussians to classify each pixel as foreground [24].
The foreground images are also rearranged by concatenation
of the 2-D masks into binary vectors yc ∈ {0,1}Mc . Each
of these vectors contain the extracted foreground silhouettes
from the corresponding camera c. A foreground silhouette
is a connected region of foreground pixels. As a result, Mc

denotes the resolution (number of pixels) of the cth cam-
era. Further, we concatenate all these vectors into the Multi-
Silhouette Vector (MSV):

y = (
yT

1 , . . . , yT
C

)T ∈ {0,1}M, (1)

where M = ∑C
c=1 Mc.

3.3 Dictionary Construction

Imagine a person with a given volume walking in a scene.
The shape observed by each camera can vary depending
on the view-points and the behavior of that person. We ap-
proximate the shape of people with a half-rectangular-half-
elliptical shape as in [1] (see Fig. 1). We consider an aver-
age person with a height of 170 cm. A 3-D model is pro-
jected into all the camera views given the calibration data
[16]. Such approximation is used to construct atoms of a
dictionary D ∈ {0,1}M×N . Each column of the dictionary,
i.e. each atom, represents the approximated multi-view sil-
houette observed at a given ground plane point. A typical
dictionary contains a huge collection of atoms i.e., there is
as many columns as the discretized ground plane points in
the scene. Figure 1 demonstrates reconstruction of an atom
of the dictionary used in people detection applications. Note
that in urban scenes, dictionary atoms can be modified so
that they can also represent approximate MSVs of various
urban objects e.g., pedestrians, cars, buses, trucks, etc.

3.4 Boolean Regression Model

Suppose a single person occupies the scene. This refers to an
occupancy vector x with only one nonzero element whose
index depends on the location of that person in the scene.
Moreover, each of the cameras will capture only one silhou-
ette (if they have a view over the position) whose size, posi-
tion and possibly shape depends on the location. In more
general cases, for a given configuration of x with more
nonzero elements (depending on the number of people and
their positions), the resulting MSV may not be necessary
unique. This non-uniqueness comes from the occlusions in
the camera view which are highly dependent on the density
of the crowd and the positions of the cameras.

Let us define the following regression model which de-
scribes the underlying correspondence between each occu-
pancy vector and its resulting MSV:

y = D · x ⊕ z. (2)

Note that here the operations are boolean i.e., sums and
products correspond to OR and AND, and ⊕ denotes the
bitwise XOR operation between two boolean vectors. The
dictionary D ∈ {0,1}M×N , as previously defined, is a very
huge matrix of silhouettes. Each column of D, say di , indi-
cates the corresponding MSV of an average person who is
standing at position i in the scene. Finally, z ∈ {0,1}M de-
notes the noise vector that corrupts the MSV by both miss-
ing and extra foreground pixels. This may occur due to sev-
eral reasons e.g., non ideal silhouette extraction, non ideal
modeling of the dictionary atoms, shadows, reflections, etc.
Figures 2(a)–2(d) provide an illustration of the regression
model described by Eq. (2).

Assume an occupancy vector x representing k individu-
als in a scene. The support of x is the set S that contains
indices of the k nonzero elements,

S = supp(x) := {i : xi = 1}.
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Fig. 2 Illustration of the boolean regression model described by Eq. (2) for three camera views of a single frame of the PETS 2009 dataset

Equation (2) formulates the observed MSV as the boolean
superposition of k atoms (bitwise OR among the columns)
of the dictionary, indexed by S and possibly corrupted by
some noise,

y =
∑

i∈S

di ⊕ z. (3)

Recalling that each atom represents the silhouette of a
single individual at a certain location, the use of the boolean
operators in Eqs. (2) and (3), explicitly demonstrates the
nonlinearity of the MSV model caused by the occlusions
in scenes with more than a single person. We use later this
model frequently, specially as one of the most important pri-
ors in order to infer the locations of the individuals given
their foreground MSV.

4 Problem Statement and Connections with Group
Testing

Considering descriptions in the previous section, the prob-
lem of detecting and localizing objects in a scene is equiva-
lent to recover an occupancy vector from an inaccurate noisy
MSV, provided with the knowledge of the dictionary D that
links them through Eq. (2). Accordingly, we formulate peo-
ple detection and localization as a non-linear inverse prob-
lem, in which one needs to identify the support set S that
approximately leads to the observed MSV, even in presence
of noise (see Eq. (3)).

As one can observe, noise together with the non-linearity
of the formulation can impose many different possible solu-
tions to Eq. (2). Hence, different occupancy vectors may re-
sult in the same MSV. This fact severely challenges the per-
formance of any decoding algorithm to reliably detect and
localize the objects e.g., a decoder may mistakenly add or
neglect some individuals.

In the next part, we determine necessary and sufficient
conditions in order to preserve the uniqueness of the solu-
tions. Our theoretical analysis finds interesting and intuitive
implications in multi-view people detection and localization
problem. Moreover, a simple algorithmic approach called
Thresholding, is introduced to recover the occupancy vector
from the MSV and we theoretically show that it performs
optimally i.e., if there exists a unique solution, Threshold-
ing will recover it. We develop our results based on some
popular existing tools in the well-established group testing
literature and therefore we show how these two problems are
related to each other.

