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Abstract

In this work we address one of the phenomenological issues of beyond the Standard
Model scenarios which embed Supersymmetry, namely the Supersymmetric Flavour
Problem, in the context of String Theory. Indeed, the addition of new interactions
to the Standard Model generically spoils its flavour structure which is one of its
major achievements since it for example leads to a very elegant understanding of
the absence of flavour changing neutral currents in the leptonic sector and of the
stability of the proton, thanks to accidental symmetries. We focus on a subset of

the phenomenologically dangerous operators, namely the soft scalar masses.

One way out of the Supersymmetric Flavour Problem is to geographically separate
the observable and hidden sectors along a fifth dimension, gravity being the only
interaction propagating in the bulk. In such scenarios, the soft scalar masses are
vanishing at the classical level since there is no direct contact term between the
observable and hidden multiplets and tend to be universal at the loop-level. However
such setups hardly ever come about in String Theory, which is one of the most
promising candidates of quantum gravity. In order to make contact with the five-
dimensional picture, we focus on the prototypical case of the Eg x Eg Heterotic
M-Theory which, in a certain regime, effectively looks five-dimensional and embeds
matter fields on two end-of-the-world branes. In these scenarios, not only gravity
but also vector multiplets propagate in the five-dimensional bulk, effectively spoiling

the sequestered picture.

However, since the contact terms responsible for the appearance of soft scalar masses
arise due to the exchange of heavy vectors, they do enjoy a current-current structure
which can be exploited to inhibit the emergence of soft scalar masses by postulating
a global symmetry in the hidden sector. In order to assess the possibility of real-
ising such a mechanism, we first study the full dependence of the Kahler potential
on both the moduli and the matter fields in the case of orbifold and Calabi-Yau
compactifications. We then determine whether an effective sequestering may be
achieved thanks to a global symmetry and argue that whereas for orbifold models
our strategy can naturally be put at work, it can only be implemented in a subset
of Calabi-Yau models.

Keywords : Beyond the Standard Model, Flavour Structure, Supersymmetry, Hid-
den Sector, Soft Terms, Supergravity, String Theory, Heterotic Superstring, M-
Theory, Sequestering, Orbifold, Calabi-Yau.



Résumé

Dans ce travail nous adressons l'une des problématiques phénoménologiques des
scénarios allant au dela du Modele Standard qui englobent la supersymétrie, dans
le cadre de la théorie des cordes. En effet, ’adjonction de nouvelles interactions
au Modele Standard a génériquement pour effet de compliquer sa structure de
saveur qui est I'un des succes de ce modele puisqu’elle explique notamment de
facon tres élégante la stabilité du proton et l’absence de courants neutres dans
le secteur leptonique grace a des symétries accidentelles. Nous nous intéresserons
plus spécifiquement & un sous-ensemble des opérateurs dangereux d’un point de vue

phénoménologique : les masses scalaires dites soft.

Une des solutions au probleme de la saveur supersymétrique est de séparer géo-
graphiquement le secteur visible du secteur caché le long d’une cinquieme dimen-
sion, la gravitation étant la seule force capable de propager dans la cinquieme di-
mension. Dans de tels scénarios, les masses scalaires soft sont absentes au niveau
classique puisqu’il n’y a pas d’interaction directe couplant les champs du secteur
visible et du secteur caché et tendent a étre universelles au niveau quantique. Afin
de faire contact avec la configuration cing-dimensionnelle, nous nous concentrons
sur la théorie M hétérotique Eg x Fg qui, dans un certain régime, est effectivement
cing-dimensionnelle et contient des champs de matiére sur deux branes se situant
aux frontieres de la cinquieéme dimension. Dans de tels scénarios, la gravitation n’est
plus la seule interaction présente dans la cinquieme dimension. Un certain nombre
de multiplet vectoriels y propagent aussi, rendant caduque ’analyse des termes soft

faite précédemment.

Néanmoins, puisque les termes de contacts responsables de I’émergence de masses
soft sont dus a l’échange de multiplets vectoriels lourds, ils ont une structure de
type courant-courant qui peut étre exploitée afin de supprimer les termes soft au
niveau classique en postulant une symétrie globale dans le secteur caché. Afin
d’évaluer la possibilité d’implémenter un tel mécanisme, nous étudions tout d’abord
la dépendance du potentiel de Kahler des modules et des champs de matiere, a la
fois dans le contexte des orbifolds et des Calabi-Yau. Nous déterminons ensuite si
ce potentiel peut admettre une symétrie conforme & nos besoins et trouvons qu’alors
que dans le cas des orbifolds notre stratégie peut naturellement étre mise en ceuvre,

elle n’est applicable que dans un sous-ensemble des compactifications Calabi-Yau.

Mots clefs : Au dela du Modele Standard, Structure de saveur, Supersymétrie,
Secteur caché, Termes soft, Supergravité, Théorie des cordes, Corde hétérotique,
Théorie M, Séquestration, Orbifold, Calabi-Yau.



peine exprimons-nous quelque chose qu’étrangement nous le dévaluons. Nous pensons
avoir plongé au plus profond des abimes, et quand nous revenons a la surface, la goutte
d’eau ramenée a la pointe péle de nos doigts ne ressemble plus a la mer dont elle
*provient. Nous nous figurons avoir découvert une mine de trésors inestimables, et la
lumiere du jour ne nous montre plus que des pierres fausses et des tessons de verre; et le trésor,
inaltéré, n’en continue pas moins a briller dans ’obscur.

MAETERLINCK
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Chapter 1

Introduction

All models are wrong but some are useful.

George Box and Norman Draper

1.1 From Experimental Clashes to Gedankenexperimenten

Before the appearance of rational science during the Middle Age, the world was thought to
be best described by the Elements : Fire, Earth, Air and Water. From the pre-Socratic point
of view, the Elements were enough to answer the fundamental question How did the ordered
cosmos in which we live come to be? Many competing theories were elaborated, some based
on Water, others on Air. Most of the proposals were based on the assumption of continuous
matter until Democritus (460-370) proposed the first atomist theory and introduced the concept
of void as the place where atoms are located.

Aristotle (384-322) later argued! that the Elements have to be supplemented with a more
divine one, the quintessence also known as the Ather, in order to account for the apparent
perfection of stellar movement opposed to the corrupt human sublunar world.

We may now rise, with all the respect due to both Democritus and Aristotle, the following
question : when introducing atoms or quintessence, are they doing science? The modern point
of view on determining whether a theory stands within the scope of science is certainly close to
the one of Waissman? : ‘If there is no possible way to determine whether a statement is true
then that statement has no meaning whatsoever. For the meaning of a statement is the method
of its verification.’

However at the times of Democritus and Aristotle no method could be used to falsify their
views on Nature. Nonetheless, the Waismann criterion only asks for the logical possibility of
falsification, without specifying when such experiments have to be performed. From this point
of view, the questions raised by Democritus and Aristotle are genuine scientific questions which,

in the meantime, have been answered.

ITraité du Ciel, Livre I, Chapitre 2, §10
2Waismann, ”Logische Analyse des Wahrscheinlichkeitsbegriffs”, Erkenntnis 1, 1903, p. 229.
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It seems that, after decades of evolution driven by experimental clashes', Science has taken
us back to the times of Aristotle, leaving us with questions that seem not to have immediate
falsification methods. Indeed, most of the motivations for going beyond the well-established
theories are not coming from experimental evidences but rather from abstract principles or
from Gedankenexperimenten. The answers to such questions are incredibly sophisticated and
there is no clear path to their falsification. So, again, the question arises, are we doing science?
Since the logical possibility of falsifying such theories exists, the answer should be positive. But
whether we, as a society, want to devote people, time and money to falsify these theories is

another question.

1.2 Towards a Completion of Okun’s Cube

The twentieth century witnessed two major breakthroughs which have revolutionised our un-
derstanding of Nature : Quantum Mechanics (QM) and General Relativity (GR). The former
consists of a description of microscopic physics such as the discrete energy levels in atoms
phrased in a probabilistic language, leading to endless debates on its philosophical implications.
Quantum Mechanics’ major success is the removal of the » = 0 singularity in the Coulomb law,
achieved thanks to the fuzziness it introduces. The basic ingredient of General Relativity is
Special Relativity whose primary concern was to unveil the consequences of theories having a
maximal speed, the speed of light, based on the principle that an observer cannot determine its
speed by any experiment if moving at constant speed relative to another observer, i.e. being at
rest is a relative statement. The extension of the principle of relativity to situations in which
the observers’ relative speed is unconstrained leads to General Relativity.

All three theories we have introduced are characterised by an expansion parameter which
measures the deviation from Newtonian mechanics. These respectively are the reduced Planck
constant £, the speed of light ¢ and Newton’s gravitational constant G which are measured
to be [2] :

h 1.05-1073* m? kg s~ !,
c =~ 299-10®ms7!, (1.1)
Gy ~ 6.64-107" m3 kg=! s72.

12

Newtonian mechanics is the limit in which both A and Gy are sent to zero while ¢ is sent to
infinity. The theory in which effects from all the three quantities in (1.1) are taken into account
is not yet settled, String Theory certainly being the most promising candidate, as summarised
in Okun’s Cube displayed in Figure 1.1.

Throughout the history of Physics, the quest for unified theories has led to a much better

understanding of the phenomena under consideration since such a mother theory contains the

1See the first chapters of the admirable book by Gian Giudice, A Zeptospace Odyssey, for a historical
perspective. [1]
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Quantum
Mechanics

Quantum Field Theory

-
General
h / Relativity
Gy
Newtonian / c \ Special
Mechanics Relativity

Figure 1.1: Okun’s Cube

theories it was constructed upon as different limits and thus relates the parameters of those
theories. Let us now briefly describe which are the basic building blocks the assumptive theory

unifying General Relativity and Quantum Mechanics has to incorporate.

1.3 The Building Blocks

1.3.1 The Particle Zoo and Gauge Theories

In order to understand the outcome of present experiments, only a relatively small number of
degrees of freedom have to be introduced. These are arranged in three generations, i.e. three

copies, of the following pattern of fermions :

Ly,
(or) t

ur  ur, (up ur ) (1.2)

dp dg (dr dr dg)

where the leptons and quarks, which come in three colors, have both left and right chiralities
and are massive while the neutrino is left-handed and massless. The particle mediating the
electromagnetic, weak and strong forces are bosons. These respectively are the photon -, the
massive W+ and Z° vector bosons and the massless gluons G®. The fact that the electro-weak
(EW) bosons are massive is understood as coming from a spontaneously broken gauge symmetry
triggered by a Higgs mechanism [3]. The Standard Model of particle physics (SM) is thus defined

as a spontaneously broken gauge theory [4-6], see [7] for a bottom-top reconstruction, with the
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matter content given by three copies of (1.2). Since, depending on the matter content, non-
Abelian gauge theories may admit strong coupling at low energy (IR) while being free at high
energy (UV), i.e. they may enjoy asymptotic freedom [8, 9], one can understand the pattern
of observed resonances as different bound-states of quarks. Gauge theories are thus essential

ingredients that have to be present in any unified theory.

1.3.2 General Relativity

General Relativity [10, 11] describes the dynamics of the metric field fluctuations. It was
developed in the same spirit as Aristotle’s Ather, i.e. starting from principles rather than from

some experimental clash with theory. Its action is given by the Hilbert-Einstein term :

1
S:
167TGN

/d4x\/ng (1.3)

where G is the above introduced Newton’s constant which has for dimension GeV~2 in natural
units. One may couple the Standard Model fields to GR by covariantising all derivatives and
contracting all Lorentz indices by using the metric. However the dimensionality of Gy makes
it impossible for GR to be power-counting renormalisable thus effectively forbidding General
Relativity to be quantised at least in the context of perturbative quantum field theory. Note
that Gravity may still be quantised in the context of effective field theories, see [12] for a state
of the art review.

Moreover, and certainly more importantly, the simultaneous use of Quantum Mechanics
and of General Relativity leads to problematic situations not only in the high-energy range
but also in the infrared. Indeed, Hawking has shown that black holes radiate their mass away
due to quantum-mechanical effects [13]. This phenomenon can be understood to take place
when a particle-antiparticle pair is created, one of the particles then falling into the black hole
whilst the other radiates away, thereby effectively reducing the black hole mass. The black
hole information paradox [14] states that when a black hole evaporates, pure states are turned
into mixed states, i.e. information is lost during the process, which is at odds with Quantum

Mechanics.

1.4 So, what’s next? Strings?

A complete change in paradigm is now invoked to tackle both the issue of renormalisability
of gravity and that of the information paradox. The Quantum Field Theory sitting at the
(c=1,h=1,Gn = 0) corner of Okun’s cube treats the particles as point-like entities. Instead
if one considers the fundamental objects of the theory to have a one dimensional extension, i.e.
to be strings, the loops cannot be shrunk to zero-size anymore leading the string size ¢4 to play
the role of a UV cutoff. Note that the natural value of the string length may be estimated by

requiring that at energies of order £ !, the strength of gravitational interactions is of the same
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order as the one of gauge interactions, i.e. Gy¢32 ~ agur, resulting in ¢, to be roughly given

by €5 ~ {p) where :

hGn

~ . —35
-~ 161107 m (1.4)

lp) =

is the Planck length, thus making it impossible for current experiments to resolve strings which
effectively appear point-like. We will see that the String action is almost unique, so that one
could hope String Theory to be highly predictive, but we will argue that this is unfortunately
not the case in realistic scenarios.

Moreover, there are hints that String Theory may solve the black hole information paradox.
Indeed the very description of black holes changes in String Theory. The singularity sitting
at 7 = 0 is replaced by a fuzzball made of vibrating strings and which spreads all the way to
the black hole horizon. The crucial difference with GR black holes is that there is no void
between the matter inside the black hole and the horizon, leading to the possible escape of
information stored in the fuzzball due to the black hole evaporation and thus solving the black
hole information paradox [15].

From the low-energy point of view the point-like particles are identified with string harmonics
among which one always find a symmetric tensor, i.e. the metric field. GR is thus embedded in
String Theory from the very beginning. In order to reproduce the Standard Model as its low-
energy effective theory, String Theory also has to encapsulate gauge theories, i.e. non-Abelian
Yang-Mills theories. It turns out that chiral matter with gauge symmetries does naturally arise
in String Theory, for example in the Fg x Eg Heterotic Superstring we will consider in this
work, but no clear mechanism selecting the Standard Model gauge group has yet emerged.

Moreover the five known String Theories effective actions embed Supersymmetry (SUSY),
i.e. the bosonic and fermionic degrees of freedom appear in a very constrained fashion. The
appearance of Supersymmetry may be seen as a positive feature of String Theory since it may
cure the Naturalness Problem from which the Standard Model suffers depending on the energy
range at which it is broken, see Chapter 2. The Naturalness Problem, or Hierarchy Problem,
motivates the introduction of Supersymmetry from a bottom-up approach, which is the one we
will follow in the main part of this work.

However String Theory comes with its drawbacks, the first one being that, since String
Theory predicts the number of space-time dimensions to be ten, one has to choose a proper
compactification manifold. The choice of manifold does moreover influence the spectrum. In
the Heterotic String, for example, the net number of generations depends on the topology of
the compactification manifold and there is no clear reason why the number three should be
singled-out.

A second problem introduced by String Theory is that Supersymmetry has to be broken.
Indeed the boson and fermion masses in supersymmetric theories are degenerate which is not
the case in Nature leading to the necessity of engineering a supersymmetry-breaking sector.

Again this introduces many parameters in the four-dimensional effective action since different
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supersymmetry-breaking schemes predict different couplings among the effective degrees of
freedom given in (1.2) and their superpartners, for example spoiling the experimentally well

verified flavour structure enjoyed by the Standard Model.

1.5 The String Zoo and M-Theory

In the previous section, we anticipated that the String action is almost unique. In fact, it is
given by the integral over the area, the worldsheet, that is spanned by the string over time.
However when one introduces worldsheet fermions to account for space-time fermions, one
can choose among different boundary conditions (Ramond or Neveu-Schwarz) and different
consistent projections among sectors of the theory. Nevertheless consistency reduces the number
of independent String Theories to a handful : type ITA, 1IB, I, SO(32) Heterotic and Eg X Fg
Heterotic. The type II theories are N = 2 theories in ten dimensions while the other three are
N = 1 theories. As soon as it was argued that the various String Theories are related among
each other by a complex web of dualities, see [16], the idea of a mother theory of which the five
known String Theories are limits has been put forward and is illustrated in Figure 1.2. This
mother theory, called M-Theory, is an eleven-dimensional quantum theory that interpolates
between the five known String Theories and which has eleven-dimensional Supergravity as its

low-energy effective theory.

Type 1

Het SO(32) Het Es x Es

Type IT A Type 11 B

Figure 1.2: The Unavoidable M-Theory Graph

The seven extra-dimensions of M-Theory naturally split as 6 + 1 : the six extra-dimensions
which were already present at the String level are supplemented by a seventh one. Since their
size need not be the same, there are two orders in which the compactification to four space-time

dimensions can be performed, the smallest dimensions being compactified first :

11—-10—14 or 11 —-5—4. (1.5)
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By using the phenomenological values of the four-dimensional Newton’s constant and of the
gauge couplings, one may show that the second path should be chosen, leading to some energy

range in which the universe effectively looks five-dimensional [17, 18].

1.6 From M-Theory down to the Standard Model

The reconciliation of General Relativity with Quantum Mechanics has led us to introduce
many exotic features in our description of Nature, namely extra-dimensions, Supersymmetry
and large gauge groups. The standard lore for unveiling the Standard Model as an effective four-
dimensional theory is the following. First one has to identify the relevant light fields in the String
Theory spectrum and to write down a Lagrangian density describing their dynamics. Then the
extra-dimensions have to be compactified, it will be argued in Chapter 6 that the manifold
on which the compactification is to be performed has to be such that it allows for a minimal
amount of Supersymmetry to remain unbroken in four dimensions. The compactification process
generates towers of massive modes as is explained in Chapter 6 of which only the lightest are
relevant to describe Nature at accessible energies. At this point the gauge group is still large
and therefore unifies strong, weak and electromagnetic interactions and is given the name of
Grand Unified Theory (GUT) group which needs to be broken at low energy in order to recover
the Standard Model gauge group. Moreover the theory still exhibits Supersymmetry. Many
mechanisms are available on the market to break the latter, two of them being discussed at the
end of Chapter 3. In order to break the GUT gauge group one may invoke either perturbative
effects, like the Higgs mechanism, or non-perturbative effects, like the breakdown of chiral
symmetry associated with the pions.

When looked at from a bottom-top perspective the route we have pursued is seen as fol-
lows. First Supersymmetry manifests itself and pretty remarkably leads to the unification of
the three gauge couplings at the GUT scale, i.e. around 10*® GeV. At higher scales extra-
dimensions begin to unfold. By pushing the energy further and further one will meet all the

string harmonics.

1.7 The Supersymmetric Flavour Problem

1.7.1 Top-Bottom Perspective

Let us pause a moment to look back at what was achieved. We started from the Standard
Model which is in a wonderful agreement with experimental data and from General Relativity
whose agreement with data is not less impressive. The introduction of String Theory permits
to solve the apparent dichotomy among the quantum and gravitational worlds but at the price

of spoiling the impressive predictivity of the Standard Model. In this work we propose to
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examine a particular aspect of this generic loss of agreement with data, the so-called Supersym-
metric Flavour Problem. More precisely we will focus on soft scalar mass operators, which are
potentially dangerous since they can induce flavour-flipping.

The flavour structure of the Standard Model enjoys some accidental symmetries which
are the remnant of a U(3)% symmetry broken by the Yukawa terms, see Chapter 2. These
symmetries are among other things responsible for the absence of proton decay and the absence
of flavour changing processes in the lepton sector. The accidental symmetries are however
generically lost when adding new particles to the spectrum, as is the case in supersymmetric
extensions of the Standard Model for example. More precisely, the U(3)® symmetry is broken
not only by the Yukawa couplings but also by other operators, thereby it generically has no
remnant. One of the issues encountered in extending the Standard Model is thus to devise a
mechanism to control the Standard Model loop-suppressed processes (as b — s + v protected
by the GIM mechanism [19]) and absent ones (as 4 — e + v protected by individual lepton

number conservation).

1.7.2 Bottom-Top Perspective

The Supersymmetric Flavour Problem also arises when trying to solve the Standard Model
Naturalness Problem by introducing Supersymmetry. Since Supersymmetry has to be broken if
it is to provide a realistic theory, one has to devise both a supersymmetry-breaking sector and
a way to ensure its transmission to the Standard Model fields. Randall and Sundrum proposed
in [20] a five-dimensional setup where the Standard Model is located on a end-of-the-world
3-brane while Supersymmetry is broken on the another one. Such a strategy goes under the
name of sequestering. Gravity is given the role of transmitting supersymmetry-breaking from
one brane to the other. Such five-dimensional theories with gravity being the only interaction
capable of joining the two branes, i.e. which propagates in the bulk, have a sequestered Kahler
potential which forbids the appearance of soft scalar masses at the classical level. From the
four-dimensional low-energy effective theory point of view, this emerges in the same way as in
the so-called no-scale models [21].

However the top-bottom perspective hardly ever generates five-dimensional models in which
gravity is the only force propagating in the bulk. Indeed as noted by [22, 23], the eleven-
dimensional gravity multiplet is rearranged in N = 2 vectors and hypermultiplets which couple
the two branes, spoiling the sequestered picture as indicated by Figure 1.3.

We will argue in Chapter 3 that Supersymmetry has to be broken in a sector distinct from
the observable sector, that is in the so-called hidden sector. In Figure 1.3, the observable sector
is located on one of the 3-branes while the hidden sector consists of the matter fields on the
other brane together with the light fields surviving from the N = 2 vectors and hypermultiplets,

which collectively go under the name of moduli.
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(2

5D SUGRA 5D SUGRA

and vectors

Figure 1.3: Pure 5D SUGRA wvs Heterotic M-Theory Compactified on a Calabi-Yau

1.8 Tackling the SUSY Flavour Problem, a Strategy

In order to tackle the Supersymmetric Flavour Problem we will adopt the following strategy.
First we choose the Fg x Eg Superstring which naturally embeds end-of-the-world branes sup-
porting charged fields in the eleven-dimensional picture and, as previously argued, effectively
looks five-dimensional within some energy range when considered as coming from M-Theory,
leading to a natural comparison with the Randall and Sundrum proposal. We will then com-
pactify this theory to four dimensions and compute the resulting soft scalar masses. Since
they arise due to the exchange of heavy vector fields which are in a one-to-one correspondence
with the non-minimal K&hler moduli, the terms responsible for the soft scalar masses in the
effective theory will be of the current-current-type mimicking the four-Fermi interaction below
the electro-weak scale.

We will then try to exploit this very peculiar form of interaction and to engineer a mechanism
which effectively forbids the appearance of soft scalar masses at the classical level. Generically
soft scalar masses will then be generated at the quantum level, but, thanks to the geographic
separation among the visible and hidden sectors, loops cannot be shrunk to zero-size leading to
a relative insensitivity to far UV physics. In particular, one may certainly devise situations in
which quantum effects are only sensitive to scales below the one breaking flavour [24-27], thus
effectively leading to universal soft scalar masses.

Fortunately, mechanisms devised to suppress tree-level current-current operators have al-
ready been proposed in the literature. Indeed in the context of conformal sequestering in which
the soft masses are suppressed by large running effects one cannot suppress conserved currents
since they are characterised by a vanishing anomalous dimension. However it was noted [28]
that the supersymmetric version of Noether’s theorem not only implies the conservation of the
associated vector current but also leads to the vanishing of the current’s auxiliary fields. Since
the most relevant operators giving rise to soft scalar masses are higher-dimensional operators

mixing two visible and two hidden Superfields in the effective Kahler potential, and more in
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general are of the form :
K~ Z(X,Xx"Holo (1.6)

where both the F' and D components of Z give rise to soft scalar masses, it is sufficient to ask
for Z to be the conserved current of a global symmetry of the hidden sector to suppress the soft
scalar masses at the classical level [29]. Such a mechanism is given the name of mild-sequestering.
Since the hidden sector generically involves two subsectors, see e.g. [30], we will consider
the general case in which both the moduli and the hidden brane matter fields participate
to supersymmetry-breaking. Moreover, since we are interested in dimension-6 operators, we
will need to determine the Kahler potential at the fourth order in the matter fields. In the
case of orbifolds, this is well-known [31, 32] but in the more general context of Calabi-Yau
compactifications only the leading quadratic order is currently under control [33]. An interesting
claim of the all-orders structure of the Kahler potential in the matter fields has recently appeared
in the literature [34]. In this work we present a direct and systematic derivation of the full
Kéhler potential and argue that the result proposed in [34] is valid only under rather strong
assumptions we will discuss. Under these assumptions, the full dependence of the Kéahler
potential in the matter fields is known and the question we have to assess is whether it allows
for mild-sequestering to be implemented.

We will show that in the context of orbifold compactifications our strategy can naturally be
put to work whereas in the context of Calabi-Yau models, only a subset of the compactification
manifolds provided with a stable holomorphic gauge bundle admit the possibility for such a

mechanism to be implemented.

1.9 Outline of the Thesis

The Thesis is presented in the bottom-up perspective. In Chapter 2 we introduce the Standard
Model of particle physics, describe its action and focus on its accidental symmetries. Limits
on the effective cutoff of the theory are then presented. Finally the Naturalness Problem is
exposed together with some of its solutions. In Chapter 3, we investigate one of these solutions,
namely Supersymmetry and discuss its breaking by introducing soft terms among which the
soft scalar mass we will be focussing on. We then explain the necessity of introducing a distinct
sector in which supersymmetry-breaking occurs from sum-rules arguments. In Chapter 4 we
introduce Supergravity which is the supersymmetrised version of General Relativity and its
coupling to matter fields. We then describe the general structure of soft scalar masses in
generic Supergravity theories. In Chapter 5 we introduce String Theory particularly focusing on
Heterotic String models and sketch how they are related to M-Theory. In Chapter 6 we explain
the compactification process from both the ten-dimensional Heterotic Supergravity and the
eleven-dimensional Heterotic M-Theory on both orbifolds and smooth manifolds. In Chapter 7

we describe the computation the effective Kéhler potential in four dimensions. In Chapter 8
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we first derive the structure of the soft masses from the Kéhler potential resulting from the
previous Chapter and then discuss the possibility of implementing a symmetry to cancel the
non-universal soft scalar masses at the classical level. Finally in Chapter 9 we present our

conclusions.

This work is based on the following two research papers :

¢ C. Andrey and C. A. Scrucca, Mildly Sequestered Supergravity Models and their Realiza-
tion in String Theory, Nuclear Physics B 834 363-389, 2010. arXiv:1002.3764 [35]

¢ C. Andrey and C. A. Scrucca, Sequestering by Global Symmetries in Calabi- Yau String
Models, Nuclear Physics B 851 245-288, 2011. arXiv:1104.4061 [30]


http://arXiv.org/abs/arXiv:1002.3764
http://arXiv.org/abs/arXiv:1104.4061
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INTRODUCTION




Chapter 2

The Standard Model and Beyond

In this Chapter we first give a short review of the Standard Model of particle physics of which
both quantum and relativistic effects are in agreement with present laboratory experiments
with remarkable accuracy. The only yet unseen Standard Model degree of freedom is the Higgs
boson which, if it exists, is constrained by precision experiments to be very light compared with,
say, the Planck mass [2] but still above the current experimental exclusion bounds. However
light scalar degrees of freedom will be shown to be quite unnatural in quantum field theory
since their masses are not stable under radiative corrections. This is known as the Hierarchy
Problem. Several ways out have been engineered and are briefly described at the end of the

present Chapter.

2.1 The Standard Model

2.1.1 Particle Content

The Standard Model of particle physics is an effective field theory based on the following gauge
group :

SM: SU(3)C X SU(?)L X U(l)y (21)

with respective couplings g,, g and g’. The matter content of the SM consists of three copies,
or generations, of the fields given in (1.2) whose quantum numbers are recorded in Table 2.1.
The three generations correspond to the following fields which were introduced in Chapter 1,

where we do not repeat the color structure :

lr 149 Ly UR dr ur, dr

First generation er Ver € UR dgr Uy, dr,

Second generation | pp v, pp CR SR cr, SL,

Third generation TR VrL TL tr br tr br,
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Field SU(3)C SU(?)L U(l)y

lr 1 1 -1
14

LL = L 1 2 71/2
I

UR 3 1 2/3

dg 3 1 —1/3
u

Qr = g 3 2 /6
dr,

Table 2.1: Standard Model matter fields

A complex scalar field H which is responsible for the Electro-Weak Symmetry Breaking
(EWSB) is added and transforms in the (1,2,1/2). The gauge fields are respectively given by
the gluons G, in the (8,1,0), the weak gauge fields W, in the (1,3,0) and the hypercharge
gauge field B, in the (1,1,0).

2.1.2 Standard Model Lagrangian

The Standard Model Lagrangian is given by the most general renormalisable Lagrangian com-
patible with both the gauge and the Poincaré symmetry. The covariant derivative entering the

kinetic part of the Lagrangian acts as follows :
D, =08, +1ig,G, +igW, +ig'Y B, (2.3)

where the G, W, and B,, action on the fields may be read from Table 2.1. The Lagrangian
describing the gauge fields dynamics is as usual given by their field-strength squared. Let us
record for later use the action of the covariant derivative on a SU(2)r doublet :
; / 3 1 _ 2
D, - O, O i (29 Y?# + gl/;/# gﬁWM ZW#)B . (2.4)
0 Oy 2\ gW, +iW7;) 2¢'YB, —gW,;

The diagonal entries are coupling fields of the same species and are called neutral currents while
the off-diagonal entries couple the two elements of the doublet leading to the so-called charged
currents for reasons that will shortly become clear. Let us start with the kinetic terms for the

leptons. The allowed terms are :

Lsm 3 iai; Ly LY, + Byl Pl + N5 LY HUY,. (2.5)
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By suitable field redefinitions one may diagonalise all three terms. First one diagonalises both
the matrices a and 8 by redefining the L and [y fields, i.e. by choosing U and V such that
both UtaU and VBV are diagonal. Then by rescaling the fields one can achieve a situation
where the kinetic term is diagonal, i.e. where the o and § matrices are both given by the
identity matrix :

Lsm 2 LY LY + il Dl + N5 LY HU,. (2.6)
The structure of the kinetic terms still allows for a further unitary redefinition of the fields
under which L;, — ULy, and lp — Vir with UTU = VIV = 1. By appropriately choosing
U and V one can diagonalise the A matrix without however being able to bring it to the unit

matrix since it would spoil the normalisation of the kinetic terms. The final form is thus :
Loy D iy DLY + il Pl + NFLY HIY,. (2.7)

For the quarks the situation is slightly different since there is a further term one can add to

the Lagrangian :
Lsm 2 i4i; QY PQ) + iByyd Pdy + iCyyut Duly + ADQY Hdly + \QY Huly (2.8)

where we have introduced H = i02H* = eH* which is easily shown to transform in the
(1,2,—1/2). Applying the same strategy we have used for the leptonic part of the Lagrangian

yields A = B = C = 1. Let us for the moment leave the Yukawa matrices untouched :
Lsu 2 iQ% PQY + idip Pdy, + iy Duly + MO QY Hdhy + \QL Hudy. (2.9)

The last part of the SM Lagrangian is related to the Higgs field H. Since it is a scalar field,

the following terms can enter the Lagrangian :
Lsm > D H(DPH) + 2| H> — N H* (2.10)

where )\ is restricted to be positive in order for the potential to be bounded from below. The sign
of 12 does not suffer from any restriction and thus defines two phases. For u? < 0, the global
minimum of the Higgs potential sits at (H) = 0 and the whole SM spectrum remains massless
while for 2 > 0 the Higgs field acquires a vacuum expectation value (VEV) (H) = u/2\ which
triggers the partial breaking of the gauge group :

SU(S)C X SU(Q)L X U(].)y — SU(S)C X U(]-)QED (211)

and induces masses for all fermions but the neutrinos through the Yukawa couplings and to
most of the gauge fields. The gauge field corresponding to U(1)qEp is identified with the photon
which is a linear combination of W2 and B,,. The remaining three SU(2);, x U(1)y gauge fields

acquire a mass term through the covariant derivative of the Higgs field and are identified with
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the Z° and W fields. Indeed, acting with the covariant derivative (2.4) on the Higgs field and
only retaining the O(v?) terms yields, in the unitary gauge where (H) = (0,v)T :

1 . 1
D, H(D"H)" > 19202|Wﬁ —iWs P + sz(g’BM —gW2)2. (2.12)

We thus conclude that the complex vector field W, o W/} —iW3}' gets a mass equal to g>v?. After
diagonalising the second term by a rotation of angle 6y, the field Z,, o cos GWWff —sin 0w B,,
gets a mass equal to v%(g2 + ¢g’?) while its orthogonal partner A, o sin QWWS + cos 0w B,

remains massless. The value of the Weinberg angle 0y is given by :

g/
Ow = atan (g) . (2.13)

When rewriting the covariant derivative in terms of A4, ZB and W;t, one easily identifies the

electric charge, i.e. the charge under U(1)qep, as being given by :
Q=T3+Y (2.14)

where T° is the eigenvalue of ¢3/2. The charge assignment thus corresponds to leptons with
charge —1, neutral neutrinos, up-type quarks with charge 2/3 and down-type quarks with charge

—1/3. The denomination of neutral and charged currents should now have become clear.

2.1.3 Flavour Changing Currents

Let us now investigate interactions mixing different generations. These are said to violate
flavour. In the leptonic sector we were able by suitable field redefinitions to diagonalise both
the kinetic terms and the Yukawa matrices as shown by (2.7). There are thus no flavour
violations in the leptonic sector of the Standard Model.

In the quark sector however the situation changes. Let us restart from (2.9) in the unitary
gauge where H = (0,v 4+ h)” and make the Q7 doublets explicit :

By P\ (N
LSMBZ(ulL dlL) <w§g w}i) (Zi)ﬁ-ld}gﬂdﬁﬁ-lu%]ﬁuﬁ

+ AL (v + h)dY + Aal (v + h)u

(2.15)

where the Dy /¢ denote the neutral-current and charged-current entries of the covariant deriva-
tive and can be read from (2.4). We can now achieve diagonal mass matrices by rotating the

fields with unitary matrices :
ur, %UL’LLL, UR*)URUR, drg, %DLdL, dR%DRdR. (216)

This rotation is not a symmetry of the Lagrangian and has the net effect of modifying the

charged-current entries of the covariant derivative, namely :

Do — PoULDL = Ve (2.17)
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The charged-current interactions are thus non-diagonal in flavour space. They are parametrised
by a unitary matrix V known as the Cabbibo-Kobayashi-Maskawa (CKM) matrix [37, 38].
To conclude, let us stress the results we have obtained at tree-level, i.e. without quantum

corrections :
¢ No flavour violation in the leptonic sector,
¢ No flavour changing neutral current in the quark sector,

¢ Flavour changing charged currents in the quark sector, parametrised by the CKM matrix.

2.1.4 Accidental Symmetries

In the previous subsection we have written down all renormalisable terms compatible with the
gauge symmetry. Since we restricted ourselves to renormalisable interactions, the symmetry
enjoyed by the Lagrangian density is enhanced by some accidental global symmetries. Since
the SM should ultimately be considered as an effective field theory, it has to be supplemented
with non-renormalisable terms suppressed by a certain scale M which are to respect the gauge
symmetry, but not the accidental ones. Let us assign the following charges to the SM fields

under new global U(1)’s L; and B where the ¢ index is in flavour space :

LZ(LJL) = (Sij, Lz(l‘;‘i) = 51‘]‘, Li(others) =0 (218)
and :
1 1 1
B@Qu)=3. Blur)=3,  Bldr) =3,  Blothers)=0. (2.19)

These operators respectively correspond to electron number, muon number, tau number and
to baryon number and are symmetries of the renormalisable SM Lagrangian. Such symmetries
prevent u — e+ from happening since such a process would violate both L. and L,. Proton
decay is also understood to be forbidden by these accidental symmetries. One possible channel
would be pT — et + 70, violating both L. and B.

Since we observe neither proton decay nor flavour changing neutral current (FCNC) pro-
cesses like u — e + v (see [2]), the proton lifetime and the branching ratio of FCNC processes
can be used to put bounds on the energy scale M at which the operators violating the Standard
Model accidental symmetries are generated.

Another lesson these accidental symmetries teach us is that we have to be very careful
when going beyond the SM. Indeed by introducing new degrees of freedom one may generate
operators which would spoil these accidental symmetries which however seem not to be violated
by Nature. To be more precise, the individual lepton numbers seem to be violated by neutrino
oscillations. However, the experimental facilities aimed at answering the question of whether
the total lepton number, denoted by L, is conserved or not have not yet reached sufficient

a precision in order to discriminate among the Dirac or Majorana nature of the neutrinos.
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One will have to remember this lesson when introducing Supersymmetry. Indeed many of its
parameters are not flavour-universal, i.e. they mix different flavours, and thus give rise to

phenomena like FCNC in the leptonic sector which, again, have not yet been observed.

2.1.5 Experimental Success of the Standard Model

The Standard Model Higgs phase, that is when p? > 0 in (2.10), leads to a spectrum that is in
a very broad accordance with the one observed in present experiments. The Higgs boson has
however not yet been observed but its mass is greatly constrained by EW precision tests and
its non-observation at LEP 2 [2] :

114.4 GeV < mpy < 149 GeV both bounds at 95% C.L. (2.20)

As anticipated in the introduction to this Chapter, the Standard Model quantum effects account
for what has been observed so far. The observables which are best suited to test the quantum
structure are those whose tree-level predictions vanish. The standard example is the kaon
oscillation Ky — Ky which cannot occur in the tree approximation since FCNC vanish at the
classical level but which are allowed by quantum effects, i.e. at the loop level. Notice that
this process does not violate any symmetry at the quantum level, all four accidental charges
being preserved by quantum effects. At the quantum level, the kaon oscillation is obtained by a
double flavour-violating loop diagram which involve four powers of the CKM matrix and would
be vanishing in the absence of mass-splittings in the quark sector thanks to the unitarity of the
CKM matrix. This almost-cancellation is known as the GIM mechanism [19] which is also at
work to suppress the b — s +  transition for example. Other great successes of the Standard
Model are for example the agreement on the EW gauge bosons masses, the unitarity of the
CKM matrix, etc. ..

