

Labelling Game for
Twitter Streams

Semester Project Report

Hanser Valérian

Fall 2010

Labelling Game for Twitter Streams

Fall 2010 – Hanser V. Page 2

The main goal of this project is to build a mean and to populate a database with

correct information regarding some decided pairings. This database will then be compared

to the results of algorithms that process the same pairings, which provides a way to assess

algorithms’ performance.

The main focus is set on the following pairing, tweet messages and company. For a

given set of tweet messages, we should be able to decide if either the word refers to the

given company or not. In order to populate the database with such information, a web game

application is used, which will allows any kind of users who wishes to play to give its

feedback. We record those feedbacks and when enough feedbacks are collected, we may be

able to build a subset of the correct information we want based on the feedbacks.

This work is about developing such an application, and, to do so, it was suggested to

use a web framework named Django:

“Django is a high-level Python Web framework that encourages rapid development and clean,

pragmatic design.”

As said, Django uses the well-known programming language Python and has many built-in

tools for ease of use. For example, one can define its whole database in python, and Django

provides an API for accessing this database, which can be MySQL, SQLite3, Oracle, etc...

First of all, we will discuss in-depth about the database used in this project, how it is

built, how it is implemented and the choices made concerning the design. In a second time,

we will see how the client side web application works, as for the database, we will discuss

about how it is done, the problems encountered and the choices made regarding the design.

Finally, we will take a look at the administrator functionalities.

http://www.djangoproject.com/

Labelling Game for Twitter Streams

Fall 2010 – Hanser V. Page 3

Database

The above schema briefly describes the final database used for the game itself. The

database access in this project is handled by the Django API; all the tables are defined as

‘Models’ in Python code. The database engine used is MySQL because of the knowledge

already acquired about this engine.

 We will now give a complete definition of this database, table by table, explaining

what the different fields are, the constraints of using Python - that is what could have been

done better in RAW MySQL - and the relevant alternatives designs that were thought about.

COMPANY

 ID

 Name

 URL

USER

 ID

 Username

 Password

 Rating

FEEDBACK

 First object

 Second Object

 Type

 User

 Feedback

TWEET

 ID

 Message

 Company

 Obvious Value

Legend:

 Foreign Key - Primary Key

- Unique

Game Database Schema

Labelling Game for Twitter Streams

Fall 2010 – Hanser V. Page 4

User
Responsible for representing a player account, this table has four fields:

 The first one is the primary key ‘ID’ that is an auto-incremental integer.

 The second one is the ‘Username’ that is a field of characters, which is used as the

login for a player; this field is tagged as unique; the maximum length is set to 16.

 The third one is the ‘Password’ that is a field of characters that contains an

encryption of the user’s password; the maximum length is set to 32.

 The last one is the ‘Rating’ that is float, corresponding to a grade that is defined on

the player feedbacks; default rating is set to 0.0.

As the player can choose its ‘Username’, it has to be unique; we can’t ask a player to

remember an auto-attributed ID and we want to be able to differentiate two different

players. We could have used the field ‘Username’ to be the primary key, but integers are

lighter to handle.

The ‘Rating’ is based on the user feedbacks, we can determine a lot a policies to compute

the rating, as that is not a primary concern in this project, we used a simple way to try

determining if the user answers randomly to the suggested tweet-company pairs.

Tweet
Responsible for representing a tweet message, this table has four fields:

 The first one is the primary key ‘ID’ that is an auto-incremental integer.

 The second is the ‘Message’ that is a field of characters, which contains the tweet

message we want to evaluate.

 The third one is the foreign key ‘Company’ to which we want to know if the message

refers to or not, the foreign key refers to the Company.ID integer.

 The last one is the ‘Obvious Value’ that is a field of character, it is to know if the

message surely refers to the company or not or unknown; the default value is

‘Unknown’; the maximum length is set to 1, see below for details.

The pair ‘Message’-‘Company’ is unique together because we want to be able to have a

same text message to belong to different companies and avoid duplicated, even if this not

likely to happen.

The ‘Obvious Value’ should in fact be an ENUM value in MySQL, but the python defined

models doesn’t allow it directly. Instead, it is a field of character of maximum size 1 to which

is associated an array of choices.

Labelling Game for Twitter Streams

Fall 2010 – Hanser V. Page 5

Company
Responsible for representing a Company, this table has three fields:

 The first one is the primary key ‘ID’ that is an auto-incremental integer.

