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Abstract. We optically excited the eigenmodes of an elliptic resonator in a semiconductor mi-
crocavity. Using a pulsed excitation, we created a superposition of eigenmodes, and imaged the
temporal evolution of the coherent emission pattern. A semiconductor quantum well was em-
bedded in the microcavity structure. The system was operated in the strong light matter coupling
regime, where the eigenmodes are hybrid half-photonic half-excitonic quasiparticles called ex-
citon polaritons. Oscillations between orbital angular momentum states (or vortex states) were
observed, and turned out to be remarkably well described within the Poincaré sphere represen-
tation. C© 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3609825]
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1 Introduction

Generation of optical vortices has been demonstrated in different types of lasers like ring
resonators,1 diode lasers,2 and vertical cavity surface emitting lasers (VCSELs).3 They have
been identified as the transverse modes of cylindrically symmetric optical resonators and often
called the TEM01∗ “donut” mode, which can be obtained as a superposition of the TEM10

and TEM01 modes.4–7 In semiconductor microcavities, the strong coupling between the optical
modes of the planar microcavity and the excitonic resonance of an embedded quantum well (QW)
gives rise to hybrid quasiparticles partly made of light, partly made of matter, called exciton
polaritons,8 whose unique properties have triggered interest in fundamental physics,9,10 as well
as for the implementation of novel all-optical logic gates.11,12 The generation of optical vortices
strongly coupled to the excitonic resonance (or polariton vortices) has been demonstrated in a
patterned microcavity.13,14 The vortices, carrying an integer orbital angular momentum state,
were the result of a coherent superposition of eigenmodes of an elliptic polariton trap, excited
using a continuous wave (cw) laser. In the present work we are considering the case where
the confined polariton states are not continuously driven by the laser frequency (like a forced
oscillator), but are excited with a laser pulse and let free to evolve. In this situation, when a
superposition of states is excited, their phase oscillations at different frequencies will give rise
to a time evolution of the emission pattern.

2 Sample

The sample under scrutiny is the same as in Refs. 12–14. It is a patterned GaAs cavity15 with one
embedded InGaAs QW, sandwiched between two semiconductor distributed bragg reflectors
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Fig. 1 (a) Scheme of the microcavity sample with mesa (not to scale, only a few DBR pairs
are shown). (b) Scheme of the normal mode splitting (or Rabi splitting) arising from the strong
coupling between the quantum well excitonic resonance and the transverse photonic modes as
a result of the confinement by the mesa. It results in discrete confined transverse modes for the
upper and lower polariton branches. (c) Spatially resolved photoluminescence spectrum of the
polaritons confined by a mesa of 10 μm mean diameter, under nonresonant pumping. Energy is
plotted with respect to the bare exciton energy (Ex = 1.4845 eV). Discrete confined states are
visible for the lower (below Ex ) and upper (above Ex ) polariton branches. The white arrow points
on the first excited state (n = 1, m = 1) of the lower polariton branch.

(DBRs). The QW exciton emission wavelength is 835.15 nm, corresponding to an energy of
Ex = 1.4845 eV. The signature of the strong coupling between the exciton and the fundamental
cavity mode is a normal mode splitting (or Rabi splitting) of 3.5 meV. The polariton traps consist
of nearly circular mesas of 6 nm height that were etched on the microcavity spacer [see Fig. 1(a)],
providing a confinement potential of 9 meV for the cavity mode. Discrete confined polariton
states are the result of the strong coupling between the optical modes of the nearly cylindrical
resonator and the exciton [Fig. 1(b)]. The transverse mode patterns of these zero dimensional
(0D) polariton states have been observed in traps of different sizes.16 These patterns are similar
to the optical mode profiles observed in cylindrical CdTe micropillars.17 A spatially resolved
spectrum of the photoluminescence emitted by the confined states in a 10 μm mean diameter
trap under nonresonant pumping is shown in Fig. 1(c). Discrete eigenstates can be observed for
the lower polariton branch (below the bare exciton energy Ex) and the upper polariton branch
(above Ex). The linewidth of these states is of the order of 80 μeV. All further measurements
presented in the paper were performed on the first excited state of the lower polariton branch
[indicated by a white arrow in Fig. 1(c)], and for a detuning of δ ∼ 0 meV between the confined
photonic mode and the excitonic resonance Ex .