2.1.6 However...

...the Standard Model is not without imperfections. Indeed in the case where the Standard
Model is minimally coupled to gravity, the predictions do not agree with our observations
of Nature since the matter-antimatter asymmetry cannot be explained, the leptogenesis and
baryogenesis mechanisms remain largely unknown, there is no dark matter candidate, no particle
to drive inflation (except if one were to add a non-minimal coupling between the Higgs field
and the Ricci scalar [39]).

Moreover since General Relativity does not seem to be renormalisable, it has to be in-
terpreted as the effective theory of a yet unknown fundamental microscopic theory. Many
attempts have been made towards a quantum theory of gravity among which String Theory,
asymptotically safe theories, etc.

Finally, the Standard Model contains quite a number of parameters. A careful counting

leads to 19 parameters : the three gauge couplings, the two parameters of the Higgs potential,
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the nine fermion masses, the four independent parameters (three angles and one CP-violating
phase) of the CKM matrix and the SU(3) gauge group 6-angle which appears multiplied by F F
and which leads to non-trivial consequences since the SU(3) vacuum structure itself exhibits
a non-trivial pattern. A great step towards a better understanding of Nature would be the
construction of a model with only a handful of parameters, ideally none, leading, for example,
to the comprehension of the pattern of the fermion masses.

Yet another motivation for going beyond the Standard Model is provided by the so-called

Hierarchy Problem to which we devote the next subsection.

2.1.7 Small Parameters, Naturalness and the Hierarchy Problem

It turns out that some of the 19 Standard Model parameters are small compared to the relevant
scales of the model. Small parameters are understood to be natural if in the limit where they
are set to zero one unveils a new symmetry. The idea of naturalness is due to 't Hooft and was
formalised in [40]. Let us systematically review the parameters and check if they satisfy the

't Hooft criterion :

¢ According to the criterion the gauge coupling smallness is natural since when these are

set to zero the species which were interacting via gauge interactions decouple.

o When setting the Yukawa couplings to zero an U(3)% symmetry acting in flavour space
emerges, the smallness of the Yukawa is thus also understood to be natural. Note that
the Yukawa couplings do not totally break U(3)5 :

U@ — L. L, L. and B. (2.21)

Indeed, a close inspection of equations (2.7) and (2.9) reveals that the accidental symme-
tries previously discussed are the remnant of the U(3)% symmetry which is broken by the
Yukawa couplings : AX breaks U(3);, x U(3); to L¢, L, and L, when combined with the
hypercharge and AV and AP break U(3)g x U(3), x U(3)4 to B.

o Setting a fermion mass to zero also unveils a new symmetry called the chiral symmetry

which contains a discrete subgroup acting as :

P — Y5 leading to Py — PP and ) — —p. (2.22)
From this observation we conclude that since quantum effects will not spoil the symmetry,
the renormalisation of the fermion mass will be proportional to the mass itself. Roughly
speaking, if a fermion is coupled to a boson of mass mp with strength )\, we have :

A2 A

Vector fields enjoy the same protection against radiative corrections thanks to the gauge

symmetry which is recovered when setting the vector mass to zero.
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o Now, what about the Higgs mass? Data suggests that the Higgs should be found in
the interval given in (2.20) which is much smaller than the cutoff of the theory, say
Mp) ~ 10! GeV. Can we understand this situation from our perspective? In other words,
do we recover a symmetry when a scalar field mass is set to zero? The answer is no. This
is roughly speaking the Hierarchy Problem, i.e. we do not understand why the Higgs has a
small mass compared to the cutoff of the theory. Let us now investigate the consequences

of Higgs mass failure to satisfy the 't Hooft condition.

If we seriously consider the SM as being an effective theory meaning that there exist new
degrees of freedom at higher scales, then the Hierarchy Problem can be rephrased in a more
convincing way. Let us consider the following toy model of a scalar field with mass m, playing
the role of the Higgs field, coupled to a heavier fermion of mass M which would describe the

microscopic theory of which the SM is an effective theory :

£ = S(00)" — 5m6? + 0 (idd — M)y — g, (2.24)

Here v plays the role of a field whose mass is larger than the EW scale. The ¢ mass in the SM,
i.e. in the effective theory, is to be understood as its mass once 1 has been integrated out. A

quick computation leads to the following result :

2
2 2 g 2
= — M 2.2
mig =m 672 (2.25)

where both m? and m?2; are understood to be the renormalised masses at the scale yu = M [41].

Then having a small effective mass mgff compared to M? leads to a fine-tuning problem. Indeed

we would have to adjust the mass m of the microscopic theory in such a way that the right-hand

side of the previous equation is of the order of the EW scale. The amount of fine-tuning may

be evaluated as :

1672 mzﬁ
2 M2

(2.26)

Fine-tuning ~

The question of determining whether there is a fine-tuning problem has been translated into
the evaluation of the scale M at which new degrees of freedom are to be taken into account.
(d)

g

(d)
d Oi
L= cl >Md_4 (2.27)

i d>4

Adding d-dimensional irrelevant operators O, i.e. suppressed by the scale M :

of course modifies the SM predictions. A lower bound on M is thus given by the lowest value
M can take without spoiling the SM predictions which are tightly constrained since they are

in almost perfect agreement with observations. Let us give two examples :

¢ As argued in subsection 2.1.6, the Standard Model predicts the neutrinos to be massless.

However neutrino oscillations favour a tiny mass which may be described by the following
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dimension-five operator which could emerge as an effective effect of heavy right-handed

neutrinos vg in the (1,1,0) coupled to the SM via )\f\;fﬂLf{Vf% — Mv§g :

2
P

i (2.28)

1 -, ~ ==,
5Lsm ~ ()\N)ijLLHHLJL = my~ ()
In order to recover the correct amplitude for the neutrino masses, M should be of order

M ~ 10'3 GeV [2] assuming the couplings are of order one.

¢ Since the main subject of this work is to try to devise a mechanism which solves the SUSY
flavour problem, it is certainly interesting to give an example of one of the operators
which would lead to tensions with flavour physics observations. K° — K oscillations are

for example generated by the following gauge-invariant irrelevant four-Fermi operator :
1,
5LSM ~ W(SR’V dR)(SR’y#dR). (229)

Current data suggests that those operators could enter the SM Lagrangian without spoil-
ing their agreement with the SM contributions given that their defining scale M is bigger
than 107 GeV [2].

All those scales are well above the EW scale leading to a very precise fine-tuning condition

(2.26) and thus to the unnaturalness of the Standard Model.

2.2 Beyond the Standard Model

As pointed out in the previous section, the Standard Model is not without imperfections. It
fails to explain neutrino oscillations, baryogenesis, leptogenesis, inflation, dark matter and
when minimally coupled to the Einstein-Hilbert action it does not lead to a consistent theory of
gravity at the quantum level. Moreover it suffers from the Hierarchy Problem. Going beyond
the SM thus seems to be unavoidable.

There are many ways to introduce alternatives to the Standard Model. Some of them consist

in small modifications, others ones in a complete change of paradigm.

2.2.1 Minimal Approaches

The yMSM  One of the minimal modifications of the SM is the ¥YMSM which aims at solv-
ing neutrino oscillations, leptogenesis, baryogenesis, dark matter and inflation when coupling
the Higgs to the Ricci scalar in a non-minimal way. The Hierarchy problem is however not

addressed. See [42] for a state of the art review.
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Technicolor In order to evade the Hierarchy Problem, one may devise a strategy towards an
enforcement of a protection of the Higgs mass against radiative corrections. One of the ideas
on the market consists in trading the Higgs as an elementary particle for a fermion condensate.
In such scenarios EWSB is achieved via strong-dynamics effects in the newly introduced gauge
sector, the EW scale being generated by dimensional transmutation in the same way as Aqcp,

see [43, 44] for the original papers.

2.2.2 Non-Minimal Approaches

A very non-minimal, but highly ambitious, model towards a theory of Nature is String Theory to
which we will devote most of Chapter 5. String Theory aims at a consistent theory of gravitation
and gauge interactions at the quantum level with as few parameters as possible. However since
String Theory constrains the number of space-time dimensions to be ten, many parameters
emerge from the choice of the compactification manifold. Many light fields emerge from the
compactification process, their stabilisation being one of the major challenges of String Theory
together with the fact that like all extensions of the Standard Model, the accidental flavour
structure is generically lost. String Theory is also known to admit many vacua collectively
named the landscape, most of them not resembling Nature. Nevertheless String Theory certainly
is the most promising candidate to describe the quantum regime of gravity and is per se a

fascinating human endeavour.

2.2.3 Supersymmetry

The attentive reader may have noticed that we did not include Supersymmetry [45-47] neither
in the Minimal nor in the Non-Minimal approaches to modifying the SM. Supersymmetry’s aim
is to solve the Hierarchy problem. The deepest roots of the Hierarchy Problem lie in the fact
that a scalar field mass is not protected against radiative corrections which attract it towards
the theory cutoff. Indeed, we have seen that if a heavy fermion i with mass M is coupled
to the Higgs fields via gp H1n), it generates a quantum correction to its mass given at leading

order by :

2
2 _ _ 9F 3.2
Amiy = 1671'2M . (2.30)

A possible way out of the Hierarchy Problem would be to introduce a complex scalar field of
mass M coupled to the Higgs via ggH?|¢|?> which would induce a quantum correction to the

Higgs mass given at leading order by :

2 _ 9B 2
Amiy = +16772M . (2.31)

A theory which relates bosons and fermions and thereby arranges a conspiracy such that
gp = g% is realised would thus solve the Hierarchy Problem. Supersymmetry is such a the-

ory and is the subject of the next Chapter.



Chapter 3

Supersymmetry and its Breaking

In this Chapter we begin by reviewing the basics of Supersymmetry. We then motivate its in-
troduction as a solution to the Hierarchy Problem which has been discussed in the last Chapter.
We then argue that SUSY has to be broken in order to be compatible with present experiments
and thus parametrise its breaking pattern. Finally we review two common proposals for the
SUSY-breaking mechanism and the mediation of its effects to the Standard Model.

3.1 A Non-Technical Overview

Supersymmetry is a symmetry relating bosons and fermions. Since it has to change the statistics
of the field acted upon, its parameter, denoted by €, has to be a fermion. Schematically SUSY

acts as :
dep = e and S = édp (3.1)

where ¢ and 1 are respectively a boson and a fermion. Since the operators realising this
symmetry have to be fermionic, they do carry a half-integer spin [48] and thus act non trivially
on the Poincaré generators. In other words, SUSY is extending the space-time symmetry.
However, Coleman and Mandula proved in [49] that under rather reasonable assumptions the
symmetry of a Quantum Field Theory is restricted to take the form of the direct product of
Poincaré symmetry with an internal symmetry. Indeed the addition of space-time symmetries
translates into new constraints the observables have to satisfy. As an example, let us consider a
non-relativistic 2 — 2 scattering of same-mass particles. Energy and momentum conservation

are respectively expressed as :

|9il- (3.2)

D1+ D2 =DP3+ Pa and  pi+p3=p3+p; Di

This in particular implies that pj - po = p3 - p4. Now let us imagine adding a space-time
symmetry to this system, for example pi + p3 = p3 + p}. Together with the conservation of

energy, this last condition leads to p1p2 = p3p4, and thus the angle between the initial particles
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and the final ones is predicted to be the same which is to say that the 8-matrix is not analytic
in the kinematical variables. Another example where too restrictive conservation laws lead to
uninteresting physics can be found in [50].

However, the Coleman and Mandula theorem can be evaded by introducing the concept of
graded Lie algebra. Indeed the Haag-Lopuszanski-Sohnius theorem [51] states that if allowing
for generators to anticommute then one can construct a non-trivial extension of the space-time
symmetries which realises SUSY. The algebra is restricted to the following structure in four

dimensions :

. R . . 1 .
Pl =0 {enQif=dvotn QL Mu] =5 (0w))

{on.ai} =0 {an.qj} -0

where the Q?, are the SUSY generators of which the i index labels the generation, i.e. the

(3.3)

number of supersymmetries, « the spinorial index and where Qla = Qif. The number of
supersymmetries is usually denoted by N. The first equation implies that all the particles related
by Supersymmetry share the same mass while the third expresses that the SUSY generators
have spin 1/2. Let us explore the second equation in the massless case. By orienting the axes
such that the particle moves along the third axis one gets for each generation of Supersymmetry

generators :
{Q1,Qi}=4E and  {Q%,QL}=0. (3.4)

, -1
Rescaling the @} generators by (2\/@) provides us with a typical N-dimensional fermionic
algebra :

{ai,aﬁ} = 4 {ai7aj} =0 {aiT7ajT} =0 (3.5)

while the Q% algebra, which is totally anticommuting, has to be represented by zero. If |\)
denotes a state of helicity A satisfying the Clifford vacuum condition a’[\) = 0, then a'f|\)
will have helicity A + 1/2. For a N = 1 theory, the massless multiplet contains |A) and a'f|\)
whose helicities are respectively given by A and A 4 1/2. In a N = 2 theory, the different states
related by Supersymmetry are : [\), a'T|\), a®f|\) and a'fTa?T|\). Note that in order to achieve
a CPT-complete theory, one usually has to double the spectrum. Indeed if we take an N =1
theory with A = 0 then the spectrum would be (0',1/2') where the superscript indicates the
number of states of a given helicity. Its CPT-completion is thus given by (—1/21, 02, 1/21) and
is called the chiral multiplet. Another representation of SUSY we will often encounter is the
vector multiplet which consists of (—11, —1/o1 1/51, 11).

Since the application of a creation operator increases the helicity by 1/2, the range of helicity
contained in a theory is N /2. This fixes a limit on the value of N. Indeed massless particles can

only be consistently coupled if their helicity is smaller or equal to two. A very nice discussion
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based on soft massless particles can be found in [52]. Note that in an N = 1 theory the graviton

partner is thus found to be a spin 3/2 particle, the gravitino. We have thus established that :
Nmax = 8. (3.6)

From Table (C.1), we can read that in four dimensions an N = 1 Supersymmetry is specified by
four real parameters and thus has four generators, also called supercharges, which we identify
with Q1, Q2, Qi and Q. The maximal number of supercharges is thus given by 4 X Nyay = 32.
By going back to Table (C.1), one can read that the maximal number of space-time dimensions

consistent with Supersymmetry is :

dinax = 11. (3.7)

3.2 A Technical Overview

Let us now briefly review SUSY in four space-time dimensions. Many very good reviews on
this topic are available, among which [53-57]. We refer the reader to [54] for the conventions
used throughout this work. The essential notations are settled in Appendix A. The basics of
Supersymmetry are moreover given in Appendix C.3, in particular Superspace, which extends
the Minkowski space-time to include fermionic directions labelled by 6 and . A Supersymmetry

transformation can be shown to take the form of a translation in Superspace.

3.2.1 Chiral Models

Let us begin by reviewing the non-linear sigma model describing chiral Superfields [58, 59].
The most general two-derivative supersymmetric Lagrangian density describing the dynamics

of chiral Superfields can be written as [54] :
L= /d‘*&K(@,cﬁ) + [/ d?0 W (®) + h.c. (3.8)

where K and W respectively are the Kéhler potential which control the kinetic terms and the
superpotential which is the analogue of the potential in usual field theories. Chiral fields satisfy
the constraint Dy ® = 0, i.e. they are functions of the sole y* = 2*+i0c*0 and 6, and therefore

can be expanded as :

D(x,0,0) = 0(y,0) = ¢(y) + V200 (y) + 6°F(y)
— b(x) + 0000, 6(x) + 302§2D¢(9c) 39)

1

+V20y(x) 7%

020,4(z)o" 0 + 6°F ()
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The Lagrangian density is easily computed by replacing the F(z)’s by their algebraic equation

of motion and reads :

- . 1 -
L =—Kiz0,9"0"¢) — iK' a" Dy’ + o Rigmn ) " 70"

1 o L (3.10)
= 5 ViWp'! = SViWp'y? — Vs
where the scalar potential Vg is given by :
Vs = KW, W; = K;7F'F7, (3.11)

Since the Lagrangian density is constructed out of Superfields, it is automatically SUSY-
invariant. However it will prove useful in the following to know the transformation laws of
the fields ¢(z), ¥(x) and F(x) under a SUSY transformation of parameter € :

Sed = V2 — 0
S = V2010, +V2eF — \2eF (3.12)
§F = iV2e"0,1 - 0

where in the last column we have indicated the vacuum expectation value of the SUSY-variation.
From the last equation we read that a spontaneously broken Supersymmetry manifests itself by
a non-vanishing expectation value of F'(x), leading to a non-zero value of the vacuum energy

as may be noticed by examination of (3.11).

3.2.2 Gauge Models

Let us now continue by reviewing the gauge-invariant non-linear sigma model describing both
chiral and vector Superfields [60, 61]. The most general two-derivative gauge-invariant La-
grangian density is entirely specified by three functions : the Kéahler potential K, the superpo-
tential W and the gauge kinetic function Hyy :

L= /d49 K(®,®,V) + U d?0 (W(cb) + 16192Hab(<1>)W“Wb) +h.c} (3.13)

where W is the supersymmetric field-strength. The chiral Superfield ® and vector Superfield

V' transform under the action of the gauge group as :
507 = gA°X (D) OV = féa_gv [(A+ &) + coth(L_gv)(A — A)] + O(A2)  (3.14)

where £_ gy denotes the Lie derivative along —gV' [54, 62]. Decomposing V' and A on the gauge
group generators which satisfy [T, T3] = if,, T yields :

SV = —%(A—]\)‘H— gfabc(A+A)bVC+0(A2,v2). (3.15)

Under such a transformation, the field-strength transforms in the adjoint : SW2 = gf% A*WE.
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The Lagrangian density invariance requires K to be at most a Kéahler transformation and
both §W and 6(Hq,W*W?) to vanish. These three conditions respectively imply :
i 1
Ko+ K, Ve = fu+ O(N,V?
29 + 2 bf ac f + ( ’ )?
Winiz =0, (3.16)

Hupi X = =2 Haya-

K X!~

By taking two successive derivatives of the first equation and setting V' to zero on recovers the

Killing equation :
ViXa;+V;Xe = 0. (3.17)

Finally by taking the derivative of the imaginary part of the first equation and setting V to
zero, one easily finds :

K = 4g° Kijx(ia)‘(g’). (3.18)

For isometries characterised by a vanishing Kéahler transformation, the Kahler potential in the

Wess-Zumino gauge assumes the following form :
K(®,8,V) = K(®,®) — 2igK,; XV + 2¢*K;z X. X]VeV®, (3.19)

In the case of a linearly realised symmetry, i.e. the Killing fields are given by X}, = —i(T*)";®/,
and starting with K(®,®) = ®'®’, one easily gets :

K(®,®,V)=&(1-29V +2¢°V?) & = de 29" d. (3.20)

The equation (3.19) thus consists of a recipe to promote global symmetries to local ones
and moreover allows for a more direct computation of the Lagrangian density. In the case of
a trivial gauge-kinetic function, which is the case in the supersymmetrisation of the Standard

Model, by first replacing the auxiliary fields by their algebraic equation of motion :

) - 1. . 1

Fi= —K9W; + §r;.kuﬂwk and D" =-_K, (3.21)
one finds the following Lagrangian density :

3 27 . © TH 1T ya 1hya 1 a va

L =—K;;D,¢' D¢ — i Kip' D7 — iA IPA” — ZFWF" — Vs —Vp (3.22)

where :
. 1
Vg = KW, W5 + gKaKa,
1 o 1 o o (3.23)
Ve = 5 (VW' +e) = Ripmnt 0" 070" — V2gKis (X7 X + hic.)

and where the covariant derivative acts as D, ¢' = @ngﬂi —gAL X, i leading to a mass term for

A, in the case of broken gauge symmetry. One can easily identify the origin of the different
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terms of (3.22) and (3.23) from the expression (3.19) : the first term of (3.19) together with
the superpotential and the HWW term generate the standard kinetic terms for the scalars,
fermions, gauge bosons and gauginos, the scalar potential Vg and the two first terms of V.
The second and third terms of (3.19) covariantise all derivatives and generate a fermion-gaugino
mixing in Vp.

The SUSY variations are given by :

S = V2 - 0

b = iv20"eD, ¢+ \/2eF - V2eF

5. F = i\/igar“Dui/z—QgXagX“ - 0 (3.24)
S AL = Q&g A\ — iNTe - 0

0" = oleFy, +1eD” — 1eD®

5.D* = —eotD,A*— D, \ote  — 0.

From the last equation we read that a spontaneously broken SUSY gauge theory manifests itself
either by (F%) # 0 or (D®) # 0 which are respectively referred to as F-breaking and D-breaking.
In other words, a theory is supersymmetric if and only if the vacuum energy vanishes.

This statement could have been derived directly from the SUSY algebra. Indeed, the energy
of a particle, i.e. P, is found by taking the trace of the {Q,Q} anticommutator :

P = 3 (100 @3)) = § @ 0a) (3.25)

which is the sum of positive definite operators, in particular leading the vacuum energy to be

non-negative :
Eq = (QH|Q) > 0. (3.26)

The vacuum energy is non-vanishing if and only if the supercharges fail to annihilate |Q), i.e.

when SUSY is spontaneously broken.

3.3 Supersymmetry as a Solution to the Hierarchy Problem

As argued in the previous Chapter, Supersymmetry happens to be an appealing solution to the
Hierarchy Problem since it extends the chiral symmetry protecting the fermion masses from
large UV contributions to scalar fields. Indeed, let us consider to following simple case of a trivial
Kihler potential K = ®® provided with the superpotential W = % g®3. The interaction among
two fermions and one boson is given by the first two terms of the second line of (3.10) : goipp
while the scalar self-interaction is found in the scalar potential (3.11) : g?¢*. Supersymmetry
thus realises the announced conspiracy : gp = g%.

In order to enforce Supersymmetry to the Standard Model, one first has to recast all its

fields in either chiral or vector Superfields. Chiral Superfields contain a Weyl fermion and
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Superfield SU3)¢e SU(2)yL Ul)y

Ir 1 1 1
v

LL = o 1 2 71/2
I

UR 3 1 —2/3

JR E—’) 1 1/3
U

Qr = t 3 2 /6
dr,

Table 3.1: MSSM chiral matter Superfields

a complex scalar field in which the SM matter fields and the Higgs fields will be embedded.
Vector Superfields contain a spin-one vector boson and a Weyl fermion, both transforming
in the adjoint of the gauge group. The SM gauge fields are thus to be embedded in such
representations.

As will be explained in the next section, the minimal supersymmetric version of the Standard
Model (MSSM) spectrum consists of a Superfield associated with each SM particle. No two
SM particles are to be found in the same Superfield since Supersymmetry commutes with the
gauge symmetry thereby forces the two fields of a multiplet to share the same quantum numbers
[57]. By convention all Superfields are named after the SM particle they contain. The leptons
and quarks spin-zero partners are respectively called sleptons and squarks and denoted by the
same symbol as their SM partner with a tilde, e.g. €, is the left-handed electron partner. The
Higgs field also defines a chiral Superfield, its fermionic partner being called the Higgsino. The
structure of SUSY-invariant theories is such that one is forced to introduce a second Higgs
Superfield in order to generate masses for both the up-type and down-type quarks. Finally the
SM vector bosons fit in vector Superfields together with their partners, the gauginos.

The final step towards a supersymmetric realisation of the Standard Model is to specify
both the Kéhler potential and the superpotential, which are of course to be compatible with

the gauge group.

3.4 The MSSM

A convenient way to label the matter chiral fields is found in Table 3.1 which slightly differs from
the notation we adopted when discussing the SM in order to accommodate with the restriction

of holomorphicity of the superpotential.
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Since the Higgs field enters the SM Lagrangian both in the form H and H = ioc?H*, a
single Higgs Superfield will not be able to generate masses for both the up-type and down-type
quarks since the superpotential has to be holomorphic. Two Higgs Superfields having the same
gauge quantum numbers as H and H are thus introduced : H, in the (1,2,1/2) and Hy in the
(1,2, —1/2). It should be noted that Hy and Ly, share the same gauge quantum numbers.

In order to determine the MSSM Lagrangian, one has to specify the Kéahler potential K,
the superpotential W and the gauge kinetic function H. The requirement of renormalisibility
constrains the Kahler potential to be quadratic, the superpotential to be at most cubic and the

gauge kinetic function to be trivial. The MSSM superpotential is then given by :

Wussu = AjlpHaly, + AjupHuQj, + NjdpHaQ), + pHo Ha. (3.27)
As already noticed, Hy and Ly, share the same transformation properties under the gauge group.
One can thus generate the following gauge-invariant terms :

Wi, = qijila Ll L5 + Bijndn L) Q%+~ H, L. (3.28)

Moreover, one further gauge-invariant contribution to the superpotential should be added.
Indeed, since the mass-dimension of a chiral Superfield is one, the following term is power-

counting renormalisable :
Wp = Gijrigdpdy. (3.29)

If, inspired by the discussion of subsection 2.1.4, one wants the superpotential to be given
by the sole Wyssm, one then has to impose a further Z, symmetry known as matter-parity
defined as :

Py = (_1)3(B—L) (3.30)

under which Py (H,) = Py (Hg) = 1 while all Superfields recorded in Table 3.1 have Py, = —1,
leading to :

Py (Wassm) = +1 Py (W) = Py(Wg) =-1 (3.31)

and thus effectively forbidding the appearance of both W, and Wy which violate respectively
the lepton and baryon numbers. Note that in the literature it is often made usage of R-parity

instead of matter-parity. These are related through :
Pp = (—1)*Py (3.32)

where s is the spin of the particle. Particles in the same multiplet thus carry different R-
parities : all Standard Model particles and the Higgs bosons carry a positive R-parity whilst
the squarks, sleptons, Higgsinos and gauginos have a negative charge under R-parity.

As was the case in the construction of the Standard Model Lagrangian, one always can
make a field redefinition in order to bring the Kéahler potential in a diagonal form in its flavour

indices.
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3.5 Softly Broken Supersymmetry

If Supersymmetry were a symmetry of Nature, then she would have chosen a SUSY-breaking
vacuum. Indeed a feature of SUSY-invariant theories is that they force the fields appearing in
the same Superfield to share the same mass. Experiments however have neither detected any
scalar particle with the same mass as the SM leptons and quarks nor the massless partners of
the gluons and of the photon. Supersymmetry thus has to be broken.

Indeed once SUSY is broken, a mass-splitting is generated and situations where all the su-
perpartners are above the detection threshold may be engineered. In order not to spoil the goal
for which SUSY was introduced, the extension of chiral symmetry to scalars, Supersymmetry
has to be softly broken. Supersymmetry breaking is said to be soft provided the SUSY-breaking
terms appearing in the Lagrangian have parameters of positive mass dimension. Such a require-
ment ensures that the Higgs mass does not suffer from any quadratic divergences even when
Supersymmetry is broken. This will be shown to be satisfied by spontaneously broken SUSY.

The soft SUSY-breaking terms compatible with both the gauge group and matter-parity
consist of several parts as shown in [63] by a very nice spurion analysis. In the gauge sector,
gaugino masses for each gauge group have to be introduced. In the scalar sector, linear, bilinear
and trilinear terms compatible with the gauge symmetry appear. Applied to the MSSM, this
procedure yields :

Lot = McGG® + M W*W* + My BB
+ mQngQJEQJL + m%ijﬁ];ﬁ% + m%ijd:g;l% + m%mf’TLZf’JL + mlgijl:gl:é 333
+m2H!H, + m2H'Hy + B, H,Hy (3:33)
+ ATl Hu Q) + ADdi HaQ, + AL Hal,.

Since most of the contributions to Lyg have so far generic flavour structure, soft Super-
symmetry breaking leads to many flavour-violating processes which were either absent or very
tightly constrained in the Standard Model. In order to be compatible with experimental flavour
searches, such as y — e+ and Ky — K oscillations, which are compatible with the SM flavour
structure, the softly broken MSSM has to obey severe constraints. The departure from univer-
sality should be small for all sleptons and squarks masses, the A-terms should be dominantly
proportional to the corresponding Yukawa couplings and the CP-violating phases should be
small [57].

These further requirements call for a mechanism to enforce them. Indeed there are no reasons
they should be satisfied within the softly broken MSSM : it indeed has O(100) parameters
which spoil the nice accidental flavour structure of the Standard Model [64]. In order to tackle
this issue, one may hope that explicit models of spontaneous Supersymmetry-breaking will
induce relations among the parameters of (3.33) and thus render the MSSM compatible with
experimental data. Let us now argue that Supersymmetry breaking is forced to happen in a

distinct sector.



32 SUPERSYMMETRY AND ITS BREAKING

3.6 Evading the Supertrace Formula

In this section we will review a sum rule, known as the Supertrace formula, which is valid
both for the unbroken and the spontaneously broken phases of supersymmetric theories. The

Supertrace is defined as a weighted sum over spin-j contributions :
STr(m?) = > (—=1)¥(2j + 1)Tx(m3). (3.34)
J
We are now in a position to compute the masses for the scalars, fermions and vectors. The

third term of (3.19) is a mass term for the gauge fields A% : m2, = 2¢°K;;X: X]. The fermion

mass matrix in the ()¢, A\%) basis is given by :

V.W; V29Kin X[ t VWi VIWFE +2¢2°X . X7 29V, W; X7
mp = - b = mbmp = ; ¢ o ).
\@ngﬁXa 0 ﬂgVinXa 2g XaiXb
(3.35)

Let us finally compute the scalar masses by taking two successive derivatives of Vg :

i _ 1
mZ; = ViWiVW* = RigmaWmW" + 6* X4i X a5 — 51950V iXaj,

_ (3.36)
m?j = WkViVjWk — QQXGiXaj — I‘fjakVS.
The Supertrace is thus given by :
STr(m?) = —2R;;W'W7 — igK,V,; X_. (3.37)

In the case where the gauge-kinetic function is kept unspecified, the computation is slightly
more involved [65], the net result being that the RHS of (3.37) is sourced by terms involving

the gauge-kinetic function derivatives.

Application to the MSSM Let us apply the Supertrace formula to the case of the MSSM.
Since the gauge symmetries are linearly realised, i.e. X! = —i(T“)ij &7, and the Kéhler manifold
is flat, i.e. K;; = d;5, one finds [66] :

STr(m3ssm) = 29Tr(T*)D*. (3.38)

The non-Abelian groups SU(3)¢ and SU(2) generators all have vanishing traces, the only
remaining concern is about the U(1)y generator trace. By going back to (3.1), one may check
that the trace vanishes individually for leptons and quarks. We have thus obtained that, in
the case of the MSSM, the Supertrace vanishes both when SUSY is unbroken and when it is

spontaneously broken :
STr(m3ssn) = 0. (3.39)

Note that this relation holds separately for all conserved quantum numbers since mass insertions

cannot relate particles having different gauge transformation properties and that this result is
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actually valid for any renormalisable supersymmetric theory whose gauge group is free from
gravitational anomalies. The Supertrace formula thus puts very stringent constraints on the
way SUSY is to be broken in renormalisable models such as the MSSM. Indeed, let us in turn

consider F- and D-breaking :

o In the situation in which (F%) # 0 and (D?) = 0, the only term in the scalar mass matrix
due to SUSY-breaking is the first one on the second line of (3.36). Since it is an off-
diagonal entry in the scalar mass matrix, the scalar masses will be shifted proportionally
to this term leading to a situation where, in order to satisfy the Supertrace constraint,
the fermion keeps its supersymmetric mass m while the two scalars masses are shifted
around it by an equal and opposite amount : m £+ A, i.e. they are subject to level-
repulsion. F-term SUSY-breaking is thus phenomenologically not viable since it predicts
one sfermion mass to be smaller than the known lepton and quark masses. Such particles

have experimentally been ruled out.

o In the opposite situation, where (F?) = 0 and (D®) # 0, the only term originating
from SUSY-breaking in the scalar masses is the last one of the first line of (3.36). One
may hope that such a term could lift the scalar masses, but the MSSM charge assignment
leads to both positive and negative shifts of the scalar masses and thus to an unacceptable

spectrum.

3.7 The Hidden Sector Paradigm

According to above mentioned criteria neither F-type nor D-type SUSY-breaking can occur
inside the MSSM since they would lead to an unacceptable spectrum. Supersymmetry-breaking
is therefore assumed to occur in another sector, the hidden sector, by an unspecified mechanism
and mediated to the MSSM Superfields, in the visible sector, by non-renormalisable effective
interactions. When the hidden sector is integrated-out, the effective theory Supertrace should
be non-vanishing. Moreover since SUSY is assumed to be mediated by suppressed interactions,

it has to be broken at scales well above the EW scale.

Messengers

Observable Sector

No Tree-Level

Renormalisable Interactions

Figure 3.1: SUSY-breaking mediated via Messengers Fields



34 SUPERSYMMETRY AND ITS BREAKING

The breaking of SUSY in a disjoint sector and its mediation to the observable sector by
messengers may be compared to the situation of EWSB in which the EW symmetry is broken
in the Higgs sector and then mediated to the observable sector via the Yukawa couplings.

The necessity of introducing a hidden sector responsible for SUSY-breaking represents an
opportunity to tackle the supersymmetric flavour problem. If the interaction mediating SUSY-
breaking is flavour-blind, the soft terms introduced in (3.33) will tend to be universal and will
thus not spoil the flavour structure of the Pps-invariant MSSM.

The precise mechanism of SUSY-breaking in the hidden sector is an open issue and may
be quite complicated. We will thus parametrise the SUSY-breaking by assuming that a chiral
Superfield’s auxiliary field obtains a vacuum expectation value (F'). The order of magnitude of
the soft terms will then roughly be :

F
Msoft ~ % (3.40)
where M is the scale suppressing the effective interactions mediating SUSY-breaking from the
hidden sector to the visible one.

The structure of soft terms will thus depend on the mediating interactions and not only on
the precise way Supersymmetry is broken in the hidden sector. The Supertrace constraint can
be traced back to the renormalisibility of the theory, in particular to the fact that the kinetic
terms have a minimal structure. When the hidden sector and the messengers are integrated-out,
the effective theory is a non-linear sigma-model characterised by a non-trivial metric in front
of the kinetic terms which will induce gaugino and scalar soft masses.

Two flavour-blind candidates generating a non-renormalisable effective theory naturally
emerge : gauge interactions and gravity. Let us now roughly describe both of these possi-
bilities.

3.7.1 Gauge Mediation

In gauge-mediated SUSY-breaking [67], one introduces a set of chiral messenger Superfields
®, ® charged under the SU(3)¢ x SU(2)L, x U(1)y gauge group and coupled to the source of

SUSY-breaking, parametrised by a gauge-singlet S, in a renormalisable way :
Waom = aSdd (3.41)

where ®’s quantum numbers are conjugated with respect those of ®. Since the microscopic La-
grangian is renormalisable, the Supertrace does vanish at tree-level. However, at the quantum
level, the effective Lagrangian describing the observable sector will have non-renormalisable
kinetic terms induced by gauge interactions and thus a non-vanishing Supertrace. The renor-
malisation of the Superspace wave-function leads to the appearance of soft terms [68]. Let us

briefly sketch how this mechanism may be realised.
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When S breaks SUSY by, say, an O’Raifeartaigh mechanism both its scalar and auxiliary
components are assumed to get a VEV. One may then replace a.S by Mg + 6%Fg in the super-
potential (3.41), leading to both fermion and scalar masses for the messengers. After having
integrated out the auxiliary fields of the messengers fields, the potential for the messenger’s

scalar and fermion fields contains :
V > Mspip — Fs¢gp + M3o' ¢ + M34T ¢. (3.42)

The fermions thus get a supersymmetric mass term m% = M2 and the bosons masses are shifted
around mp by an equal and opposite quantity : m% = m% & Fs. Supersymmetry-breaking
has thus been transferred from the S singlet to the messengers. Since the messengers are
charged under the MSSM gauge group, Supersymmetry-breaking will further be communicated
to the MSSM Superfields at loop level. At the one-loop level gaugino masses are generated, as
illustrated by Figure 3.2, while flavour-blind scalar masses are generated at the two-loop level
as shown by Figure 3.3. Note that there are many more diagrams contributing to both these

masses, see [57] for the complete set.

— M, ~ —
\ ) 1672 Mg

Figure 3.3: Soft scalar mass term

Both effects lead to the following qualitative order of magnitude for soft terms :

g*> Fs

25 4
1672 Mg (3-43)

Msoft ™~

Since the A-terms are also generated at the two-loop level, they give suppressed effects compared
to the other soft masses and may roughly be neglected. Gauge-mediation of SUSY-breaking
proves to be very attractive since the squark and slepton masses only depend on their gauge
quantum numbers, automatically leading to the suppression of FCNC. A very complete review

of gauge mediation is the one of Giudice and Rattazzi [69].
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3.7.2 Gravity Mediation

To the contrary of gauge mediation for which the microscopic theory is renormalisable and thus
has a vanishing Supertrace, gravity mediation [70-72] occurs in a non-renormalisable theory
having a non-vanishing Supertrace. The effective low-energy theory leads to the appearance of
soft terms.

Let us again parametrise the SUSY-breaking hidden sector by a chiral gauge-singlet Super-
field X whose F-component FX gets a vacuum expectation value. The interactions between X

and the visible sector are schematically given by :

Lot = / d*0 XW“W“ + > / 2o X%H@J
gauge Yukawa
+ ) /d4 ﬁ” XTX<I>”<I>7 /d2 7 XTXH WHy (3.44)
matter

/d4 XTH WHy

which lead to :

FX
Mooty ~ 77— e VFX ~ 10" GeV (3.45)
Pl

if taking the soft parameters to be of the 1 TeV order. The detailed structure of the soft terms
arising in gravity mediation has been worked out in [73-75]. In contradistinction to gauge
mediation, gravity mediation does not constrain the above parameters to yield universal soft
scalar masses and thus generically generates FCNC despite the fact that gravity is flavour-blind
in the IR. Indeed the term controlled by (;; leads to soft scalar masses when the X auxiliary

field F¥ takes its vacuum expectation value :

- ) X |2 X2
/ d49@XTX<1>”<1>J @j'F ‘dﬁw - m%:—ﬂji'F | (3.46)

Mg, ; M,
where f3;; and all other parameters entering (3.44) are determined by the details of the UV
theory.