The classical group testing problem which was intro-
duced by Dorfman [9] finds its historical roots in World War
II, when blood samples of many U.S. soldiers were exam-
ined to detect few cases of syphilis. The main idea is to pool
the blood samples into certain groups and test the groups in-
stead of one by one testing. The original problem can be for-
mulated as Eq. (2) in the noiseless case, where, x contains N

blood samples with sparse nonzero elements indicating the
infected cases and D (called the contact matrix) determines
the way of collecting M < N group tests into a vector y.
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The question is, how to design a contact matrix and a recov-
ery algorithm that can efficiently identify as many defective
cases as possible? For more details see [10].

In our localization application, the design of the dictio-
nary is however fixed by the number of the cameras, their
relative positions, silhouette model and the density of the
points in the scene. Thus, contrary to the group testing, our
application deals mainly with the recovery problem rather
than compression. Another difference is that the cameras
are typically providing multi-view images with much higher
resolution than the number of grid points in the scene i.e.,
M � N , which may help us compensate for the rather non-
optimal design of the dictionary.

4.1 Uniqueness of the Representation

Given the regression model (2), there can be many real-
izations of the occupancy vector leading to the same MSV
y, which makes any decoding scheme hopeless to recover
the original x. There are two main reasons for this non-
uniqueness: the presence of noise and non-linearity of the
formulation. Particularly, in people detection applications,
full occlusions may occur due the relative placement of the
cameras and the people in the scene. Therefore, any decoder
fails to decide correctly whether there are some individuals
present at certain positions. This section defines precisely a
set of conditions that avoids such uncertainties and guaran-
tees the uniqueness of the solution to (2). These constraints
provide an upperbound on the performance of any recovery
scheme and in addition, they measure how efficiently they
do perform. In the following, we define the notion of dis-
junct matrices that is often used in group testing literature
[10] and it appears to be the key element of the theoretical
framework that we establish in this paper.

Definition 1 A boolean matrix D with N columns d1, . . . ,

dN is (k, e)-disjunct if for every subset S ⊆ {1, . . . ,N} with
cardinality |S | ≤ k, and every i /∈ S , we have:
∣∣∣∣ supp(di)\

⋃

j∈S

supp(dj )

∣∣∣∣ > e,

where |.| represents cardinality of a set, and .\. means set
difference.

Assuming an occupancy vector that is k-sparse (x has
less than or equal to k nonzero elements) and a noise that
flips at most e bits of MSV i.e. | supp(z)| ≤ e, the following
proposition guarantees the uniqueness of the solution to (2):

Proposition 1 For any (k,2e)-disjunct dictionary equa-
tion (2) implies a one-to-one mapping between all k-sparse
x and their corresponding y. Conversely, if every k-sparse x

is mapped to a distinct y then D must be (k−1,2e)-disjunct.

Proof Assume two different k-sparse boolean vectors x and
x′ that are supported on sets S and S ′. Let y and y′ be cor-
respondingly the bitwise OR of the columns of D indexed by
S and S ′ i.e., y = D.x and y′ = D.x′ with boolean arith-
metic. Choose a column of the dictionary di so that, i ∈ S ′
but not in S . Since D is (k,2e)-disjunct, it implies that the
support of di has 2e + 1 elements that are not included in
supp(y). Therefore, assuming noises that flip e bits of di

and e bits of y, there will be still at least one element of
supp(di) that is not included in the support of y (recall that
y = y ⊕ z), which makes x and x′ distinguishable from their
noisy MSVs.

For the converse, suppose D is not a (k − 1,2e)-disjunct
matrix and pick a pair of a set S ⊆ [n] with |S | ≤ k − 1,
and an index i /∈ S that is a counterexample to the (k −
1,2e)-disjunctness. Assume vectors x and x′ that are sup-
ported on S and S ∪ {i} correspondingly. The noise can
configure in an adversarial way so that, by flipping e zero
bits of y = D.x to one and e one bits of di to zero, the MSV
outcome of x and x′ becomes indistinguishable. �

In our people detection application, disjunction is a mea-
sure of robustness against occlusions and noise. Intuitively,
Proposition 1 implies that any person at any position must
have a silhouette with enough distinguishable pixels to be
robust against the noise and not be submerged (occluded)
into the silhouettes of other people.

By increasing the number of people in the scene, the oc-
clusions become more probable, thus, Proposition 1 can also
be interpreted as an upperbound for the number of individ-
uals that can be reliably localized by a fixed camera setup.
Moreover, by changing the camera setup e.g., increasing the
number of the cameras and properly selecting their positions
with respect to the scene, one can design optimal dictionar-
ies that are disjunct for larger number of people.

Note that in general, verifying whether a matrix is (k, e)-
disjunct is a hard problem, which makes Proposition 1 im-
practical for large size setups. Moreover, Proposition 1 pro-
vides a worst case analysis for (2), since it guarantees the
uniqueness for all occupancy vectors and it is robust against
any adversarial noise setup. In practice, simulation results
indicate a reliable recovery under much milder conditions
than in Proposition 1, because the worst case situations are
not very likely.