3 Poincaré Sphere Representation of an Eigenstate Containing Orbital
Angular Momentum

In circular coordinates, confined states can be described by two numbers (n,m), the well known
radial and orbital quantum numbers. In cylindrically symmetric systems, there is a twofold
degeneracy between states |m+〉 ∝ e+imφ and |m−〉 ∝ e−imφ , which carry an integer orbital
angular momentum. Similarly to polarization states,7 the coherent superpositions of |m+〉 and
|m−〉 can be placed on a Poincaré sphere [Fig. 2(a)—for the quantum numbers (n = 1,m = 1)].
Equally weighted superpositions give rise to standing wave patterns with |2m| lobes, whose
alignment depends on the phase relation between |m+〉 and |m−〉. For example, the states shown
in Fig. 2(a) can be obtained as |x〉 = |m+〉 + |m−〉, |y〉 = |m+〉 − |m−〉, |d〉 = |m+〉 + i|m−〉,
and |d ′〉 = |m+〉 − i|m−〉. Reversibly, the |m+〉 state can be obtained as a superposition of |x〉
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Fig. 2 (a) Poincaré sphere representation of the degenerate (n = 1, m = 1) state. Coherent
superpositions (with equal weights) of the integer orbital angular momentum states |m+〉 and
|m−〉 yield to a two-lobe pattern, whose orientation depends of the relative phase between |m+〉
and |m−〉. For this m = 1 state, the same Poincaré sphere can be used to represent the case of an
elliptic trap, for which |x〉 and |y〉 are the new eigenstates. (b) Amplitude of the near field emission
pattern of |y〉, measured using the interferometric method described in Sec. 4. (c) Corresponding
phase structure, showing a π -phase shift between the lower and upper lobes. (d) and (e) Same
as (b) and (c), but for the |x〉 state. Amplitude patterns are in a linear gray scale from minimal
(black) to maximal (white) intensity. Phase patterns are in a linear gray scale from 0 (black) to 2π

(white).

and |y〉, and so on. However, it was shown previously that the polariton traps on the sample
under scrutiny are slightly elliptic.15,18 This has for effect that the |m+〉 and |m−〉 are no longer
eigenstates of the trap. The new eigenstates are, for the (n = 1,m = 1) case, the |x〉 and |y〉
states shown in Fig. 2(a). Spatially resolved spectroscopy16,17,19–22 allowed to measure an energy
splitting between |x〉 and |y〉 of �E = 50 ± 25 μeV. These eigenstates can be selectively excited
using resonant cw excitation. Their phase and amplitude patterns can be imaged thanks to an
interferometric method (detailed in Sec. 4). Near field patterns are shown in Figs. 2(b)–2(e),
where the two-lobe structure, as well as the π -phase between the two opposite lobes, can nicely
be observed. Using a cw excitation also allowed to selectively create any kind of superpositions
of |x〉 and |y〉.14,18