The relevant term for our purpose, i.e. computing the soft scalar masses, is thus a dimension-
6 operator whose structure consists of two chiral Superfields belonging to the observable sector
together with two chiral Superfields of the hidden sector. Let us investigate a slightly more

general form of interaction :
/ d*0Z" (X, X)®' eIt (3.47)

where the Superspace wave-function Z* may depend on several hidden Superfields X® and on
their conjugates. Note that the indices on the wave function may be interpreted as derivatives
with respect to ® and ®7f of a Kihler potential Z(X, X, ®, ®), (3.47) being the second term
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in the Taylor series. When replacing the ®’s auxiliary fields by the solution to their algebraic

equation of motion, one easily gets the following expression for the soft masses :

]

mdy = — |7~ (Z—l)mnzgngj} Foph (3.48)

where the first term is an effect of the D-term of Z% while the second captures F-term effects.

In the case at hand, the relevant part of Z% is given by :

i _ B

70 = XX, 3.49

M (3:49)

Assuming that the X scalar does not take any vacuum expectation value, i.e. only the first

term in (3.48) contributes, one indeed recovers (3.46) :
[FX P

P2 = _5]'2'7M2] .
P

2 _ _ ij
mi; = ZX

! (3.50)
These masses are generically not flavour-universal and depend both on the Kéahler potential of
the microscopic theory through 8;; and on its superpotential which fixes the direction of F' X,
A possible way out of this problem is to impose flavour-universality at the Planck scale, the
resulting theory going under the name of mSUGRA. Of course one should then explain how

such a conspiracy emerges at the Planck scale.
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Chapter 4
Supergravity

In this Chapter we will introduce Supergravity (SUGRA) which is the supersymmetrisation of
General Relativity describing the dynamics of the graviton and the gravitino and their coupling
to matter. Several approaches are available in the literature to derive the SUGRA Lagrangian
and its coupling to matter. However since our interest lies in the knowledge of the scalar
potential we may discard terms involving direct couplings between the gravitational multiplet
and matter fields. Such a formulation fortunately exists and allows for a very simple and direct
computation of the scalar potential. Once the scalar potential has been derived, determining
the scalar masses is straightforward.

We will first closely follow the procedure of [76] in order to derive the field content of
superconformal SUGRA and then briefly discuss the vierbein procedure of [54] from which we
will extract the relevant terms for the computation of the scalar potential. Let us however

briefly review the different known approaches to SUGRA [77] :

Noether Procedure The first approach consists in defining SUGRA to be the theory obtained
by extending SUSY to local transformations, i.e. to promote SUSY to a local symmetry. The
gravitino then emerges as the gauge field of this particular Yang-Mills theory [78-80]. However
the derivation is rather lengthy and not very transparent. A detailed calculation of the SUGRA

Lagrangian and its coupling to matter may be found in [81].

Superspace Approach The second procedure consists in using the Superspace technology.
Vierbein EA! are introduced for the whole of Superspace together with their associated torsions.
However one has to find the right constraints to impose to those torsions in order to recover
minimal SUGRA, which a priori is not an easy task. Moreover once constraints have been
introduced, the Bianchi identities are not identities anymore and have to be solved, which

again is rather an unpleasant work. This approach is extensively discussed in [82] and [54].
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Superconformal Approach The third possibility to establishing the SUGRA Lagrangian is to
introduce more symmetry than needed and then to gauge-fix them [83-86]. The advantage of
such a procedure being that a high degree of symmetry puts severe constraints on the Lagrangian
thus effectively reducing the number of independent parameters. We adopt this last strategy

in the following.

4.1 Constraints versus New Symmetries

In this first section, we briefly illustrate the procedure we will use to derive Supergravity. When
promoting a global symmetry to a local one, new degrees of freedom are introduced in order
to covariantise the Lagrangian density [87]. These degrees of freedom are arranged in a vector
representation of the Lorentz group known as the gauge field. However since a gauge field
transforms under the gauge symmetry, not all of its components are physical. In other words,
one could use the gauge symmetry to gauge away some of the components, i.e. to set them
to zero. In the case of Electro-Dynamics (QED), the field A%.(z), which is identified with the
photon, has two degrees of freedom, identified with the two transverse polarisations of the
photon. However it proves useful to reintroduce a longitudinal component A{'(z) and a gauge
symmetry in the context of the path integral formulation of QED. The gauge symmetry is said
to be compensated by the longitudinal component of the photon.

Another use of compensating fields is to effectively reduce the symmetry of a theory. This
exactly corresponds to the case we will meet in the context of deriving the SUGRA Lagrangian.

Let us for example consider a theory invariant under general change of coordinates :

ozt = -KH(x) — 69w =V, K, +V, K, (4.1)
and under the following local Weyl symmetry :

0guy = =209, 0 =0¢ (4.2)

where g,,,, is a real symmetric spin-2 field, V, its compatible covariant derivative and ¢ a real

scalar field. The following action is invariant under all symmetries :
1 1
$=3 / diz/—g <6R¢>2 + g’“’&@&,qﬁ) (4.3)

where R and g respectively are the Ricci scalar and the determinant constructed out of g, .
Under (4.2), the Ricci scalar and /=g can be shown to transform as :

0R =600 +20R and 0v/—g =—4o+/—g (4.4)

where 0 = ¢""V,V,. One can now use the Weyl symmetry to gauge-fix the field ¢ to
do = \/3/47G N to recover the Einstein-Hilbert action of General Relativity :

1
167TGN

S|¢—>¢0 =

/ d*z/—gR. (4.5)
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Inspired by this example, one may wonder if it is possible to write the SUGRA Lagrangian as

a gauge-fixed superconformal theory.

4.2 Superconformal Formulation

4.2.1 What are we looking for?

The SUGRA Lagrangian is required to describe the dynamics of the multiplet containing the
graviton and the gravitino. A simple counting of the number of off-shell degrees of freedom
leads to the introduction of six auxiliary fields. The SUGRA Superfields should thus contain
the following set of fields :

9wy Yap, R, and F. (4.6)

We will now see that these fields are split among a gravitational Superfield and a compensator
Superfield. Inspired by equation (4.1), one may wonder which object plays the role of the
metric when the Superspace coordinates are varied. To answer this question one first needs to

introduce the notion of complex Superspace.

4.2.2 Complex Superspace

A point in Superspace as we have introduced it in Appendix C.3 is labelled by z*, 6, and
. Four of the labels are bosonic and four of them are fermionic which motivates to denote
Superspace as R*4. Tt is useful in the context of Supergravity to interpret Superspace as a
section of C*2. A point in C*? is labelled by y* and 6, where both y and # are understood to
be complex i.e. if viewed as a point of the real Superspace R8/* it is labelled by y*, 7*, 6, and
O

Let us now introduce surfaces in C*? defined by real Superfields H*(x,0,) on R** where

o =1/2(y* + ) :
Y — gt = 2H", (4.7)

Since each set of H"’s fixes the imaginary part of the y*’s, the equation (4.7) defines a real
Superspace which we will denote by R4‘4(H ). It can easily be shown that the real Superspace
constructed in the Appendix C.3 is obtained by choosing :

H" = 00+d. (4.8)

Indeed the surfaces defined by the previous equation are stable under Super-Poincaré transfor-
mations. We thus have R4* = R*4(§o0), or in different words the C*? surface constrained by

y* = a* + i@o*0 corresponds to the real flat Superspace.
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A space-time is said to be flat if there exists a coordinate system Z* in which the metric
reduces to the Minkowski metric, i.e. when g,,,,(Z) = 7),,. The equivalent equation in the case

of Superspace defining a flat Superspace is given by :
H" = 0a"0. (4.9)

The complex Superspace is also very well suited to describe chiral Superfields. Indeed instead
of having a complicated constraint depending on a combination of the coordinates Ds® = 0,
chiral Superfields can be viewed as holomorphic Superfields in C*? : & = &(y, ). It is indeed
trivial to show that Ds®(y,6) = 0 since Dgy* = 0 and Dy0* = 0.

4.2.3 Superconformal Supergravity

We now make the following observation : when flat space-time coordinates are allowed to vary
in an arbitrary way the metric changes according to equation (4.1) and the theory obtained
from the principle of general covariance is GR. We now mimic this procedure in Superspace
and allow for the coordinates to vary in an arbitrary way, thus spoiling the property (4.9), and

interpret the Superfields H* as the dynamical object of this theory. We thus have the following

correspondences :
Flatness Juv = Nuw e H" = 0o+0
Variations ox — oy, 00
(4.10)
Dynamical field 9 () — H"(x,0,0)
Theory GR — SUGRA?

To assess if the obtained theory really is Supergravity, i.e. if it has the spectrum discussed
in subsection 4.2.1, we again take advantage of the comparison with GR. In General Relativity,
one reduces the number of independent degrees of freedom of the metric to two by choosing
an appropriate shift K* in the space-time coordinates. This is a two-step procedure, first one
may go in the Lorentz gauge and then, using the remaining gauge freedom, one may go in the
TT gauge. In other words, eight of the ten components of the metric are gauge-fixed leading
to the theory of the two remaining degrees of freedom identified with the two polarisations of
gravitational waves.

Let us now apply this scheme to C*2. The coordinates are allowed to vary in an arbitrary

fashion :
y* =yt — kP (y,0) and On — 00 — ko(y,0). (4.11)

In order to be an allowed change of variables, the k* and k, should be such that the Berezinian,

also known as the Superdeterminant, of the transformation is non-vanishing. Under (4.11), a*
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and H* which respectively are the real and imaginary parts of y* transform as :
1 _ j _
Pt = D (R R) and  HY o HY o (R - k). (4.12)
The variation of H* is thus given by :

SHY = H — = L (K R) 4 |5 (R 4+ R) 9, + KO0 + F0u | HY (4.13)

N | .

It is a straightforward exercise to verify that R*4(#o@) is left invariant under Super-Poincaré
transformations. As an example, let us illustrate this in the case of a SUSY variation which is
generated by choosing k* = 2ifc*& and k® = £*. Such parameters do indeed not generate any
change in H* = o*0 :

OH" =

(03

(2i00"& + 2i€0"0) + %ot 0% + £¥(—at,0%) = 0. (4.14)

N =

Since H* is a Superfield, one can expand it in an exact Taylor series in order to investigate
its content. Then using (4.12) one may gauge-fix some of its components to zero, in analogy
with the Lorentz gauge in GR or with the Wess-Zumino gauge in SUSY gauge theories. By
decomposing the variation k* and k% as exact Taylor series in @, one may choose them such
that H* takes the following form :

H" = §cOe M +i0?0U" — i6*00" + 620° RM. (4.15)

The field content of the theory is thus given by the vierbein e,*, the gravitino U# and a gauge
field R*. However when choosing the gauge, i.e. k* and k%, to bring H* in the form (4.15),
a certain gauge freedom is leftover which is the analogue of the residual gauge symmetry one
finds when going in the Wess-Zumino gauge in the context of SUSY gauge theories. By properly
choosing field-dependent parameters k* and k%, one can generate three more transformations
which are a Weyl transformation, a chiral transformation and a second Supersymmetry trans-
formation which do not spoil the gauge (4.15).

We have thus established that the theory generated from the analogy (4.10) is a conformal
Supergravity when the gauge parameters k* and k, are arbitrary. As noticed in [88], it turns

out that if one restricts them to obey an unimodular restriction :
Okt = 0,k “ Ber(dy,060) =1 (4.16)

then the obtained theory is Supergravity. Indeed the constraint (4.16) puts a restriction on the
gauge-fixing and as a result one can no longer put H* in the form (4.15). Indeed, taking into
account (4.16), one may choose the parameters k* and k, such that H* takes the following

form :

H" = 6?B* 4+ 0 B* 4 00%0e /' 4 i020V* — i6?0U" + 620> RM. (4.17)
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However, thanks to a suitable redefinition of the fields, the B* field only appears in the action in
the combination F, = 9,,B*. The field content is thus indeed the one of SUGRA as advertised.

As argued in section 4.1, in order to accommodate theories with constraints, the most
efficient path is to introduce a new degree of freedom together with a symmetry whose gauge-
fixing will restrict the theory to obey the constraint. The multiplet introduced to take care of
the constraint (4.16) is called the conformal compensator and will be denoted by ¢. If we impose

the following transformation property to the compensator under coordinate transformation on
c42

1
= e+ 3 (Oukt — 0ak™) ¢ (4.18)

then gauge-fixing ¢ to one selects unimodular coordinate transformations and leads to minimal
Supergravity. Let us now sketch the more general construction of [89] which will lead to the
construction of a Lagrangian density describing the dynamics of the Superfields H* and ¢ and
their coupling to matter. The description of Ogievetsky and Sokatchev will appear to be a
particular case of the Siegel and Gates one.

In [89], Siegel and Gates determine Supergravity as the gauge theory of the Superspace

translation group under which :
R N e R A Ly i (4.19)

This approach is more general in the sense that all the Superspace coordinates are treated on the
same footing which was not the case in the procedure presented above where the flat Superspace
condition (4.9) was only carrying Lorentz indices. In the Siegel and Gates procedure, three sorts
of gauge fields are introduced : Uy, U4 and U,,. The superconformal gauge group they find only
admits a subgroup which breaks the Weyl symmetry and include the SUSY transformations if

there exists a complex number n satisfying the following relation :
(3n + 1)0sk* = (n + 1) (95" — Duk®). (4.20)

For n = —1/3 this relation implies the same condition as the constraint (4.16) and leads to
the possibility of achieving U, = 0, Us = 0 and U* = H* with H* given by the equation
(4.17). In order to write down an action, one introduces supervierbein in close analogy with
the gauge covariant derivatives of SUSY gauge theories : E, = e 2V 9,e?Y, E, = 04 and
E, = ia“aB{Ea,EB} where U = i(UF9, + U%Dy + U%8;). It then can be shown that the

action :
(n+1)/2 . .
S — /dsz (1 e—ﬁ) Jold B =Ber (,M) (4.21)
where, using z to collectively denote z, # and 0, [56] :

(1 . 672‘5) = Ber [0 (e 2V 2V)] (4.22)



4.3 Scalar Potential 45

is invariant whenever (4.20) is satisfied. In the particular case n = —1/3, using the compensator

( permits to recast the previous action into the following form :

8= /dgz (1 . 6_2‘[7) e E-/3 (eQU(p)Jr w+ (/ d®z 3 + c.c.) (4.23)

where no constraint has to be applied and where the second term has been added since it is
allowed by the symmetries, as can be checked from (4.18). The action (4.21) with n = —1/3 is
then recovered when gauge-fixing ¢ to one.

The coupling of matter fields ® to Supergravity is done by assuming that they transform

like scalars. The action then takes the following form :

S = /dgz (1 . e’2<{7) v E7/3 (eQUcp)T 0 Q(®, D) + (/ d%z W (®) + c.c.) . (4.24)

A very common gauge-fixing choice is to transfer the F, field from U" to ¢, a posteriori

justifying its name. In this gauge, U* = H* with H* given by equation (4.15) and :
¢ =e(l — 200"V, + 0*F,) (4.25)

where e is the vierbein determinant.

4.3 Scalar Potential

If one is only interested in the scalar potential for the matter scalar fields in the context of
Supergravity, one may discard all interaction terms among the graviton, the gravitino and the

matter fields. The action then takes the following very simple form :
8= /dgz@pﬂ(q), D) + </ d%z W (®) + c.c.> (4.26)

with ¢ = 1+92F¢. In order to recover a nice flat space-time limit, ¢.e. when taking the Gy — 0

limit, one usually writes :

Q= —3eK/3, (4.27)
The action (4.26) enjoys the following symmetry :

KoK+X+X, WoeXW and ¢— 3 (4.28)

which can be used to reach the point K — G = K + logW + logW and W — 1 :

8= /dgnggo (—Se*G/?’) + (/ d%z ¢ + c.c.) (4.29)

with ¢ = e%/6(1 + 0°F,) = n+ 6?F. The overall factor of ¢ has been chosen in order for the
action to be in the Einstein frame as noticed by [89]. Let us now extract the scalar potential
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from the action (4.29). As explained in subsection 4.2.2, chiral Superfields are functions of the

sole y# and 0%. A chiral Superfield is thus given by :

O(x,0,0) = B(y,0) = d(y) + V200(y) + 0> F(y)
= ¢(z) + i00"00,¢(x) + 3929’2&;5@) (4.30)

V2

Since the scalar potential does depend neither on the derivatives of the scalar fields nor on the

+ V200 (x) — —=6%0,9(x)a"0 + 0> F (x).

fermionic fields, one can safely replace the Superfields ®°(z, 6, 8) by :
' (2,0,0) = ¢'(x) + 0°F'(x). (4.31)

The relevant terms for the computation of the scalar potential extracted from the action (4.29)

are the following :
LoV =|FP*Q+ FnQp +7FQe + [n|*Qp + 30°F + 37*F (4.32)
where :

QF = QZFZ = eiG/SGiFi,
Qp = QF7 = e 3G FI,

(4.33)
- 1 P
Qp = QF F7 = ¢~ C/3 (Gij — 3GiG]> FiF7.
The algebraic equations of motion for F' and F* are easily solved by :
G/3-2 1 i i a/3 s
F=e""g(1- gGiG and ' = —e¥/°G " (4.34)
which when plugged back into (4.32) yield the following scalar potential :
V=¢% (GG - 3). (4.35)

The expression of V in terms of K and W is simply recovered using the definition G = K +
logW +log W :

V =" [KYD;WD;W —3|W|*] = K ;F'F7 — 3" |W|? (4.36)

where we have introduced the Kéhler covariant derivative : D;W = W, + K;W. The scalar
potential thus depends both on the Kéhler potential K and on the superpotential W. However,
there exist the possibility that a non-trivial superpotential is generated by non-perturbative
effects and would thus not be grasped by our procedure. We will thus take the following point
of view : we will keep W unspecified and consider it as a parameter of the theory, i.e. we can

for example tune W to achieve (V) = 0.
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4.4 Scalar Masses

In the last section we have derived the relevant part of the Supergravity Lagrangian for the
computation of the scalar fields masses. What is left to do is to take the second derivative of
the scalar potential (4.35) and to evaluate it at the minimum of the potential which is defined
by the field configuration ¢* :

iV (¢*,9%) = ViV(¢", ") = 0. (4.37)
We then expand V' around this point in field space :
Y I e N
We thus identify the matrix of squared masses with :
(mz] mzj) _ (aiajv 8@1/)‘ _ (vivjv vivjv)‘ (4.39)
my; mg; 0;0;V  0;0;V b V:V;V o ViV VvV Py

where we were able to replace all ordinary derivatives by covariant derivatives. In the mixed
indices case we first used that d;V = V;V thanks to the scalar nature of V' and then that
ViV;V = 0;V;V since the Christoffel symbols with mixed indices vanish as we chose the
covariant derivative to be compatible with the complex structure. When the indices are both
holomorphic or antiholomorphic, the Christoffel symbol does not vanish and we have V;V;V =
OiV;V — FijkV. However as we evaluate this quantity at the minimum of the scalar potential,
the connection term cancels out.
Let us now evaluate the matrix of second covariant derivatives of V. The first covariant
derivative gives :
V;V =V; e (GG Gr — 3)]
= G;V +¢% (G™V,G, + G"V;Gr) (4.40)
=G,V + €% (G5 + G"V;Gr)
which vanishes on the vacuum. Let us now apply the operator V; on this result :
ViV;V =V, [G;V + €% (G5 + G"V;Gr)] (4.41)
=GV + GV,V + Gie® (G + G™V,Gy) + €€ [Giy + Vi(G™V,Gy)] - '

If we now choose W such that the vacuum energy is compatible with a small positive cosmo-
logical constant (see [90] for the actual number) then only the last bracket of (4.41) contributes
to the scalar squared mass matrix element :
m? = e [Giy + (ViG™)(V;Gr) + G"V;V,Gx) (1.42)
=% [Gi;+ (ViG")(V;Gr)] — Rigma F™F™.

By again using the vanishing of the cosmological constant condition, we find :

1 1 L
¢ = 2e9G,G" = Gy F'F (4.43)
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which permits to rewrite the masses as :

v]

= <SG (VsGn) = (Rimn ~ CiGonn ) F ", (4.44)

The same procedure can be applied to compute the off-diagonal elements of the squared masses

matrix. The result is found to be given by the following formula :

]

1
m2, = e (ViGj +V,;G; + iGm{vi, vj}Gm) . (4.45)

4.5 Scalar Masses in Hidden Sector Scenarios

Since our primary concern lays in the determination of the soft masses appearing in (3.33), let
us specialise the equation (4.44) to the case where according to the discussion of section 3.7 the

fields are split among the visible and hidden sectors :

) Q" Visible Sector
P - (4.46)
®®  Hidden Sector

Since the visible fields are characterised by a vanishing vacuum expectation value, one has :
Gy =G5 =VeG,=0 (4.47)

on the vacuum. Moreover in all the cases we will be focusing on in the following, matter fields
in the visible sector do not admit holomorphic quadratic invariants of the gauge symmetry, and

thus :
VaGg =0 (4.48)

on the vacuum. We are thus able to rewrite the equation (4.44) under the hypothesis (4.47)
and (4.48) as :
2 1 e @l

my5 = — | Rager — gKaEKef FEF (4.49)
in accordance with [73] where we have replaced the mixed derivatives of G with those of K since
they coincide. Note that the expression inside the brackets of (4.49) only depends on the Kéhler
potential and is thus a purely geometric object with no dependence on the superpotential, except
for the selection of the vacuum point. The superpotential W only affects the direction of F©.

The crucial ingredient of the soft scalar masses computation is thus the Kéahler potential to

which we will devote Chapter 7.
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Relation with the Gravity-Mediated Soft Masses In subsection 3.7.2 we have determined

that, in the context of gravity-mediation, the soft scalar masses are given by :
m?; = - [Zg/; - (Z—l)mnzgmzlﬁﬁ] FOFT (4.50)

where Z™" is the Superspace wave-function. In order to make contact with (4.49), one has to
take into account that in Supergravity the term appearing in the integral over Superspace is not
the Kéhler potential K but € which has been defined in (4.27). Therefore, in order to compare
the two expressions for the soft scalar masses we first have to express (4.49) with respect to .

Using the technology developed in Appendix B.2.4.2, one easily finds :

1 3 .
Rager = 3KagKer — g [Quger — Raey (271)77Q,57] (4.51)

which when replaced in (4.49) gives :
m2.=2 [Quz0r — Qaaﬁ(g—l)pﬁgpﬁ_ﬂ FOET (4.52)

which manifestly has the same structure as (3.48) provided we interpret the upper indices as
derivatives as has been argued in subsection 3.7.2.

Remark that the computation of masses we have performed has been done by only con-
sidering chiral fields, despite the fact that the models we are interested in are gauge models.
The formula (4.49) is thus valid only in those situations where the chiral multiplets dominate

2 2

SUSY-breaking in the hidden sector. For record, the full dependence of m;; and m:; on the

gauge-kinetic function and on D-terms may for example be found in [91].
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Chapter 5

Heterotic M-Theory

In this Chapter we are introducing Heterotic M-Theory as a prototype theory in the context
of which the idea of sequestering can be put at work. We first review the basics of Superstring
theory and in particular Fg x Eg Heterotic String Theory. There exist many good reviews of
this subject among which [92-95]. We will then introduce M-Theory as a conjectured eleven-
dimensional mother theory of which the five known string theories represent particular limits.
The effective theory of the Eg x Eg Heterotic M-Theory is thus defined as an eleven dimensional
Supergravity theory where one set of Eg gauge fields lives on each end-of-the-world brane. Such
a setup contains natural candidates for both the hidden and the visible sectors : the observable
sector consists in the fields living on one of the brane while the hidden sector contains the fields
living on the distant brane together with the moduli which are the internal components of the

Supergravity multiplet.

5.1 A New Paradigm

In a first attempt to unify all known forces of Nature in a quantum theory, one may try
to couple the Standard Model, which unifies the strong and electro-weak forces, to General
Relativity. However, General Relativity does not seem to be renormalisable. Indeed as the
coupling controlling the strength of gravitational interactions, Newton’s constant G, has a
mass dimension GeV 2, the ratio of a one-graviton correction to the zero-graviton amplitude is
roughly given by /Gn E where E is the characteristic energy scale of the process. Gravitational
interactions as described by General Relativity are thus understood to be irrelevant.
Non-renormalisability of General Relativity may be taken as a hint for the need of a new
paradigm just as the non-renormalisability of Fermi theory led to the introduction of gauge
bosons mediating the electro-weak force. The way String Theory solves the UV divergence
issue is by postulating that the fundamental objects of the theory, strings, have a characteristic
length denoted by /5. The string length acts as a regulator for UV divergences since it is not

possible to shrink loops below the £ scale.
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The area spanned by a string moving in space-time, the string worldsheet, seen from a dis-
tance much greater than ¢, or equivalently at a low enough energy, looks like a one-dimensional
worldline. The low energy effective action of String Theory is thus a theory of point-like parti-
cles.

The consistency of String Theory at the quantum level requires the strings to evolve in a
ten-dimensional space-time. The four-dimensional effective theory thus crucially depends on
the manifold on which String Theory is to be compactified. We will draw our attention on this
topic in Chapter 6. The four-dimensional effective theory spectrum will consist of the lowest
excitations of the strings, which are massless in the ten-dimensional picture, the infinite tower

of massive higher harmonics being integrated out.

5.2 Introduction to String Theory

The Poincaré-invariant action describing the dynamics of a point-like particle in a flat space-

time is given by :

8§ = fm/ds = fm/ VN dzhdry = 7m/d’7'\/7’r)w,i“i” (5.1)

where the integral is to be performed along the particle’s trajectory parametrised by 7. The
appearance of a square-root renders this action not very well-suited for a path-integral treat-
ment. The introduction of an auxiliary field permits the rewriting of the action in the following

way :

1

S = 5 /d’l’ (e ' dtd” — em?). (5.2)

When the auxiliary field e, the einbien, is replaced by its algebraic equation of motion, one re-
covers the action (5.1). The action is invariant both under the Poincaré group and reparametri-
sation 7 — 7/(7) under which e(7) — €/(7') = e(7)dr/dr’. Using the reparametrisation invari-
ance, one may reach the gauge e = 1 in which the action (5.2) is easy to handle. Note that the
conjugated momentum defined out of (5.1) suffers from a mass-shell condition :
0L ot 9

=m - 1" =-m

I+ = —
ox,, —i2

(5.3)

or, equivalently, one may show that the Hamiltonian is vanishing. When using the action (5.2)

with e gauge-fixed to one, one has to impose by hand the vanishing of the Hamiltonian.

Bosonic String Theory The so-called bosonic string action is constructed in a similar fashion.
It is written as the integral over the area spanned by the string. A position on the worldsheet

is specified by two parameters, X* = X*(r,0), and the action reads :

1

S:_M

/ drdor\ /= det (1,0, X#0,X"). (5.4)
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In order to get rid of the square root, one introduces a worldsheet metric v, in terms of which

the string action may be written as :

1

S:—M

A
/deos/—’wabﬁaX“ﬁqu + y /drdcr\/—vR (5.5)
T

where we have added a term proportional to the Ricci scalar defined out of ~,, since it is

compatible with all the symmetries of the first term which are :
© Space-time Poincaré invariance,
o Worldsheet diffeomorphisms, under which the X*’s transform like scalars,
o Weyl rescaling acting as vqp — €77, for arbitrary w(r, o).

In two dimensions the second term is a total derivative and thus only depends on the topology
of the worldsheet, corresponding to its Euler characteristic x. Note that the action (5.5) can
be interpreted as the action describing the dynamics of bosons X* living in a two-dimensional
world, the worldsheet, the number of bosons being given by the dimensionality of space-time.
One may then use these symmetries to choose a gauge in which the calculations are easy
to handle, in analogy with the case of the point particle in which we chose the e = 1 gauge.
By using the worldsheet diffeomorphisms and the Weyl rescaling, one can bring the 7,; metric

to the Minkowski metric 7,5,. The equation of motion for X*(7,0) then resembles a wave

equation :
0? 0?

with two constraints : (X + X’)2 = 0 where X* = 9, X" and X*" = §,X*. These constraints
are the string-equivalent of the vanishing of the Hamiltonian in the point-particle context. The
solution is thus to be expanded in left-moving and right-moving modes. Imposing canonical
commutation relations among X* and its conjugated momentum generates a bosonic algebra for
the modes coefficients from which a Fock space is constructed. The spectrum is then obtained
by acting with the creation operators on the Fock vacuum. The masses are shown to increase by
steps of the inverse string length. In this scheme, the critical dimension of space-time in which
strings propagate emerges as being the only one compatible with a physical interpretation of
the spectrum [92]. For the bosonic string, one finds the critical dimension to be 26.

When considering open strings, the left and right-movers are related by the boundary con-
ditions and we are only left with one set of creation and annihilation operators. Acting on the
vacuum |(2) generates the spectrum. The first few levels are thus : [Q), a2/|Q), afaZt|Q), ...
where m labels the harmonic. |Q) can be shown to be a tachyon, a/T|Q) a massless vector field
and all other excitations massive fields.

In the case of closed strings, the constraints translate into a level-matching condition : only

an equal number of left-moving and right-moving creation operators are allowed to act on the
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vacuum which, again, is a tachyon. The massless states are shown to be obtained by acting
once with a left-moving creation operator and once with a right-moving one : af' TZLT”Q). The
result is a transverse two-tensor which may be decomposed into a symmetric traceless tensor,
an antisymmetric tensor and a scalar which are interpreted as respectively being the metric
G, an antisymmetric tensor B, and the dilaton ®.

In order to obtain a space-time Lagrangian density for the massless excitations of String
Theory, ignoring the tachyon, one first writes down the String Theory action in presence of a
background for G, B, and ® :

S = —4—162 / drdoy/=7 [(v*G o (X) + i€ B,y (X)) 0. X 0, X" + (2RO (X)) . (5.7)
™ S

The last step towards the construction of an action for the massless fields is to enforce
the Weyl anomaly to vanish by imposing the tracelessness of the energy-momentum tensor
constructed out of the 4, metric. Indeed, at the classical level the energy-momentum tensor
has a vanishing trace thanks to the Weyl rescaling symmetry. However, this does not hold
anymore at the quantum level, leading to an anomaly. One thus needs to impose that the
theory is anomaly-free by requiring that the trace of the energy-momentum tensor vanishes not
only classically but also at the quantum level. This condition will depend on a combination of

the derivatives of the G, By, and ® fields which are interpreted as the equations of motion

)
deriving from a space-time action. In the case at hand the corresponding space-time action is

given by [92] :
1 1
$=5 / d*z/—Ge™?* [R — EHWPH“”” +40,00"® + O(£2) (5.8)
ko

where kg is a free parameter since the equations of motion do not depend on the overall scale

of the action.

Superstring Theory In order for String Theory to play a role in describing Nature, it not only
has to make sense of the tachyons appearing in the Fock space but it should also definitely cope
with fermions. Having in mind the interpretation of the String Theory action as the action
of bosonic fields X* living on the worldsheet leads to the natural introduction of worldsheet
fermions % which has the desired effect since it permits to generate space-time fermions. The
resulting theory is called Superstring Theory and is only consistent in ten space-time dimensions.
Note that at this stage it is far from being obvious that the fields ¥# will describe space-time
fermions since they transform as vectors under the space-time Lorentz group.

The superstring action is obtained by adding the following piece to (5.5) :
AS = — 4i / drdo /=3P T 0,1,
T

-2 / drdo /=7 [Y4(Dr + 0o 1,0 + 15 (0 — 05 )ibay)]
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where the I'* matrices satisfy the two-dimensional Clifford algebra, for example by choosing
I' = 02 and I'' = i0'. The boundary term appearing when computing the equations of motion

may be set to zero by either the two following choices of boundary conditions :

Vi (m, 1) =+ 4 (m,7) Ramond sector,
(5.10)
P (m, ) = — i (m,7) Neveu-Schwarz sector.

Open Strings Let us now investigate the consequences of these two boundary conditions.
More precisely we wish to classify the string excitations in terms of the little group of the

ten-dimensional Lorentz group SO(1,9) which is SO(8) for massless representations :

o In the Neveu-Schwarz (NS) sector, the solution to the ¥ equations of motion is to be
expanded with half-integrally moded exponentials with coefficients having to satisfy the
quantisation condition taking the form of a fermionic algebra. It can be shown [16] that
the spectrum starts with a SO(8)-singlet tachyon. The massless spectrum is obtained
by acting with one of the creation operators on the Fock vacuum, leading to a space-
time massless vector, i.e. an 8, under SO(8). The NS sector massless states are thus

space-time bosons.

¢ In the Ramond (R) sector, the solution to the ¢# equations of motion is to be expanded
with integrally moded exponentials with coefficients having to satisfy the quantisation
condition taking the form of a fermionic algebra. The most important difference between
the Ramond and the NS sectors is that the Ramond sector contains zero modes which do
not contribute to the mass of the states and whose anticommutation relations are nothing
but the space-time Clifford algebra. One may then construct ground states |[2g) which
in ten space-time dimensions form a massless 32-dimensional Dirac representation 32p of
the Clifford algebra on which the creation operators can act. Since the 32p decomposes
as follows under SO(1,9) — SO(1,1) x SO(8) :

32p —  (Y/2,8)®(—1/2,8) @ (1/2,8) @ (—1/2,8) (5.11)

where the two first and two last factors respectively come from the two inequivalent 16-
dimensional Weyl representation of 10-dimensional spinors : 32p = 16 & 16, when going
on-shell half the degrees of freedom are killed by the Dirac equation and we are left with
two inequivalent massless Weyl representations of SO(8) : 8 and 8 which are space-time

fermions.

Closed Strings For closed strings, the left and right-moving fermions are independent and can
be chosen to be either in the Ramond sector or in the Neveu-Schwarz sector giving rise to the

following possibilities :

(R,R)  (NS,NS) (R,NS) and (NS,R) (5.12)
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where the first two options describe space-time bosons while the two last ones are space-time
fermions since a product of two fermionic representations is a bosonic one. In the first two

sectors, one finds, at the massless level :
Bo8)Y =0c..0BioM4s and 8,28,=[0:sD[2sD (2)s (5.13)

where [n]q is a totally antisymmetric n-tensor in d dimensions, i.e. of dimension :

d!
o 5.14
" nl(d—n)! (5.14)
and where (n)q is a symmetric traceless n-tensor in d dimensions. In the two last sectors,

ignoring the dilaton, one finds :
8@ 8)28,=8d8 ¢ 5656 (5.15)

which are two spin-1/2 fermions and two gravitinos. In order to get rid of the tachyon, let us

now introduce a way to project it out.

GSO Projection In order to get rid of the tachyon in the NS sector and to enforce space-time
Supersymmetry, one may try to devise a consistent projection on the spectrum. To do so, let
us first introduce the worldsheet fermion number F' which can only take the values zero and
one, i.e. it determines whether the state is a worldsheet fermion or not by counting how many

fermionic creation operators have been applied on the Fock vacuum. Then the operator :
(-1)F ==+1 (5.16)

anticommutes with the fermionic creation operators and defines two sectors. The R and NS
sectors are thus further subdivided into NS+ and R+ where R+ are the 8 and 8, NS+ the
8, and NS— the tachyon. The combinations of right and left-moving sectors leading to a
massless spectrum are found in Table 5.1. The projection onto (—1) eigensectors is called the
Gliozzi-Scherk-Olive (GSO) projection [96].

A Superstring theory is thus specified by the sectors it contains. One can build 16 of them
(NS or R, + or —) a priori leading to 2'6 different String theories, but since the NS— contains
a tachyon it is usually discarded leaving us with a choice of 9 sectors to include or not, i.e. to

29 different theories. The ITA and IIB Superstring theories correspond to choosing :

NS+ NS+
IIA : ® = (NS+,NS+) (R+,NS+) (NS+,R-) (R+,R-),
R+ R—
L R
NS+ NS+
IIB : ® = (NS+,NS+) (R+,NS+) (NS+,R+) (R+,R+).
R+ R+
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Sector Under SO(8) Massless spectrum
(R+,R+) 8 © 8 [0]s @ [2]s & [4]3°
(R—,R—) 8 © 8 [0]s @ [2]s @ [4]3>
(R+,R—) 8 ® ¥ [1]s @ [3]s
(NS+,NS+) 8, ® 8, [0]s @ [2]s & (2)s
(NS+,R+) 8, ® 8 8 @ 56
(NS+,R-) 8, © 8 8 ® 56/

Table 5.1: Combination of left and right-moving sectors

(5.17)

The other combinations either lead to inconsistent theories or to theories containing no fermion
or a tachyon. Note that both the ITA and IIB theories contain two gravitinos : two 56’s for
the IIB, one 56 and one 56’ for the ITA. Combining those with the graviton in the (NS+, NS+)

sector leads to N = 2 space-time Supersymmetry.

Open + Closed Strings The IIB Superstring is left-right symmetric, i.e. it is invariant under
Q) which acts as 0 — 7™ — 0. Since Q2 = 1, its eigenvalues are 1. By applying Q to X* or )*
one can find the parity eigenvalue of the creation operators. Consistent string theories may be
obtained by only keeping the €2 = +1 sector, i.e. the unoriented sector, thereby restricting the

spectrum. The action of Q on a closed string state |L'R7) is given by :
QIL'R?) = |R'LY) = £|L7 R") (5.18)

where |LR7) stands for the state obtained by successively acting with the right-handed j-th
and the left-handed i-th creation operator on the Fock vacuum. The sign in the second equality
is determined by the statistics obeyed by the L? and R states. Let us now derive the spectrum
of IIB/Q. In the (NS+,NS+) sector, the positive sign is selected since NS+ is a boson. Then
the Q = +1 eigenstate is given by |L'R7) + |L7 R?), the antisymmetric [2]g being killed by the
projection. The two sectors (NS+, R+) and (R+, NS+) together lead to the symmetric 8 & 56.
Finally, the (R+,R+) selects the minus sign in (5.18) since R+ is a spinor. The Q = +1
eigenstate is given by |L‘R’) — |L/ R?), i.e. it is the [2]g. Summarising, the IIB massless = +1

states are :

8 © 56D [0]s D [2]s ® (2)s- (5.19)
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However the above spectrum does not lead to the cancellation of the gravitational anomaly.
The consistency condition required to ensure that the effective theory is anomaly-free is the
so-called RR tadpole cancellation which is solved by the addition of open unoriented strings
with Chan-Paton indices, which describe the gauge group, belonging to SO(32), see [94] for a
nice discussion. The massless spectrum of the SO(32) Type I Superstring is thus found to be
given by :

8 @56 @ [0]s D [2]s D (2)s ® (8, D 8)s0(32) (5.20)

which respectively are the dilatino, the gravitino, the dilaton, a two-form, the graviton and
S0O(32) gauge bosons and gauginos. The type I Superstring thus is a N = 1 SUSY theory with
S0O(32) gauge group which embeds both open and closed strings.