4.2 Decoding by Thresholding

In this part we introduce a simple algorithm for recovering
the occupancy vector from the corresponding MSV. Note
that a similar approach has been considered in [7], and
in [23] and [15] for real-valued x. This algorithm works
based on selecting atoms of D whose supports are approxi-
mately included in supp(y), that is the number of elements
of supp(di) not included in supp(y) should not exceed a
threshold.
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Thresholding Select the columns of D that satisfy the fol-
lowing equation:

∣∣ supp(di)\ supp(y)
∣∣ ≤ e, (4)

and indicate their corresponding indices as the support of x.
The following theorem characterizes the performance of

Thresholding and highlights its optimality for solving the
regression model (2) when | supp(z)| ≤ e:

Theorem 2 Thresholding successfully recovers any k-
sparse occupancy vector, if D is (k,2e)-disjunct.

Proof Assume a boolean vector x, supported on the set
S ⊆ {1, . . . ,N} with |S | ≤ k. Since the noise has flipped
at most e bits of y, obviously every i ∈ S satisfies (4).

In addition, define y to be the bitwise OR of the columns
of D indexed by S i.e., the noiseless version of the MSV.
Again by the assumption on the noise power, for any column
of D we have,

∣
∣ supp(di)\ supp(y)

∣
∣ ≤ ∣

∣ supp(di)\ supp(y)
∣
∣ + e.

Now, if any i /∈ S satisfies (4), it implies | supp(di)\
supp(y)| ≤ 2e, which violates the assumption that the dic-
tionary is (k,2e)-disjunct. Therefore, thresholding recovers
exactly the support of x. �

Theorem 2 shows that Thresholding achieves the opti-
mal bound of Proposition 1 as long as there is an unique
solution to Eq. (2). In addition, note that if the dictionary
is not (k,2e)-disjunct then there may exist column indices
i /∈ supp(x) that also satisfy (4), and therefore the recovery
is not exact but contains the support of the original occu-
pancy vector i.e., supp(x) ⊂ supp(̂x), where x̂ denotes the
recovered occupancy vector.

In our application, the highest value k to have a (k,2e)-
disjunct dictionary is much smaller than the number of po-
tential individuals in the scene. As a result, for typical pop-
ulated scenes, the occlusions become more probable and
therefore many different realizations of the occupancy vec-
tor solve (2) (no unique solution). In this case, by setting
correctly the threshold value in (4), the algorithm does not
miss any individual, but its performance is dramatically af-
fected by many false positives.

In the next section, we consider an additional prior to
better recover the exact solution. We assume that among all
possible solutions, the one of interest is the sparsest one, and
we design a real-time algorithm in order to recover it. Nev-
ertheless, we keep taking advantage of the output of Thresh-
olding as a very fast preprocessing step which efficiently re-
fines the search space, and thus, accelerates the main step of
the recovery algorithm.

5 Real-Time Sparsity Driven People Localization

In practice, the configuration of the cameras and the density
of the people in the scene are such that full occlusions are
inevitable and therefore, there is no unique solution to the
localization problem. As an example, there might be many
positions on scene, entirely covered by the people near to the
cameras so that no decoder would be able to decide whether
there are some individuals hidden there or not. The Thresh-
olding algorithm defined in the previous section outputs a
conservative solution that considers all those points as if
they are occupied by people and thus it results in too many
false positives that are not desired.

In this section and according to our hypothesis regarding
the distribution of the individuals in the scene, we address
this problem by selecting the sparsest solution to (2), i.e.
among all possible solutions, we set our problem to the re-
covery of the sparsest occupancy vector x. In the noiseless
case, we thus solve

x̂ = arg minx∈{0,1}N
∣∣ supp(x)

∣∣
(5)

subject to supp(y) = supp(D · x)

and, in the noisy setup,

x̂ = arg minx∈{0,1}N | supp(x)|
(6)

subject to
∣∣ supp(y ⊕ D · x)

∣∣ ≤ e.

Note that, if disjunction holds, the solution of both prob-
lems coincide with the unique solution of (2) which can
be simply identified by Thresholding. However, if D is
not (k,2e)-disjunct, this new approach neglects objects that
might be fully occluded, and approximates the MSV by
very few number of atoms of D corresponding to the large-
size silhouettes (i.e., people who are mainly in front of the
scene).

Problem (5) is equivalent to the well-known set cover
problem [27], which recovers the set of atoms with mini-
mal cardinality, so that the union of its elements covers the
support of y. In the noisy case (6), however, we relax the
constraint since we are not interested in approximating the
noise. Set cover is known as one of Karp’s 21 NP-complete
problems, thus designing feasible algorithms that can ap-
proximate the solution with polynomial time complexity is
of high importance.

It has been shown in [27] that the simple greedy approach
is indeed an effective way to approximate the solution of the
set cover problem. This approach follows the heuristic of
making the locally optimal choice at each iteration with the
hope of finding the global optimum. For example, the greedy
method proposed in [27] works iteratively and recovers one
element of the support set (i.e., supp(x)) per iteration. More
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precisely, at each iteration, the algorithm selects the index
of the atom i of the dictionary which contributes the most in
energy of the MSV y (i.e. the atom whose support shares the
most common elements with supp(y)). It then subtracts its
contribution to update the remainder (initially MSV). This
procedure continues until meeting the stopping criteria. This
criteria can be either a prior knowledge on the sparsity level,
or a threshold on the energy level of the remainder. For the
first criteria the algorithm performs k iterations and for the
latter it runs until the remainder energy falls below a limit e.