4 Experimental Setup

In order to obtain the amplitude and phase structure of the polariton modes shown in Fig. 2, we
have used a homodyne imaging setup.13 Polariton states were excited from the back side of the
sample (held in a cold-finger cryostat at a liquid helium temperature). The coherent emission of
the polariton state was collected from the front side of the sample, and interfered on a CCD with
a reference laser beam. Digital off-axis filtering23 allowed then to retrieve the amplitude and
phase information of the emission pattern. When using a pulsed excitation instead of a cw one,
the situation is very different, as the created coherent superposition is let free to evolve. We use
a mode-locked Ti:Sapphire laser, which provides 12 nm broad, 80 fs long, linearly polarized
pulses at a repetition rate of 80 MHz. Creating a polariton population with the excitation pulse,
we can probe the polariton dynamics by varying the delay τ between the excitation and reference
pulses. Indeed, the reference pulse will interfere on the CCD only with the coherent emission
emitted at delay τ . The time resolution of the setup is given by the temporal length of the
reference pulse. In order to selectively excite the trapped polariton states, the excitation pulse is
tailored to a nearly Gaussian pulse of 140 μeV FWHM using a pulse shaper. The corresponding
pulse duration is 13 ps, which provides the time resolution of the interferometric measurements.
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The interferometric detection is intrinsically linearly polarized due to the linear polarization of
the reference laser beam.

5 Results: Oscillations Between Vortex and Antivortex States

We use the 140 μeV broad pulse obtained from the pulse shaper to excite a superposition of
the |x〉 and |y〉 eigenstates resulting from the slight ellipticity of the 10 μm mean diamater trap.
It is very convenient to represent again the superposition in a Poincaré sphere [Fig. 3(a)]. We
place the eigenstates |x〉 and |y〉 on the vertical axis, and their possible superpositions on the
equator of the sphere. As the two eigenstates oscillate with different frequencies, their relative
phase will constantly change with time, leading to an evolution of the emission pattern. This
evolution can be very easily pictured in the Poincaré sphere representation as a rotation of

Fig. 3 (a) Poincaré sphere representation of the nearly degenerate (n = 1, m = 1) state in a
nearly circular trap. The eigenstates as a result of the trap ellipticity correspond to the poles of the
sphere, and their equally weighted superposition are located on the equator. The time evolution
of a superposition can be pictured as a rotation of the state vector around the eigenaxis, at a
frequency ω = �E/h̄, where �E is the energy splitting between the eigenstates |x〉 and |y〉.
(b) Amplitude 〈E〉 of the polariton coherent emission field, spatially integrated over the whole
polariton emission, versus time. The time zero is given by the estimated zero delay between
excitation and reference pulses. In blue: a mono-exponential fit allows to extract a decay time of
τ = 15.7 ± 0.3 ps for the emission field intensity 〈E2〉. The fringes of the recorded interferogram
(in a saturated color scale) are displayed in (c), the emission field amplitude in (d), and the
emission field phase in (e). The different columns show snapshots of the time evolution of the
emission pattern, at times indicated by vertical black lines and a corresponding letter (i)–(v) in
(b). This evolution is very well explained by a rotation of the system state vector along the equator
of the Poincaré sphere shown in (a). The movie corresponding to (c) is shown in Video 1.
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Video. 1: Video corresponding to the snapshots of Fig. 3(c). (MOV, 2.36 MB) [URL:
http://dx.doi.org/10.1117/1.3609825.1].

the state vector of the system around the eigenaxis at a frequency ω = �E/h̄. This period-
ical oscillation is analogous to the Rabi oscillations observed when a superposition of upper
and lower polaritons is created, or to the spatial oscillations observed between two coupled
wells when a superposition of the symmetric and antisymmetric eigenstates is created. It is
also analogous to polarization beats that occur in the case of linear polarization splitting, as
predicted in subwavelength elliptical cavities,24 and observed in the case of linear-transverse
(L-T) splitting in planar microcavities.25 TE-TM splitting is also expected to periodically gener-
ate doubly charged vortices using a spin-to-orbital-angular-momentum conversion mechanism
in a planar cavity.26 In the case of our 10 μm average diameter traps, though, the polarization
splitting is too small for polarization beats to be revealed on the time scale of our experiment.