5.3 The Heterotic String

Yet another closed Superstring theory can be constructed by combining the left-moving sector
of the 26-dimensional bosonic string with the right-moving sector of the 10-dimensional Super-
string [97, 98]. The right-moving sector consists of ten X* and ten ¢* while the left-moving
one contains twenty-six X™ which are divided into ten X* and sixteen transverse X' which are
traded by fermionisation for thirty-two space-time singlets worldsheet fermions A4 [98]. The

worldsheet action is then given by :
1
S =~ [ oV B 0K X, + i B0+ )+ NG — N (521
T S

The Heterotic String is consistent in a ten-dimensional space-time. Note that the left-moving
worldsheet fermions enjoy an SO(32) symmetry under which they transform in the fundamental

representation.

S0O(32) Heterotic String Since the Heterotic String right-moving sector is the same as the
type II one, it consists of an (8,1) & (8,,1) under SO(8) x SO(32) at the massless level. A
GSO projection is defined on the left-moving sector in order to remove the tachyon from the
spectrum. Furthermore the A\4’s have to satisfy Neveu-Schwarz boundary conditions if they
are to produce massless states [16]. The massless states are thus found by acting on the NS
vacuum either with a bosonic creation operator af T|Q>NS or with two half-moded fermionic
creation operators A;‘}I/\52|Q>Ns. These states respectively transform as (8,,1) and (1,[2]52)
under SO(8) x SO(32). The massless spectrum is given by the product of the left-moving and

right-moving massless states :
Heterotic SO(32) : [(sm 1) (1, [2]32)} ® [(8, 1) @ (8,,1) (5.22)

which corresponds to an N =1 SO(32) gauge theory since dim([2]32) = 496 is the dimension of
the SO(32) adjoint. The (1,[2]s2) ® (8,,1) are thus identified with SO(32) gauge bosons and
while (1,[2]32) ® (8,1) are their supersymmetric partners, the gauginos.
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Eg x Eg Heterotic String In the SO(32) heterotic string theory construction we have chosen
to maintain the SO(32) symmetry in the A*’s sector. One may consider how the situation
is changed given the first n A to have NS boundary conditions and the remaining 32 — n to
have R boundary conditions thus allowing the possibility of constructing a Clifford algebra from
their zero-modes. It turns out that the only consistent theory has n = 16, which will lead to a
256-dimensional Dirac representation of SO(16) : 256p. Let us now go through the different
subsectors the left-moving states contain. In the NS-NS sector, the result is almost the same
than in the SO(32) case : a4T|Q)ns and )\fg)\ﬁzm)Ns where due to the GSO projection the
two labels A and B should belong to the same set of 16. The NS-NS states thus transform
as (8,,1,1) ® (1,120,1) @ (1,1,120) under SO(8) x SO(16) x SO(16). The NS-R sector
produces the announced Dirac representation of SO(16) which is the sum of two inequivalent
Weyl representations 256 = 128 @ 128’ of which one is killed when going on-shell. The NS-R
thus produces (1,1,128) while the R-NS sector gives a (1,128,1). The R-R sector does not
contain any massless states. The massless spectrum consists of the product of the left-moving

and right-moving massless states :

Heterotic Es x Ex : {(81,, 1,1) @ (1,120,1) @ (1,1,120) & (1,1, 128) & (1, 128, 1)}

® [(8, 1,1) + (8, 1,1)].
(5.23)

The massless vectors in the (8,,120,1) and (8,,128,1) should transform in the adjoint of the
gauge group. One is thus led to look for a group G whose adjoint splits into 120 ¢ 128 under
SO(16). The only group having this property is the exceptional group Eg. The gauge group
of the second Heterotic superstring is thus Eg x Eg. The massless spectrum of the Fg x Fg
Heterotic string theory is recorded in Table 5.2 in which the transformation properties under
SO(8) x Eg x Eg are indicated.

5.4 The Eg x Es Heterotic Effective Action

In order to derive the effective action describing the dynamics of the above-mentioned spectrum,
one may proceed as in the bosonic case, i.e. one computes the trace of the energy momentum
on the worldsheet and imposes that it vanishes. The emerging dynamical relations among the
space-time fields are then interpreted as their equation of motion from which on reconstructs
the action. However in the case at hand, since the spectrum exhibits N = 1 SUSY, the action
is pretty constrained and can be shown to be the following in which only the bosonic fields are
recorded [99] :

S:

1 1 2
S /dl% ~Ge?* |R+40,00"® — -|H|* + H—;()Tr(|F|2) +0(£9) (5.24)
2K, 2 910
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(1,1,1) Dilaton o
(28,1,1) Antisymmetric Tensor By
d =10, N =1 SUGRA (35,1,1) Metric Tensor Gun
(8,1,1) Dilatino Xa
(56,1,1) Gravitino M
(8,,248,1) «
Gauge bosons Ay
(8,,1,248)
FEs x Eg gauge sector
8,248, 1
( ) Gauginos X
(8,1,248)

Table 5.2: Es x Es Heterotic Massless Spectrum

where H is a modified field-strength for Bpsn :

2 2 2 2
H:dB—H;OTr<A/\dA—A/\A/\A)—?T‘r(w/\dw—w/\w/\w) (5.25)
910 3 9io 3

where the second Chern-Simons term is a higher-derivative effect which nevertheless is impor-
tant for the consistency of the theory. The fact that B has a shifted field-strength implies it
has to satisfy a non-standard Bianchi identity :
2
dH—KlO<Tr(RAR)—Tr(F/\F)>. (5.26)

2
910

The non-standard field-strength for B can also be seen as coming from an anomaly-cancellation

effect on the worldsheet which further constrains the gauge coupling g%, to satisfy [97, 98] :

2 K1

The Heterotic String effective action (5.24) has an N = 1 local Supersymmetry which acts as

follows on the fermionic fields [99] :

1
0¥y = VME—§HJVINPFNP6
L v 1 MNP (5.28)
1% = —=TMOy®Pe+ —Hpynpl € :
2 24
1
B = —SF{y TN

up to terms involving fermions.
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5.5 M-Theory

The ITA effective theory spectrum is easily shown to result from the dimensional reduction
of the 11-dimensional N = 1 SUGRA on a circle which indeed generates an N = 2 theory
since N = 1 theories in eleven dimensions have 32 supercharges, see Table C.1. Moreover
the five known Superstring theories are believed to be related by various dualities, suggesting
that they are different limits of a greater theory. Witten then conjectured [100] that the ITA
strong coupling limit consists in an 11-dimensional yet to be specified M-Theory of which 11-
dimensional SUGRA is to be the effective theory. The web of dualities relating the different
Superstring theories leads to the identification of the strong coupling regime of the Fg x Ejg
Heterotic String with M-Theory compactified on S!/Zs, which is nothing but a segment. The
fact that the gauge group is a product of two Eg’s is then understood as coming from an anomaly
cancellation argument in the eleven-dimensional picture and is interpreted as the localisation
of the Yang-Mills fields on two ten-dimensional branes located at each of the segment ends
[101, 102], which are commonly called end-of-the-world branes.

The setup consisting of an 11-dimensional theory bounded by two 10-dimensional branes,
each supporting Eg gauge fields is called Heterotic M-Theory. Such a theory has seven extra-
dimensions which are to be compactified to give rise to the four-dimensional effective theory.
Note that not all extra-dimensions are on equal footing since the eleventh dimension is related
to the string coupling which has no relation to the six extra-dimensions on the branes. The
order in which the compactification is to be performed thus depends on the relative size of the

extra-dimensions.

11D SUGRA

Figure 5.1: Heterotic M-theory Setup

In the situation where the eleventh dimension is the first to be compactified, the eleven-

dimensional SUGRA bosonic spectrum which, as shown in the Appendix C.2, consists of the
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metric Gap and of the 3-form Capc generates the ten-dimensional SUGRA spectrum given

the following parity assignments :
Zy : ™t — —g™ G—-G C— —C. (5.29)
The surviving components then are :

Gag : Gun — Gun
Gy —  nothing

G - P
t (5.30)

Cagc : Cuynp —  nothing

Cunui — Bunw

which effectively coincides with the ten-dimensional SUGRA multiplet derived in Appendix
C.2. Moreover, since the gauge fields A%, live on the two ten-dimensional branes located at
the orbifold’s fixed points, they are unaffected by the projection and we recover the Heterotic
effective theory bosonic spectrum, see Table 5.2.

The further compactification of the six remaining internal dimensions is the subject of the
next Chapter but we can already anticipate the fact that if we desire that the four-dimensional
effective theory is an N = 1 theory then the manifold X on which the compactification is to be
performed has to be chosen such that it kills three-quarters of the supercharges.

Let us briefly sketch what the situation would be if we first had to compactify the six
dimensions on the branes. This situation will be investigated in Section 7.5 since this requires
some knowledge about the manifold upon which the compactification is to be performed. The
result will be shown to be a N = 1 five-dimensional theory if the compactification manifold is
chosen to be X, which is an N = 2 theory from the four-dimensional point of view. Finally the
Zo projection kills half the supercharges leading to an N = 1 theory in four dimensions. We can
also already anticipate the fact that in the resulting five-dimensional theory, in contradistinction
to pure five-dimensional SUGRA, not only the metric and the graviphoton propagate in the
bulk but also a number of vector multiplets and hypermultiplets coming from the internal

components of both the metric and the 3-form C', as pictured on Figure 1.3.



Chapter 6

Compactification

In Chapter 5 we have introduced Superstring Theory and in particular the Heterotic Eg x Eg
Theory to which we will now devote all our attention since it represents a plausible framework
in which sequestering can be put at work. In this Chapter we will first revisit the Kaluza-Klein
compactification of a single extra-dimension on a circle. Extending this to more dimensions
will lead us to discuss toroidal compactifications.

The manifold on which the compactification is to be performed may be used to reduce the
high degree of Supersymmetry of the microscopic theory. Since the Heterotic String is a N =1
theory in ten dimensions, it contains 16 supercharges which would generate an extended N = 4
theory in the effective four-dimensional theory if the compactification manifold is chosen to be
flat, e.g. in the case of a toroidal compactification.

We start this Chapter by a brief discussion of Kaluza-Klein compactifications, we will then
look for manifolds which when the Heterotic 10-dimensional action is compactified upon have
the effect of killing some or all of the Supersymmetry. Both singular and smooth manifolds are

discussed.

6.1 A Kaluza-Klein Warm-Up

6.1.1 Quantum Mechanical Example

In order to grasp the essential features of the compactification procedure, let us introduce a two-
dimensional quantum-mechanical example. A particle is assumed to be moving on a cylinder

of length L and radius R < L. The solution to the Schrodinger equation is given by :
(T, Y)m,n X sin (%) {sin (%) + acos (%)} (6.1)

where m > 1 and n € Z. The energy levels are given by :

= 2 [+ (3] o
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On the other hand, the energy levels of a particle on a segment of length L are given by :

B2 smm\2
ip _ v mm
Em’ = 2m( L ) (6.3)

with m > 1. The smallest new energy level compared to the case of a particle on a segment is
thus :

it [+ (3)

which corresponds to the level m ~ L/(mR) > 1 of the particle on a segment. We thus conclude

~ % (%)2 — gD (6.4)

from this simple example that a small compact extra-dimension can be hidden provided its size

is such that the energy level characterised by m is not accessible to present experiments.

6.1.2 Implementation in Quantum Field Theory

Let us now consider a massive scalar field propagating in five space-time dimensions where the
fifth dimension is compact, i.e. we identify y ~ y + 2nrR. The scalar field ¢(z,y) may be

expanded in Fourier modes compatible with the boundary condition :
B.y) = —— 3" dule)exp (i %y) (6.5)
T,Y) = —— x)exp (i—= .
y \/ﬁnez n p Ry
which when acted upon with the five-dimensional Klein-Gordon operator ({5 — m?) yields :

Do) = [mZ " (g)g] D(). (6.6)

A compact dimension thus manifests itself by a tower of excitations with increasing masses,

called the Kaluza-Klein (KK) tower. One may also directly replace (6.5) in the action :
s— L1 [ps (=0 p0Mp — m?¢?) = 12 d*z ( —0,0,0" dn — [ m* + » 2 ). (6.7)
2 M 2 - nwPn n R2 n | * .

In the context of String Theory, we have already discarded the massive microscopic exci-
tations since their mass is proportional to the inverse string length and have thus effectively
set m? to zero in the previous two equations. The massless spectrum of String Theory thus
appears as pure KK towers in four dimensions. The effective four-dimensional massless spec-
trum thus consists in the n = 0 mode, i.e. the mode which is annihilated by the internal part
of the Klein-Gordon operator. In this example, this procedure amounts to replacing ¢(x,y) by
¢o(x) = ¢(x,0) in the action.

6.1.3 Kaluza-Klein Mechanism

We have seen in the previous subsection that the effective massless spectrum is the one annihi-
lated by the internal part of the wave operator. Now let us investigate with another example

what happens in a situation where the field carries a Lorentz structure.
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Kaluza proposed in [103] that the four observed space-time dimensions be supplemented
by a fifth one in order to unify the description of General Relativity and Quantum Electro-
Dynamics (QED). Kaluza’s idea was to identify the vector which appears in the decomposition
of the 5-dimensional metric gasn into g,., g5, and gss to the Abelian vector potential of QED.
More precisely the 5-dimensional metric is written as :

gMN = (_¢)_1/3 (QW J:bj?“Au (b;lM) (6.8)

This parametrisation permits to identify g, as the 4-dimensional metric, see [104] for a review.

The gravitational action for gysn is the Einstein-Hilbert action. When replacing the components
of the metric by (6.8), the action truncated to its zero-modes reads :

8= S /d4x\/jg (R+ 1(;SFWF*”’ b

2K 4 62

which when ¢ is set to —1 precisely boils down to QED minimally coupled to GR.

maw) (6.9)

6.2 Orbifolds

In last section examples, the y coordinate has been integrated on the S' covering space which
consists of the closed interval [-7R, mR] with identified boundaries. In order to further reduce
the symmetries, and therefore the field content, of a compactified theory, one may impose a set
of discrete symmetries by defining a discrete subgroup I' of the Poincaré group and then only
retain the part of the spectrum which is invariant under I'. As an example, let us consider the
Kaluza setup with I' = Zy acting on the fifth coordinate. The parity assignments should be
such that the Lagrangian density is invariant under I', which in our case acts as reflections on

the S! covering space. A direct inspection of the five-dimensional ds? line element yields :
P(gu) =+1 P(A,) =-1 P(¢)=+1 (6.10)

where P denotes the parity of the argument under Z,. The physical states are the ones which
are even under Zs, the orbifold thus projects out the A, gauge field and yields the following

effective four-dimensional action :

R 1

which describes the dynamics of a scalar field o = (6x)~'/? In(—¢) minimally coupled to gravity.

3u¢3“¢> (6.11)

The orbifold projection has thus effectively killed the gauge symmetry of (6.9) and its associated
gauge field. The same S'/Z, projection is responsible for the fact that M-Theory compactified
on a circle results in an N = 2 theory (ITA Superstring) while when compactified on an orbifold
it leads to an N = 1 theory (Es x Fg Heterotic). Inspired by these examples, one may devise
orbifold projections responsible for leaving the four-dimensional effective theory with only one
Supersymmetry instead of the four it would get were it to be compactified on a six-dimensional
torus. To achieve this scenario, we not only have to know how the discrete I" group acts on

tensors but also on the spinors generating SUSY.
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6.2.1 Orbifold Construction

The action of the discrete group I, called the space group, on the six extra-dimensions collected

in a vector X is given by :
g=0,v)el’ T:X—gX=0X+0. (6.12)

We restrict the discussion to Abelian orbifolds, i.e. the 8 which should a priori belong to SO(6)
are restricted to obey trivial commutation relations. We can thus pick Jys, Jg7 and Jgg to be
the orthonormal generators of the Cartan group of SO(6) in terms of which the 6’s assume the

following form [105] :

0 = 0(d1, P2, p3) = exp[2mi(P1Jas + 267 + P3Js9)]- (6.13)

The action of # on the vector X is more conveniently written in terms of complexified variables
7t = X?%+2 4 i X%+3 with i € {1,2,3}, as can be checked by using the explicit form for the

Jij generators :
07" = exp(2mi;) Z". (6.14)
The orbifold € is defined by the coset of Euclidean space R® divided by the space group I :
Q=R/T e X ~gX (6.15)

leading to identified points along the orbit generated by the discrete group I'. Another way to
form the orbifold is to first divide the Euclidean space by the subgroup A containing the shifts
(1,v) of T leading to a six-dimensional torus 7¢ = RS/A and then to identify points related
through the action of P = I'/A. Note that P differs from the point group P containing the
elements of the form (6,0) since elements of P may also involve shifts. The point group is easily

shown to be the orbifold holonomy group. The orbifold is thus obtained as :
Q=1%/P. (6.16)

The orbifold action is lifted to act on the worldsheet fermions A* which, in the Eg x Fg Heterotic
String, are divided in two sets of 16 which enjoy different boundary conditions. The orbifold

action can be taken to be diagonal when applied on the complexified worldsheet fermions
)\ﬂ = )\2A71 +i)\2A .

g\ = exp(2miaa) 7. (6.17)

The orbifold is said to be of order N if the latter is the smallest integer such that ¢’V = 1 and is,
in such a case, denoted by Zy. The transformations (6.14) and (6.17) imply that the ¢;’s and
a4’s can be written as integers divided by N. The transformation of spinors further constrains

the charges under the orbifold action. Indeed the spinors transform as :

Uy — exp(2mis- ¢ )Wy (6.18)
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where ¢ is equal to (0,1, o, ¢3) for the SO(8) fermions while it is a 16-component vector
for the SO(16) x SO(16) fermions and where the § vector is the spinor weight vector which
indicates which creation operators created from the Clifford I'-matrices are to be applied on
the Clifford vacuum to generate the spinor under consideration [106]. The weight vector is thus

of the form :

1
F= o (£1,...,+1) =

7. 1
5 7 (6.19)

N | =

If we now take the N-th power of g acting on spinors and setting d_; = 7i/N where the n’s are

integers, we get the following condition :

gV = exp(miif-i) =1 — 7.1 =2m (6.20)
where m is an integer. Since this last condition has to be fulfilled by all combinations of vectors
7, it is sufficient to impose it for 77 = (+1,...,41) since flipping one sign will change the sum

by two units and thus also satisfy the condition. We have thus found that we must impose :

> ni=0 mod 2 (6.21)

where 77 generically stands for the twist vectors of the SO(8) fermions and the ones of each
of the two sets of SO(16) fermions. Another condition based on modular invariance has to be

imposed [105] and when combined with the mod 2 constraint we have derived yields :

3 16
> a?=> b7 =0 mod2N (6.22)
i=1 i=1

where @ and b respectively are the 7 vectors of the SO(8) fermions and of the SO(16) x SO(16)
fermions. Furthermore the equation (6.18) indicates that if the @ vector is chosen to satisfy :

3
dai=0 e P cC SU®3)cCSO(6), P¢SU(>2) (6.23)

then twelve of the sixteen supercharges will be broken by the orbifold action. The fact that P
belongs to SU(3) is most easily seen when considering its action on the complexified coordinates
Z. This choice leads to an N = 1 theory in four dimensions. If P is chosen to belong to SU(2),
only half the supercharges are broken by the orbifold action, leading to N = 2 in the compactified
theory.

To break or not to break, or what to break to? The choice of the @ vector, and thereby of the
point group, determines the amount of unbroken Supersymmetry resulting from the orbifold
compactification. If the point group is chosen to be trivial, the compactification will result in an
N = 4 theory in four dimensions since @ = 0 generates nothing but a toroidal compactification.

If one of the @ component is chosen to be zero while the two others generate an SU(2) point
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group, then the resulting theory will have two Supersymmetries in four dimensions since eight
of the supercharges would be invariant under the point group. Finally, the choice (6.23) ensures
that the resulting four-dimensional theory is characterised by a single Supersymmetry. The fact
that SUSY has not been observed in any experiment should be an indication towards a choice of
@ leaving no supercharge unbroken. However, space-time SUSY is desirable to hold at energies
above the TeV scale and then to be spontaneously broken since in that way it may solve the
Hierarchy Problem and furthermore ensures that String Theory is both finite and tachyon-free
since it leads to an enhanced worldsheet symmetry [16]. One is thus tempted to leave some
amount of unbroken SUSY. The question of how much of it is solved by noticing that only
N =1 theories admit chiral couplings. We will thus concentrate on orbifold compactifications

whose point group is a maximal-rank subgroup of SU(3).

6.2.2 Twisted and Untwisted Sectors

A peculiarity of orbifold compactifications is the emergence of a new kind of closed strings :
the twisted sector. These strings are open strings before the orbifold identification is performed
and close only as a result of the identification of X with its g-induced orbit. Let us illustrate
this in the simple orbifold C/Zy in which the Zs acts as z ~ —z. Since points in the lower
half-plane are identified with points in the upper half-plane, the orbifold consists of the latter
where the points on the real axis are identified according to x ~ —z, i.e. it forms a cone with

a singularity located at the fixed-point of the group action, that is at z = 0.

Untwisted Sector The untwisted sector consists of strings which are invariant under the group

action. These are constructed by linearly combining strings which are already closed in C.

Twisted Sector Let us now imagine a open string solution to the equations of motion. Of
course, if one considers a theory of closed strings, such a state will not be admitted in the
spectrum. However if the ends of the open string sit at, say, a and —a on the real axis then the

string will be closed once the orbifold identification is performed, i.e. when the cone is folded.

Importance of the twisted sector The twisted sector may first be thought of as a peculiarity
of orbifold compactifications. However this sector proves to be essential in order to preserve
modular invariance and thus the consistency of the theory [93]. In different words, the states
arising from the twisted sector are necessary if one is to recover the spectrum obtained from
smooth compactifications when blowing up the orbifold singularities, see [107]. For simplicity,

we will concentrate on the untwisted sector.
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Case Point Group P = Zx a twist Commutant H
(a) Zs (1,1,-2) SU(3)

(b) Zg (1,1,-2) SU(2) x U(1)
(c) Z (1,2,-3) U(1) x U(1)

Table 6.1: Point groups and their commutants in SU(3)

6.2.3 Spectrum

The spectrum determination is straightforward for the fields related to the metric Gpsp, the
antisymmetric tensor Bjsny and dilaton ®. We will consider three possibilities for the point
group for which we indicate both the corresponding @ vector and their commutant H in SU(3)
in Table 6.1.

Other choices are possible but lead to non-hermitian metrics in Z-space [32] which we choose
to discard for simplicity. The twist vectors satisfy the mod 2 condition (6.21) and ensure that
the effective theory will have N = 1 SUSY since the corresponding 6 matrices all are elements of
SU(3). Under the various transformations compiled in Table 6.1 the complexified coordinates

transform as :
AR (2 z‘l) A (6.24)
xp ( 27 N .

which respectively lead to the following bilinear invariants :

(a) 727 Vi, j € {1,2,3}
(b) Z'27,7373 Vi, je {1,2} (6.25)
(c) Z'Z Vie {1,2,3}

leading to the following spectrum :

(a) Gij7 B

(b) Gij7 B
(c) G, B

to which should be added the dilaton ®, and the four-dimensional space-time components of

both G and B : G, and B,,,.

Let us at this point introduce the following notation which will be used in the more general

7 1] V’Lm] € {1)273}
7 173 GSE) BSE \V/Z,j € {152} (626)
- Vie {1,2,3)

Ty

context of Calabi-Yau compactifications too. The number of bilinears of the form Z¢Z7 which
are preserved by the orbifold projection defines the h''! Hodge number while the number of

bilinears of the form Z?Z7 which are preserved by the orbifold projection is called the h?! Hodge
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number. The Hodge numbers of the three cases under consideration are thus respectively given
by h'"' =9, 5, 3 and ! =0.!

In order to determine which of the gauge fields survive the orbifold projection, one has to
specify its action encoded by the b vector. The choice of b is restricted by both the mod 2
condition (6.21) and the level matching condition (6.22). The most common choice in the
literature is to choose the three first components of b to be equal to the three components of a.
This is known as the Standard Embedding :

5: (al,ag,a3,05;08). (627)

Since this procedure treats the first three components of b on another level, it is useful to

decompose the vector representation of Fg x Eg with respect to SU(3) x Eg X Eg :

496 — (8,1,1)® (1,78,1) & (3,27,1) ® (3,27,1) @ (1,1, 248). (6.28)
The vector fields Af; of the first Eg factor is accordingly decomposed as :
Adp = { A%, A Al A (6.29)

where a is an adjoint SU(3) index, o an adjoint Eg index and (iz) a bi-fundamental SU(3) x Eg
index. The fields surviving the projection are those which are left invariant under the combined

action of @ and b. In the (a) case, one finds :

A — A Ag AL AT
N (6.30)
Al Ax Al AT

while for the (b) and (c) cases, the SU(3) indices suffer the same restriction as in (6.25) and
the a index is respectively restricted to the commutant of Zg and Z; in SU(3). The four-
dimensional gauge group is thus found to be given by H X Eg X Eg. The last remaining task to
obtain the effective four-dimensional theory is to compactify the Heterotic Superstring action
(5.24) on a six-torus throwing away the fields which are killed by the orbifold projection. This
will be the subject of Chapter 7.

6.3 Calabi-Yau Manifolds

In the previous section we have considered orbifold compactifications which are nothing but
toroidal compactifications only retaining a restricted spectrum determined by the orbifold point

group. The orbifold in fact represents a subset of the possible manifolds on which String Theory

1Strictly speaking, the Hodge numbers are defined on smooth manifolds which can be obtained by blowing
up orbifolds. The Hodge numbers we encounter in this section are thus understood as being given by the true
Hodge number minus the Hodge number given by the blowing up moduli, i.e. we ignore the twisted sector
moduli.
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can be compactified. We now introduce smooth manifolds which when compactified upon only
permits N = 1 SUSY to remain unbroken in four dimensions. The ten-dimensional SUSY
is generated by a 16 Majorana-Weyl fermion of SO(1,9) which decomposes as follows under
SO(1,9) — SO(1,3) x SO(6) :

16 — (2,4) @ (2,4) (6.31)

which generate N' = 4 in four space-time dimensions, since N = 1 is generated by a pair of
Weyl spinors Q,, and Qg, respectively in the 2 and 2 of SO(1,3). Moreover in order for some
Supersymmetry to be preserved, the corresponding SUSY variation of the fermionic fields given
by (5.28) should vanish as has been argued in Chapter 3. The variation of the bosonic fields

automatically vanishes since fermions cannot handle taking vacuum expectation values.

6.3.1 Zero Torsion

Let us first investigate the simple case in which the 3-form H vanishes and the dilaton ® is
constant, i.e. H = d® = 0, following [108]. The background metric is assumed to take the

following form :
ds® = nuudatdz” + G (y)dy™dy" (6.32)

where 7 is the Minkowski metric. Under these assumptions, the Killing equation coming from

the gravitino variation in (5.28) is given by :
(56\111\/[ = VME =0. (633)

Unbroken N = 1 SUSY implies that one and only one such spinor exists. Since e = a(x) ® 5(y)
where x and y respectively are the space-time and internal coordinates, the previous equation
implies that both V,a and V,,3 vanish. The g spinor thus has to be covariantly constant,
i.e. it has to remain unchanged after being parallel transported around a closed curve on the
internal manifold. In other words, 8 has to be a singlet under the holonomy group H of the
six-dimensional manifold which is to be contained in SO(6) ~ SU(4). Since under SU(3) the
4 decomposes into a triplet and a singlet : 4 = 3 @ 1, a natural candidate for the holonomy
is H = SU(3). On such manifolds there is one covariantly constant spinor of positive chirality
and one of negative chirality, which we denote by B+ and which transform as (2,1) and (2, 1)
under SO(1,3) x SU(3). Note that the same mechanism is at work in the orbifold case where
the point group P, which is the orbifold holonomy group, has to belong to SU(3) in order to
ensure the breaking of twelve of the sixteen supercharges.

Had we chosen H to be SU(2) there would have been two right-handed and two left-handed
covariantly constant spinors since under SU(2) the 4 decomposes into a doublet and two singlets

leading to N = 2. There could be as many as four covariantly constant spinors of each chirality
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as occurs when the manifold is a flat six-dimensional torus 7® which has a trivial holonomy.

The € spinor generating SUSY may finally be written as :

e(z,y) = a(z) ® B (y) + a-(2) © B-(y) (6.34)

where a1 () are two two-component Weyl spinors in SO(1,3). Note that since € is a Majorana
spinor, we have a* = a4 and f* = B,. The SO(6) spinors may be used to define an almost

complex structure J :
3" =iplr," B (6.35)

which can be checked to indeed obey §2 = —1 and which shares the covariant constancy of 3

implying that the associated Nijenhuis tensor :
ijr:zn = gpka[man]p + gnpapgmk - 3mp8p3nk (636)

vanishes which in turn leads to the fact that the compactification manifold is complex [62] and
thus admits an Hermitian metric. Furthermore the fact that the almost complex structure is

covariantly constant implies that the Kéahler form whose components are given by :
Jig = 3 g5 = igi5 (6.37)

is closed : dJ = 0. The compactification manifold is thus not only complex but also Kéhler.
Note that Kéhler manifolds do not admit torsion.
Moreover the covariant constancy condition may be iterated, leading to the integrability

condition :
1
[va vn]ﬁ = sznqupqﬁ =0 (638)

where I'P? is the antisymmetrised product of Clifford I' matrices. By using the symmetry
properties of Ry,npe and the Clifford algebra, one can show that this condition is equivalent to
imposing that the internal manifold should be Ricci-flat : R,,,, = 0, which is equivalent to say
that the internal manifold has a vanishing first Chern class [62]. An alternative route to reach

this conclusion is by considering the following (3, 0)-form :

It is easily shown that  is closed and holomorphic, i.e. df2 = 0, while it is not exact. As
it will become clear in the following sections, the compactification manifolds only admit one
(3,0)-form cohomology, € is thus its representative. Since the compactification manifold has

complex dimension three, {2 can be written as :

1 1 ~ -
Q= Q@) emnpdz" Nd2" NP = QI = S Qumnp Q™ = |Q(2)[ det(g™) (6.40)
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leading to the following expression for the Ricci form, see Appendix B :
R = —i0dlog det(gmn) = i001og||Q||* = f%d(a —0)log||Q? (6.41)

from which we conclude that, since ||€|| is globally defined, R is exact leading to a vanishing
first Chern class as advertised. Ké&hler manifolds with vanishing first Chern class are called
Calabi- Yau manifolds.

A final restriction on the way the compactification is to be performed comes from the gaugino
variation in (5.28) which in order to vanish when acting on the spinor generating N = 1 in four

dimensions imposes that the vector bundle should be both holomorphic and stable :
A _ pA _ T A _
Fi=F;=0 and GYF5 =0 (6.42)

where we have used internal complex indices m — 1,7 since the manifold upon which the
compactification is to be performed is a complex one. The existence of such vector bundles is
guaranteed by the Uhlenbeck-Yau theorem [109].

To summarise, imposing the fermion’s SUSY-variations to vanish for a single spinor under

the assumptions that H = d® = 0 has two consequences :
o The internal manifold X has to be a Calabi-Yau manifold with SU(3) holonomy,
¢ The vector bundle has to be stable and holomorphic.

Note that since H = 0, the Bianchi identity (5.26) implies that Tr (R A R) = Tr (F' A F') which
is obeyed if the spin connection is embedded in the gauge group, i.e. the gauge and tangent
bundles are identified, as will be discussed in the next sections. The embedding of the spin

connection in the gauge connection goes under the name of Standard Embedding.

6.3.2 Non-Zero Torsion

We may now wonder how the situation is changed if the simplifying assumptions H = d® =0
which were discussed in the previous subsection are abandoned [110]. First the Standard Em-
bedding does not solve the Bianchi identity (5.26) anymore. Second the compactification man-
ifold is not Kéhler anymore but rather semi-Kéhler [108] which seems to forbid the Calabi-Yau
solution. Indeed since the variation of the gravitino in (5.28) now contains a contribution com-
ing from the non-zero background value of H, which is identified with a Bismut torsion term
[111] :

1
65Uy = Ve — gHMNPFNPe =vDe (6.43)

the almost complex structure defined out of the spinor which are covariantly constant with
respect to V() satisfies Vg )an = 0 but the 2-form defined out of it by lowering an index with
the metric does not obey dJ = 0 anymore, precisely because of the torsion term, leading to

a non-Kéhler but still Hermitian internal manifold since the Nijenhuis tensor again vanishes.



74 COMPACTIFICATION

Moreover even though the background is no longer Kihler, it still satisfies d(e 2®.J A J) = 0,
i.e. it is conformally balanced [112]. As a consequence of V(T J = 0, the 3-form H is expressed

H=i(0-0)J. (6.44)

Since J is not closed anymore, one calls it the fundamental form instead of the K&hler form
is the torsionless case. Moreover since it is again possible to define a covariantly constant
holomorphic 3-form Q,,,, thanks to the dilatino condition in (5.28) [110] :

anp = 6_2¢)51an1)5+ (645)

the internal manifold has vanishing first Chern class and thus has SU(3) holonomy with respect
to V(1.

On the other hand, the gaugino variation in (5.28) depends neither on H nor on d® and
thus leads to the same requirement of a stable and holomorphic gauge bundle.

To summarise, imposing the fermion’s SUSY-variations to vanish for a single spinor without

the assumptions that H = d® = 0 has two consequences :

¢ The internal manifold X has to be a conformally balanced Hermitian manifold with SU(3)

holonomy;,
o The vector bundle has to be stable and holomorphic.

Using (6.44), the Bianchi identity (5.26) takes the following form :

i00J = % (Tr (RAR)—Tr(FAF) ) : (6.46)

The compactification with torsion, also called flux compactifications, are a very active area of
research since they induce a non-trivial superpotential which allows for the stabilisation of some
of the moduli fields present in String effective theories. However the question of determining
the low-energy spectrum is by far a more involved and not fully settled procedure compared
to the torsionless case. We will thus focus on the latter leaving the case with fluxes for further
investigations. See [113-116] for recent discussions of flux compactifications of the Heterotic

Superstring.

6.3.3 Standard and General Embeddings

Let us investigate the consequences of the H = d® = 0 assumptions, focusing on how one may
solve the Bianchi identity which under the mentioned assumptions reads :

dH:f(ﬂ(RAR)—ﬂ(FAF)):o (6.47)

where R is the field-strength associated with the spin connection w on the tangent bundle T'X

and F' is the field-strength associated with the gauge connection A on the vector bundle V.
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Standard Embedding An economic way to solve both the above equation and the requirement
for the gauge bundle to be stable is to identify a subset of the gauge connection A to the spin
connection viewed as a gauge field of the holonomy group H = SU(3) of X. This procedures
embeds the spin connection in the gauge group, hence its name. Let us pick the gauge group

SU(3) factor in the first Fg, leading to the following gauge group decomposition :
496 — (8,1,1) @ (1,78,1) @ (3,27,1) @ (3,27,1) & (1,1, 248). (6.48)

The four-dimensional gauge group is thus identified with the subgroup which commutes with
H, i.e. Bg x Eg which are respectively the second and fifth term of the above decomposition.
In terms of bundles, the bundle V' for which the gauge fields are connections is taken to be the
tangent bundle of X denoted by T X. We will investigate the spectrum descending from the
Standard Embedding choice in the following subsections. Let us before consider the perturbative
stability of the Calabi-Yau solution, leading to the introduction of more general embeddings,

i.e. embeddings which do not limit the effective four-dimensional gauge group to be Eg x Fs.

Perturbative Stability As already mentioned, the String action (5.24), the SUSY variations
(5.28) and the Bianchi identity (5.26) will receive further stringy corrections controlled by the
string length /;. One may then worry about the stability of the above-mentioned assumptions,
namely H = d® = 0, when those effects are taken into account. In particular, one should ask
whether the £, corrections still allow the background to be a Calabi-Yau manifold or not.

This question has been studied in a slightly different context [117]. Indeed the requirement
for the gauge connection to be identified with the spin connection leads the unbroken four-
dimensional gauge group to be Eg, i.e. to be the commutant of the holonomy of the Calabi-Yau
manifold since the latter is identified with the structure group of the vector bundle. One may
then wonder whether there exist different embeddings which lead to other gauge groups such as
SO(10) or SU(5) which are desirable GUT groups which can be broken to the Standard Model
gauge group by Wilson lines [93].

The first order deviations in 2 from the Calabi-Yau solution are related among each other
since the perturbed quantities have to satisfy the Killing equations. They may thus be written
as [118] :

0Giy = Chiy  6Hyp = —LVphyy  0A=La (6.49)

while the dilaton deviation depends on the gauge choice (diffeomorphisms) for h;; and may be
set to zero at this order [119]. The §H equation is easily seen to be implied by (6.44). In order
for hy,n to solve the equations of motion descending from (5.24) at first order in ¢2 it has to

satisty :

ALhmn = (TI‘ (Fmpan) - RmquRnpqr> (650)

o~ =
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where the right-hand side depends on the unperturbed quantities and where Ay is the Lich-

nerowicz operator defined by :
Rmn(g + Eh) = Rmn(g) + eAphmn + 0(62)~ (651)

The corrections to the Calabi-Yau metric can thus be expressed as functions of the unperturbed
solutions as long as Ay is invertible which is indeed the case since all the zero-modes of the
Lichnerowicz operator can be recast in the definition of the Calabi-Yau metric [120]. Note
that in the Standard Embedding case, Ay h,,, vanishes indicating that the Calabi-Yau solution
does not receive any perturbative correction. This was already known from Witten’s work
[117] in which he has shown that the sigma-model beta function, whose vanishing dictates the
target-space fields (i.e. space-time fields) equations of motion, remains zero to all orders in

perturbation theory given that one embeds the spin connection in the gauge connection.