It is noteworthy to mention that the same approach is ex-
tensively used in the compressed sensing and sparse approx-
imation research literature because of the simplicity of the
analysis and low computational cost [4, 14]. Among those,
the Matching Pursuit (MP) algorithm [19] works quite sim-
ilarly to the above-mentioned greedy algorithm, and its se-
lection criteria is rephrased as choosing the atom having the
highest coherence (i.e., inner product) with the remainder.

In the following part we introduce a novel method that
extends the greedy approach described in [27] to approx-
imate the noisy covering problem (6). We apply this ap-
proach to our localization problem and experimentally show
that it outperforms the state-of-the-art algorithms, with a
computational complexity amenable to real-time applica-
tions.

5.1 Set Covering Object Occupancy Pursuit: SCOOP

The proposed localization problem by its construction con-
sists of non-normalized dictionaries i.e., the columns corre-
sponding to the objects on the far back of the scene have
much less energy than the ones in front because the corre-
sponding targets appear smaller. As a result, the selection
criteria based on the maximal common elements in the sup-
port (in the original set cover problem) or maximal coher-
ence (like in MP) often chooses high energy columns that
cover highly the MSV as well as many pixels out of the MSV
support. For example, a person at the back of the scene with
small silhouette is mistakenly approximated by a person in
front with a much larger, but well covering silhouette. This
indicates that some high energy columns of D, despite their
good covering, are not fitting the silhouettes well enough.
It is thus necessary to modify the algorithm to avoid such
mistakes. We address this problem so that, at each iteration,
the selecting criteria searches for the column i that has the
minimum difference with the remainder r (i.e., MSV at ini-
tial step). Thus, the selected column, in addition to a good
covering must fit well the MSV i.e., not contain many ex-
tra pixels out of the MSV support. In summary, an iteration
of SCOOP selects a column index i based on the following

criteria:

i ⇐ arg min
i

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w

Covering factor
︷ ︸︸ ︷
| supp(r)\ supp(di)|

| supp(r)|

+ (1 − w)
| supp(di)\ supp(r)|

| supp(di)|︸ ︷︷ ︸
Fitting factor

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (7)

where 0 ≤ w ≤ 1 is a regularization factor to penalize the
uncovered pixels in the remainder support and the extra cov-
ered pixels out of the remainder support. This brings a de-
gree of freedom to the algorithm that balances between the
covering and fitting factors of the columns.

Compared to simple Thresholding this criteria better re-
spects the sparsity constraint as we now argue. Typically, the
superposition of several atoms with poor coherence can have
the same energy contribution in the MSV as a single atom
with high covering factor. Practically this means that atoms
approximating faraway people can be covered by few atoms
corresponding to close-by people or atoms corresponding to
cars or trucks can cover several atoms corresponding to peo-
ple standing at the same location. The proposed selection
criteria however promotes the selection of the largest atom
in case of ambiguity. Typically, it prefers to select a single
atom of a truck than several people in the scene. Likewise,
it prefers to select one single close-by person instead of sev-
eral faraway people. As a result, we can say that it promotes
a sparse solution. Nevertheless, as mentioned above, a fit-
ting factor is used to avoid selecting atoms with too many
out-support pixels.

The full algorithm is presented in Algorithm 1 and coined
as ‘Set Covering Object Occupancy Pursuit’ (SCOOP). As
we can see, Thresholding is deployed as a preprocessing
step in order to reduce the dimension of the search space
U of all possible locations. When |U | � N , this step can
massively accelerate the main greedy pursuit.

Note that the stopping criteria can adopt three forms:

– If one knows a priori how many individuals are present
in the scene (e.g., team sports like basketball, soccer, . . .),
then SCOOP runs k iterations to detect them.

– Given a good estimation of the noise power e, we apply
the same criteria as in Algorithm 1.

– If the decoder does not have access to any of those afore-
mentioned priors, SCOOP continues the iterations until
by adding the next index the outcome error E (see Algo-
rithm 1) starts to increase.
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Algorithm 1: Set Covering Object Occupancy Pursuit’
(SCOOP)

Input: MSV signal y, Dictionary D, Error parameter
e, RSS parameter τ , Regularization parameter
w.

Output: Support set Ŝ (equivalently the occupancy
vector x̂).

Initialization:
Ŝ ⇐ {}, U ⇐ {}, r ⇐ y, ŷ ⇐ 0
Preprocess:
for (i = 1 : N) do

if (| supp(di)\ supp(y)| ≤ e)

U ⇐ U ∪ {i}.
end

end
Greedy Process:
while (E > e) do

j ⇐ arg minj ′∈U

{
w

| supp(r)\ supp(dj ′)|
| supp(r)|

+ (1 − w)
| supp(dj ′)\ supp(r)|

| supp(dj ′)|
}

Updates:
Recovered support: Ŝ ⇐ Ŝ ∪ {j}
Recovered MSV: supp(ŷ) ⇐ supp(ŷ) ∪ supp(dj )

Remainder: supp(r) ⇐ supp(r)\ supp(dj )

Search space: U ⇐ U \Nτ (j)

Error: E ⇐ | supp(y ⊕ ŷ)|
end

5.2 Repulsive Spatial Sparsity (RSS)

In many application (including people localization) there ex-
ists another sort of sparsity: spatial sparsity. Two individuals
are separated by a minimum spatial distance related to the
minimum surface occupied by a person on the ground e.g.,
here we choose 70 cm to be the average width of a standing
person. This is what we refer to as the concept of Repulsive
Spatial Sparsity (RSS) introduced in [1]. More precisely, if
i, j ∈ supp(x) and i �= j then we must have,