Once a polariton population is injected by the excitation pulse, the time evolution of the
coherent emission can be probed by scanning the delay τ between excitation and reference
pulses. We record on a CCD the resulting interference patterns which arise due to a slight tilt
of the reference phase front with respect to the image plane. From the recorded interferograms,
digital off-axis filtering allows to extract the amplitude and phase of coherent emission pattern
emitted at the delay τ . We show in Fig. 2(b) the spatially integrated amplitude 〈E〉 of the
coherent emission with respect to the interferometer delay. It can be seen that after the injection
by the ∼13 ps long pulse, the emission intensity 〈E2〉 decays with a characteristic decay time of
τ = 15.7 ± 0.3 ps. This time corresponds to the polariton lifetime, which is a combination of the
cavity photon escape rate and the exciton lifetime. Images of the coherent emission amplitude,
at the delays indicated by vertical black lines and letters (i)–(v) in Fig. 3(b), are shown in
Figs. 3(c)–3(e). The fringes of the interferogram (in a saturated color scale) are displayed in
Fig. 3(c), the emission field amplitude in Fig. 3(d), and the emission field phase in Fig. 3(e).

In the first column (i), the polariton injection is shown. It displays a diagonal state |d〉,
indicating that a well balanced (i.e., with similar weights) superposition of |x〉 and |y〉 is created.
Columns (ii) to (v) show the free evolution of the polariton field emission pattern, with an
interval between each picture of ∼25 ps. A decrease of the signal intensity is observed with
time, due to the finite polariton lifetime measured in Fig. 3(b). In the second column (ii),
the polariton emission pattern shows an integer orbital angular momentum state (or vortex
state) |m+〉, characterized by a donut shape. The interferogram displays a fork-like dislocation,
indicating the presence of a phase singularity. A 2π -phase shift is visible in the phase structure
when circumventing the donut core. The third column (iii) shows a |d ′〉 state [orthogonally
aligned with respect to the |d〉 state of (i)], featuring a π -phase difference between its two lobes.
An anti-vortex state |m−〉 is visible in (iv), and a diagonal state |d〉 again in (v). The system
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state vector has therefore made a full rotation along the Poincaré sphere equator. The rotation
period is T ∼ 4 × 25 ps = 100 ps (with a ∼13 ps resolution), corresponding to an oscillation
frequency of ∼10 GHz. It allows to estimate for this trap the energy splitting between |x〉
and |y〉: �E = h̄ω = h̄2π/100 = 41 ± 5 μeV, in agreement with the 50 ± 25 μeV generally
measured using spatially resolved spectroscopy.

6 Conclusion

In conclusion, we have shown in this work the imaging of the time evolution of a coherent
superposition of light-matter polariton states in a semiconductor microcavity. In particular, a
periodical oscillation between vortex and anti-vortex states has been evidenced in the elliptic
polariton trap. The observed phenomenon is remarkably well described by a rotation of the
system state vector around the eigenaxis in the Poincaré sphere representation of an integer
orbital angular momentum state. The measured oscillation frequency of ∼10 GHz corresponds
to the energy splitting between the eigenstates of the elliptic trap. We would like to underline that
although the semiconductor microcavity was operated in the strong coupling regime, the reported
phenomenology was observed under low excitation density, and can be thus described in terms
of linear optics. However, although not addressed in the present manuscript, nonlinearities
originating from the strong coupling with the QW exciton have been reported on the same
sample, and used to realize multivalued spin switching.12 These nonlinearities have also been
shown to modify the spatial mode profiles in confined polariton condensates.22
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B. Deveaud-Plédran, “Probability density tomography of microcavity polaritons confined
in cylindrical traps of various sizes,” Superlattices Microstruct. 47, 207–212 (2010).

17. K. Sebald, C. Kruse, and J. Wiersig, “Properties and prospects of blue-green emitting
II-VI-based monolithic microcavities,” Phys. Status Solidi B 246, 255–271 (2009).

18. R. Cerna, D. Sarchi, T. K. Paraı̈so, G. Nardin, Y. Léger, M. Richard, B. Pietka, O. El Daif,
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