General Embeddings In the case where the spin connection is not embedded in the gauge
connection, the /s corrections do destabilise the zeroth order Calabi-Yau solution precisely by
modifying the metric in a way that cannot be recast in the zeroth order metric, leading to a
non-Kéhler compactification manifold. This in turn induces a non-trivial H through (6.44).
Since H is non-vanishing, the gauge bundle structure group is not constrained to be equal to
the SU(3) holonomy of the compactification manifold anymore, see [117, 121, 122] (see also
more recently [123]). One can for example imagine the vector bundle structure group S to be
SU(4) or SU(5) which respectively lead the four-dimensional gauge group G to be SO(10) and
SU(5). The Eg x Eg adjoint representation then splits as :

496 — (Adj, 1) @ (1, Adj) & PR, 1) (6.52)

where the (Rj,r;) are representations of G x S. For the above mentioned possibilities, one

chooses the structure group in the first Eg and finds [124] :

G S ®i(Ry,1y)
SO(10) x Es  SU(4) (4,16) ® (4,16) @ (6,10)
SU(B) x Eg  SU(5) (5,10) & (5,10) @ (10,5) ¢ (10, 5)

6.3.4 Zero-Modes

In the context of orbifold compactification the effective theory massless spectrum did coincide
with the dimensional reduction of the ten-dimensional fields : the massless field emerging from
Giz(z,y) in the untwisted sector was simply given by G;3(z,0). In the more general context

of Calabi-Yau compactification this will no longer hold true. However the logic remains : the
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four-dimensional massless spectrum consists of the fields which are annihilated by the internal

wave operator. Indeed, the equations of motion admit the following generic form :

(?)X = éextx + OintX =0. (654)

A

Decomposing x on the Otnt eigenbasis w? as y = yaw? yields :

wAéextXA + XAéintwA = WA (éextXA + XA)‘A) =0 (655)

meaning that the effective theory massless spectrum corresponds to the A4 = 0 modes, i.e. the
modes which are annihilated by (f)int which takes the form of a Laplacian when acting on forms.
On Kihler manifolds the Laplacian is expressed as A = ddf4dfd where the exterior derivative d
may be decomposed as the sum of the holomorphic and antiholomorphic derivatives : d = 9+

and where d' is defined as the dual of d using the following scalar product :
(A, B) = / ANsB. (6.56)

Since the Calabi-Yau is in particular a Kéahler manifold, the Laplacians constructed from d, 9

and O share the same zero-modes [125, 126] :
A =2A5 =2A5. (6.57)

The determination of the number of massless fields translates into finding the number of inde-
pendent zero modes the internal Laplacian Aj admits. This is a cohomology problem whose
solution depends on the topology of the Calabi-Yau manifold. The number A™* of indepen-
dent harmonic forms of bidegree (r, s), which are the Laplacian’s zero modes, are given by the

following Hodge diamond :

h?3 1
h3? h?3 0 0
h3’1 h2,2 h1’3 0 hl,l 0
B30 h21 h12 ho3 = 1 p2! Rl 1 (6.58)
h2,0 hl,l h0’2 0 hl,l 0
hl,O hO,l 0 0
RO 1

where, since the internal manifold is Kahler, one can relate the various Hodge numbers through

complex-conjugation and Hodge-duality [62, 126] :
RS = p5T and hs = h3—7‘,3—s (659)

which, by using the fact that the manifold is Ricci flat, are enough to determine all but two
Hodge numbers : A'! and h?!. Note that basics about complex spaces and complex differential
geometry are recorded in Appendix B.

Since general embeddings do not lead Kéhler compactification manifolds but rather to con-

formally balanced Hermitian manifolds, it should be investigated whether the above mentioned
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procedure used to find the light fields is still valid. The corrections we have considered are
perturbative deviations from the Calabi-Yau solution which cannot change the whole picture
dramatically since the superpotential can be shown to be unaffected by ¢2-corrections at the

perturbative level [117]. In particular, light fields remain light.

6.3.5 Spectrum

Let us now determine the effective four-dimensional massless spectrum in the case of Calabi-Yau
compactifications. In the orbifold case we first determined which components of the metric G,
the antisymmetric tensor B and the dilaton ® were surviving the orbifold projection. In order
to derive the spectrum emerging from the ten-dimensional gauge fields we had to specify how
the level-matching condition was implemented. Once such a realisation is chosen the untwisted
spectrum is easily found. Let us now follow the same strategy in order to determine the effective
massless spectrum emerging from the Heterotic Superstring action (5.24).

Let us first split the ten-dimensional Lorentz index M into the four-dimensional Lorentz
index p and the complex internal coordinates ¢ and 7. The dilaton ® is a zero-form and thus
gives rise to a single scalar field since h%® = 1. The same is true for each component of both
G, and B, respectively leading to a symmetric tensor and a scalar by dualisation in four
dimensions. The mixed components G;, G5, Bui and B,; do not generate any massless four-
dimensional field since h'"* = k%! = 0. The B;; and B;; components are (2, 0)-forms which do
not have zero-modes since h?? = 0, whereas G;j and G lead to h?! complex scalar fields since
they can be combined with the holomorphic 3-form € into G;;G'™Qy,n; which is a (1, 2)-form.
Finally the G;; and B;; combine into h'! complex scalar fields. Let us now turn to the gauge

fields A%, considering both the standard and general embeddings.

Standard Embedding Recall that the Fg x Fg adjoint splits into the following when the first
Eg factor is decomposed as Eg — SU(3) x Eg :

496 — (8,1,1) @ (1,78,1) & (3,27,1) & (3,27,1) & (1,1, 248). (6.60)

We will denote the SU(3) adjoint index by a, the Eg ajoint index by «, and the bifundamental
index by iz. In such a case the A} combine with the last component of the previous sum
to generate the four-dimensional Fg x Eg gauge fields since they commute with the holonomy
group. Note that the gauge group is further enhanced in the orbifold context, where since the
holonomy is a discrete subgroup of SU(3) a part of the SU(3) gauge component has a trivial
commutator with it and is thus part of the gauge group. This leads to the so-called gauge group
enhancement H X Eg x Eg where H is SU(3), SU(2) x U(1) and U(1) x U(1) for the Zs, Zg
and Z~, orbifolds we have considered.

The other components of the ten-dimensional gauge field are organised as follows. A¢ does
not lead to (1,0)-forms when we consider the Standard Embedding since the a index is an

SU(3) adjoint index which qualitatively is the same as having a pair of fundamental times
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anti-fundamental indices. These fields define the H!(End V) cohomology which generates Fg
singlets known as gauge bundle moduli which we will ignore for simplicity. Their possible role
in producing neutrino masses is discussed in [117]. The A¢ are (1,0)-forms taking their values
in the Eg adjoint which do not generate zero-modes since h*® = 0. The Agm may be seen as
(1,2)-forms taking their values in the 27 using the same trick we used for the metric components
and thus lead to h*! zero-modes. Finally the A‘Zﬁ are (1, 1)-forms taking their values in the 27
which lead to h''! zero-modes. Note that in this case the net number of generations is given by
half the Euler number of the Calabi-Yau X :

X =Y _(=1)PTRPt = 2(ptt — p>), (6.61)

p.q

General Embeddings In the case of general embeddings, the Fg x Fg adjoint is shown to

decompose as :

496 — (Adj, 1) @ (1, Adj) & PR, 1) (6.62)

under G x S where the latter is the structure group of V. We may now define a family of vector
bundles V;, associated with any representation r; of S by promoting the transition functions of
V', which are matrices in the fundamental representation of S, to the corresponding matrices
in the representation r; of S. The number of fields transforming in the representation R; of the

four-dimensional gauge group G is then given by :
ng, = W' (X, Vy,) (6.63)

where h'(X,V;,) denotes the dimension of the corresponding bundle-valued cohomology group
HY(X,Vy,) [93]. When the structure group is taken to be SU(3) one should recover the Standard
Embedding spectrum by taking V ~ TX. According to (6.63), ner = h*(X,V) and ngz =
hY(X,V*), leading to na2y = R (X,TX) = h*! and ngz = h' (X, T*X) = h'! in the Standard

Embedding case, in agreement with the previous paragraph.
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Chapter 7

Effective Kahler Potential
Calculation

In Chapter 6, we have exposed both singular and smooth compactification manifolds. In order
to compute the soft scalar masses, we now have to derive the Kahler potential on which they
crucially depend through (4.49). More precisely, the most relevant terms in the Kéhler potential
are those mixing two visible matter fields and moduli and those mixing two visible matter fields
and two hidden matter fields, i.e. we have to compute the dependence of the Superspace wave-
function Z on the hidden fields. As has been argued in subsection 3.7.2, soft scalar masses are
indeed generated whenever Z has a non-vanishing F or D term.

In general the hidden sector tends to contain two subsectors : one to effectively break
SUSY and the other to allow a small cosmological constant [30, 127-130]. This subdivision of
the hidden sector is a further motivation for the inclusion not only of the moduli but also of
the matter fields in our analysis. The soft scalar masses will thus be found to be fed by two
contributions : the moduli-mediated effect and the brane-to-brane effect.

The effective Kahler potential describing the low-mass modes coming from the Heterotic
Superstring action is thus needed at all orders in the moduli fields since these have sizeable
VEVs and at fourth order in the matter fields, since these are assumed to have small VEVs.
For orbifolds, the Kéhler potential for the untwisted sector is well known and was first derived
in [31, 32]. In the case of Calabi-Yau compactifications, the Kéhler potential neglecting the
matter fields has first been derived in [120, 131] which also contains the K&hler potential for
the complex structure moduli which we do not discuss in this work for simplicity. The leading
corrections to the Kéhler potential that are quadratic in the matter fields were first discussed
in [33, 132]. The subleading corrections that are quartic or higher-order in the matter fields are
instead more difficult to compute since they correspond to kinetic interactions mixing matter
fields and Kéahler moduli. The only case in which the full result is known is the case of a single
Kihler modulus [133], i.e. the hl'! = 1 case. A proposal for the all-orders dependence of the

Kihler potential in the matter fields for models with arbitrary h'! has recently appeared in the
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literature [34]. Here we extend the result of [133] to an arbitrary number of Kéhler moduli by
performing a direct and systematic computation, following [35, 36]. This computation is done
under some assumptions we will discuss and confirms the claim of [34] but clarifies important

restrictions on the range of validity of the result.

7.1 Orbifold Compactification of the Heterotic String

In order to derive the effective four-dimensional action from the ten-dimensional Heterotic
Superstring action one follows a two step procedure. Since the orbifold is not only described
as being the result of dividing the Euclidean space R® by the space group I' but also as the
division of the six-torus 7 by the point group P, one should first compactify the Heterotic
Superstring on a flat six-torus and then identify which of the fields do not survive the orbifold

projection and thus eliminate them from the effective action.

Compactification on a Torus The compactification on a torus consists of a simple generalisa-
tion of the compactification on a circle which was carried out for pure five-dimensional gravity

in subsection 6.1.3. Following the same procedure yields :

27"R 4 =4 12 éi -2 2 1 7 pa
d*z/=g|R — 20,20"® — |H|? — =2e T (|F|?) — ~GYGP19,G 30" G5
2/{10 2 8 4

R 02 o & S 3
+ ZG Jqu |:auBiq + ZTI' (Az 3H Aq>:| |:6”Bp] + ZTI' (Ap au A]>:|
2 _
-G (6HA10“AJ)] +
(7.1)

where the ellipsis stand for terms which do not involve four-dimensional space-time derivatives.
Since H satisfies a non-trivial Bianchi identity, the dualisation of the B,, term will not only
produce a kinetic term for the axion a but also a coupling aF' F which is related by SUSY to
the e 2® FF term. The dilaton and axion are assembled in a new complex field S which will
appear in the gauge-kinetic function. The relevant terms for the computation of the Kéhler
potential are :

6u58”5 Laiiarag .o
6157 10 CM0Gu0 Gy

1 - “ L
i aam [auBiq LT (Ai o Aﬂ {augm LT (Ap o, Aﬂ (7.2)

8= 22/d4xf[

— GYTr (0,4;0" 4;) ]

where k3 = k%,/(2mR)® and where we have rescaled the matter fields A; in such a way to absorb

the ¢2/4 factor, in other words this amounts to set (2 = 4.
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Without Matter Fields Let us first ignore the A matter fields. Under such an assumption
the quest for the Kahler potential simplifies a lot. We first notice that the G;; and B;; kinetic
terms may be assembled in a single term by defining Tj; = Gy + B;;. These fields are called

Kdhler moduli fields. 1t is a straightforward exercise to verify that :
GYGP19,T;q0" T3, = GVGP1(9,G50" Gy — 0, Biq0" Byy;) (7.3)

where we have used T3 = Gy + By = Gi; — By;. Since the second derivative of the Kahler
potential defines the sigma-model metric, K has to be such that its second derivative with
respect to T gives G~2. Recalling that since invertible square matrices M admit the following
identity :

(M™") = —0u;,0um,, logdet M, (7.4)

(M7Y),; = gy logdet M —  (M71), b

ij
the structure of K is found to be given by [31, 32] :

—log(S + S) — log det(T;; + T5:)

B (7.5)
= —log(S + S) — logdet(T + T).

Restoring Matter Fields Let us now restore the A matter fields. Since the sigma-model metric
for the A fields involves two powers of A, the argument of the determinant has to be shifted by
A? in order to reproduce the above action. It turns out that the Kihler potential is given by
[31] :

= —log(S + S) — logdet [T;; + Ty — Tr (A; 4;7)]
—log(S + S) —logdet [T+ TT — Tr (A® A)] (7.6)
= —log(S+5) —logV

where the definition of T35 is now :

DN =

For later comparison with the case of Calabi-Yau models, it is instructive to rewrite this result
in a slightly different form [35]. Since the indices carried by the gauge fields belong to SU(3),

one may write V as :
V = det(J;;) = det(A5J*) (7.8)

with :

Jiz = Tiz+ Ty — NS AS A A

momn n

JA=TA 4+ T - A5 0, A;

m’'mn n
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where the \M’s, with A = {0,a}, a = {1,...,8} are the U(3) generators which we choose to be
normalised as Tr ()\A)\B) =548 .

o=t fo1o) woi(ioo) w-lfi 0o
V3 0 0 1 V2 0 00 V2 0 0 O

w=tfo o) w=2fooo) w=Lfooa] ew
V2 0 0 0 V2 1 0 0 V2 i 0 0 .

w-tfoo 1) w=Lfoo ) wotfod o
V2 010 V2 0 ¢ O G 0 0 -2

Moreover the following completeness relation holds true :
Aoy = 0ig0ip = AL, = 6ig0; —%@japq. (7.11)

In order to make contact with the Calabi-Yau compactification we will perform later in this
Chapter, the cubic polynomial V' is written as :
1 1
V = cdijpgrsJijTogJrs = gdABCJAJBJC (7.12)

where the d;jpers and d4BC numbers which are related by dijpgrs = /\fiAZ,)\SCTdABC

by :

are given

diqurs = €ipr€jgs,

JABC _ 9Ty ()\(A/\B)\C)) 3Ty ()\(A) Ty (/\B/\C)) Ty (/\(A) Tr (AP) Tr (/\0)) . (7.13)

All the above formulae are valid in all the three cases listed in Table 6.1, with the understand-
ing that the number of Kéhler moduli and the allowed values for the a and ¢ indices should be
suitably restricted. In case (a), one has h''! = 9 and thus all the 9 Kihler moduli T;5, corre-
sponding to T4 with A = 0,...,8. In case (b), ™! = 5 leading to restricted spectrum T}1, T}3,
Ty1, Ths and T3, corresponding to T4 with A = 0,1,2,3,8. Finally in the (c) case, h''! =3
and thus the spectrum consists of T} 1, Ths and Ty3 corresponding to T4 with A = 0,3, 8. It will
prove convenient in the following to distinguish between the A = 0 and A = a U(3) generators.

From the Gell-Mann matrices properties, one has :

2 1

@ = = d =0, = -5 andd = 2Tr (AONN)) (714
7 7 (7.14)

In this section we have thus shown the effective Kéhler potential for the untwisted sector of

orbifold models derived in [31, 32] may be rewritten as :

1 -
K = —log [6dABCJAJBJC] where JA =T+ T4 - AN} A (7.15)

Jitt
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where the numbers d45¢ and /\f} both have group-theoretical interpretations. Let us now turn
to the more general case of Calabi-Yau compactifications and see if such a structure arises for
smooth manifolds and if not, under which assumptions this structure emerges. Since orbifolds

are singular limits of Calabi-Yau manifolds, such restrictions have to exist.

7.2 Calabi-Yau Compactification of the Heterotic Superstring

The effective Kéahler potential for Calabi-Yau models can be determined by performing the
reduction of the ten-dimensional bosonic kinetic terms by integrating over the compact Calabi-
Yau X and comparing the result with the standard general form of the Lagrangian of four-
dimensional SUGRA theories. To perform this computation, we will closely follow [36] and

make two approximations which are commonly done and which crucially simplify the task :

¢ The first approximation is that we will ignore the higher-derivative corrections to the ten-
dimensional effective action and the deformations of the background, and therefore simply
consider the reduction of the action (5.24) on a generic Calabi-Yau manifold X with a
generic stable holomorphic vector bundle V' over it. This implies that the result will only
be accurate for terms involving arbitrary powers of the moduli fields and arbitrary powers
of the combination of £2 times two matter fields, and will miss corrections involving powers
of £ that are not accompanied by two matter fields, but this is not a big limitation for
our purposes (see e.g. [119] for an explicit computation of the leading £2 correction to the

moduli Kéhler potential).

¢ The second approximation is that we will ignore the effect of properly integrating out
massive Kaluza-Klein modes and restrict to the truncation of the action to the four-
dimensional low-energy massless zero-modes. This would generically imply that the result
is accurate only for terms involving an arbitrary number of moduli but at most two matter
fields, since terms with four and more matter fields can receive corrections induced by the
exchange of heavy neutral modes, and this would represent a dramatic limitation for our
purposes. We will therefore imagine to restrict ourselves to those models for which these
effects happen to be absent, at least for the term involving four matter fields in which
we are primarily interested. This is guaranteed to happen if there is no cubic coupling

between two light matter modes and one heavy moduli mode (see e.g. [134]).

Finally, we shall for simplicity restrict our attention to the dilaton, the h':! Kihler moduli and
ngr families of charged matter fields in the representation R, and instead completely discard
the A2 complex structure moduli, the vector bundle moduli and the other families of matter
fields.

To compute the 4D effective kinetic terms, we now proceed as follows. We start from (5.24)
restricted to the modes associated to G;j, B;; and A; and integrate over the internal manifold

X. We then express the result in terms of the 4D gravitational and gauge couplings. These are
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defined as k3 = k3,/V and g3 = ¢g%,/V, where V denotes the background value of the volume of
the manifold X, and are again related as x3/g37 = ¢2/4. In the following, we shall set x4 = 1 by
a choice of units. Moreover we shall effectively set g4 = 1 in the scalar sector of the Lagrangian
by suitably rescaling the charged matter fields. This corresponds to setting £ = 4. In this way,

one finds the following result :

Ly = % / dﬁwé[ - iaifepqaﬂ(}iq—aﬂaﬁ

1 i7 _ < <
+ ZG '7qu [6#31-,1 + Tr (Az 8# Aq>:| |:6MBPJ + Tr (Ap 8# AJ>:| (716)
— GYTr (0,4;0" 4;) } :

Note that we have discarded the dilaton kinetic term since, as is the case in the orbifold context,
it simply leads to the addition of —log(S + S) to the Kihler potential determined from (7.16).
We will restore the dilaton dependence when computing the soft masses in Chapter 8. To
proceed, we associate the Gy;, B;; and A; fields to differential forms J, B and A, which are

defined as follows in local complex coordinates z* :
J =iGi;dz" A dZ,
B = Bj;dz' AdZ, (7.17)
A= A;dz".

We then decompose these forms onto suitable bases of harmonic forms, with coefficients identi-
fied with the four-dimensional light fields. To define the moduli fields, we shall need to introduce
a basis of harmonic (1, 1)-forms wa = wa;;dz* Adz? on X with A =0,...,h%! — 1, which can
also be viewed as 1 forms with values in 7* X over X. To define the matter fields, we shall also
need a basis of Lie-algebra-valued harmonic 1-forms up = up; dz* on Vi over X. We observe
now that the forms constructed by taking the product of one up and one conjugate g and
tracing over the representation r yield (1,1)-forms on X. These (1, 1)-forms are related to the
description of the gauge invariant composite field that can be formed out of two charged matter
fields. Since they play an important role in the following, we shall define a dedicated symbol

for them :
cpg =i Tr (up AN ig) . (7.18)

A crucial observation is that these (1,1)-forms are however generically not harmonic. As a
result, their scalar product with the non-harmonic (1, 1)-forms describing massive neutral modes
is in general non-vanishing.

It turns out that the low-energy effective Kéhler potential always depends on the volume V'

of X, which is given by the following expression in terms of the Kéhler form J :

1
V:f/ JNJAJ. (7.19)
6 Jx
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More explicitly, when rewritten in terms of the four-dimensional fields describing the moduli
and matter fields, this will depend on two quantities characterising X and V. The first one is
given by the integral of three harmonic (1, 1)-forms wy4, which defines the intersection numbers
of X :

dABcz/ wa Nwp Nwe- (7.20)
X

The second is given by the integral of the (1, 1)-forms cpg and a dual harmonic (2,2) form w4,
which defines the component of the harmonic part of cpg along wa and therefore encodes the

overlap between the traced product of the 1-forms up and g with the (1,1)-forms wy :

CéQ :/ w Aepg. (7.21)
b'e

It should be emphasised that (7.20) is a topological invariant, as a result of the fact that the
forms w, are harmonic, whereas (7.21) is a priori not, since the forms c¢pg are in general not
harmonic.

In the following, we shall restrict to the special case where the forms cpg are harmonic and
cﬁQ is a constant topological invariant, and derive the low-energy effective Kéahler potential
under these assumptions. We believe that this is a priori necessary to guarantee that the result
obtained by truncating to the massless modes, without properly integrating out the massive
modes, is reliable. But as matter of fact, we will also crucially exploit these assumptions to
be able to obtain a simple result. We shall discuss in subsection 7.2.4 what may happen in
the more general case where cpg is not harmonic and c}éQ is not a topological invariant. For
notational simplicity, we shall from now on omit to write any trace over the representation
R of the gauge group, since the way in which these traces appear can be reconstructed in an

unambiguous way at any stage of the derivation.

7.2.1 Kahler Moduli Space

The effective Kéhler potential for the Kahler moduli, ignoring matter fields, is well known
[33, 120]. It can be derived in a straightforward way by only retaining the terms depending
quadratically on space-time derivatives of the G;; and Bj; fields in (7.16). To work out the
reduction, one considers the real (1,1) forms J and B associated to these two fields and decom-
poses the complex combination J + iB onto the basis of real harmonic (1,1) forms w4, with

complex coefficients T4 defining the four-dimensional complex moduli fields :
J+iB=2T"wa4. (7.22)

In components this means Gi; = —i(T4 +T4)wa;; and B;; = —i(T* —T*)w ;5. Plugging these
decompositions into the first two terms of (7.16), one then finds a kinetic term for the complex
scalar fields T4 of the form :

L4 —g5ed 9,400 T (7.23)
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where :
1

1 R
gt = —V/dﬁy\/aG”quwAmprj v /X WA N *WB. (7.24)

This metric does not depend at all on the cpg forms, and the issue of whether these are
harmonic or not is therefore trivially irrelevant here. Using the decomposition J = J4w, with
JA = T4+ T4, which implies that 94 J = 6%, and the relation (B.80), one can rewrite (7.24)

in the following form :
gt = 9,405 log V. (7.25)

From this expression we deduce that the Kéahler potential is given, up to a Kéhler transfor-
mation, by K = —logV. This can finally be rewritten more explicitly in terms of the chiral

multiplets T4 and the intersection numbers dapc as :

1 _
K = —log gdABcJAJBJC where — JA =T4 + T4, (7.26)
This result has the property of being special-Kéhler and also of the no-scale type, i.e. it
satisfies :
K K4 =3, (7.27)

Notice finally that in geometrical terms the quantities K4 and K“ have the following simple

expressions :

1
Ky = _7/ waAxJ and KA = —/ wA AL (7.28)
Vv b X

7.2.2 Matter Field Metric

Let us next consider the addition of matter fields, under the simplifying assumption that their
background value vanishes. In this situation, all the terms involving the fields A; without
space-time derivatives can be neglected in (7.16), and the only term to be considered is there-
fore the last one. In this limit the matter sector can be seen as a small perturbation to the
moduli sector, and one can neglect the interference between these two sectors. To work out the
reduction, one decomposes the 1-forms A on the basis of harmonic 1-forms up taking values in
the representation r of S with complex coefficients ® taking values in the representation R
of G and defining the four-dimensional matter fields : A = ®Pup. In components this means
A; = ®Pup;. Plugging this decomposition into the last term of (7.16), one finds a kinetic term

for the complex scalar fields & of the form :
Ly 3 —gps 0,070 (7.29)
where :

ma i ], 1
gPQt = v /d6y\/5G ]Cinj = v /X cpQ N*J. (7.30)
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This metric depends on the forms cpg, but only through their scalar product with the Kéhler
form J, which is harmonic. As a result, only the harmonic component of the Hodge decom-
position of cpgp matters, and the issue of whether the whole forms cpg are harmonic or not is
therefore again irrelevant. Using the decomposition J = JAw, with J4 = T4 + T4, which as
before implies that 94 J8 = 5§, as well as the decomposition of *J on the dual basis w? and

the relation (B.80), one may rewrite (7.30) in the following form :

ggg = OalogVepg. (7.31)
This means that the matter metric is related to the moduli Kéhler potential by g}’;g =-K AcﬁQ

[34, 132]. This in turn implies that the leading matter-dependent correction to the Kéhler

potential is given by this metric contracted with two matter fields :
AK = —Kcpo®” 9@, (7.32)

Notice finally that one can write simple geometric expressions for the following contractions :
Kachg =2 d KapcBy= -
ACPQ = v cpo N *xJ an ABCPQ = v wa A *cpg. (7.33)
b'e X

7.2.3 Full Scalar Manifold

Let us finally consider the full dependence on both the Kéhler moduli and the matter fields,
which is relevant when the matter fields have a non-vanishing VEV. In this case, one has to
consider all the terms in (7.16). The relevant fields are as before G;5, B;; and A;. The first
two again can be combined to form a complex (1,1)-form J + iB, and decomposed onto the
basis of harmonic (1,1)-forms w4. The second can be viewed as matrix-valued 1-forms A, and
decomposed onto the basis of harmonic 1-forms up.

It however turns out that that the precise definition of the four-dimensional moduli fields
T4 and matter fields ®° that allows to recast the action in a manifestly supersymmetric form
involves a non-trivial shift. The form of this shift may be guessed by generalising the results
applying in the two special cases of Calabi-Yau manifolds with a single modulus and of orbifolds,
which are also the only two cases where a derivation of the full effective Kéhler potential is
already known, respectively from [133] and [31]. The only quantity that can possibly enter in

the non-trivial shift is cﬁQ, and the appropriate definitions turn out to be :
1 _
J+iB = 2<TA - icéQq)P(I)Q)wA and A= up. (7.34)

In components this means G;; = —i(TA + T4 — cﬁQqJP(i)Q)wAij, Bi; = —i(TA — TA)wAij and
A; = ®Pup;. By plugging these decompositions into (7.16), one finds kinetic terms for the

complex scalar fields 74 and ®% of the form :

L3 —ghy0,TAMT" — gpat 0,7 0"d9 — (gffgaﬂTA(’?“i)Q - c.c.) (7.35)
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where :

1 . —
9AB =y / dSyvVGGIGPw piqwpy;
1
= —/ wa N\ *wpg,
V/x
. _ 1 7 ymn 0
g?%t = _%/dﬁy\/aGwchii Y /d6y\/§G“GmnCPSmCRQmJ'(I)R(I)S
1 / A s + ! / A * N
_ 1 = c
. CPQ V \Ux cps e ’

) 1 7 ymn
9ag = v /dGZ/\/@G”Gm"wAmCRQmJ’(DR

1
v (/X wa /\*CRQ> O,

This metric now significantly depends on the forms cpg, not only through their scalar product

(7.36)

with the K&hler form J or the basis forms w4, which are harmonic, but also through their
scalar products among themselves. As a result, not only the harmonic part but also the exact
and coexact parts of the Hodge decomposition of cpg matter, and the issue of whether cpg is
harmonic or not is therefore crucial in this case. As already said, we will assume that cpq is
harmonic and céQ is constant, so that one can use the decomposition cpg = cﬁQw 4. Taking
into account the decomposition J = JAw4 with J4 = T4+ T4 — chfl)P(fQ, which still implies
that 04J8 = 6% since cﬁQ is constant, and using the relation (B.80), the metric components

(7.36) can be rewritten as :

gt = —04031lo0gV,
g}?%t = Jalog VcﬁQ — 0403 log VcﬁschCPR(i)S = —0p0glogV, (7.37)
945 = 0adplog Vego®t = -840 log V.

From these expressions we see that, modulo an arbitrary Kahler transformation, the Kahler

potential is simply given by K = —log V. More explicitly, this reads in this case :
1 _ _
K = —log [6dABCJAJBJC] where — JA =T4+ T4 — ¢}, 0709 (7.38)

This result coincides with the one proposed in [34] on the basis of an M-Theory argumentation.
It manifestly reproduces the result (7.26) for the moduli and the leading order correction (7.32)
at quadratic order in the matter fields. Moreover its satisfies a no-scale property generalising
the one found when only considering moduli fields, i.e. (7.27). In order to demonstrate this
assertion we introduce the ZX symbol as a generic field, i.e. it takes all values in T4 and ®*.

Since V is homogeneous of degree three in the currents J4, we have :

;)TVAJA =V JA =3V (7.39)
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where V4 denotes the derivative of V with respect to T4. Taking a derivative with respect to
ZY leads to :

0J4
0zv
where the second term on the left-hand-side is shown to be nothing but V3 by using the Leibniz
rule. Multiplying both sides by V=2VXYVy and using VXYV, = 6% and (7.39) leads to :

Vag JA+Va 3Vs (7.40)

XY —
VZ Valy 3 (7.41)

o 1% 2

which by using the technology developed in the Appendix B.2.4.2 yields Kx KX = 3. When
including the dilaton whose Kahler potential is K=-— log(S +5), one finds in accordance with
[34] :

KxKX + KgK° = 4. (7.42)

Notice finally that K4, Kp, K4 and K¥ can be written in the following simple geometrical
terms by using the relations (B.65) :

1
KA:——/WA/\*J, KAz—/wA/\J,
Vv X X

1 _
szf/ cps®® A xJ, KP =o.
V /x

(7.43)

Moreover, from the assumption that the forms cpg are harmonic it follows that also the con-

traction K4 Bcéchs admits a simple geometrical expression :

1
KABc‘chgS =7 /X cpQ N *CRs. (7.44)

Similarly one also finds that :

dABCcéQC}B%SC%N = / cpQ N Crs N CMN- (745)
X

7.2.4 Range of Validity

The simple derivation presented in last subsection is manifestly valid in those cases where the
forms cpg are harmonic and the quantities c‘If-‘,Q are constant topological invariants. One special
situation in which this is certainly true is when all the involved forms w4 and up are actually
not only harmonic but actually covariantly constant. As we shall see more explicitly in next
section, this is for instance the case for toroidal orbifold models. But we believe that it could be
true also in a less trivial fashion. We will imagine that this is indeed the case for some subset
of smooth Calabi-Yau models. For further use, let us then explore a few simple consequences
of the above assumptions. Recall that A = 0,--- ,h%! — 1 labels the different Kihler moduli
and P,Q = 1,--- ,ng label the different matter fields. By definition, for each of the h':! values
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of A the quantity cﬁQ is a Hermitian ng x ng matrix. This means that even when h'"! > n%,
the number of these matrices that are linearly independent cannot exceed n%. In fact, the A'!
matrices c‘gQ can always be rewritten as linear combinations of the n% independent transposed
Hermitian matrices )\SIP, with A’ =0,--- ,n%{ — 1 and where the transposition is included for
later convenience. Notice that whereas the matrices céQ do a priori not satisfy any completeness
relation and do not generate any closed algebra, the matrices )‘IélQ do instead satisfy an obvious
completeness relation since they form a basis of Hermitian matrices and generate a closed

algebra, which is that of U(ngr). We therefore know that under the assumptions that we made :

. . '
o The cﬁQ are linear combinations of )\S P

o The )\’}ng are ng X Ny matrices representing U(ng).

The extension to more general situations where instead cpq is not harmonic and the quanti-
ties cﬁQ are not constant topological invariants is clearly more challenging, and one may wonder
whether a result similar to (7.38) could hold true. One first major change arising for a non-
harmonic cpq is that since its Hodge decomposition contains now not only a harmonic piece
but also an exact piece and a coexact piece, the relation (7.44) does no longer hold true. More
precisely, its left-hand side acquires extra terms matching the contributions to the right-hand
side coming from the non-harmonic parts of cpg, which are clearly more difficult to deal with.

In particular, when going from (7.36) to (7.37), one would get additional terms that clearly
have to do with the effect of heavy non-zero modes. In fact, these heavy modes must be related
to the 10D B field. Indeed, using a democratic formulation of the original 10D theory involving
not only the 2-form B but also its magnetic dual 6-form B, the contact term from which the
problem originates can be deconstructed and the seed for its origin is then reduced to a linear
coupling between Band dl' = Tr (F' A F). When reducing on X, one then gets a direct coupling
between two light matter modes coming from A and one heavy mode coming from B whenever
cpg is not harmonic, and this must be responsible form the extra contributions to the contact
terms.

A second source of difficulty arising for a non-constant cﬁQ is that this quantity may then be
expected to depend on continuous deformations of both the vector bundle V and the manifold
X. The first of these dependences, which was already mentioned in [34], does not concern us
since it would be related to vector bundle moduli, which we have ignored from the beginning.
But the second of these dependences, which we believe should also be a source of concern, is
instead directly relevant for our derivation, since it is related to the Kédhler moduli that we want
to keep in the effective theory. Now, a moduli dependence céQ would imply additional terms in
(7.36). Moreover, it would also affect the simple relation 94 JZ = 6§ that was used to rewrite
these metric in the form (7.37). At first one might hope that these two sources of complications
could compensate each other, but things do not seem to be so simple. One may then perhaps

have to generalise the decomposition (7.34) through a more complicated and implicit definition
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of the moduli and matter fields. We were however not able to reach a conclusive assessment of
this possibility.

We believe that subtleties very similar to those explained here for Heterotic models may
actually arise also for orientifold models. More precisely, it seems to us that the results derived
in [135, 136] concerning the higher-order dependence of the K&hler potential on the matter
fields arising from D-brane sectors should a priori also be correct and reliable only for those
special models in which massive non-zero modes do not induce non-trivial corrections. We
attribute the fact that this is not directly signaled by a technical difficulty in the derivation of
[135, 136] to the use of a democratic formulation in terms of all the Ramond-Ramond forms,

which deconstructs the original 10D contact term and hides the subtlety.

7.2.5 Standard Embedding

The concerns raised in previous subsection may be illustrated more concretely by considering
in some detail the special case of Calabi-Yau manifolds X with a generic number of moduli but
Standard Embedding for the vector bundle V. In this case the situation is somewhat simpler
and there exists an alternative way of performing the dimensional reduction for the matter fields.
Indeed, recall that in this case V is identified with TX, so that S = SU(3) and G = Fg X Fj.
As a consequence, the additional index in the representation r = 3 can be reinterpreted as
a cotangent space index, and one may exploit this to construct the SU(3)-valued harmonic
1-forms u4 in terms of the harmonic (1, 1)-forms w4.

In the approximation where one works at leading order in the matter fields and neglects
the interference between moduli and matter fields, as in subsection 7.2.2, the way in which
this decomposition can be done has been explained in [116, 137]. In the end, it essentially
amounts to describe the matter modes in terms of a standard (1, 1)-form A and decompose it
on the basis of harmonic (1,1) forms w4 with A%! complex coefficients ®# taking values in the
representation R = (27,1) of Eg X Eg and defining the 4D matter fields. It has been shown in
[137] that one must however include a suitable power of the norm of the covariantly constant
holomorphic (3, 0)-form of X in this decomposition, in order to be able to express the potential
coming from the non-derivative part of the action in terms of a holomorphic superpotential.
Here, since we are considering the case of absent or frozen complex structure moduli, this simply

implies some extra power of the volume V, and the correct definition turns out to be :
A=VYoeAy,. (7.46)
One then finds a kinetic term of the form :

L4 —gy%0,040" 05 (7.47)
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where :
ma 1 1] q
gABt RERIE /dﬁy\/éG TGPw piqwBp;
1 (7.48)
= —0 wa N\ *wp.
V2/3 /X

Through the usual manipulations, this metric can be rewritten as :

gt = — V139,05 log V. (7.49)

This implies that the matter metric is in this case linked to the moduli metric by the relation

gg%t —K/3 gf}l‘%d, which was first derived in [33] by matching an actual string scattering am-

plitude computation. The leading matter-dependent correction to the moduli Kéhler potential

=€

must then have the form :
AK = e KBK 0485, (7.50)

Comparing the result (7.50) with the general expression (7.32) and requiring them to be equal,
we deduce that in the case of Standard Embedding the matrices Céc must have a special form.

Indeed, the components of the (1,1)-form cap are found to be given by :
= G VBGPIG 4w 7.51
CABij 1 WAigWBp7- ( . )

It is a straightforward exercise to verify that the forms c4p defined by these components are
generically not harmonic, except for the particular case where w4 and/or wp is identified with
the Kéhler form J or happen more in general to be a covariantly constant (1,1)-form. Since
K# is given by (7.28), one has K4w4 = —.J, meaning that the c4p forms are not harmonic
but K4cap and KBcyp are.

One may nevertheless compute the quantity c‘gc by using the expression (7.51) for the
components of cpg. The result depends on the metric and is thus a function of T4 + T4.
It might be possible to express this function in terms of derivatives of the Kahler potential
K for the moduli. But even without writing an explicit expression, one can observe that the
factor V1/3GP9 appearing in the expression (7.51) is a homogenous function of degree 0 in
the components of the metric, and therefore in the geometric moduli fields. More precisely,
one finds that ¢, = 1 when h''! = 1 and there is a single modulus T°, whereas ¢4, =
cpc((TP +TP) /(TP + TF)) when hb! > 1 and there are several moduli 74. Since by (7.28)
one has KP = —(TP+T7P), this means that the ¢ ’s are not constant but that K”9pca - = 0.