�i,j := ∥∥P(i) − P(j)
∥∥

�2
> τ, (8)

where P(i) is the position of a point i on the ground plane,
and τ cm is the minimum spatial distance. Lets denote by
Nτ (i) the set of indices corresponding to positions that are
τ -close to P(i) i.e.,

Nτ (i) := {j : �i,j ≤ τ }. (9)

Finding a sparse occupancy vector does not necessarily
impose the constraint above. For this purpose, at each it-

eration, SCOOP excludes all the neighboring points Nτ (.)

of the selected atom from the search space and modifies U .
Note that, the neighboring sets can be computed offline once
the dictionary is reconstructed, avoiding an additional com-
plexity imposed by the sub-iterative scheme proposed in [1].

5.3 Complexity of SCOOP

All atoms selected by Thresholding satisfy inequality (4).
This criteria is directly related to the boolean inner product,
which counts number of elements that two m-dimensional
boolean vectors share in their supports. We define the inner
product of y and ith column of D as,

〈di, y〉 :=
∑

j

dji .yj

= ∣∣ supp(di) ∩ supp(y)
∣∣,

with the predefined boolean arithmetic notations. Comput-
ing this inner product for all N atoms of the dictionary
leads the preprocessing step to complete with complex-
ity O(MN). The main greedy pursuit performs iteratively.
Thanks to the preprocessing step, each iteration consists of
searching over u = |U | � N atoms of the dictionary for
finding the minimizer of (7). A simple computation indicates
that we can rewrite (7) as

i ⇐ arg max
i∈U

{
w

〈r, di〉
| supp(r)| + (1 − w)

〈r, di〉
| supp(di)|

}
. (10)

Therefore, each iteration roughly consists of computing
u inner products between m-dimensional vectors, finding
their maximum and modifying U by finding (and exclud-
ing) the neighbors of the selected atom i.e., complexity of
O(Mu + u logu) ≈ O(Mu). Now, if we consider a typical
scene with k individuals (known sparsity level e.g., in team
sport activities), the whole complexity of SCOOP in Algo-
rithm 1 mainly scales as O(kMu).

Compared to O-Lasso, our method performs enormously
faster so that, in typical problem sizes (i.e., typical M , N , k),
it is able to detect and localize the objects of a frame in real-
time. Mainly two reasons are behind the success of SCOOP:
First, a novel formulation of the problem based on boolean
regression model. Second, using the greedy approach to
solve the localization problem. Unlike O-Lasso, our ap-
proach does not need to solve a sparsity-inducing convex
optimization (reweighed �1-minimization) with heavy com-
putations. As a consequence, instead of performing many
iterations to converge to a solution (like in O-Lasso), our
approach identifies one individual per iteration. In addi-
tion, each iteration of SCOOP performs only basic boolean
arithmetic operations that are cheap in terms of computa-
tional complexity and memory usage. In the next section we
demonstrate by several simulations that this low complexity
does not impair robustness.
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6 Experimental Results and Comparisons

In this section we present results of two main sets of exper-
iments that have been conducted to characterize the perfor-
mance of our proposed method. Real-world datasets includ-
ing the APIDIS1 and the PETS 2009 benchmarks2 are used
in order to compare the performance of SCOOP to the state-
of-the-art methods. In addition, we run several experiments
on a Synthetic dataset generated by the same scene geom-
etry as the APIDIS dataset, to analyze the performance of
SCOOP as the problem size scales with the number of ob-
jects or size of the scene.

The APIDIS dataset consists of seven pseudo-synchro-
nized cameras monitoring a basketball game (including one
omnidirectional camera), whereas the PETS 2009 bench-
mark considers an outdoor scene containing multi-sensor
sequences of different crowd activities filmed by multiple
cameras. All videos are scaled to a QVGA resolution with
approximately 25 fps, and for both datasets dictionaries have
been constructed using camera calibration data as it was ex-
plained in Sect. 3.3. We apply the adaptive non-regular grids
as in [1] to discretize the scenes. The constructed dictionar-
ies map the grid points that are densely sampling the scenes
(e.g., every 10 cm in APIDIS dataset) into their approximate
MSVs.

The performance of the detection process is quantita-
tively measured by computing the Precision and the Recall
measures given by the following ratios:

Precision = TP

TP + FP
, Recall = TP

TP + FN
, (11)

where TP, FP and FN are the number of True Positives,
False Positives and False Negatives. A true positive is
when a person is correctly located (at the resolution of the
scene discretization e.g., within 10 cm distance accuracy in
APIDIS dataset) on the ground plane. A confusion between
two neighboring grids localizations counts as both a FP and
a FN, indicating the strictness of our quality measures at
such high-resolution scene sampling.

6.1 Synthetic-Noiseless Setup

Once the dictionary is constructed, we are able to synthesize
foreground silhouettes with the same scene geometry as in
the APIDIS dataset. We generate random occupancy vectors
x and the corresponding noiseless MSVs are computed by
y = D.x. Our main goal here is to analyze the behavior of
SCOOP in various problem sizes.

1Dataset is publicly available at http://www.apidis.org/Dataset/.
2Dataset is publicly available at http://winterpets09.net/.