 The second is the ‘Name’ that is a field of characters, which contains the name of the

company; this field is tagged as unique; the maximum length is set to 30.

 The last one is the ‘URL’ that is also a field of characters, containing the URL of the

company; the maximum length is set to 200.

The field ‘Name’ is unique because we don’t want two different companies to be named the

same way for consistency concerns. We could have used the field ‘Name’ to be the primary

key, but integers are lighter to handle and due to design concerns regarding the feedback

table that will be discussed later.

Feedback
Responsible for representing a feedback for any pairs, this table has five fields:

 The first one is ‘First Object’ that is an integer, which refers to a table.

 The second one is ‘Second Object’ that is an integer, which refers to a table.

 The third one is ‘Type’ that is a field of characters, to know what kind of pair the row

belongs to; maximum length is set to 1, see below for details.

 The fourth one is the foreign key ‘User’ that refers to the User.ID integer the

feedback was given by.

 The last one is ‘Feedback’ that is a field of characters, which is the feedback of the

user for the pair-type; maximum length is set to 1 see below for details.

The feedback table is able to handle any kind of pairs as long as each side the pair is

differentiable among itself by integers, a primary key for example. Each raw represents a

user’s feedback for a pair of a certain type. The tuple (‘First Object’, ‘Second Object’, ‘Type’,

‘User’) is unique together and hence form the primary key in Python, in the MySQL database

the table has an auto-incremental integer field ID for primary key.

The ‘Type’ and ‘Feedback’ should in fact be an ENUM values in MySQL, but the python

defined models doesn’t allow it directly. Instead, it is a field of character of maximum size 1

to which is associated an array of choices.

In the case of the ‘Tweet’-‘Company’ pair, we could have used only the tweets’ id and

retrieve the company via its foreign key, needing only one field in this table; but we wanted

the Feedback table to be able to represent any pairs, it was not build for the tweet game

specific needs.

This table has to be used with caution, as there is no foreign key regarding ‘First Object’ and

‘Second Object’ because in one hand we don’t want this table to be limit to one kind of pair,

Labelling Game for Twitter Streams

Fall 2010 – Hanser V. Page 6

in the other hand we don’t have foreign key fields that are ‘Type’ dependant as this is not

provided by the engine. So, this must be handled on a higher level, considering the ‘Type’

and populate the database accordingly.

Labelling Game for Twitter Streams

Fall 2010 – Hanser V. Page 7

Web Application - Client Side

The above schema is the link chart for the client side of the web application. The

website is Django powered, that is, when we enter an URL, it will be matched to some

patterns through regular expressions, if there is a match; it will call a Python function that is

in charge of dealing with the client request. Most of those functions in this project will

return directly a webpage to be rendered. All the pages are using HTML and Django own

defined syntax that can be seen as an alternative, complement to PHP.

We will now give for each page what they contain, what functions are called and

their purpose, the problems encountered and the choices made.

Login
This page is the first page displayed when we enter the server URL/IP. The page is set to

display an error message if there is such message.

It also contains an HTML POST form in which the inputs are Django designed; there is a

python definition for this form, it defines a username and a password; maximum length is

set to 16 and 20 respectively. We use this Django powered form because of the automatic

form validation it provides. So this form is used to authentificate yourself with the server.

There is also a link to the registration page for those who don’t have an account yet.

The function in charge of this page is divided in two parts. If you access the URL/IP with a

“GET” request – which is the default when you enter the URL/IP -, it will simply display the

login form and the link described above. When the POST button of the page is clicked, we go

to the same URL and hence to the same function, but this time the request method is set to

Login Registration

Header +

Score
History

Selection

Labelling

Web Application Chart

Labelling Game for Twitter Streams

Fall 2010 – Hanser V. Page 8

“POST”. This time the function will try to validate the POST request, if successful, we retrieve

the account in the database (table User) with the given username and we compare the

encryptions of the account’s password and the password given in the form. We display the

login page with an error message if the password is not the same or if there is no account for

the given username. If all is successful we retrieve all the companies – see Menu for more

information - and display the menu page.

One of the problems here is to secure the user’s password, we wanted the password to be

encrypted client side and then sent through the network, but we didn’t find an easy way to

do so, and as security is not a primary matter in this project and the consequences are

minor, it simply send the password in clear and we encrypt it when received by the server.

Registration
This page is displayed when we click on the ‘Register’ link on the login page. The page is set

to display an error message if there is such message.

It contains the same HTML POST form as the login page as the two have nearly the same

purpose.