Finally, one easily verifies that ¢4 does indeed satisfy an identity ensuring that the two

expressions (7.32) and (7.50) are identical :
—Kacho = e KPKpe. (7.52)

One can easily demonstrate that the above relation forces Cgc to be constant in the special

case h''! = 1 and non-constant when instead h'*' > 1. To do so, one starts by assuming
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that (7.52) is satisfied with a constant cf,. One may then take a derivative of (7.52), use
Opcae = 0 and act with the inverse of the moduli metric to derive the expression cg, =
—e~K/3AD (KBCD — %KDKBC). Finally, one may compute the derivative of this expression
to check whether it is really zero, as assumed. In particular, using the identity 94 K? = —§%
one finds rather easily that dacf KPKC = —3e~%/3(h1 — 1), which vanishes when h'! =1
but not when h''! > 1, contradicting in this last case the hypothesis that c‘gc was constant.
When attempting to go on and work out the result at higher orders in the matter fields,
one can no longer neglect the interference between matter and moduli fields. One then needs
to properly change the definition of the moduli fields. The natural guess based on our general
derivation is that the definition of the moduli fields should be shifted by a term that is quadratic
in the matter fields and involves c4.. Indirect evidence in favour of this has been found in
[137] (whose quantity o 4pc is seen to be proportional to our ca. specified by (7.51) with the
upper index lowered with the moduli metric) by studying the interference of this redefinition
and the possible emergence of a non-trivial superpotential. It is however not obvious how one
should proceed to work out the full result, as both of the subtleties discussed in subsection
7.2.4, namely the non-harmonicity of cgc and the non-constancy of c’éc, have been manifestly
shown to arise in this case, except for the particular situations where h! = 1, for which the

result (7.38) holds true and reduces to the result derived in [133].

7.3 The Heterotic String on an Orbifold Revisited

It is interesting to compare the general situation occurring for compactifications on a smooth
Calabi-Yau manifold X with that of compactifications on orbifolds of the type T°/Zx [105, 138],
which represent singular limits of them from the geometrical point of view. We shall as before
focus on the Kéhler moduli and the matter fields, restricting to the untwisted sector for which a
simple derivation based on dimensional reduction was presented in 7.1, and show how the known
exact results for the dependence of the Kéahler potential on the Kéhler moduli and matter fields
can be rephrased in the same language as in the previous section.

Moreover the condition (6.22) is understood to be the analogue of the Bianchi identity (5.26)
that must be imposed for smooth Calabi-Yau compactifications and which constrains the choice
of vector bundle V for a given tangent bundle TX. The states arising in the untwisted sector
are now associated to the subset of harmonic forms on T that are left invariant by the Zy
twist. The restriction indicated in Table 6.1 to the prototypical cases based on N = 3, 6 and 7
which lead to "' = 9, 5 and 3 and h'? = 0, is chosen so that the comparison with the case
of smooth Calabi-Yau compactification, where we neglected the complex structure moduli, is

more transparent.
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7.3.1 Effective Kahler Potential

The results of subsection 7.1 may also be obtained by proceeding exactly as we did for com-
pactifications on smooth Calabi-Yau manifolds. We shall briefly summarise how this is done
for the three different kind of models under consideration. As before, for notational simplicity
we shall omit to write explicitly the traces over the representation R of the gauge group G. We
also omit any detail about the trace over the representation r of the structure group .S, since

this is discrete.

Models with H = SU(3) : Let us first consider the case of the Zg orbifold, where H = SU(3).
In this case, ngz = 9. There are 9 harmonic (1, 1)-forms w;; and 3 Zs-valued harmonic 1-forms

Uj -
wij =idz' NdZ and  w; = d2". (7.53)
The intersection numbers are found to be :
dijpgrs = €ipr€jqr- (7.54)

The forms c;; = iu; A u; are found to be given by ¢;; = w;;, and their components on the wy,n,

basis read :

ann = s, (7.55)

ij
The moduli fields 7% and the matter fields ® are defined by the following expressions :
N ,
J+iB = 2<T” - 5@@])% and A= oy, (7.56)
The Kéhler potential is finally found to be given by [31] :
K = —log [det (TY + T — ®'®7)] . (7.57)
Models with H = SU(2) x U(1) : Let us next consider the case of the Zg orbifold, where

H = SU(2) x U(1). In this case, h""! =5 and thus ngz = 5. There are 5 harmonic (1, 1)-forms

w;j, wag and 3 Zg-valued harmonic 1-forms u;, uz, with i = 1,2 :

Wiy = leZ A dfj, W33 = ZdZ3 AN di?’,
(7.58)
u; = dz", uz = dz3.
The non-vanishing entries of the intersection numbers are :
dijpq3s = €ip3€jg3- (7.59)

The forms ¢;; = 7 u; At  are easily computed and one finds ¢;; = w;j, €33 = w33, while the other

vanish. The non-vanishing components of these forms on the w,, basis are :

gt =607 and o3 =1 (7.60)
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In this case, the moduli fields 7%, T3 and the matter fields ®¢, ®3 are defined by the following

expressions :

1 1_,-
J+iB =2 <T” — 2<1>%<1>J> wij + 2 (T33 — 2c1>3<1>3> wss,

(7.61)
A= @iui + (I)3U,3.
The Kéhler potential is finally found to be given by [31] :
K = —log[det (TY + TY — ®'®7) (T** + T% — ¢33°)] . (7.62)

Models with H = U(1) x U(1) : Let us finally consider the case of the Z; orbifold, where
H =U(1) x U(1). In this case, h'"! = 3 and thus nzz = 3. There are 3 harmonic (1, 1)-forms

w11, Wag, wsz and 3 Zr-valued harmonic 1-forms uy, us, us :

w11 = idz' A dfl, Woo = idz? A d22, W33 = idz3 A d23,
(7.63)
up = dzt, us = dz?, uz = dz>.
The non-vanishing entries of the intersection numbers are found to be :
d112233 =1. (764)

The forms ¢;; = iu; A @ are found to be given by ci11 = w11, c22 = waa, €33 = w3, while the

others vanish. The non-vanishing components of these ¢;; on the wy,, basis read :

chi =1, 2 =1 and s =1 (7.65)
The moduli fields T'!, 722, 733 and the matter fields &', ®2, &3 are defined by the following
expressions :

J+iB = 2(T“’ - %@i@)w” and A=, (7.66)
The Kéhler potential is finally found to be given by [31] :

K=—log [(T""+T" - ®'®") (T?* + T* — $°9%) (T** + T% — $°9?)]. (7.67)

7.3.2 General Structure

The above results can be rewritten in a more convenient and unified way by performing a
suitable change of basis for the harmonic (1, 1)-forms, which clarifies their similarity with the
results derived for Calabi-Yau compactifications, as already explained in section 7.1. To perform
this change of basis, we can proceed in parallel for all the three models considered above
and introduce the 3 x 3 Hermitian matrices A representing the generators of U(1) x H and
normalised in such a way that Tr ()\A)\B ) = 048, More precisely, A\ denotes the generator of

U(1) proportional to the identity matrix and A* the generators of H associated to a subset of
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the Gell-Mann matrices spanning the fundamental representation of SU(3) (a = 1,---,8 for
H=5U(@3),a=1,2,3,8for H=SU(2) xU(1),a=3,8 for H=U(1) x U(1)).

We then define the new basis of harmonic (1,1)-forms wy = )\;‘}wij. The corresponding
new moduli fields then read T4 = )\j‘iTij , and since the matrices A* are Hermitian, one finds
TA = /\fifij , where T% denotes as in the previous formulae the Hermitian conjugate of T% as

. . . . . . _ A B C
a matrix. In this new basis, the intersection numbers are given by dapc = /\ij)\pq)\mdiqu,,s7

— )\A cmn

and the components c{} of ¢;; are given by c{} nmCi; " which simply gives :

ey = (7.68)
In this basis, the fields are defined as :
- A_ L agizi i
J+iB=2|T" - §cij<1> D7 | wy and A= (7.69)
and the Kahler potential takes the form (7.15), namely :
1 _ o
K = —log [GdABCJAJBJC] where  JA=T4+T4 - cio'dl. (7.70)

For the untwisted sector of these orbifolds, one thus finds exactly the same kind of result as
for smooth Calabi-Yau manifolds, with the peculiarity, however, that the intersection numbers
dapc and the quantities cf;- admit a group-theoretical interpretation. This corresponds to the
fact that the scalar manifold becomes a symmetric space. More precisely, in the three kinds of

models under consideration the scalar manifolds are given by :

M B SU(3,3+n)
SUB) T U1) x SUB) x SUB+n)’
M B SU(2,2+n) SU(1,1+mn)
SURXUM) = 1) % SU2)xSU2 +n) « UL) x SU(L+n)’
" ( SU(@ 140 P
vaxv@ = (U(l) x SU(1 +n)>

(7.71)

7.3.3 Range of Validity

For the untwisted sector of orbifold models, we see that the low-energy effective Kahler potential
can always be derived in an exact way, without any limitation. From the perspective of the more
general study that we performed for smooth Calabi-Yau manifolds, this reflects the fact that

untwisted orbifold sectors automatically satisfy the assumptions that we made in subsection 7.2.
A

More specifically, we see that the forms ¢;; are harmonic and the quantities ¢j; are constants.
This can be traced back to the fact that in this case the forms w4 and w; are not only harmonic,

but actually covariantly constant, which is a much stronger property.
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7.4 General Structure of the Scalar Manifold

We have seen that for compactifications on both smooth Calabi-Yau manifolds and singular
orbifolds the Kéhler potential for the Kéhler moduli and matter fields takes the same general
form, at least under the already explained assumptions. We will now study in some more detail
the general geometric features of this scalar manifold, which will be relevant for the structure of
the soft scalar masses induced in the presence of a non-trivial superpotential. We will introduce
for this purpose a new parametrisation of the scalar manifold, which will turn out to be very

convenient at some special reference point.

7.4.1 Canonical Parametrisation

The general class of scalar manifolds we want to study is defined by the following Kéhler
potential, which only depends on the two symmetric and Hermitian but otherwise arbitrary

constants d4pc and céQ :
1 _ _
K = —log {GdABCJAJBJC} where — JA =T+ T4 —cp, 0709 (7.72)

The fields T4 and ®F define a specific parametrisation of the scalar manifold defined by this
Kahler potential, which naturally emerges from string theory. We are however free to make
holomorphic changes of coordinates as well as Kahler transformations to define other equivalent
parametrisations. It turns out that this freedom can be used to define a particularly convenient
kind of parametrisation. We shall call this the canonical parametrisation, because it is a natural
generalisation including the N = 1 matter sector of the one that was introduced in [139, 140]
for the very special Kéahler manifolds describing the N = 2 moduli sector.

The main idea is to think of some reference point of particular interest on the scalar manifold,
and then to perform a field redefinition that allows to simplify things as much as possible around
that point. This reference point can for instance be thought of as the one defined by the VEVs
(T4) and (®F) that the scalar fields would eventually acquire in the presence of a non-trivial
superpotential. Since our primary goal is to study situations where the moduli have sizeable
VEVs whereas the matter fields have small VEVs, we shall start by considering the situation

where :
(TY 40  and  (®F) =0. (7.73)

We may now reparametrise the fields in such a way to simplify the metric and the curvature

tensor at such a point. To this aim, we shall consider the following linear field redefinitions :
T4 =U*%T? and &7 =VF,0% (7.74)

In addition, we may also perform a Kahler transformation on K. In particular, we may perform

a trivial constant shift of the type :

K = K —log|al?. (7.75)
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For our purposes, it will be enough to take U AB to be a real matrix, VI, o to be a complex matrix
and «a to be a real number. Under such transformations, the new Ké&hler potential in terms of
the new fields has the same form as the original Kéhler potential in terms of the original fields,

but with new numerical coefficients given by :
dapc =a*(U P, (U P R(U ™) cdppr and éé@ = UAB(VA)RP(VA)SQ%& (7.76)

At this point, we may choose U4, and V7, o in such a way that the VEVSs of the fields are aligned
along one direction, the VEV of the metric becomes diagonal, and the overall scale of one of
these two quantities (but not both) is set to some reference value. We may furthermore choose
« to set the overall scale of the intersection numbers to a convenient value. More specifically,

we shall require that in the new basis the reference point should be at :

V3

(TA>:75§ and (7)) = 0. (7.77)

The metric at that point should take the form :

(9ap) =04 (Grq@) =dpqg  (Jaq) =0 (7.78)
and finally the K&hler frame should be such that at that point :

(K)=0. (7.79)

It is easy to get convinced by a counting of parameters that it is indeed always possible to
impose this kind of conditions. Moreover, by comparing the transformed expressions for the
VEVs of the fields, the metric and the Kahler potential with the values required in the previous
equations, we deduce that the new values of the numerical coefficients d aBc and 61“3@ must

satisfy the following properties :

. 2 5 5 1
dooo = —=, dooa = 0, doay = ——=0ab,

v3 V3 (7.80)
0 1

while afabc and éj‘;Q are not constrained. The Kéahler potential after the change of basis is then

given by :

N 1 2 an an A AN A A ~ A A oA
K = —log [6 (ﬁJOJOJO —V3JjoJeje + dach“J”J“ﬂ (7.81)

where now :

A -~ 2 ]_ A 2
JO=T0 4+ T — ——6pod” @9,

V3 (7.82)
JO =T+ T — ¢4, @7 o<,
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The above canonical parametrisation has a nice interpretation from the point of view of
the properties of the Calabi-Yau manifold X and the holomorphic vector bundle V' over it,
on which the model is based. It essentially corresponds to a particular choice of bases for the
harmonic forms w4 and up at the reference point defined by the VEVs. More specifically, the
sets of harmonic forms @4 and up can be chosen to be orthonormal with respect to the natural
positive definite metrics defined by gap = V! [ @4 A*@p and gpg = V' [ épg AxJ, and
one can moreover orient them in such a way that @y is aligned with the Kéhler form J. In this
way the multiplets 70 and T describe respectively the overall volume and the relative Kahler
moduli, and the fields ®F are canonically defined. In this new basis, the VEV of the metric
is the identity matrix, with gap = dap and gpg = dpg, and as shown in Appendix B.3 the
intersection numbers d Apc and the quantities éﬁQ do indeed take the structure of (7.80), after
effectively setting the volume V' to unity by a rescaling. It is worth remarking that if the traceful
part of ¢pg were parallel to J and thus proportional to @0, whereas the remaining traceless part
of épg were orthogonal to J and thus a linear combination of the w®’s, all the matrices ¢p,
would be traceless. This turns out to be the case for orbifolds, and it is not inconceivable that
it might actually also hold true for most if not all of the Calabi-Yau’s subject to the stringent
restriction that the (1,1)-forms cpg are harmonic. We were not able to verify this, but we find

it rather suggestive that the trace part of ¢pg indeed has positive-definite components, like J.

Notice that the new coordinates that have been introduced do not exactly coincide with
normal coordinates at the reference point. Indeed, some of the components of the Christoffel

connection have non-trivial values :

2 2 2
—, F a— = —7(501 s Fa 5y = —
\/g < 0 b> \/g b < b0>

<PAPQ> = _é}gQ-

6aba <Fab6> = _Czabca

(ooo) = = V3 (7.83)

Nevertheless, they turn out to lead to rather simple expressions for the Riemann curvature

tensor at the reference point.

7.4.2 Curvature for Calabi-Yau Models

In the general case of compactifications on a smooth Calabi-Yau manifold, the scalar manifold M
on which the low-energy effective theory is based is a generic Kahler manifold. The curvature
of such a manifold depends on the point. Let us then consider the special reference point
introduced above, assuming that it is dynamically selected by the superpotential, and let us

switch to the canonical parametrisation. After a simple computation, one finds the following
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results for the VEV of the Riemann tensor :
(Ragcp) = 0aBdcp +0apdpc — dackdppr,

1 ~a  Aa ~a  Aa
(Rpgrs) = 3 (0p@drs +0psirQ) + pqlhs + psthq

1 9 5 re rash (7.84)
(Rpgoo) = 30Pa,  (Bpgab) = 50PQdab + (davet® — &€ pq,

L
(Rpqos) = ECPQ'
These expressions are valid only around the point under consideration. In particular, they get

deformed if one switches to a non-vanishing VEV for the matter fields.

7.4.3 Curvature for Orbifold Models

In the special case of orbifold compactifications, the scalar manifold M on which the low-energy
effective theory is based is a symmetric Kahler manifold. The curvature of such a manifold does
not depend on the point. Let us nevertheless consider the special reference point introduced
above and switch as before to the canonical parametrisation. It is straightforward to verify that
the new parametrisation described in subsection 7.3.2 actually coincides with the canonical one.
To do so, one simply needs to recall that ® is equal to 1/4/3, whereas the ¢ are a subset of
the transposed of the Gell-Mann matrices A®. One then gets :

dupe = 2Tt (mm) and & = A%, (7.85)
We see that in this case dgpe is the symmetric invariant symbol of the group H, whereas the
;‘lj
SU(3) in terms of 3 x 3 matrices. In this case the transposed of the matrices ¢; possess the

¢¢. are the transposed of the generators of H in the representation h descending from the 3 of

non-trivial property of being traceless and generating the Lie algebra of H, whose structure

constants can be written as :

Fabe = —20Tx (A[“/\b/\c]) . (7.86)
Moreover, for all the three kinds of models one finds :

AN =ifaped® and  {A AP} = dape + %6@1. (7.87)

Using these properties of the matrices A%, the components of the Riemann tensor are then seen

to simplify and can entirely be rewritten in terms of these matrices :
(Rapep) = Tr (¢*ePeCel) + Tr (e4ePeCeP),
(Rpqrs) = ¢holis + Epstho, (7.88)
(Rpocp) = (€7¢%)pq.

These expressions are actually valid at any point of the scalar manifold, as already said. Their

simple form reflects the fact that the curvature of symmetric manifolds is completely determined

by the structure constants of their isometry group as is shown in the Appendix B.4.
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7.5 M-Theory Interpretation

In Chapter 5 we have introduced the M-Theory conjecture according to which there exist an
eleven-dimensional theory which when compactified on S! /Zs leads to the Eg x Eg Heterotic
Superstring. The low-energy M-Theory consists of eleven-dimensional SUGRA with Eg matter
fields located at each of the orbifold’s fixed points. In the case where the six dimensions on the
branes are first compactified on a Calabi-Yau with SU(3) holonomy characterised by the two
independent Hodge numbers h':! and h?!, the resulting theory is an N = 1 five-dimensional
SUGRA with h'! — 1 vector multiplets and h?! + 1 hypermultiplets [141-144]. Indeed the
eleventh-dimensional SUGRA bosonic sector consists of, as shown in Appendix C.2, the metric
Gap and a 3-form Cypc which when splitting the eleven-dimensional indices A, B into five-

dimensional indices M, N and internal indices ¢, 7 gives :

GaB : Guny —  Graviton,

Gij —  h*! complex scalar fields,

Gz —  hb!real scalar fields,

(7.89)

Cagc : Cuynp —  1lreal scalar field,

Camiz;  —  hY!real vector fields,

Cijk —  1complex scalar field,

Cijk —  h*!complex scalar fields.

The other components do not give rise to light modes since the corresponding number of zero-
modes vanishes as indicated by (6.58). In five dimensions, the SUGRA multiplet § contains
the graviton Gy, the gravitino ¥,;, and the graviphoton Aj,; which is identified with one of
the h'! vectors coming from C)pz;;. The other five-dimensional SUSY representations are the
hypermultiplet H whose bosonic spectrum consists of two complex scalar fields and which can
be recast as two four-dimensional chiral multiplets and the vector multiplet V whose bosonic
spectrum consists of a real scalar field and a vector field which, in terms of four-dimensional
multiplets, can be recast as the sum of a chiral multiplet 7" and a vector multiplet V. Let us

spend a few words on this.

Superfield Formulation for five-dimensional Vector Multiplets A five-dimensional vector Ay

may be split among a chiral Superfield T and a vector Superfield V as follows :
T > %A5($5,y) and V 3 —00"0A,(2°,y) (7.90)
where y* = z* 4 ifo*f. The five-dimensional gauge-invariance translates into :

T — T+ 05\ and V-V +A+A (7.91)
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where A is an arbitrary chiral Superfield. One can then form the following two gauge-invariant

combinations :

W, = —3D2DQV and —05V+T+T 3 05"0(95A, — 9, As5). (7.92)
The rigid SUSY five-dimensional Lagrangian density for V = (T, V) would then be written as
follows :

L= i/dQQW"Wa + /d49 (—9sV +T+T)” + hc.

/ (7.93)
> —ZFMNFMN

where the second line is obtained after the auxiliary component of V is replaced with the
solution to its algebraic equation of motion, see [145-147] and [148, 149] for the generalisation
to the non-Abelian case. If allowing for a Chern-Simons term, i.e. a term of the form AsFF,

the following gauge-variant quantity may be added to the Lagrangian density [146] :

2 o 1 4 g o 2 4 =\ 3
L= [ d0TW Wa =3 d*0 05V D, VW +3 d*0 (—0sV +T+T)" +h.c.
X (7.94)
=) *ieMNOPQA]wFNoFPQ.

Both the expressions (7.93) and (7.94) will be relevant when discussing the rigid effects in the

next subsection.

Parity Assignments The spectrum (7.89) can thus be arranged in one SUGRA multiplet
S =(Gun,VYuma, AYy), R — 1 vector multiplets V* = (T, V*) and h*! + 1 hypermultiplets
split into %! H® = (Z*,Z*") and one universal hypermultiplet § = (S,S5). In order to
recover the four-dimensional theory derived from the ten-dimensional Heterotic effective theory

compactified on a Calabi-Yau, the following charge assignment emerges from section 5.5 :

(Ta7va)_>(Taa_Va)7 (S7S/)_>(Sa_5/)7 (Zm,Zr/)_>(Zz7_Zm/)7
(7.95)
G—-G and AV — —A°

whereas for G only the four-dimensional SUGRA multiplet € and one chiral multiplet 7° formed
out of A2 and Gss, called the universal Kéhler modulus, are preserved by the projection. The
even N = 1 multiplets leading to light modes in four dimensions thus consist in the gravitational
multiplet &, the dilaton S, the A'! Kéhler moduli 74 and the h*' complex structure moduli
A

The structure of the Kéhler potential characterising the four-dimensional low-energy ef-
fective theories of heterotic string models admits a simple interpretation in terms of the in-

termediate five-dimensional effective theory emerging from the Calabi-Yau compactification
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of M-Theory. In particular, the definition of the chiral multiplets and the Kahler potential
structure can be understood quite naturally and intuitively within this framework.

As we shall now see, this is a consequence of the fact that the matter contact terms arising
from the non-trivial shift in the field-strength of the 2-form B in the heterotic picture arises in
the M-Theory picture from the non-trivial Bianchi identity for the field-strength associated to
C since C couples to the fields on the end-of-the-world branes :

(dGhirsxr = =Tr (FAF) 51 0y — yo) (7.96)

where G is the field-strength associated to the 3-form C and the indices are running on both
the space-time and the Calabi-Yau manifold, excluding the S!/Z, segment. Here and in the
following, we shall implicitly understand the splitting of the charged fields over the two brane
sectors located at different positions 1, but for notational simplicity we shall not display this
explicitly in the formulae.

Note that the Bianchi identity (7.96) does imply that the field-strength associated to the
hb! five-dimensional gauge fields A‘j‘/[ emerging from Chizi; as Chri; = Af\‘/[w Ai; has to satisfy a

non-trivial Bianchi identity :

(dF )5 = —icpg (0,270,989 — 0,890,97) 6(y — ¢°) (7.97)
which is solved by :

FA = 05 A% — 0,48 + ich o @ 8, B2 (y — y°). (7.98)

This suggests that the second relation in (7.92) has to be modified in order to take into account
the non-trivial Bianchi identity. It will indeed prove useful to define the following quantity of

which the fo*6-component is easily shown to coincide with Fg‘L :

J = —0sVA+ T+ T4 — @7 0% (y — y°). (7.99)

7.5.1 Effective Kahler Potential

The four-dimensional effective Kéhler potential can be determined by performing the reduction
of the eleven-dimensional theory on the Calabi-Yau manifold X, and then further reducing
the resulting five-dimensional theory on S'/Z,. In this case, it is possible to do the last step
by using Superfields to directly compute the Kéhler potential, rather than working with the
components and looking at the bosonic kinetic terms. To perform this computation, we shall do
the same approximations as in section 7.2. We shall first neglect the effects of higher-derivative
corrections to the eleven-dimensional effective theory and deformations of the basic background,
and simply consider the reduction of the two-derivative effective theory on X x S /Z,. We shall
then also discard the effects of massive Kaluza-Klein modes on X, although we will retain the
effects of massive Kaluza-Klein modes on S!/Z,, which turn out to be crucial to understand

the contact terms. Correspondingly, we will also make the same assumptions as in section 7.2,
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namely that the (1,1)-forms cpg associated to composites of two matter fields are harmonic
and that the quantities cf;‘,Q are constant topological invariants. Finally, we shall again restrict
to the Kéahler moduli 74 and the charged matter fields ®*.

The starting point is thus the 5D intermediate theory, where we retain not only the Zs-even
submultiplets 70, 7%, &7 which contain the light four-dimensional moduli and matter modes,
but also the Zs-odd submultiplets V¢, which contain the heavy Kaluza-Klein modes that have
non-trivial linear couplings to the other fields and therefore need to be properly integrated out.
It is convenient to work with N = 1 Superfields 79, 7%, ® and V® depending also on the
internal coordinate y, and integrate out the heavy modes associated to the V®’s directly at
the Superfield level by solving their equations of motion, neglecting space-time derivatives, to

determine their wave-function profile.

Rigid Effects In the limit where gravity is decoupled, this can be done with usual Superfields
within rigid Supersymmetry along the lines of [145-150], with T = T°/+/3 playing the role
of the radion Superfield. Indeed in such a case one may generalise (7.93) and (7.94) as the

following :
1 Te 1 _ “
L= f/dQG TFap | = | WWb — —F.D* (V* D> 35V | W
4 T 12
Jo (7.100)
d*o(T +T)F 2 __
+/ T+1) (T +T>

where, since the five-dimensional theory has an enhanced N = 2 Supersymmetry from the

four-dimensional point of view, F is an at-most cubic prepotential [151] of the form :

1 1
F(z%) = §Z“Z“ — éaabczazbzc (7.101)

where the first term in JF is responsible for the generalisation of (7.93) whilst the second relates to
(7.94). The effective four-dimensional theory is found by dropping the first term in (7.100) and
by replacing the currents J2 by their zero-mode J% = T% +T% — caqu)PCi)Q. As one can notice
by plugging the currents (7.99) into the norm function (7.101), this procedure is not totally
straightforward since the latter expression contains powers of the brane-localising J-function.
The physical meaning of such terms has first been grasped by Mirabelli and Peskin [152] in the
context of a five-dimensional Super-Yang-Mills theory coupled to chiral fields on end-of-the-
world branes. It was shown that the higher powers of §(x°) were serving as counter-terms in
the microscopic theory in order to compensate for singularities introduced by Superfields that
are odd under the orbifold action. The extension of this work to five-dimensional Supergravity
coupled to both chiral and vector Superfields on the branes has been performed in [26] in
order to compute the loop-induced soft scalar masses in the Randall and Sundrum setup [20],
which as argued in the Introduction leads to vanishing soft scalar masses at the classical level,
see Section 8.1. In both [152] and [26], the higher powers of the d-function appeared when
integrating the auxiliary fields out, i.e. when going on-shell. In our case the situation is slightly
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different since the 0™(0) terms already appear off-shell. The procedure on how to deal with
such terms is however similar and has been explained in [153]. Let us exemplify it in a simple

case in which the five-dimensional Lagrangian is given by :
L= /d49 (—0sV +T+T —5(y)C)* = /d40J52. (7.102)

In order to obtain the effective four-dimensional theory, we first integrate V' out. Its equation
of motion is given by :

0L _ I

7= 205 (=0;V+T+T—6(y)C) =0 (7.103)

which is solved by :
Js = —0sV +T+T — §(y)C = const. (7.104)

In order to determine the constant on the RHS of (7.104), one integrates both sides along the

y coordinate, yielding :
const =T +T—~C=J (7.105)

where T now stands for its zero-mode since all other Kaluza-Klein modes integrate to zero
and where C' has be renormalised by the orbifold covering-space length. The four-dimensional
effective theory obtained after having integrated V' out is thus found by replacing J5 by its zero-
mode J as advertised. Generalising this procedure to arbitrary powers of J5 is straightforward.
When applied to the five-dimensional Lagrangian density (7.100), this procedure yields the

following four-dimensional expression :
- J¢ 1JeJ* 1 Jegbje
L= [dOT+T)F ) = [d0| = — “Vabe—5 | - 7.106
/ T+D) <T+T) / (2T+T 6 (T +T)? (7.106)

We will show in the next paragraph that by setting 9,5 = dape One successfully reproduces the

structure of the interactions involving two and three currents but misses all other orders which

are thus genuine gravitational effects.

Gravitational Effects Taking into account gravitational effects is slightly more complicated,
but can actually be done in a very similar way by using a superconformal Superfield formalism
within Supergravity, where half of the Supersymmetry is manifestly realised off-shell. This
formalism has been developed in [154-157] and further elaborated in [153, 158-161]. It has
the nice feature of allowing to describe the graviphoton A%, on the same footing as the other
odd gauge fields A%,, and the volume modulus T° on the same footing as the other Kéhler
moduli 7%, through vector multiplets V4 and chiral multiplets 74 with A = 0, a, at the price

of introducing also some constraints. The relevant 5D Lagrangian turns out to be :

1 1 _ <
L5 :/d29 [—NAB(TA)WAWB + —NapcD? (VA D° 85VB> Wf} +c.c.
4 48
(7.107)
+/d49(—3)N1/3(J§‘).
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In this expression, N is a norm function playing the role of a real prepotential, which is identified
with the cubic polynomial defined by the intersection numbers d 4 gc of the Calabi-Yau manifold
X

1
N(z4) = 6dABCZAZBZC . (7.108)
The quantity W2 denotes the usual super-field-strength associated to V4, namely :

1-
WA = —ZDzDaVA. (7.109)

[e3

Finally, the quantity Jg“ is a current expressed in terms of the quantities céQ characterising
the vector bundle V over X defined in (7.99).

Rigid Limit Let us now use the canonical parametrisation we have introduced in the last
section. By introducing Z = Z°/4/3 and using the intersection numbers (7.80) we can rewrite
N(Z4) as :

, 1 1
N(z4) = 73 - 5222 + 6dabCZaZbZC. (7.110)

The relevant quantity when taking into account gravitational effects is given by —3N'/? as
shown by (7.107). Since at the point under consideration we have J5 > J¢, we may approximate
it by :

1 1

—3N3(JAY ~ —3.J, JaJe — —
(5) 5+2J5 5Y5 6:]5?

dape JETETE (7.111)

whose second and third term match the rigid expression in (7.100) :

T Jg 1 a 7a 1 a c
(T+T)3:(T—ET> = 2(T+T)J5J5 - mbach5J§J5 (7112)

provided that we identify 045 with dgpe and that Js, associated to the graviphoton, is decoupled
and identified with the radion field.

Kahler Potential In the above expressions, the bosonic modes of T4 come from the decom-
position of the Kahler form J and the 2-form C5 with components iG;; and Cs;; on the basis
of harmonic (1,1)-forms w4, the bosonic modes of ® come from the decomposition of the Lie-
algebra-valued 1-forms A with components A; on the basis of harmonic 1-forms up, and finally
the bosonic modes of V4 come from the decomposition of the 2-forms C), with components C,;;
on the basis ws. The correct definition of the chiral multiplets in terms of the above modes
turns out to be [34] :

TA= L (I +iC + cpgATA%(y —yp)  amd @7 = AP (7.113)

where C2' = AZ. We see that these definitions reproduce the ones we have introduced in the

component derivation of subsection 7.2.3 based on the weakly coupled heterotic string when
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averaged over the extra dimension. Here these definitions ensure that the lowest component
of Jgf‘ simply reduces to the metric components, as required in order to reproduce an Einstein
gravitational kinetic term coming entirely from the bulk and not from the branes, whereas the
0c"0 component of J& correctly reproduces the modified version of the mixed components of
the field strength implied by the reduction of the Bianchi identity (7.96) :
T = =05V A + T = J4,
o (7.114)
T gong = Os Al — 0, AL +icpo®" 0, @96(y — yo).
This provides a nice Superfield interpretation on the need for the shift in the definition of the
moduli chiral multiplets.

Integrating out the heavy modes of the vector multiplets V4 again effectively amounts to
replacing the currents Jg“ with their zero modes in the term of the action that does not involve
the vector fields. This is however more difficult to show than in the rigid limit, where only the
V' matter, since in the Supergravity regime all the V4 appear but suffer from non-trivial con-
straints [159-161]. One finds the following expression, written within the usual superconformal

Superfield formalism :

Ly = /d40(—3)N1/3(JA) (7.115)
where now :

JA=T4 4+ T4 — cf, 07209, (7.116)

The effective Kahler potential can finally be deduced by matching the integrand of this expres-
sion with —3e~%/3, This gives K = —logN(J4) = —logV, which is the same result as we

obtained directly from the Heterotic string :
1 _ -
K = —log {GdABCJAJBJC} where  JA =T 4+ T4 — ¢}, 070, (7.117)

A component version of this five-dimensional derivation is also possible, and was presented in
[162] for the particular case where h''! = 1 with Standard Embedding.

The effective Kahler potential for the untwisted sector of orbifold compactifications can be
similarly derived from an M-Theory perspective. The only changes are that the intersection
numbers d4pc and the quantities c’ﬁQ acquire a simple group-theoretical interpretation. More-
over, in this case the forms cpg are automatically harmonic and the quantities cﬁQ are always
constant. Further details on a component version of this five-dimensional derivation can be

found in [163-165].
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Current-Current Structure Let us again use the canonical parametrisation in order to rewrite
the four-dimensional Ké&hler potential and then compare it to the case of the Randall and

Sundrum setup. Since we have found K = —log V', we have Q = —3¢~K/3 = —_3y1/3 .

3 ]'aa 1 a 7b 7C Ve
Q=-3(J —§JJ -I-BdachJJ

(7.118)
NP SR A A SO kA
- 2 J 6
whereas in the Randall and Sundrum setup we find K = —log(J3) [20] and thus :
Qs = —3.J. (7.119)

We have thus shown that the deviation for the sequestered picture is indeed due to current-
current interactions [35], as argued in [22, 23]. More precisely, there is one such interaction
for every non-minimal Kéahler modulus T which are associated with vector multiplets in the

five-dimensional picture.

7.5.2 Range of Validity

We have seen in the previous subsection that the results derived in subsection 7.2 for the low-
energy effective Kéhler potential admit a simple 5D interpretation, in which the non-trivial
contact terms spoiling the sequestered structure arise from the exchange of heavy 4D Kaluza-
Klein modes of the light 5D vector multiplets coming from the harmonic components of the
M-Theory 3-form C' on X. This interpretation was however derived under the restrictive
assumptions that the forms cpg are harmonic and that the quantities cﬁQ are constants. It is
then natural to wonder once again what would be the situation if these assumptions were to be
relaxed.

The relevance of the assumptions about cpg and c?,Q within the M-Theory perspective
must obviously be very similar to that already discussed within the Heterotic perspective. But
it turns out to offer a slightly sharper perspective. The harmonicity of cpg is as before needed
to ensure the trivial decoupling of heavy neutral modes from pairs of light charged modes.
More specifically, we see here that when cpg is not harmonic a direct danger comes from the
heavy 5D vector multiplets that arise from the non-harmonic components of the 3 form C' on
X. Indeed, such heavy modes can be brutally truncated away only when they are not sourced
by light fields, and from the reduction of the solution of the Bianchi identity (7.96) we see that
this is the case only when the non-harmonic parts of C' describing the heavy 5D vector modes
have no overlap with the forms cpg describing the composite of two light matter modes, that
is when cpg is harmonic. In the opposite case, one would have to properly integrate out these
heavy 5D vector modes too, and this would give extra contributions to the contact terms in the
4D effective Kéhler potential. These additional effects must correspond to the additional terms

that would arise in the left-hand side of (7.37) within the Heterotic perspective. The constancy
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of c‘,‘éQ is again needed to ensure a simple determination of the right definition of the chiral
multiplets containing the moduli. More specifically, we see here that for moduli-dependent cﬁQ
it is not clear how one should modify the definitions (7.113) to arrange that (7.114) holds true.
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Chapter 8

Soft Scalar Masses and
Sequestering

In the last Chapter we have derived the form of the effective four-dimensional Kéhler potential
for both orbifold and Calabi-Yau compactifications of the Heterotic Eg x Eg Superstring Theory.
Using the formulae we have derived in Chapter 4 we can now compute the contributions to the
visible scalar masses from the hidden sector. Since these masses are found to be generically
non-vanishing and non-universal, they induce FCNC processes which lead to the rejection of
such theories since Nature seems to have chosen not to allow such processes, at least at today’s
accessible energies. One of the ideas towards a solution of this problem is sequestering [20], i.e.
a setup in which the visible and hidden sectors are geographically separated along an extra-
dimension thus effectively forbidding local contact terms. Soft scalar masses do then vanish
at the classical level. Quantum effects will tend to generate soft scalar masses which, thanks
to the geographical separation among the visible and hidden sectors, are insensitive to far UV
physics and may thus lead to universal soft scalar masses [24-27]. The purpose of the present

Chapter is to investigate whether a similar mechanism can apply in Heterotic string models.