Fig. 3 Demonstration of a densely populated synthetic scene: k = 15
synthetic half-rectangular-half-elliptical objects are randomly dis-
tributed on N = 60 × 60 grid points. Silhouettes of the objects viewed
by four cameras as well as their location on the grid are shown

6.1.1 Performance Comparisons

First we choose a submatrix of the original dictionary which
corresponds to a square subregion of the basketball court in-
cluding 60 × 60 grid points (≈ 6 × 6 m2) observed by four
planar cameras. MSVs are synthesized from occupancy vec-
tors corresponding to k individuals/objects randomly dis-
tributed in the scene, and the results are averaged over a
hundred independent realizations. Figure 3 illustrates a real-
ization of such scene and the half-rectangular-half-elliptical
shaped silhouettes observed by four cameras. Note that, this
is a very densely populated scene containing k = 15 people
on a region smaller than one tenth of the basketball court.

In Fig. 4 we compare Thresholding and SCOOP meth-
ods. We set the parameter e = 0 for both algorithms as we
consider a noiseless scenario, and w = 0.2 for SCOOP.3

Solid and dashed-line curves correspond to setups wherein
any two individuals are separated by minimum distances
of 100 cm and 70 cm, respectively. For both methods the
average performance decreases as the scene becomes more

3Here, unless otherwise specified, SCOOP applies the third stopping
criteria.

http://www.apidis.org/Dataset/
http://winterpets09.net/
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Fig. 4 Comparing the precision of SCOOP and Thresholding on syn-
thetic data. Solid and dashed-line curves correspond to setups wherein
any two individuals are separated by minimum distances of 100 cm
and 70 cm, respectively

Fig. 5 Precision and recall rate with the synthetic data given four cam-
eras (Noiseless foreground silhouettes, however with possible occlu-
sions). Our proposed approach SCOOP is compared with other sparsity
driven formulation and the probability of occupancy (POM) approach
presented by Fleuret et al. in [13]

dense i.e., more people/objects or less relative distance be-
tween them. We can observe that by increasing the num-
ber of individuals, Thresholding reports many false posi-
tives (due to the ambiguity raised by many positions hid-
den from the camera views) resulting in a huge decrease in
the method precision. In contrast, SCOOP discards many of
those false positives by selecting a sparse occupancy vector,
which makes the method more robust against densely popu-
lated scenes.

In another setup we compare the performances of SCOOP
and the-state-of-the-art methods such as O-Lasso, RW-
BPDN and RW-Lasso introduced in [1] as well as POM pre-
sented in [13]. Evaluations are done for various algorithms
regularization parameters and over a wider region i.e., half

Fig. 6 Average running time (per frame) of SCOOP for various prob-
lem sizes k and N , using four cameras (synthetic data)

of the basketball court. Synthetic foreground silhouettes are
constructed as explained above with a spatial sparsity con-
straint; any two neighboring individuals have a minimum
spatial distance of 70 cm with each other. Five to fifteen
people are randomly triggered for each frame (few hundred
frames are generated). As we can observe in Fig. 5, SCOOP
and O-Lasso have comparable performances and both out-
perform other methods such as RW-BPDN, RW-Lasso and
POM. Remarkably, SCOOP has an extremely lower com-
putational complexity compared to all other methods and it
achieves a realtime performance that will be experimentally
shown in the following section.

6.1.2 Computational Complexity

Figure 6 demonstrates the running time of SCOOP for dif-
ferent problem sizes, averaged over a hundred random syn-
thetic frames. Increasing either k or N will naturally prolong
the localization process, however, a remarkable observation
is that, the complexity of SCOOP is less sensitive to the di-
mension of the scene than to the number of the individuals
i.e., the computation time increases less by doubling N with
a fixed k rather than vice-versa. This highlights the advan-
tage of the preprocessing step in SCOOP which refines the
search space U prior to the greedy pursuit i.e., in our experi-
ments as N grows, the dimension of the search space u stays
rather proportional to k (with a constant factor between 1.5
to 5). The charts in Fig. 7 are demonstrating this idea, where
the preprocessing acceleration factor (N/u) almost linearly
increases as N grows, and the steepest slope belongs to the
less populated scenes k = 5.

We run these experiments in Matlab 7.1, on a modest
MacBook Pro laptop (2.33 GHz Intel core 2 Duo CPU and 2
GB RAM), and without any particular parallel optimization.
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Fig. 7 Average acceleration factor (per frame) of SCOOP for various
problem sizes k and N , using four cameras (synthetic data)

Table 1 Average computational times of SCOOP and O-Lasso (in
seconds) for different crowd densities and video qualities (Number of
scene grid points N = 3600)

Video quality Algos Number of Individuals

k = 5 k = 10 k = 15 k = 20

QVGA SCOOP 0.008 0.0117 0.015 0.0175

O-Lasso 0.397 0.492 0.761 1.385

VGA SCOOP 0.033 0.048 0.059 0.073

O-Lasso 2.463 2.956 4.015 7.98

Although our main focus was analyzing the general behav-
ior of the graphs, we can observe that SCOOP performs in
real-time (see Fig. 6). It has been shown in [1] that, by ap-
plying adaptive non-regular grids even huge practical setups
such as the outdoor scenes in PETS 2009 benchmark can be
efficiently sampled from N � 6000 points and therefore, by
using SCOOP one can handle localization of 20 individuals
(in such huge scenes) at the rate of approximately 45 fps.