In the same way as the login function, the register function display the form in case of a

“GET” request. When the request method is set to “POST”, the function will try to validate

the POST request; if successful we try to retrieve the account in the database with the given

username. If successful we display the registration page again explaining the user that this

username is already taken (via an error message), else we simply create a new account with

the provided username and encrypted password and insert it into the User table and display

the login page.

Selection
This page is accessed after the user has entered the username and password. The page is set

to display an error message if there is such message.

This menu is composed of a complex HTML POST form, it is actually a company selection, it

displays all the companies in the database for the user to choose to play with. The displaying

of those companies is done by a Django specific syntax loop over the companies received as

a page argument.

Regarding the function called by the company selection, it tries to retrieve the select

company name, if successful it directly call another function that is described is the Labelling

section. If no company is selected it display the selection again with an error message.

Header
The header is available once logged in and is available on every pages; it allows accessing

directly to the ‘Score’, ‘History’ and ‘Selection’ pages. The three buttons are in fact POSTs

Labelling Game for Twitter Streams

Fall 2010 – Hanser V. Page 9

which only input is the hidden input which value is set to the actual user’s username, this

way we can know which user requires to see its score, history or company selection, see the

corresponding pages for more details.

Score
This page is display the score of the player for the overall companies.

So as to computing the score, we retrieve the account ID (User.ID field) for the given

username which was received via the POST request hidden value discussed in the Menu

section. Once we have this User.ID, we can retrieve all the feedbacks given by this user for

the pairing ‘Tweet’-‘Company’ and compute a score based on those feedbacks. Here again,

there are many policies to compute a score, but this is not of primary concern in this project,

so the score is computed by adding how many players have answered the same way as the

user for each tweet. If there is no feedback given by the user, a message explaining this is

displayed.

History
This page displays all the feedbacks the user has given from the creation of the account.

The page contains a HTML table coupled with a Django powered loop over a table received

as a page argument.

The function purpose is to build the table that will be displayed. The table is an array of

associative table, we retrieve the account ID (User.ID field) for the given username which

was received via the POST request hidden value discussed in the Menu section. Once we

have this User.ID, we can retrieve all the feedbacks given by this user for the pairing ‘Tweet’-

‘Company’ and loop over this set, retrieving for each the ‘Company.Name’, the ‘Tweet’ and

the ‘Feedback’ putting them in an associative table and appending it to the main table. If

there is no feedback given by the user, a message explaining this is displayed.

Labelling
This page is accessed after selecting a company in the Menu. The page is set to display an

error message if there is such message.

Using a form and Django powered loops over the set of five tweets given as a page

argument, it displays the five tweets which associated company (‘Tweet.Company’) is the

one selected. For each five tweet, it displays the tweet message and three choices: ‘Yes’,

‘No’ and ‘Unknown’ for the user to give its feedback, only one choice can be select for each

tweet. When the submit is done, a validation function is called and a new set of tweets is

displayed.

Labelling Game for Twitter Streams

Fall 2010 – Hanser V. Page 10

In this page, two big functions are used. The first one is the one that build the set of five

tweets to be displayed.

There are many policies that could have been used in order to select five tweets among the

existing tweets for a given company. The main concern regarding this problem in this project

is to have a minimum of feedbacks for a tweet in order to decide either or not it refers to the

company. So in one hand, we should select tweets for which a feedback has already

happened. In the other hand, we also want most of the tweet set to be played with. The

policy we decided to apply here is to select the tweets ordered by ID (which is done by

default by MySQL) and take the five first tweets that don’t have more than five feedbacks.

This is an advanced query that the Django API could not handle directly. Fortunately, it

allows us to make raw SQL queries; this feature has been used to perform such a query. If

the result set is empty, we simply inform the user that there are no more tweets to be

labelled for this company.

The second big function is the processing of the user feedbacks when he wishes to submit its

feedback.

The value in the POST contains the tweet ID and the user feedback. Hence, we must retrieve

that two data. In order to do this, we use regular expression’s groups, we use the regular

expression “^(d+)([U|Y|N])$”. First we store all the values in a table, and then loop over this

table and we create the set of feedback corresponding to the current user, the company he

selected, the tweet ID and user’s feedback obtained with the regular expression. Once this is

done we continue with the next five tweets, calling the above described function.

Security Matters
Apart from the password clear transmission, one may worry a little about security, as seen, the entire

site is done with the POST method. Hence the first matter is to avoid Cross Site Request Forgery.

Fortunately, Django provides a protection against this attack using a cookie set to a random value.