8.1 Mild Sequestering

From the effective four-dimensional theory the sequestering mechanism manifests itself by re-
stricting the form of the Kéhler potential K. Indeed if gravity was turned off the two sectors
would not be able to communicate forcing the Lagrangian density to be the sum of two terms,

one for the visible sector and one for the hidden one :

Q=-3¢KB=Q,+Q, e K = —3log (2 + Q) (8.1)
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which is indeed the form taken by the Kéhler potential in the Randall and Sundrum setup as
can be read from (7.81) :

| _
K = —3log (T +T — 3c1>P<I>P> (8.2)

where T = T°/4/3 is the Kéhler modulus associated to the graviphoton [20]. Following the
methods developed in Chapter 4, the soft masses are straightforwardly shown to vanish reflect-
ing the fact that the scalar manifold is maximally symmetric [21, 166]. Indeed by using the
technology developed in Appendix B.2.4.2; the Riemann tensor entering the expression of the

soft scalar masses (4.49) is easily shown to be given by :
1
Rager = 5KapKer (8.3)
where o and 3 denote visible fields and © and T" hidden fields. By plugging (8.3) in (4.49) we
find that the soft scalar masses vanish :

m? 5 =0. (8.4)

However the situation is not as satisfactory as it seems to be at first sight since when trying
to apply the idea of sequestering to M-Theory-inspired models in which the five-dimensional
picture arises after M-Theory is compactified on a Calabi-Yau manifold one is confronted with
the appearance of vector multiplets propagating in the bulk which spoil the sequestered struc-
ture displayed by (8.1) as argued in [22, 23]. This phenomenon occurs in a rather clear way in
the case of Heterotic M-Theory compactified either on an orbifold or on a Calabi-Yau manifold
where the appearance of Kahler moduli associated with five-dimensional vector multiplets de-
scending from the C' 3-form induce non-trivial corrections to the Kéahler potential which spoil
the fact that the scalar manifold is maximally symmetric. In such situations one generically
finds non-vanishing non-universal soft scalar masses generated from the contact terms induced
by the vector multiplets.

Albeit not being in a good position, the idea of sequestering the visible and hidden sectors
along an extra-dimension may be saved by exploiting the peculiar structure the contact terms
enjoy. Indeed since these terms originate from the integration of heavy Kaluza-Klein modes,
they essentially are of the current-current form. As has been illustrated in subsection 3.7.2,
the most relevant terms giving rise to soft scalar masses are dimension-6 operators containing
two visible Superfields ® together with two hidden Superfields X which are encoded in the

Superspace wave-function Z*# :
L= /d‘lezaﬁ(X,X)cI)aéﬁ. (8.5)
The soft masses arising from such a Lagrangian density are given by (3.48) :

ms =~ |20 — (27 agn 2y’ | FOFT. (8.6)
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The soft scalar masses thus depend on both the F and D terms of Z*?. Now, if we can
engineer a situation such that Z*%’s I’ and D terms vanish, the previous equation would imply
the vanishing of the soft scalar masses at the classical level. Let us argue that the auxiliary
components of a conserved Superfield exactly satisfies this request.

Indeed, the conservation of a current at the Superfield level corresponds not only to the
conservation of the vector current but also to the vanishing of both their F' and D components.
Let us illustrate this mechanism in rigid SUSY by considering the following Lagrangian density
where we have used the properties of the Berezin integral to rewrite it as an integral on half

the Superspace :
1_ 1_
L= /d20 (—4D2K + W) EOM —EDZKi +W; =0. (8.7)

Let us furthermore imagine that the global symmetry is enforced by §®° = A*X! where the
X! are holomorphic Killing fields. Under the global symmetry the Kihler potential is allowed
to be shifted by a Kéhler transformation § K = A% f, + A®f, while the superpotential variation

has to vanish identically §W = 0. These two conditions respectively imply :

Re(K; X! — f,)=0 and  W; X! =0. (8.8)
The Noether currents :

J* = Sm(K X}, — f) (8.9)
are shown to be conserved, i.e. D?J% = D?.J% = 0, since :

D*(K; X! — f.) = (D*K;) X!\ = 4W; X! = 0. (8.10)

The conservation equation for J straightforwardly implies that its F-component vanishes. More-
over it is easily shown that the vector field contained in J has a vanishing divergence and that
the D-component of J also vanishes, see for example [167]. This means that terms which cou-
ple the conserved-current multiplet to the visible sector do not generate any soft masses. This
mechanism of soft masses cancellation is called mild sequestering [29] and was first introduced
in the context of conformal sequestering where the current operators proved to be problem-
atic to suppress via large running effect since they are characterised by a vanishing anomalous
dimension forbidding them to run [28].

The vanishing of the F' and D components of J* are summarised in the following two

equations :

JUp=0 & X, =0,

- (8.11)
Jp =0 & ViX,FiFi=0.

These equations may also be obtained by expressing the superpotential invariance for the first

one and by multiplying the first one by W?V; and using the stationarity condition W™V,;W,, =
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0 for the second one. This second procedure has the advantage of being simple to generalise
when considering SUGRA theories [35]. In the latter the Kéhler potential and superpotential
variations under d¢° = A®X? are not independent : 6K = A*f, + A®f, and 6W = e~ A" fa ¥/
meaning that G = K + log |IW|? has to be invariant under the symmetry.

The scalar potential in SUGRA theories has been derived in section 4.3 and reads :
V =% (GG - 3). (8.12)

The cosmological constant is set to zero by tuning G;G* = 3 at the minimum while the sta-

tionarity condition reads G; + G7 ViG; = 0. Recall also that the auxiliary fields are given by

F' = —e%/2G* and that the gravitino mass is my/, = /2. The G invariance then directly
leads to Re(G; X?) = 0 which implies :
Xaij = —ZC\\S‘ID(GZXZL)TTL?)/Q (813)

while acting with the operator G*V; on the invariance condition and using the stationarity

condition gives :
ViXaF'F) = 2iSm(G X )m3 5. (8.14)

From the last two equations we conclude that the identities responsible for the mild-sequestering
mechanism get modified in presence of gravity, leading to the question of the effectiveness of
such a mechanism in the context of local SUSY. In Chapter 6 a careful inspection of the sigma-
model metric lead us to the knowledge of the second derivatives of the function G. However
such an information does not allow us to reconstruct the whole of G, indeed terms that can be
written as the sum of an holomorphic with an antiholomorphic function will not be captured.
We thus define the result coming from the sigma-model metric inspection to be the Kahler
potential K since all the terms we miss can be recast in a superpotential. This amounts to
fixing a Kihler gauge in which the variation under a symmetry are given by 6K = A®f, +A%f,
and dW = e A" faW. We can now rewrite G; X' as :

WX

W

We may thus rewrite the equations (8.13) and (8.14) as :

Gi X! = K; X! + =K X! — fa. (8.15)
Xo;F? = iDgms s and VX F'FV = —2iD,m3 /o (8.16)

where we have introduced D, = —Sm(G;X!) = —Sm(K; X! — f,). This notation reflects the

fact that the D,’s are the Killing potentials for the X!’s :
iViDg = Xy and  —iV,Dy = Xy (8.17)

In order for mild-sequestering to be at work, the D, have to vanish or to be negligible. We
will thus concentrate on symmetries which do not involve f, shifts and which are such that
K X! =0.
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8.2 Soft Scalar Masses

Let us now come to the crucial question of what are the properties of soft scalar masses in
the effective theories for heterotic string models compactified on a generic Calabi-Yau mani-
fold with a generic stable holomorphic vector bundle over it, in the presence of some source
of supersymmetry-breaking. We shall restrict our analysis to the Kahler moduli and matter
fields, for which we know the form of the Kéhler potential, and to the neighbourhood of the
reference point introduced in the last section, by assuming that the superpotential that induces
supersymmetry-breaking is such that the scalar VEVs of the moduli and matter scalar fields
are respectively generic and small. We will first work out the general structure of the soft scalar
masses and then study the possibility of ensuring the vanishing of these masses with the help

of some kind of global symmetry.

8.2.1 Structure of Scalar Masses

Our starting point is the effective Kahler potential (7.72), which is characterised by the two
constants d4pc and c‘;‘,Q. Since we want to study soft terms at the particular reference point
(7.77) introduced in Chapter 6, it will be convenient to switch to the canonical parametrisation
that we defined there. From now on, we shall for simplicity drop all the hats on the redefined
parameters and fields, and also the brackets denoting VEVs at the reference point. It will
moreover be convenient to further redefine T = 7°/+/3 and correspondingly J = J°/4/3, and
to explicitly split the matter fields ®% into two sets Q and X respectively coming from the
two Fg factors. The visible sector is then identified with the fields Q“ and the hidden sector

generically contains all the remaining fields X*, T, T, and the Kihler potential becomes :

.1 1
K = —log <J3 =T+ 6dabCJ“JbJC> (8.18)
where :
J=T+T EQO‘QQ }XiXi
B 3 3 ’ (8.19)

JO=T"+T - c25Q°Q% — ¢, X' X7.

Let us now study this expression around the point under consideration given by (7.77), which

when expressed in the new coordinates sits at :

T = T =0, Q=0 and X'=0. (8.20)

1
3
Note that at this point the only non-vanishing component of the first derivative of K is along
the T direction, so that K, = 0, K; = 0 and K, = 0. Under the mild restriction that the
considered symmetry should not act on 7" and should not involve Kéhler shifts, meaning that
both kI = 0 and f, = 0 should be satisfied, one gets D, = 0. Under this assumption, one can
then use the rigid version of (8.16).
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At the point under consideration the metric takes a diagonal form, the only non-vanishing

entries being given by :

917 =3, Gap =0aby  Gog =0%ap  and gz =iy (8.21)
The Christoffel connection non-vanishing components are found to be given by :

Tppp=—6, Tpup=—20a, Tupp = —206a,
TTrT Tab b bT b (822)

Pave = —dabe, U'rpg = —0pPg. T'apg = —Cchg-
The components of the Riemann tensor that are relevant for soft scalar terms, with a pair of
indices along the visible sector fields and the other pair along the hidden sector fields, are then
found to be :
1 a

R.gi; = §5aﬂ5ij + copCi Rogrr = daps
(8.23)

2 .
A R

We are now in position to finally compute the soft scalar masses induced for the visible-sector
fields Q® when the hidden-sector fields ®® = X? T,T% get non-vanishing auxiliary fields, at
the reference point under consideration. This can be done by using the geometrical expression

derived in section 4.5 :

1 .
ml;=— (RQB@F — 3[(&51(@) FOFT. (8.24)
Using the results (8.21) and (8.23) for the metric and the Riemann tensor at the point under
consideration, this gives :
S 1 _
2 a a poi c a_ b a b
mez=— gt F'FI — | =0080ab + (dapec® — cc Q)FF
of BCij ( 3008 ( Jas (8.25)
- CZBF“FT +c.c.

which is our most important result since it takes into account both brane-to-brane and moduli
effects. As promised in Chapter 6, we now reintroduce the dilaton term whose Kéhler potential

reads :
K = —log(S + S). (8.26)
If the dilaton is fixed by some mechanism at, say, (S) = 1/2, its contribution to the masses

(8.25) is simply given by :

1 _
Amig = g5aﬁFSFS (8.27)

since the Riemann terms with both visible and dilaton indices vanishes and where we have used

Kgs = (S+5)~2. Note that the dilaton contribution to the soft scalar masses does not induce
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flavour-changing neutral currents since it is diagonal in flavour space [73]. One could then
wonder whether a situation in which the dilaton is the only source of supersymmetry-breaking
can be engineered. It turns out that the requirement of metastability makes it impossible for
the dilaton to dominate SUSY breaking as shown in [128, 168-170].

The structure of the soft scalar masses (8.25) can also be understood in terms of ordinary

Superfields. To do so, one considers the kinetic function Q = —3e~ /3

, which is the gravita-
tional analogue of the rigid Kéhler potential. At the considered reference point, it is sufficient
to expand it at cubic order in J* <« J. In this way one finds :

1JgeJje 1 JeJgbe

Q~— - — —dgpe——5—
3457 ~ gl

(8.28)

The relevant terms are selected by decomposing the fields in scalar VEVs plus fluctuations, so
that J =1+ J and J* = J°, and retaining up to cubic terms in an expansion in powers of the
fluctuations. This yields Q = —3 + Q with :

O~ 374 %jaja - %jjaja - édabcjajbjc. (8.29)
The soft scalar masses can then be computed by looking at the quadratic part of the contribution
to the scalar potential from Q: L2 = —Q‘D’qz. The various terms in (8.25) thus emerge as
follows from Q\ D, after splitting the currents into visible-sector and hidden-sector parts. The
term —c? 4¢f; F* F7 comes from JJ& p, the term —1/3 8430, F*F? comes from —J, | J¢| pJ2| 5,
the term —cgﬂF“F'T—l—c.c. comes from —Jp,| 7 J%|J%| F +c.c., the term (c*c?) a5 F*EF? comes from
the combination of —3 J,|p and J%|pJ¢| 7 +c.c., and finally the term —dubcchFbFE comes from

_dabcjg‘j}l”Fj}ﬂF'

8.2.2 Sequestering by Global Symmetries

From the form of the expression (8.25), we can deduce the following observations. In the
particular case where h'! = 1, the soft scalar masses vanish identically, even in the presence
of generic non-vanishing values for FT and F?. This is the well known situation arising in
sequestered models. In the general case where h'! > 1, on the contrary, the soft scalar masses
receive non-trivial contributions in the presence of generic non-vanishing values of F7, F* and
F*. However, these contributions involve very special combinations of these auxiliary fields,
controlled by the quantities dqp. and the matrices ¢ 3 and cfj. One may then wonder whether
it is possible to ensure that these combinations of auxiliary fields vanish, so that the soft scalar
masses would again vanish, by assuming that some approximate global symmetry of the Kahler
potential K is extended to constrain also the superpotential W and therefore the Goldstino
direction. It would also be interesting to study what constraints are put on the Goldstino
direction by the requirement that there should exist a metastable supersymmetry-breaking
vacuum, generalising the results derived in [171] for Kahler moduli to include also matter fields,

but we shall not attempt to do this here.
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From the results derived in the previous subsection, and taking into account that the scalar
VEVs of the fields 7% and X* are assumed to be negligible, we see that a simple and general

possibility to get vanishing soft scalar masses is to require that :
¢ F'FI =0 and F*=0. (8.30)

These two relations clearly have the form of the two D and F type Ward identities that would

be implied by the conservation of the following currents :
Ji=T"+ T — ¢, X' X/. (8.31)

Notice however that one might also view the two relations (8.30) as emerging from the conser-
vation of the following two independent currents, which each lead to only one non-trivial Ward

identity, respectively the D and F' type one :
Jix = —c,X'X7 and  Jip =T+ T" (8.32)

This follows form the observation that at the considered vacuum reference point one finds
Jix|p = Jilp, Jix|r =0, Jip[p = 0 and Jiip[r = Jii|p.

The question is now whether it is possible to engineer a symmetry whose currents correspond
to Ji or to the pair of currents Jiiy and J. In order to simplify the discussion let us start by

investigating the leading quadratic part of K which concerns the X* and T fields :
1 _ _ .
K~ 5(T“+T“)(T“+T“) + X' X", (8.33)

In order to match (8.9) with the two partial currents (8.32), we would then respectively need
to take X! ~ —ic?in for the matter fields X* and X? ~ i6% for the moduli fields 7%. These
Killing vectors define two sets of transformations that independently leave the leading Kahler

potential (8.33) invariant :
6. X" =X} ~—icy; X7 and 5T = X} ~id} (8.34)

since the ¢* matrices are Hermitian. The next question is whether the transformations (8.34)
are eligible to represent an approximate global symmetry of K around the vacuum reference
point under consideration or not. A first condition is that the matrices ¢* should form a closed
algebra with [c?, ¢®] = —i fupec®. In this way the X transformations would form an algebra with
structure constants f,;. associated to a group H, while the T® transformations automatically
form an Abelian algebra associated to U (l)hl’l’l. A second condition is that higher order terms
in K should have an unimportant effect and that it should somehow be meaningful to impose
to W a symmetry that only leaves the leading quadratic part of K invariant. One possibility is
that the corrections spoil the symmetries (8.34) but only in a parametrically suppressed way.
It is however not clear whether this can robustly happen. A more appealing possibility is that

(8.34) can be extended to exact symmetries of the full scalar manifold, thereby guaranteeing
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the existence of exactly conserved currents which reduce to (8.32) in the vicinity of the point
under consideration.

We notice however that from the form of K given in (8.18) the symmetry acting on X* may
only be generalised to an exact symmetry by extending it to act linearly on the T%’s in the
adjoint representation of H and only if the dg;. corresponds to an invariant of H, while the
symmetry acting on T is always an exact symmetry. The exact conserved currents differ from
(8.32), on one hand because of the extension in the symmetry action and on the other hand
because of the Kéahler potential non-linearity. However, taken together they still ensure that
¢; F'F7 =0 and F* = 0, which guarantee the vanishing of the soft scalar masses.

In addition to the general possibility that we just explored, there might also be other options
that arise in specific situations. For instance, the three terms of the second piece in (8.25) may
conspire to give a simpler structure, and one might try to exploit this in the search for a different
global symmetry that could ensure the vanishing of soft masses by constraining the F*’s but
without setting them all to zero. In such a case one would however have to assume that FT
vanishes to get rid of the last piece in (8.25).

Let us now study more specifically what are the options for both Calabi-Yau models and
orbifold models, focusing for simplicity on models with a symmetric embedding in the visible

and hidden sectors, for which the set of matrices cj 5 and cf; are identical.

8.2.3 Calabi-Yau Models

For generic Calabi-Yau models, the intersection numbers dqp. and the Hermitian matrices c% 3
or equivalently cf; are a priori generic, witha =1, | h''—1and a,B,4,5 =1,--- ,ng with the
restriction that the matrices ¢® and ¢ may always be written as transposed linear combinations
of the n% matrices A representing the U(ngr) generators in the fundamental representation.
As remarked at the end of section 7.4, a further property that could conceivably arise in some
situations to determine is that these matrices might be traceless. In that case they could then
be expressed in terms of the ng — 1 traceless generators of SU(ngr). On the other hand, further
restrictions leading to yet smaller subgroups H’ seem less likely, and the minimal case where
the matrices c® themselves generate a group H of dimension h'' —1 appears to be very special.

Consider first the brane-mediated effect corresponding to the first term of (8.25). If the
matrices ¢® happen to be transposed linear combinations of the generators A% of some group
H' C U(ngr), we may ensure the vanishing of this contribution by imposing the global symmetry
H' that acts as in (8.34) but with cf; replaced by )\f]/ D b X = —i )\%Xj. This is still
an approximate symmetry of K and leads to the conservation of the larger set of currents
Jﬁ‘;( = —X;;X X9, which implies the stronger Ward identity )\‘;; F'FJ = 0. The maximal choice
H' = U(ng) is available for any generic model, but has the drawback that it would actually
imply F* = 0, due to the completeness relation /\fj/ )\;; = 0;q0p;. Other non-maximal choices
H' C U(ngr) are instead available only in particular models, but have the advantage of allowing

F' £ 0. Notice finally that such an approximate symmetry group H’ can in general not be
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extended to an exact symmetry of the full scalar manifold. The only very special case where
this is possible is when the ¢® generate by themselves a minimal group H of dimension A —1
and the intersection numbers d;. are invariant under this group H.

Consider next the moduli-mediated effect corresponding to the remaining terms of (8.25). In
general one may ensure that these vanish by imposing the independent Abelian global symmetry
U(l)hl’l_1 acting as in (8.34) : §,7% = i62. This symmetry leads to the conservation of the
currents J&, = T% + T?, and the corresponding F type Ward identity implies that F* = 0.
Moreover it always corresponds to an exact symmetry of the full scalar manifold. Notice finally
that in this case it is rather unlikely that the second piece of (8.25) could simplify dramatically
enough to allow for other options.

We conclude that for smooth Calabi-Yau compactifications there generically exists the pos-
sibility of ensuring the vanishing of soft scalar masses at points with negligible VEVs for X* and
T by imposing the approximate global symmetry U(ng) x U(l)hl’l_l, where the first factor
acts linearly on the X* and the second acts as a shift on the 7¢. However, this forces both
the F* and the F® to vanish, meaning that there is actually no breaking of Supersymmetry at
all. Moreover, it is not a true symmetry of the full scalar manifold. A more interesting situ-
ation may be obtained in the special cases where the matrices ¢® generate some non-maximal
subgroup H C U(ngr). In such a situation, the F* would be constrained but not forced to
vanish, although the F'* would still vanish, and Supersymmetry can be broken. Moreover, this
symmetry can be extended to a true symmetry of the full scalar manifold that still implies the

vanishing of the scalar masses.

8.2.4 Orbifold Models

For orbifold models, the intersection numbers dq. and the matrices cf s or equivalently ¢f;, with
a=1,---,h%" —1and o, B,i,j = 1,2,3, are a respectively the symmetric invariant symbol
and the transposed tridimensional representation of the generators of a group H C SU(3).

Moreover, one can easily verify that the second term in (8.25) simplifies to :

1 1

géalgéab —+ (dabCCC — Cacb)aﬁ = (Cbca)ag — g(;ab(sag (835)
which is traceless. As a result, the mass matrix (8.25) is traceless and depends only on h:! —1
2

ij°

Consider first the first brane-mediated term in (8.25). In this case, this can be ensured to

independent parameters, which can be taken to be cj;m

vanish by imposing the global symmetry H acting as in (8.34) : §,X* = —iA{;X7. This leads
to the conservation of the currents Jiiy = —A%, X" X7, which implies the D type Ward identity
NG F ‘[ = 0. Moreover, this approximate symmetry can be extended to an exact symmetry
of the full manifold by assigning a non-trivial linear transformation law to the fields T in
the adjoint representation of H. Notice finally that in this case one does not have the option

of enlarging the symmetry to a bigger group H' C U(ngr), because the various generations
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are grouped into triplets transforming in the fundamental representation of the gauge group
enhancement factor, which happens to coincide with H.

Consider next the remaining moduli-mediated terms in (8.25). In general, we may again
ensure the vanishing of these terms by imposing an independent Abelian global symmetry
U(1)""' =1 acting as in (8.34) : 6,7° = i6?. This leads to the conservation of the currents
S =T+ T, which implies the F type Ward identity F® = 0. Moreover, this symmetry is
actually as before an exact symmetry of the full scalar manifold. Notice finally that in this case
the second piece of (8.25) actually simplifies to (dape + 7 fape) FOF°.

We conclude that for toroidal orbifold compactifications there always exists the possibility
of ensuring the vanishing of soft scalar masses at points with negligible VEVs for X* and T° by
imposing the approximate global symmetry H x U (1)h1'1*1, where the first factor acts linearly
on the X* and the second factor acts as a shift on the 7%. In this situation, the F** would be
constrained but not forced to vanish, although the F'* would still vanish, and Supersymmetry
can be broken. Moreover, this symmetry can be extended to a true symmetry of the full scalar

manifold that still implies the vanishing of the scalar masses.
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Chapter 9

Conclusion

Le doute est un hommage rendu a [’espoir.

Comte de Lautréamont
9.1 Summary

In this work we have shown the feasibility of implementing a mechanism to suppress the classical-
level soft mass terms appearing when breaking Supersymmetry in the Fg x Eg Heterotic M-
Theory setup. The strategy we have developed has been shown to work for singular compact-
ification manifolds together with a subset of Calabi-Yau manifolds provided with a stable and
holomorphic vector bundle. Let us briefly summarise the steps we have followed together with
the assumptions we had to do.

We have first chosen to concentrate on the low energy effective theory describing the dy-
namics of the Kahler moduli, discarding the complex structure moduli, and of charged matter
fields present on both the Eg end-of-the-world branes. We were able to derive the Kéahler po-
tential describing the interactions among the fields of the observable sector with the ones of
the hidden sector, i.e. with the Kéhler moduli and the charged matter field present on the
distant brane. We have then computed the soft masses under the assumptions that the hidden
sector fields auxiliary components acquire a non-vanishing vacuum expectation value due to
some unspecified superpotential.

However in order to derive the Kéhler potential we had to assume that the quantities
cpg = iTr (up A tig) describing the product of matter fields are harmonic with respect to the
derivative defined on the Calabi-Yau. From both the four-dimensional picture and the five-
dimensional picture arising from M-Theory compactified on a Calabi-Yau, this requirement is
traced back to the condition of a proper decoupling of the heavy modes.

Under the assumption that the cpg forms are harmonic, the Kahler potential depends on
two quantities : the coefficients cﬁQ of cpg when developed on a basis of harmonic forms w4 and
dapc which are the intersection numbers of the Calabi-Yau. The possibility of implementing
a symmetry forbidding the appearance of soft scalar mass terms at the classical level depends

on properties of both these two quantities. In the particular case of singular compactification
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manifolds, i.e. orbifolds, both these quantities have a group-theoretical interpretation. Indeed,
the cﬁQ’s are shown to be the generators of a group U(1) x H C U(3) while d4p¢ is a symmetric
invariant symbol of the latter and the scalar manifold is found to be a symmetric Kéahler
manifold. Since the quantities c‘gQ and d s pc are tightly constrained in the case of the untwisted
sector of orbifold compactification, there exists a global symmetry of the Kahler potential which
effectively forbids the phenomenologically dangerous soft mass operators if extended to the
superpotential.

In the more general case of smooth Calabi-Yau compactifications, the quantities cl‘éQ and
dapc controlling the Kéhler potential do not have any group-theoretical interpretations and
the scalar manifold is not a symmetric one anymore. Only under the restrictive assumptions
that céQ and d4pc respectively are the generators and an invariant of a subgroup of U(3), the

strategy we devised to suppress the soft masses can be implemented.

9.2 Future Directions

As discussed in the previous section, our work has been done in the context of Heterotic M-
Theory under some assumptions. Let us review the most relevant ones and describe how our

results may be generalised were these assumptions to be abandoned :

o Background Fluzes : In the case of smooth compactifications, we have focused on back-
grounds which do not admit large fluxes, i.e. the compactification manifold may be taken
as being a Calabi-Yau. Relaxing this assumption would lead to non-Kéhler compactifica-
tion manifolds for which the identification of the zero-modes of the internal wave operator

is not yet a settled issue.

o Complex Structure Moduli : For simplicity we have discarded the h%! complex structure
moduli. The Kahler potential for those fields is known at zeroth order in the matter
fields. A generalisation such as the one we have performed for Kéhler moduli where we
have included the possibility for the matter fields to take a vacuum expectation value

would be a first natural extension of our work.

o Properties of cpg : As emphasised in the previous section, the derivation of the effective
Kéhler potential in a closed form strongly relies on the fact that the cpg’s are harmonic
forms with constant coefficients céQ. The relaxation of this assumptions certainly has to
do with the proper decoupling of heavy modes. A study of the feasibility of writing down
the Kahler potential in closed form without this assumption would certainly be of great

interest.

o Properties of c’;‘,Q and dapc : Since the implementation of mild sequestering relies on some
properties of both céQ and dapc, it would be interesting to determine how restrictive
these assumptions are and whether they naturally emerge in some scenario, besides the

already mentioned special cases of single-modulus Calabi-Yau and orbifolds.



Appendix A

Notations and Conventions

In this Appendix we would like to settle the notations and conventions we will be using in this

work.

Metric The metric we will be using is the mostly plus one, in order to facilitate the comparison
with the standard SUSY literature and with [54] :

n =diag(—1,+1,...,+1). (A1)

Pauli Matrices and Antisymmetric Symbols The Pauli Matrices are the standard ones where

the spinorial indices are understood to be downstairs :

025 = Pauli Matrices. (A.2)

They are supplied with ¢® = —1,. Note the sign which when taken to be the opposite changes
the sign in front of the {Q,Q} algebra. Spinorial indices are raised and lowered using the
SL(2,C)-invariant € symbols :

o = ey = —e = e = <(1) 01> , (A.3)

Lower Index Derivative Notation When dealing with Supersymmetry, one often abbreviates
the derivatives with respect to a Superfield or to a field by putting a lower index on the derived
quantity :
ov
oDt

Moreover one may define a metric out of the second derivative of the Kéahler potential :

— Vi (A4)

2K
e K’f
0Di0Di

whose properties are worked out in Appendix B.2.4.

(A.5)
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Appendix B

Complex Manifolds, Kahler
Geometry and Calabi-Yau Manifolds

In this Appendix we will review some basic features of Riemannian Geometry and then explain
how to make sense of those when dealing with complex manifolds. Some standard references
are Nakahara’s book [62] and [172].

B.1 Riemannian Geometry

B.1.1 Tangent Space, Cotangent Space and Forms

Let us first remind what a differentiable manifold is :

Differentiable Manifold A m-dimensional manifold is said to be differentiable if it is a topo-
logical space provided with charts (U, ¢;) where the {U;} are a family of open sets which cover
the manifold and the {y;} are homeomorphisms from U; to an open subset of R™. Furthermore
the transition functions ¢; o goj_l have to be infinitely differentiable provided that the ¢; and
¢, domains of definition do overlap.

Note that in many places we will speak about differentiability of maps between manifolds X
and Y. What is to be understood is the following. Consider the charts (Ux, ¢x) and (Uy, ¢y)
associated with the X and Y manifolds. Then to a map f from X to Y we can associate the
function F' = ¢y o fo gp)_(l which goes from RI™(X) to RU™(Y)  The notions of differentiability
and continuity of f are then to be understood as the properties satisfied by F'. If we now imagine
that the Y manifold is given by R, then ¢y is simply given by the identity and F' = f o gp;(l is
defined from R¥™(X) to R. This is how a function is defined on M.

We are now ready to define curves on a manifold M. Let us add an interval (—a,b) with
both a and b strictly positive to our setup and a map «(t) from this interval to the manifold M.
Varying ¢ in the (—a,b) interval draws a curve on the manifold M. This curve will be called

~(t). To the curve on the manifold one can associate a coordinate representation 7 o ¢ where ¢
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is the homeomorphism associated with the open set where the curve is traced on the manifold.

Thus 7 o ¢ is a function of R (or a subset of it) and takes its value in R™.

We are now equipped to define the tangent space of a manifold. Intuitively the tangent

space is a vector space which is fixed to the manifold M at a point p such that its normal

vector coincides with the one of the manifold. Such a space is usually denoted by T,,A/. More

precisely, let us consider the following setup :

| Rm

The aim is now to quantify how much f computed on the curve (t) varies when varying the

parameter t. The corresponding mathematical quantity computed at the point p = (0) € M

is given by :
df(y@#)|  _ d(foptopoy)|  d(fop!) dut(y(t))
da |, dt o dzr dt —0

1

We now introduce the following notation where the ¢~ is dropped for clarity :

0
X=Xt~ AN
oxH - dt

(B.1)

(B.2)

which defines X*. X is called a tangent vector to M along the curve (t) at point p = (0).
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Tangent Space T,\/ The tangent space at p in determined as follows. First find all the curves
on M passing at p and adjust the (—a, b) parameters such that they do so at t = 0. The tangent
space at p is the vector space spanned by all the X’s corresponding to those curves.

Having defined the tangent space, it is now natural to define the cotangent space which consists
of linear functions from 7, M to R. As ususal in the context of dual spaces, the tangent space
is denoted by T,y M. We now need to specify the action of an element of 77 M on an element
of T,M. To do so we introduce a basis dual to the 9/9x* basis of T, M which we will denote
by dx*. Its action is defined to be :

dzt . T,M — R,

5 (B.3)

oxY

s,

Let us illustrate this by an example. Let X € T, M and Y € Ty M. One can decompose both
of them on their basis : X = X#09, and Y =Y, dz*. Then the action of Y on X is given by :

Y (X) =Y, X"da"(d,) = Y, X", (B.4)

An element of the dual of T}, M is called a one-form. As the name suggests it, one may define
p—forms and tensors. A p—form and a (p, ¢)-tensor are respectively belonging to the following

spaces :

p p q
ANTM  and  QQT,MQT; M (B.5)
i=1 i=1 j=1

where the A-product antisymmetrises the ®-product. For example dz* A dz¥ = dz* ® dz¥ —

dz” @ dz*. A general p—form is conventionally written as

1 . .
A= *Ail i dx"™ A - Ndzx'? (BG)

Ain.i
where A;, ;, = Aj,..i,)- The product of two forms is simply given by A A B. The exterior
derivative maps p—forms to (p + 1)—forms and acts as :

1 ) )
QA = 100 sy iyda® W™ Ao N, (B.7)

Due to the antisymmetry of the A—product, the exterior derivative is a nilpotent operator :
d? =0.
B.1.2 The Metric

We are now going to introduce a (0,2)—tensor which will allow us to talk about covariant

derivatives, geodesics, etc. ..
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The Metric The metric g is a symmetric and non-degenerate (0,2)-tensor. Let X and Y
belong to T, M, then g(X,Y) = g(Y, X) (symmetric) and if g(X,Y) =0 for all Y’s then X =0
(non-degenerate). In components, the metric is written g = g, dz* ® da” which will always
be written as ds? = g, dz"dz”, leaving the symbol g to denote the determinant of g, seen as
matrix.

In order to compare vectors belonging to two tangent spaces T, M and T, M one needs a method
to transport a vector from T, M to T, M. This is of crucial importance if one wants to take the
derivative of a vector, process which involves the subtraction of this vector evaluated at two
different points. In order to define such a derivative, one introduces the affine connection V
which takes two vectors X and Y and maps them to another vector VxY. This imposes that
the vector basis satisfy Vg, 0, = Fﬁlﬁp. In order to illustrate how V acts on vectors, let us
expand X and Y as X = X#0, and Y = Y#0,. Then one has :

VxY = X'V, (YV0,) = X* (0,Y"0, + vaauay) = X" (0,Y" + Y’wa) Op. (B.8)
A commonly adopted notation for covariant derivatives is the following :
V. Y"=0,Y"+1T, Y (B.9)

where V, = V. The affine connection may be extended such that it can be applied to general
tensors and obey the Leibniz rule. In such a case one can easily compute the covariant derivative

of dz* :

0=Va(d2?(0p)) = (Vada® +T5,dz7) 95 (B.10)
leading to the covariant derivative of one-forms :

V.Y, =0.Y, -T7Y,. (B.11)

Up to this point the coefficients I'f,, are arbitrary.

Compatible and Levi-Civita Connections The connection is said to be compatible with the
metric if the covariant derivative of the metric vanishes : Vg, = 0. If the connection

coeflicients satisfy I'/,, = I'} , then the associated connection V is called Levi-Civita connection.

The last object to be introduced is the Riemann tensor constructed out of the metric. It is
defined as follows :

R(X,Y)Z =VxVyZ ~VyVxZ —VixyZ (B.12)

where the brackets stand for the Lie bracket of X and Y : [X,Y] = LxY. Note that the

combination [X, Y] is also a vector field :

LxY = [X,Y] = XY —YX = [X¥(,Y") = Y*(0,X")] D, (B.13)
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B.1.3 Inner Product and Adjoints

Having the metric at our disposal, we define a new operations on forms.

Hodge Duality Given a p—form A defined on a m—dimensional manifold M,

1

A== Ay, datt N N datt (B.14)
p!

one defines its Hodge dual as

A = p!(m@ A T TN At (B.15)

where the indices on the e—symbol were raised with the metric.

Let us now show that the operator *x acts as a scalar multiplication on forms. The two following

properties of the e— symbol will be of great use to derive this result :

6#1‘“#7" = g‘ull/l e ngVmeu

1o Um
o 1v muv.
- 6#1...[1.mg ! s g ”LEVl...l/m (B.lﬁ)
— —1
= €uy.ep, det (g )
and
— ] S¥pt+1 Vm
6”1"'/‘1’”;}#»1"'#777, eﬂl-uﬂpl’p«i»l'nl’nL =Dp: 6[“p+1 e Mm] (B'17)

where the antisymmetrisation is defined without numerical factors and where we have written

the v indices upstairs to ease the reading, there are no metrics involved here. We thus find :

9 K1 Hpt1--fm v v
¥x A= —= A € i, m€ " v V,dxl/\"‘/\dl'p
p'p!(m _p)l H1..-Hp Hp4+1---fm 1..-Vp
(e B.18
- mAl‘l--%4176#1"'Hm€D1~.-Vpup+1...,umdxyl A ANdatr ( )
= (_1)p(m—p)A_

We are now in a position to define a scalar product on forms. Let A and B be p—forms,

then the following operation satisfies all properties of a scalar product :
(A,B) = / ANxB (B.19)
M

With this scalar product we can define the adjoint of the exterior derivative d by imposing the

following to hold :
(dA,B) = (A,d'B) (B.20)

for A a p—form and B a (p — 1)—form. The operator df thus maps p—forms to (p — 1)—forms

and, as it is the case for d, is a nilpotent operator : dt* = 0. The operator ddf thus maps
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p—forms to p—forms. For a manifold M without boundary, using Stokes’ theorem, one can

easily show that df oc *dx. Indeed :

0:/ d(A/\*B):/ dAA*B+ (—-1)PAANd* B
M M

(B.21)
= (dA, B) + (=1)"PT™ YA xd * B).
We define the Laplacian A as :
A= (d+d)?* = dd +did. (B.22)
Note that the Laplacian takes p-forms to p-forms and commutes with both d and * :
[A,d]=0 and [A, ] =0. (B.23)

From the definition of A and from the positivity of the scalar product, we conclude that the

following quantity
(A, AA) = (dA,dA) + (dTA,dT A) (B.24)

is always positive. This equality also tells us that a form is harmonic if and only if it is both

closed and co-closed :
AA=0 RS dA=0 and d'A=0. (B.25)

Let us examine how harmonicity restricts the components of a 1-form A = A,dz*. The fact

that is it closed simply gives

dA=0 — 0 Aydxt Ndz¥ =0 — 0, A, =0,A,. (B.26)
The fact that A is co-closed gives after a little algebra

dfA=0 - 9,(/gg"™A)=0 — VA" =0. (B.27)

Note that a form A can be closed because it is itself the d of another form : A = dB. Such forms
are eract. One may then define the de Rahm cohomology as the vector space whose elements
are the equivalence classes of closed over exact p—forms : A’ € [A] if IB| A’ = A+ dB. If such

a (p — 1)-form exists, A and A’ are said to be cohomologous. Schematically one writes :
H? = {A p-forms|dA = 0}/{Ap-forms| 3 B such that A = dB}. (B.28)

The dimension of the HP seen as a vector space is denoted by bP and is called the Betti number.
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B.2 Complex Manifolds

B.2.1 Tangent Space, Cotangent Space and Forms

Certain differentiable manifolds of even dimension can be viewed as complex manifolds. In
order to define a complex manifold M with dimM = 2n, the axioms defining a usual manifold
have to be supplemented by the requirement that the map between different open sets covering
the manifold has to be holomorphic in z#* = z* + iy* where the z*’s and y*’s are coordinates
of the manifold seen as a 2n—dimensional manifold. The tangent space T,M of a complex
manifold M is spanned by the 2n vectors 9/da* where a = {x,y}. The cotangent space is then
spanned by da* where again a = {x,y}.