Note that our implementation benefits from another sort
of sparsity which appears to be essential for reducing even
more the complexity of SCOOP. Since by construction each
atom of the dictionary contains only MSV of a single ob-
ject (which is a sparse vector in many positions), in many
typical setups the dictionary matrix turns out to be sparse.
In the above-mentioned experimental setups the nonzero el-
ements are only a small fraction (about 1.2 %) of the whole
dictionary matrix of the APIDIS dataset. Considering this
fact in the algorithm implementation significantly reduces
the memory usage as well as the computational complexity
of each iteration (i.e., the sparse matrix product), in order to
perform much better than O(Mu) (in fact, proportional to
the number of the nonzero elements).

Fig. 8 Precision and recall rates of SCOOP and O-Lasso with respect
to the over-height ratio (α) i.e., people’s height (cm) divided by 170

Finally, we compare the computation time of SCOOP
with O-Lasso [1] (whose recall-precision performance is
comparable to SCOOP) on a square subregion of 60 × 60
grid points and for various number of individuals. For the
sake of fairness, both methods initially apply Thresholding,
by setting e = 0 in (4), in order to reduce the search space di-
mension. Table 1 contains the computation times of SCOOP
and O-Lasso (averaged over a hundred random synthetic
frames) for the video qualities QVGA and VGA. We can
see that for a given video sequence SCOOP runs between
fifty to a hundred times faster than O-Lasso. The running
times of both algorithms naturally increases using a higher
video resolution. By using a more efficient implementation
we can still predict a realtime performance for SCOOP at
higher video resolutions than QVGA, however, our experi-
ments in Sect. 6.2 indicates that, the QVGA resolution can
be sufficient for SCOOP to achieve a precise localization
performance in real-life scenes.

6.1.3 Stability Against Height Variations

We run a few simulations to measure the sensitivity of our
algorithm with respect to the individuals having different
heights than 170 cm. We construct several dictionaries (as
previously mentioned in Sect. 3.3) whose atoms simulate in-
dividuals with a wide variety of heights ranging from 34 cm
to 306 cm (which can be sometimes even unrealistic). At a
given height, we use the corresponding dictionary in order to
generate a hundred video frames of five individuals who are
randomly located in a subregion containing N = 60 × 60
grid points. For the localization process, however, we use
the previous “reference” dictionary with atoms of 170 cm
height. The recall-precision performances of SCOOP and
O-Lasso are depicted in Fig. 8. As we can see, the perfor-
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Fig. 9 Detecting and localizing players in the APIDIS dataset using
SCOOP: demonstration for four frames and three camera views per
frame. Players’ positions are marked for the left-half of the basketball

court. White contours correspond to the degraded foreground silhou-
ettes that are extracted and used for localization

mances of both methods decrease (at most) between 10–
17 %, indicating a rather stable localization even for dra-
matic height changes. Note that for each 0.2 ≤ α ≤ 1.8, that
is the over-height ratio (the ratio of the heights of the indi-
viduals (cm) to 170 i.e., the height of the reference dictio-
nary atoms), the Thresholding criteria in (4) is modified to

〈di, y〉
| supp(di)| ≥ min{α,1},

so that, the refined search space U contains the original so-
lution. For the extreme height differences (in particular, for
more than 50 %), adding an extra atom at each iteration of
SCOOP can increment the error term E = | supp(y ⊕ ŷ)|
in Algorithm 1 and therefore, SCOOP may stop at the very
early iterations and before localizing all individuals. In or-
der to resolve this issue, here, we modify as well the third

stopping criteria of SCOOP so that, the iterations continue
as long as the newly chosen atom di increases the error term
less than |1 − α| × | supp(di)|.4

6.2 Real-World Datasets

As previously mentioned, in this part we compare the per-
formance of SCOOP with the state-of-the-art methods of lo-
calization and for this purpose we consider two classes of
real-world challenging datasets. Note that for both datasets
the foreground silhouettes are extracted using the work of
Stauffer and Grimson [24].

4Note that, |.| denotes the absolute value of a scalar, whereas for a set
(and as previously defined) it returns its cardinality.
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Fig. 10 Precision and recall rate with the APIDIS dataset given four
cameras (with severely degraded foreground silhouettes). Our pro-
posed approach SCOOP is compared with other sparsity driven for-
mulation and the probability of occupancy (POM) approach presented
by Fleuret et al. in [13]

First, we consider a sequence of a basketball match from
the APIDIS dataset and we evaluate the performance over
the left-half of the basketball court where most of the cam-
eras are located i.e., cameras id = 1, 2, 5 and 7 (see Fig. 9).
This dataset has several challenges: Basketball players may
have unexpected changes of behavior, e.g., running, jump-
ing, crouching, sudden changes in the motion path, etc. Play-
ers can be either strongly grouped together or spatially scat-
tered. Shadows and reflection of the players on the ground
floor mislead many typical silhouette extraction techniques,
and they output severely degraded MSVs often corrupted by
many false positive pixels (i.e., noisy data).