For more information, see Cross Site Request Forgery protection.

http://docs.djangoproject.com/en/dev/ref/contrib/csrf/?from=olddocs

Labelling Game for Twitter Streams

Fall 2010 – Hanser V. Page 11

Web Application – Admin Side

The application management is mainly handled by Django built-in Admin Site. You

have to login on the admin website in order to access the provided tools, the username and

password are different from the ones used for the game. The Django admin site was design

to support a multiple websites so it has a lot of tables regarding permissions like super-user,

website specific admin, etc...

Its flexibility allows us to customize and add some features to the basic site, we can

set up filters for the database, adjust the way it is displayed. Here we will only discuss about

the two added features: the Feedback overview and the JSON file handling.

Feedback Overview
The feedback overview is a page which contains a table that display all the tweets message

using Django powered loop over a page argument for a given company and a summary of

how many players answered ‘Yes’, ‘No’ and ‘Unknown’ and finally an appreciation of the

overall feedbacks for each tweet.

The function responsible for building such a table is done as follow: the main of the

function’s work is handled by a raw SQL query using a “GROUP BY message, feedback” and

the COUNT clause. The result is that it creates a row for each ‘Message’-‘Feedback’ pair and

count how many such pair exists in the ‘Feedback’ table. Hence we only have to handle the

pairs where count is zero has it will not be an entry in the result set. The table the function

built is an array of associative table, so we store in an associative table the information of

the message, the feedback and its count, which will be appended to the main table, given as

argument to the webpage.

The policy regarding the appreciation for the tweet message is the following:

 #’Yes’ > #’No’ => ‘Yes’

 #’Yes’ < #’No’ => ‘No’

 #’Yes’ = #’No’ => ‘Unknown’

 #’Unknown’ > #’Yes’ and #’No’ => ‘Unknown’

DJANGO ADMIN SITE

ADDED ADMIN FEATURES

 JSON file handling

 Feedback Overview

Admin Side Overview

Labelling Game for Twitter Streams

Fall 2010 – Hanser V. Page 12

JSON File Handling
The page contains a POST form, giving in a ‘.json’ file path.

“JSON (an acronym for JavaScript Object Notation pronounced / d̍ʒeɪsən/) is a lightweight text-

based open standard designed for human-readable data interchange. It is derived from the JavaScript

programming language for representing simple data structures and associative arrays, called objects.

Despite its relationship to JavaScript, it is language-independent, with parsers available for virtually

every programming language.” Source: http://en.wikipedia.org/wiki/JSON

Such a file can be directly received from the Twitter API according to some keywords.

The function receiving this file path will try to open the file. If the file exist, it takes the first

characters of the filename as the company name (suppose the filename is Company.json or

Company-234.json, the company name will be Company is both cases) using the regular

expression “’^.*/([a-zA-Z]+)-?[0-9]*\.json$”, and then create the company if it doesn’t exist.

We make some text processing over the file, like taking care of blanks, line returns and

quote flags. Unfortunately, due to encoding reasons, some strange characters may be badly

converted to UTF-8, resulting in some non-fluent messages (i.e. appearance of strings like

“u286”). According to the associative side of JSON files, we can access to the tweet messages

as we access a table, so we can populate the Tweet table with the corresponding company.

As the ‘Tweet.Message’ and ‘Tweet.Company’ are unique together, we will not insert

duplicate messages. Aside from populating the database, we build an HTML text with all the

messages or a duplicate message when needed that will be displayed to the admin for him

to know that the work is done and inform him if duplicates were found.

What I have learned
During this project, I first have re-used and somehow deepened my knowledge about

databases, especially MySQL. In second term, I have learned to use a nice web framework,

how to use the tools it provides, and modifying some part of it. That framework uses Python,

which I never practiced before, this language was new to me and as far as the project

needed it was quite ok to learn. In the beginning, I got confused between Django own syntax

and Python. One of the longest works was reading Django documentation regarding models

(that how the name database tables) and trying to match those models to good MySQL

definitions. Also, I hardly ever wrote web pages, HTML was another language to deal with,

and I think I only got the basics of it. Many other website aspects were attractive, as for

building nice looking pages, securing data transmissions, but this requires other fields to

know as CSS, Jscript etc... And this could be the purpose of an entire project.

http://en.wikipedia.org/wiki/Acronym
http://en.wikipedia.org/wiki/Wikipedia:IPA_for_English
http://en.wikipedia.org/wiki/Human-readable
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Associative_array