The vector basis on T}, M is given by :

0 1/ 0 0 0 o \"
— === —1 d == . B.2
R <8x“ Z@y“) R (82“) (B-29)
Its dual basis is then simply given by dz#* = dz* + idy* and dz* = (dz*)*. The action of the
dual basis on the vector basis is given by : dz#(0/0z") = 0¥, dz*(0/0z") = 0, dz*(0/0z") =0
and dz*(0/0z") = 6. Note that :

"9 9 A
Z}ﬂ@ﬁ—z (B:30)

where A is the Laplacian in R?™.

The following real linear map is called the almost complex structure, it is defined by its action
on the 9/0a* vectors : J(0/dzx") = 9/0y* and J(9/0y") = —9/0x*. This map is naturally
extended to the z-basis : J(0/9z*) = i0/0z" and J(0/0z") = —id/Iz". One may thus view
the tangent space as the direct sum of two disjoint vector spaces depending on the eigenvalue
(i) of 7 :

T,M =T,M* & T,M". (B.31)

An element of T, M is said to be a holomorphic vector, and one of T, M~ an anti-holomorphic
vector. Note that one can further extend J to act on elements of Ty M as J(dz") = —idz" and
d(dz*) = idz* such that :

a6t =3 (a2 2 ) =ala=)

)
5o T 20 ( ) = 0. (B.32)

ozY

Differential forms can also be extended to complex manifolds. Viewed as a differentiable man-
ifold, M allows the definition of r—forms as (0,r) antisymmetrised tensors. A complex differ-
ential g-form is then defined as A = A; + iAs where both A; and A, are both g-forms. The
conjugate A is defined as A = A; —iAs. In order to track holomorphicity properties, one defines
the notion of bidegree. The most direct way of doing so is to attribute bidegree (1,0) to dz*
and bidegree (0,1) to dz*. In other words, the bidegree counts the number of dz* and dz*’s of
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a complex differential form. Then any complex g-form can be decomposed on forms of bidegree

(r,s) with the constraint r + s = ¢. One thus writes :

1

ﬁ,4,“,,,“,,1,1,,,,,5dz*“A- S ANdZHTANDZV N -ANdEYe . (BL33)
r:s!

A= Z Ay s where Aps =

r+s=q

In order to distinguish between vector indices in T, Mt and T, M ~, one usually bars the indices

belonging to the latter. For example, one often writes :
B = B, dz"" AN dz¥ — B = B,;dz" NdZ". (B.34)

The exterior derivative d maps p-forms into (p+ 1)-forms. The generalisation to complex forms

is straightfoward :
d=0+0 (B.35)

which takes an (r, s)-form to the sum of a (r+ 1, s)-form (via 9) and of a (r, s + 1)-form (via ).
These two operators are called Dolbeault operators. The usual property of exterior derivatives
of being nilpotent is here translated in 9> = 0, 9> = 0 and 09 + 90 = 0. The concept of
closedness (dA = 0) of a form is extended to the notions of holomorphicity (9A = 0) and anti-
holomorphicity (A = 0). The concept of exactness (A = dB) finds its generalisation in the
notions of d-exactness (A = OB) and of J-exactness (A = dB). In the context of real forms one
defines the de Rahm cohomology H9. The generalisation to complex forms is immediate and
is called Dolbeault cohomology. Of course, having two nilpotent operators at our disposal, one
can define both d-Dolbeault cohomology and 0-Dolbeaut cohomology. In practice, the (r,s)

0-Dolbeault cohomology will prove to be useful :
Hg’s) = {w (r, s)-forms | Ow = 0} /{w (r, s)-forms | 3 such that w = da}. (B.36)

The dimension of the H g’s) vector space is denoted by A"™* and is called the Hodge number.

B.2.2 The Metric

Let us now focus on the metric g on complex manifolds :
g = gu d2" ® dz¥ + g, dZ"' @ d2¥ + gup d2" @ dZ” + gpp dZ" ® dZ¥. (B.37)

The components of g on the basis consisting of the 0/0z#’s and 0/0z"’s are denoted by g,..,
9av, 9up and ggp and are symmetric by definition : g, = guu, 9ur = gou and gus = gop. The
metric is said to be Hermitian if it satisfies g(A, B) = g(J A, JB) where J is the above introduced

almost complex structure. The diagonal elements of an Hermitian metric vanish. Indeed :

0

9w = 9(04,0,) = 9(30,,30,) = —g(0y,0,) =0 where 0, = o

(B.38)
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It can be shown that a complex manifold always admits such a metric. We now turn our
attention to the notion of parallel transport. As the tangent space is the direct sum of T, M ™
and T,M~, one can define the parallel transport in such a way for the vectors of T, M* to
stay in T, M +. In other words, the connection is required to be compatible with the complex
structure. In order to satisfy these requirements, the only non-vanishing components of the
Christoffel symbols are the totally holomorphic and totally anti-holomorphic ones, i.e. Fﬁf, =0
for example. If in addition we require the connection to be compatible with the metric, it has

to satisfy the following equations :

! 5 !
Vop9ur = Opgu — '}, 900 =0 and Visgur = 0p9up — T559u5 = 0. (B.39)

These can be solved for the Christoffel symbols in terms of g and g~ ' :

ro, =9 0.9vs and  T7, =g 0agpm- (B.40)

Note that at this point the Christoffel symbols are not necessarily symmetric in their lower
indices. The antisymmetric part is closely related to the torsion defined by T'(A, B) = V4B —
VA — [A, B] where A = A'9; and B = B'0; where i can take both holomorphic and anti-

holomorphic values. For example, one finds :

T(04,0y) = Vydy — Vi — [0,0,]  ie.  Th, =Th, —Tf, (B.41)

pv

which is to say that a complex structure compatible metric is generally not torsionless.

B.2.3 Inner Product and Adjoints

Just as we have defined the Hodge * operation for real forms, we now extend it to complex

forms :

Hodge Duality Given a (r,s)—form A defined on a 2m—dimensional manifold M :

1 . , , .
A= @Ail...irjl...jsdzh A ANdz'" NdZIP NN dijs, (B42)
one defines its Hodge dual as :
fA = i (—1)=F V9
rl(m —r)lsl(m — s)!

i1~~-ir' ) J1-Js ] ]
4 lZT+1~~-anz, ]s+1-~.77n‘ (B43)
dz'mt N NdET NN AN d

Aiyivgrgs€
where the indices on the e—symbol were raised with the inverse metric. Note that the Hodge
dual transforms (r, s)—forms into (m — s, m — r)—forms.

This convention is chosen in such a way that fM x1 = fM Vgd*™x = V where g is the

metric in real coordinates which satisfies § = 22™¢ and where d*™z stands for dz' A - - - Adz?™.
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Indeed :

mi) (/g " "
*1 = Zm(f].) 2 €1 im €1 im /\ dz'e /\ dz7?
m!m!

a=1 b=1
m mm+1) 1 \/E 9 5 m Z.m i » (B.44)
=i T o €, G (FDZE N (d2f A d2)

i=1

= gd*™x.

We can now define a scalar product for complex forms. The following operations can be shown

to satisfy all the properties of a scalar product :
(A,B) = / AN xB. (B.45)
M

Just as in the context of real forms, the scalar product allows for a definition of the adjoints of

the operators 9 and 9 which are respectively denoted by 9 and o7 :
(0'A,B) = (A,0B)  and  (9'A,B) = (A,0B). (B.46)
In the context of complex differential forms, one may define several Laplacians :

A = (d+dh)?,
Ny = (9407, (B.47)
Ay = (9+01)

which are shown to be closely related for Kahler manifolds :

A =2Ap = 2A;. (B.48)

See [126] for the proof.

B.2.4 Kahler Manifolds

We now define a class of Hermitian complex manifolds that will be proven to be torsionless.
We first introduce the Kéhler form J : J(A, B) = g(JA, B). The elements of the Kéhler form

are given by :
JMV = 0, Julj = igu,j, JDH = _igﬂﬁ and Jﬂy =0. (B49)
One can thus write J as a (1,1)-form :

J = Jpdt @ dZ¥ + Jp,dZY @ d2M = igupd2t A dZY. (B.50)
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The Kéhler form may be used to compute the volume of a complex manifold. Indeed the

integral of J™ is given by :

%,_/

m times 1=1

1 v
JAN- NS = — P dz" A dz"
m./gﬂll Gl U /\ Z Z

m S\
I g,
- m' 6”1"'H7n€l/l""/m gﬂl”l g/»Wan, €

(B.51)
= 2m/det(gm—,)d2mx

= / VGd* ™

The complex manifolds whose Kéahler form are closed are called Kéhler manifolds. As already
mentioned, this condition is equivalent to the torsionless condition. Indeed dJ = 0 is equivalent

to :
OpGup dz° N dz" NdzZ¥ + 0pg,p d2° Ndz! NdZ¥ =0 (B.52)

which is to say that 8,9, is symmetric in its holomorphic indices and that d5¢,s is symmetric
in its anti-homolorphic ones. If we now look at how the Christoffel symbols are expressed

1 we immediately see that the Christoffel symbols are symmetric in their

through g and ¢~
lower indices provided the manifold is of the Kahler type and the manifold is thus torsionless.
Moreover, due to the properties mentioned above, one can introduce a Kéhler potential K from

which the metric is derived :

8pgm7 = augpﬂ —  Gup = aqu'/ }

Guv = auapK. (B53)
aﬁg;u? = 3&9@ —  Guo = 6DBM

Let us now turn to the Riemann tensor. Let us first assume the manifold to be Hermitian,
i.e. which do not necessarily satisfy dJ = 0. The Riemann tensor is defined as : R(A, B,C) =
VaVpC —VVAC — Viu pC where [A, B] is the Lie bracket and where X = X9, for X €
{A, B,C} where i can take both holomorphic and anti-holomorphic values. One can easily
work out the elements of the Riemann tensor. For example, the totally holomorphic element is

obtained as :
R(0,,0,,0,) =V,V, 0, -V,V,0,
= VMFIP,W@ —VVFP 0p

= (8,1%,) 0, + 0.1, 05 — (0,10,) 8, — I, '] 05 (B.54)
= (0.0, — o, I8 +Tg T0 —T7.I%.)0,
=R’ ,,0,

Note that in the torsionless case all the components of R can also be obtained as the quantity

appearing in the following type of commutator, which should remind us about the definition of
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the gauge field strength as the commutator of covariant derivatives ([D,, D,] o< F),,) :
ViV Vy=-R,V, =R, V, =979k, V, (B.55)

where we have used that the totally covariant Riemann tensor R, .. = g,c R is antisym-

v
metric in both the (p,7) and the (u, ) pairs and symmetric under the exchangewcb)f those pairs.

If we now apply this last definition of the Riemann tensor to the case of Kahler manifolds we
easily find that the only non-vanishing component of the Riemann tensor is R,,5,5 and its per-
mutations. Since the Christoffel symbols for Kahler manifolds are given by simple expressions,

the Riemann tensor itself is quite simple :
R,uﬂp& = 8;)85’9#17 - gaﬁapgluﬁa&gaf/- (B56)
The Ricci tensor is defined as R, = R*,,,;, = —0,05 log det(g,) and can be used to define the
Ricci form R = iR,;dz" A dz¥ = —iddlogdet(g,s). As d0d = (8 + 9)00 = 090 = —09* = 0,
the Ricci form is closed.
Let us now examine the restriction imposed by harmonicity on (1,1)-form such as A =
Aupdz* ANdz”. As already shown, harmonicity is equivalent to closeness and co-closeness. The

fact that A is closed, dA = 0, implies that both A and OA vanish. In components, this is
translated by :

= (040) A=0,A,5dz" Nd2" NdZ" + 0;A,5 dz° Nd2H NdZ” =0 (B.57)

which implies that 0,4, = 0, A, and 0;A,; = 05A4,;. The fact that A is co-closed, dfA
*d * A = 0, implies that both *0 * A and %0 x A vanish. After a little algebra one finds that
Vo' =0 and Vyo't =

From this discussion, we are now in position to show that g#”c,; is a constant given that

o is harmonic. Indeed its covariant derivative is given by :
Vo (g“pau,;) = g""V 0.0 = g""'V o, =V, (05“g,,5) =g,5V,u07" =0 (B.58)

and thus g"o,; is a constant since the covariant and usual derivatives coincide on scalars.

B.2.4.1 The Hodge Dual of Harmonic Forms

The Hodge dual of a harmonic form of bigradation (1,1) on a six-dimensional manifold M can
be written as [173] :

1
*0:—0/\J+4V</ o/\J/\J)J/\J. (B.59)

Proof :

*o = zgiawe‘ € o dz* Nd2P N dzP A dZ°

po

— det (955) 0 €pps€pap A2 Nd2P N dzP A dZ° (B.60)

i
= 4' eua/ge(gweypgecnag(;cgwgng dz® AN dzP NdzP A dz°.
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Using the identity of e-symbols :

(Sa,u, 5041/ (;ap
eaﬁyem,p:det 65# (5,31, (55p , (B.Gl)
Oyu Oy Oyp

one can easily bring the Hodge dual of ¢ to the following form :
1 _
xo=—o ANJ— 3 (™ Juw) J A J. (B.62)

Since o is assumed to be a harmonic form, 6”#.J,,; is a constant and can thus trivially be written

as :

_ 1 _ .
oM s = v / det (gaB) 9" oup Az Nd3z
M
1

(B.63)
where we have used the following relation to perform the second step :
_ _ 1
(M 1)ij =0, logdet M —  det M (M 1)” = iembejchachd. (B.64)

This finishes the proof.

B.2.4.2 Logarithmic Kahler Potentials

The Kahler potential from which the metric is derived does often take the form K = —nlogV
where V is a function of the coordinates and n € R. We adopt the conventional notation
where a lower index stands for the derivation with respect to the corresponding coordinate, e.g.
K, = 0K/0z" and where indices may be raised using the inverse metric, e.g. K" = KM K.
In the following expressions we will denote by V#” the inverse of V,,;. The derivatives of K

may then be written as :

V,
K = —nt
H n Vv ’
Vo V.V
Ky = —n—4+n-+t2r VI,V
8 vV & where 6= ——F". (B.65)
. vver 1 1 _ _ Vv
K = — + ———=VHPVV TV,
n ng—1
1 _
Kt = ———VHV,
0—1
Combining the first and last of these expressions leads to :
0
K,K¥=n (B.66)

0—1
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which controls the so-called no-scale property of the manifold. The Riemann tensor is found to

be given by :
1 n
R;,LD/)E‘ = ﬁ (K/JIIKp& + KME'K/)D) - VV;,LD/)B'

n 3 1

_ W (’I’LVMPBKO‘BVQI—,g + “VHPV175'> (B67)
n2 _ _

By, o
* V3 (Vupvﬁ&aKa Ve + VD&VupBKQBVO‘) ’

B.3 Calabi-Yau Manifolds and Vector Bundles over them

In this section, we review some notation and results concerning compact Calabi-Yau manifolds
X and holomorphic vector bundles V' over them. We will focus on those results that con-
cern more directly (1,1)-forms on X and 1-forms on X with values in V, since these are the
ingredients that we need to work out the results we are interested in.

Consider first a compact Calabi-Yau manifold X. The tangent and cotangent bundles T'X
and T* X have structure group SU (3), since this is the holonomy group characterising this kind
of manifolds. We can introduce a basis of h!'! independent harmonic (1,1) forms w4 on X,
which provide a basis for the cohomology group H'1(X) ~ H'(X,T*X). We next consider
the dual basis of (2,2) harmonic forms w* and the corresponding basis of 4-cycles 4, defined

in such a way that :

/wA/\wB:/ wB =68, (B.68)
X YA

We may then define the intersection numbers dspc, which are topological invariants of X

counting how many times a triplet of 4 cycles v, 4% and ~© intersect each other, as :
dABC:/ wa ANwp AN wc. (B.69)
X
Any harmonic (1, 1)-form o can be decomposed on the basis w4 as :
o =o0%wy (B.70)
with real components ¢ given by :
o / wl Ao (B.71)
X

The Hodge dual o is a (2,2)-form which is easily seen to be harmonic and can therefore be

decomposed onto the basis of w? as :
xo = oW (B.72)

with real components o4 given by :

UA:/ wa A *0. (B.73)
X
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There always exist at least one harmonic (1,1) form defining the Kéhler structure. As shown
in (B.44), the volume form %1 on X can be expressed as the exterior product of three Kéhler

forms J :
1
x1 = EJ/\ JNJ. (B.74)
Integrating this expression over X one deduces that the volume V' of X can be expressed as :

1
V:f/J/\J/\J. (B.75)
6Jx

As a consequence of the existence and the properties of J, the Hodge dual of any harmonic

(1,1)-form o on X can be expressed in the following way in terms of J as shown in B.2.4.1 :

1
x0=—-JNo+-— /U/\J/\J JNJ (B.76)
4V \ Jx

In particular, one has :
1
xJ = §J/\ J. (B.77)

Taking the exterior product of (B.76) with any other harmonic (1, 1) form p and integrating
over X, one further deduces that the natural positive-definite scalar product on the space of all

the harmonic (1, 1)-forms can be rewritten as :

1
/p/\*o:—/p/\a/\J—&——/p/\J/\J/a/\J/\J. (B.78)
X X 4V Jx X
In particular, one finds :
/J/\*J=3V,
X
1
/LUA/\*JZ*/MA/\J/\J, (B.79)
X 2 J/x

1
/wA/\*wB:f/wA/\wB/\J+— wA/\J/\J/ wp ANJ AN J.
X X 4V Jx X

Dividing by V and using the decomposition J = J4w,, which implies that wy = GJ/GJA7

these relations can also be rewritten in the following form :

1

1 0

1 2

Consider now a holomorphic vector bundle V over X, with structure group S. Out of this

we can define a whole family of vector bundles V,. associated to any representation r of S, by
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promoting the transition functions of V', which are matrices in the fundamental representation
of S, to the corresponding matrices in the representation r of S. We can then introduce a
basis of np harmonic 1-forms up taking values in the representation r of the Lie algebra of .S,
associated to the cohomology group H!(X,V;). By taking the exterior product of such a up
with a conjugate @y and tracing over the indices of the representation r, one may construct

(1,1)-forms on the Calabi-Yau manifold X, which however are generically not harmonic :
cpQ = iTr (’le A ﬂQ) . (BS].)

One may then define the following quantities, which are a priori not topological invariants and

depend in general on the geometry :
C}?,Q = / w Acepo. (B.82)
X

In the particular cases where the (1,1) forms c¢pg are harmonic, the quantities cf%Q represent
their components on the basis defined by the w4, and one may then write cpg = céQw 4. More
in general, one may write a Hodge decomposition with exact and coexact terms parametrised

by generic (1,0) and (1,2)-forms apg and Spq :
cpQ = CI@QWA + 50{1)@ + 5TBPQ. (B.83)

Notice that by performing general linear transformations one may choose convenient special
bases {¥4} and {Gp} for harmonic (1, 1)-forms and Lie-algebra-valued 1 forms. For instance,
one may define canonical bases by requiring that the w4 and up should form orthonormal
sets with respect to the positive definite scalar products that can be defined on them. More

precisely, we can impose that :
1 . . 1 .
—/ wa AN*wp = 0B and —/ ¢po AN *J = dpg. (B.84)
Vx Vi x

One may moreover orient these bases with respect to the Kéhler form, in such a way that
&g = J/V/3 and thus *J = v/3V&°. By using the equations (B.79), it follows that in such a

basis the intersection numbers d4 pc and the quantities é‘gQ have the following structure :

A 2 o 5 5ab 7
dooo = — - V, dooe =0V, doapy = ———= -V, dape = generic - V,
000 \/§ 00a Oab \/:7, abec = & (B 85)
| .
Y —=0pg and ¢pg = generic.

Cpg = 73
B.4 Symmetric Coset Manifolds

In this section, we summarise some basic facts about the geometry of the symmetric scalar
manifolds appearing in the low energy effective theories of orbifold compactifications. These

have the form M = G/H, where the isometry group § is a non-compact Lie group and the
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isotropy group H is a maximal compact subgroup of it. Rather than studying separately
the three kinds of spaces in (7.71), we shall focus on their basic building block, which is the
following Grassmannian coset space for p = 1, 2 and 3 and arbitrary integer n, which has

complex dimension p(p 4+ n) :

SU(p,p+n)

M= U(1) x SU(p) x SU(p+n)’

(B.86)

The canonical parametrisation of the above space involves a rectangular p X (p+mn) matrix of
complex coordinates Z*/, with i =1,--- ,p, s=1,...,n and I =4, s. In this parametrisation,
the full stability group H = U(1) x SU(p) x SU(p+n) acts linearly on Z*/, in the bifundamental
representation (p, p 4+ n);. Moreover, at the reference point Z*/ = 0 these canonical coordinates
correspond to normal coordinates, with trivial metric and vanishing Christoffel symbols. The
Kahler potential reads [166] :

K = —logdet (1 - ZZ"). (B.87)

The parametrisation that naturally emerges in the String Theory context is however a slightly
different one. It involves a p x p matrix of moduli coordinates T and a p x n matrix ®* of
matter coordinates. These are related as follows to the p X p and p x n sub-blocks Z% and Z%

of the above canonical coordinates Z*/ :

y 1-27\" , 20\
Z (1+2T) and Z (1+2T> . (B.88)

In this new parametrisation, the action of H is more complicated. However, the subgroup
U(1) X SU(p)diag X SU(n) C H still acts linearly on 7%, ®%, in the adjoint and bifundamental
representations (1&p? — 1, 1)¢ and (p,n);. In particular, under the universal subgroup U (p) =~
U(1) x SU(p)diag that is independent of n, T% and ®* transform in the adjoint and the
fundamental representations n? and n. Moreover, at the reference point 7% = 1/2 6%, &% = (
these new coordinates are only almost normal coordinates, with trivial metric but some non-
vanishing Christoffel symbols. The K&hler potential becomes, up to a Kahler transformation,

in accordance with [31] :
K = —logdet (T +T — %) . (B.89)

The manifold under consideration is not only homogeneous but actually symmetric, since
the Lie algebra g of G is the sum of the Lie algebra h of J{ and a normal component n associated
to G/H, g = h@n, such that [h,h] C b, [h,n] C nand [n,n] C h. This implies that the Riemann
curvature tensor is covariantly constant, V,,R;;q¢ = 0. As a consequence, the metric and
the curvature tensors with tangent space indices are both completely fixed in terms of group

theoretical properties of G and J. To be more precise, let us label the generators of g with 7%,
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those of h with 7% and finally those of n with 7. The metric is then given by the Killing form

of g restricted to n :
Jog = —Boe = —Tr (ady - ade) . (B.90)

The Riemann tensor is instead fixed by the structure constants ruling the part [n,n] C b of the

algebra, and reads :

RGEUF = fQEIfUTyBIy’ (Bgl)

Note that although the Killing form Bxy on g is indefinite, its restriction Bg¢ to n is negative
definite, so that the above metric is positive definite, and its restriction By, to b is positive
definite, so that the curvature is negative definite.

For the manifold at hand, it is a simple exercise to compute the components of the metric
and the Riemann tensor. To do so, it is convenient to switch to the standard two-index labeling

of the generators of unitary groups. The generators T of U(p,p + n) satisfy :

[T@F7 TEA] — ’I’}FET@A _ ’I’}@ATFE. (B92)
The generators 7% and T!7 of the subgroups U(p) and U(p + n) similarly satisfy [17%, T*] =
SIFTH — §UTIR and [T T = —§7KTIE 4 SILTIK while [T, TXE] = 0. The remaining

generators 7%/ and 777 describing the coset U(p, p+n)/(U(p) xU(p+n)), which are associated to
the fields Z*/ and their conjugate Z17, satisfy the following commutation relations: [T%/, T*F] =

0, [T1, 7K =0, [T, TK] = —¢/KET" — §UT/K [T TEL] = §7kTIL 4 §ILT3k  The metric
is trivial :
Girz7 = 0i017. (B.93)

The Riemann tensor is instead found to be given by the following simple expression, which can
also be verified by a direct computation using canonical coordinates at the reference point as
in [166] :

Rir5mekin = 0ij0ri0rL0k + 0i10jk010 KL - (B.94)

Finally, one may split the p(p+n) coset generators T%/ into moduli generators 7™ and matter

generators T°*. The metric then splits into :
Gimjn = 5ij5mm Yia38 = 6ij5aﬁ7 9im3B = 0 (B'95)
and the Riemann tensor decomposes as :

Rimjﬁkp[q = 5ij5kl6mq5np + 5il5jk5mn5pqv
Rio;8ryi5 = 0ij0k10a608y + 0it0k0ap0~s, (B.96)

Rimjﬁk'yﬁ = 5il5jk6mn5'y§ .
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At this point, one may apply the above results to the coset spaces (7.71) appearing in
orbifold models. The resulting expressions can be rewritten more conveniently by relabeling
the generators associated to the moduli with a single index. This can be done in parallel for
all the three kinds of models by making use of the 3 x 3 matrices A representing U (1) x H for
the relevant subgroup H C SU(3). More precisely, A =0,...,8 for H =5SU(3),a=0,...,3,8
for H=SU(2) x U(1) and a =0, 3,8 for H = U(1) x U(1). Using the normalisation condition
Tr ()\A)\B) = 648 and the completeness properties applying to each of the three subsets of

matrices, the metric is found to be :

9ap =0AB,  Yiaza = 0ijap,  gaz=0 (B.97)
and the Riemann tensor reads :

Rapep = Tr (AIABAONP) + Tr (AMAPACNE)

Riosgiris = M Me0a608y + A5 A i0asdys, (B.98)

Rugiyis = (APAN by
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Appendix C

Spinors and Supersymmetry in
Various Dimensions

We prove a new theorem on the impossibility of com-
bining space-time and internal symmetries in any but a
trivial way.

Coleman and Mandula
C.1 Spinors in Various Dimensions

In this Appendix we will briefly review spinors in various dimensions. Spinors are represen-
tations of the Lorentz group SO(1,d — 1) whose properties can be extracted for the Clifford
algebra satisfied by the Dirac matrices T'M :

{TM, TN} = 2pMN (C.1)

where the indices M and N take value between 0 and the space-time dimensionality d minus one
and where 7 is the Minkowskian metric. The form of the Clifford algebra for an even number of
dimensions suggests that it is possible to recast the Dirac matrices in order to obtain raising and
lowering operators and that we can find a spinor x annihilated by all lowering operators. Acting
or not on x with the raising operators will provide us with a 2%/2-dimensional representation.
This representation is called the Dirac representation. It is however reducible. Indeed I'¢
defined as the product of all the Dirac matrices extends the Clifford algebra, where now M
and N can take values in the range (0,d). By construction I'* has +1 eigenvalues. The states
with positive eigenvalue form a 2%/2~1 representation, called the Weyl representation. The
states with negative eigenvalue form an inequivalent Weyl representation. Usually spinors are
represented by their dimension written in boldface. In four dimensions, the Dirac spinor is thus
denoted by 4. The previous discussion thus implies that 4 = 2 4 2. In a space-time of odd
dimensionality the Dirac matrices of the lower even dimensionality have to be supplied with
I'? to satisfy the Clifford algebra, the representation is 2(?=1/2. As a consequence, chirality is

not defined in a five-dimensional space-time. The dimension of the irreducible representation
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d | Weyl | Majorana | Majorana-Weyl 2l #Real Parameters
2 O v v 1 1
3 v 2 2
4 = v 2 4
5 4 8
6 O 4 8
7 8 16
8 = v 8 16
9 v 16 16
10 O v v 16 16
11 v 32 32
12| & v 32 64

Table C.1: Spinors in various dimensions

is thus given by 2l%* ] where |-] denotes the floor of its argument. In the particular case of
SO(1,1) we denote the two irreducible Weyl representations by +1/2.

The number of real parameters may be smaller than twice the dimension of the irreducible
representation. Indeed one can impose a reality condition on spinors, called the Majorana
condition. The Majorana condition can be imposed on a Weyl spinor only if it is self-conjugated
(denoted by ©) and not if the two Weyl representations are each other complex conjugates

(denoted by =). Table C.1, taken from [16], summarises our discussion.

C.2 The Supergravity Multiplet in Various Dimensions

As discussed in Chapter 3, the maximal space-time dimensionality compatible with Supersym-
metry is eleven. Eleven-dimensional Supergravity has been argued to be the low-energy effective
theory of M-theory, yielding the type ITA effective action when compactified on a circle and
the Eg ® By effective action when compactified on the S'/Zy segment. Let us derive the pure
eleven-dimensional SUGRA spectrum. For sure it contains both the graviton and the grav-
itino. The D-dimensional graviton is a symmetric traceless representation of the little group
SO(D — 2), yielding :

Graviton ~ %(D - 1)(D-2)-1. (C.2)

The D-dimensional gravitino is the product of a D — 2 vector with its corresponding spinor
representation which is found in Table C.1. However not all components of the vector-spinor
constructed this way have a 3/2-spin. One has to project out the spin-1/2 part by setting the

gravitino trace to zero : I'AW,, = 0. Furthermore, as is always the case with spinors, only
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half the number of off-shell degrees of freedom survive when going on-shell. The number of

propagating degrees of freedom is thus given by :
1
Gravitino ~ §(D -3)8 (C.3)

where § is the number found in the last column of Table C.1.
Whenever the number of degrees of freedom of the graviton do not match the ones of the
gravitino, one is to introduce new degrees of freedom in order to enforce SUSY. Let us consider

the case of four, five, ten and eleven dimensions which are those appearing in our work.

¢ Four dimensions : Graviton ~ 2, Gravitino ~ 2. The spectrum has an equal number of

fermionic and bosonic degrees of freedom and thus is SUSY-complete.

¢ Five dimensions : Graviton ~ 5, Gravitino ~ 8. One has to introduce 3 bosonic degrees

of freedom, which are those of a five-dimensional vector called the graviphoton.

o Ten dimensions : Graviton ~ 35, Gravitino ~ 56. In order to match the fermionic and
bosonic degrees of freedom one introduces a 2-form B which has C§ = 28 degrees of
freedom, a dilaton ® and a fermion x called the dilatino. The spectrum is then SUSY-
complete : 35+ 28 +1 = 56 + 8. Note that this spectrum has already been derived
by compactifying eleven-dimensional SUGRA on a S'/Z, segment and may be found in
Table 5.2.

¢ Eleven dimensions : Graviton ~ 44, Gravitino ~ 128. In order to match the fermionic
and bosonic degrees of freedom one introduces a 3-form C which has C§ = 84 degrees of
freedom which SUSY-completes the spectrum : 128 = 44 4 84.

C.3 Superfield Representation of SUSY

C.3.1 Lessons from the Poincaré Group

When wanting to find the representation of the Poincaré group in Quantum Field Theory, one
introduces fields ¢(x) defined as

¢(w) = R(z)p(0)R™" (x) (C.4)

where R(z) is the representative of the Poincaré/Lorentz coset defining the Minkowski space.
The conventional representative is R(z) = e . Every element of the Poincaré group is
uniquely decomposed as g = R(x) o h where h belongs to the Lorentz subgroup. The action of
the Poincaré group on ¢(z) is then completely fixed once the action of the Lorentz group on
¢(0) is specified.

The field representation of a generator G is then defined by the commutator of the generator
with the field itself :

(G, ¢(x)] = Rep(G)o(x). (C.5)
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In order to illustrate the procedure, let us find the field representation of the translation gen-
erator P,. From (C.4) and using that [P,, P,] = 0, one gets :

e WP p(x)e"” = ¢z +y) (C.6)
which for an infinitesimal displacement y yields :
[Py, ¢(2)] = i0u6(). (C.7)

The representation on fields of the Lorentz generators M,,, is a little bit more involved since

these generators do not commute with P,. We have :
e%w]\/ld)(l,)e—%wM _ e%wMe—iacP(b(O)eine—%wM

_ e_ijP€%MM¢<0)e—%wMeiiP (08)

where 7 is easily determined to be given by ## = z# —w Fa” at first order in w by using the
Poincaré algebra and where ¥ characterises the action of the Lorentz group on ¢(0). Expand-
ing both sides for infinitesimal Lorentz rotations w yields the representation of the Lorentz

generators on fields :
(M, ¢(2)] = i (2,0, — 2,0,,) ¢() — By d(x). (C.9)

C.3.2 Super-Poincaré/Lorentz Coset

The same procedure can be carried out to find a representation of Supersymmetry. The coset
space in this case is Super-Poincaré/Lorentz and is called Superspace, sometimes denoted by
R4, The element of Superspace are labelled by z#, 6, and 65 where the #-variables are
the anticommuting spinorial parameters of Supersymmetry. An element of the Super-Poincaré

group is schematically written as :

g = exp {z (—xP + %wM +0Q + 5@)} . (C.10)
The analog of the ¢(z) field in this context is thus the Superfield ®(z, 0, ) :

O(x,0,0) = exp [i(—aP + 0Q + 0Q)] ©(0,0,0) exp [—i(—zP + 0Q + 0Q)] . (C.11)
To find the SUSY generators representation on Superfields, one has to evaluate :

QTR P (1,0, §)e(EQTEQ). (C.12)
This is easily done since [P,, Q] = 0 and gives :

61(5Q+§Q)¢)($’ 0, é)eii(ﬁ@ﬁi@) = ®(x +i0cé —ifoh,0 + £,0 +€). (C.13)
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Expanding both sides for infinitesimal SUSY transformations reveals the Superfield represen-
tation of Q. and Qg :

) _
[Qa, (z,0 t‘))] — ok, 6%9, | ®(z,0,0),
(g .

[Q%, ®(x,0,0)] = <8‘Z 0ot 5“8) ®(z,0,0).

The action of Supersymmetry on Superfields is thus written in the following form where the
SUSY generators are understood to be in their Superfield representation defined by the two

previous equations :
Ssusy®(z,0,0) = i(€Q + £Q)®(x, 0, 0). (C.15)

Just as in gauge theories, it is possible to define the notion of covariant derivative, i.e. a
derivative which commutes with the action of a symmetry. In the case of Supersymmetry they

are usually denoted by D, and Dg. Asking for D,dsusy = dsusyDa is equivalent to require :
{Dqo,Qs} =0, {Da,Qﬂ} =0 and (Do, P,] =0 (C.16)
which are easily solved. The Superfield representations for D, and Dg are given by :

9 &
D, = %—l—w 98
Dd:—i—wa“@

06«

(C.17)

C.3.3 Content of a Superfield

Let us now interpret a Superfield as a collection of Quantum fields. Since the 6-variables

anticommute, one can exactly Taylor expand ®(z,6,0) as :

®(z,0,0) = ¢(x) + 0y(x) + O(z)
+00"0A,,(z) + 0*m(x) + 6%m(z) (C.18)
+ 020X () + 020\ (x) + 0%6%d(x)

where the different fields appearing in this expansion are all independent. The lowest component
of a Superfield is usually named after the Superfield itself. If the Superfield ®(z, 6, ) does not
carry any further Lorentz structure then ¢(z), m(x), m(x) and d(x) are spinless bosons, ¥ (x),
¥(z), A(z) and A\(z) spin-1/2 fermions and A,,(x) a spin-1 vector. If, for example, the Superfield
®(z,0,0) was to carry a Lorentz index, the field A,,(x) would then be a spin-2 particle, identified
as the graviton, and A(z) a spin-3/2 particle, the gravitino.

Since a generic Superfield contains more states than the irreducible representations discussed
in section 3.1, the Superfield representation is either reducible or most of its components are
auxiliary and do not propagate. In some sense, both of these possibilities are realised. Let us

first count the number of real degrees of freedom. The scalars contribute with 8 real degrees
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of freedom and the vector also, for a total of 16 real bosonic degrees of freedom. Each of the
fermions has 4 real degrees of freedom totalising 16 real fermionic degrees of freedom. However
when fermions and vectors propagate, i.e. when they are on-shell, their degrees of freedom are
reduced.

Indeed, as is known from analytical mechanics, a state ¢ is characterised by a pair in
phase-space (¢,1I,) where II, is the derivative of the Lagrangian density with respect to the

time-derivative of .

o In the case of a real bosonic field ¢(x) whose kinetic Lagrangian density is (9¢)? the state

is caracterised by the phase-space element (¢, ¢) and is thus counted as one state.

o In the case of a Weyl fermion 1), (z) whose kinetic Lagrangian density is i1 - 91 the only
two independent phase-space elements are (11,ith;) and (tb2,ithy). Thus the 4 off-shell
real degrees of freedom are translated into 2 on-shell real degrees of freedom, identified
with the helicity.

o In the case of a real vector field A, (z) whose kinetic Lagrangian density is —1/4F2, the
only phase-space elements are (A;, F°) with i = 1,2,3. Indeed Ay does not propagate
since F°° = 0. The 4 off-shell real degrees of freedom are translated in 3 on-shell degrees of
freedom, these are the two transverse and the longitudinal polarisations. In the massless
case, the emerging gauge symmetry can be used to set one of the A"’s to zero, effectively
reducing the number of real degrees of freedom to 2, identified with the two transversal

polarisations.

The number of real on-shell degrees of freedom can now be computed. For bosons, the scalar
contribute with 8 units while the gauge field is reduced to 6 units for a total of 14 real degrees
of freedom. The fermions degrees of freedom are divided by two for a total of 8 real degrees of
freedom. The mismatch is an indication that at least 6 of the bosonic degrees of freedom do
not propagate and are thus auxiliary fields.

Let us examine the case of the (—1/2%, 0% 1/21) representation. On-shell, the multiplet con-
tains a complex scalar field and a Weyl fermion. Off-shell, the number of fermionic degrees
of freedom is increased and thus has to be compensated with a complex scalar field usually

denoted by F' and characterised by an algebraic equation of motion. We thus have :
(=1/24,0%12Y) e [d(2), 9 (@), F(2)] (C.19)
and similarly :
(—1', 12" 120 1Y)« (A=), Au(z), D(2)] (C.20)

which means that we have to find constraints which reduce the Superfield content to those of

the two previous equations.
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C.3.4 Constrained Superfields

In order to reduce the content of a generic Superfield we have to impose constraints which
are compatible with Supersymmetry, i.e. which are not spoiled by a SUSY transformation.
The first possibility is to use covariant derivatives. Indeed D, and D4 commute with SUSY

transformations by construction. A chiral Superfield ® is defined by the constraint :
Dsy® = 0. (C.21)

The second possibility to constrain Superfields is to impose a reality condition. A wvector Su-
perfield V satisfies :

V=V (C.22)

It is easily shown that a chiral Superfield field content matches the one of a chiral multiplet and
that a vector Superfield content with a gauge symmetry acting as V' — V + ® + ® matches the

content of a vector multiplet.
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