We run several experiments on this dataset and we mea-
sure the performance of SCOOP together with several state-
of-the-art methods of localization namely, the sparsity-
driven convex-approach in [1] (RW-Lasso, RW-BPDN, O-
Lasso) and the work of Fleuret et al. in [13] (referred to as

Fig. 11 Recall rate with respect to the degradation on the foreground
silhouettes

Fig. 12 Three regions (R0, R1 and R2) are considered in the PETS
2009 dataset in order to report the number of detected people

Table 2 Performance of people counting on the scenarios proposed by
the PETS organizers given 1 camera (id = 1) and 3 cameras (id = 1, 2,
3): GT = Ground Truth (number of people), PC = People Counted by

SCOOP vs. O-Lasso, AFE = Average Frame Error. The dataset “S1”
is used with various level of difficulty (“L1”: medium density crowd,
“L2” and “L3” correspond to high density of people)

Seq Algos R0 R1 R2

GT PC AFE GT PC AFE GT PC AFE

S1-L1-2 O-Lasso 2861 2186|2305 4.2 |3.8 1237 908|981 2.3|1.9 1130 848|895 1.8|1.8

SCOOP 2669|2753 1.6|2.4 1113|1147 1.2|1.2 1065|1070 0.9|1.3

S1-L2-1 O-Lasso – – – 1279 558|710 10.0|8.0 1622 814|940 6.8|6.0

SCOOP – – – 832|914 6.5|5.7 1008|1104 5.3|4.7

S1-L3-1 O-Lasso – – – 230 163|196 2.0|1.2 – – –

SCOOP – – – 258|231 0.9|1.0 – – –

S1-L3-2 O-Lasso – – – 2632 2084|1550 10.1|10.5 – – –

SCOOP – – – 2717|1647 8.8|9.2 – – –
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Fig. 13 Detecting and localizing people in a crowd using SCOOP,
given (a) three camera views or (b) a single camera view: positions in
the scene are marked in top view images. White contours correspond

to the grouped and noisy foreground silhouettes that are extracted and
used for localization

POM). Results are reported in Fig. 10 and provide a clear
comparison between the performance of SCOOP and its
counterparts; SCOOP outperforms RW-Lasso, RW-BPDN,
POM, and record a similar performance as O-Lasso.

In addition to its precision, our method offers a huge ac-
celeration in detection time. We measure the computation
time of SCOOP as opposed to O-Lasso. Given the setup
above with five cameras and a Matlab implementation for
both algorithms, SCOOP locates the basketball players on
average a hundred times faster than O-lasso.

Figure 11 compares the robustness of SCOOP to O-Lasso
given degraded foreground silhouettes. We measure the re-
call rate with respect to the percentage of removed fore-
ground silhouette (MSV) per person. Clearly, degrading the
silhouettes, degrades the recall rate. However, it is interest-
ing to notice that SCOOP is more robust to the degradation,
i.e. for a given degradation, the recall rate is higher than with
O-lasso. By removing half of the foreground silhouettes, we
can still locate people 90 % of the time.

In the next setup, we consider an outdoor scene mon-
itored by three cameras using the PETS 2009 benchmark
dataset (views are chosen from cameras Id = 1, 2 and 3).
The dataset consists of three levels of difficulty L1, L2 and
L3, with various crowd activities (walking, running) and
different densities up to approximately forty people in the
scene. For evaluation and comparison purposes, we use the
same performance evaluation proposed by the PETS orga-
nizers [11]. The number of people detected into predefined
regions are reported (Fig. 12 illustrates those regions). Re-
sults are demonstrated in Table 2 and we can observe that

the proposed SCOOP algorithm is performing better than
O-Lasso since the Average Frame Error (AFE) is reduced.
Moreover, we can see that the solutions of SCOOP are less
sparse than of O-Lasso (however, closer to the ground truth).
Such gain in performance is justified by the boolean op-
erators used by the greedy approach i.e., SCCOP is more
precise with the non-linear phenomena occurring with the
occlusions compared to O-lasso. Therefore, crowded scenes
are better handled by such approach. Figure 13 illustrates de-
tection and localization of a densely populated crowd using
SCOOP and for a single frame of the PETS 2009 dataset. We
can observe that the extracted foreground silhouettes high-
lighted by the white contours are severely grouped together
(many occlusions) leading to a very challenging localization
scenario.

7 Conclusions

In this paper we introduced a novel algorithm (SCOOP) for
people/object localization purposes. By considering various
degradation models, we show that SCOOP performs as pre-
cise and robust as the state-of-the-art methods, however with
the advantage of being much more numerically efficient,
achieving a real-time performance. Design of this algorithm
together with our mathematical analysis are the outcomes of
a new formulation for the localization problem based on a
boolean regression model. This model creates connections
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between our problem and the well-known group testing lit-
erature and later the set cover problem, allowing us using
the powerful existing tools in their literature.

In the future, we intend to use SCOOP (for the localiza-
tion step) together with a tracking block in order to build a
complete system that is able to capture people’s motion be-
havior given a network of fixed cameras and analyze their
trajectories, all in real-time. This system would find vari-
ety of applications in security and surveillance, psychologi-
cal studies, team sport coaching and tactics, and market re-
search.

In addition, we would like to study in further details mul-
tiple object recovery using dictionaries that are constructed
from MSVs of various objects e.g., cars, bikes, buses, trucks
and pedestrians that are appearing together in typical urban
scenarios. There, designing a method that is able to robustly
distinguish between multiple objects from their noisy MSVs
(e.g., not estimating a crowd silhouette by a single car) is of
high importance.
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