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Abstract
This work is focused on the development of a geometrical multiscale framework for modeling the human cardio-
vascular system. This approach is designed to deal with different geometrical and mathematical models at the same
time, without any preliminary hypotheses on the layout of the general multiscale problem. This flexibility allows
to set up a complete arterial tree model of the circulatory system, assembling first a network of one-dimensional
models, described by non-linear hyperbolic equations, andthen replacing some elements with more detailed (and
expensive) three-dimensional models, where the Navier–Stokes equations are coupled with structural models through
fluid-structure interaction algorithms. The coupling between models of different scale and type is addressed imposing
the conservation equations in terms of averaged/integrated quantities (i.e., the flow rate and the normal component of
the traction vector); in particular, three coupling strategies have been explored for the fluid problem. In all the cases,
these strategies lead to small non-linear interface problems, which are solved using classical iterative algorithms.
Keywords: Geometrical multiscale; Fluid-structure interaction algorithms; Cardiovascular networks; Hemodynam-
ics.

Introduction
The simulation of blood-flow in the human body is a chal-
lenging task. A very accurate model should account for the
arterial and venous networks, the heart, and the capillaries,
keeping into account also the non-Newtonian blood behav-
ior and complex wall constitutive laws. Even with nowa-
days powerful supercomputers it is not possible to solve
such a problem and several approximations must be em-
ployed.

A first approximation is to consider reduced models for
the fluid-structure interaction (FSI) dynamics [1] and glue
them together by the imposition of integrated quantities in
an explicit hierarchical fashion [1, 2, 3, 4, 5] or implicitly
[6]. The resulting model is a network of one-dimensional
(1-D) models for the arterial system, which can be closed
with zero-dimensional (0-D) models to account for the left
heart ventricle and the capillaries (and therefore neglecting
the venous system).

Another possible approximation is to restrict the region
of interest and consider a three-dimensional (3-D) fluid-
structure simulation. As pointed out in, e.g., [7], in these
cases it is important to select appropriate boundary condi-
tions. These can be found either by direct measurements

of integral quantities, like flow rates [8, 9], or by using a
separate 1-D network to provide the correct boundary data
[10]. It is also possible to couple the 1-D network with
the 3-D model; in [11, 12] the authors propose an explicit
coupling between such models.

In this work we use the methodology described in [13]
and we couple these single models in an implicit fashion;
then we solve the coupled problem by inexact-Newton it-
erations on the coupling variables. Each model used in the
network has its ownoptimal time discretization step and
often this also has an upper bound limitation derived from
the CFL condition [1] in the case of explicit algorithms.
When discretizing in time the coupling of many models of
equal or different scales we shall therefore use the most
stringent condition, which may lead to unnecessary com-
putation. Here we propose to use two time step scales, one
for the global arterial tree and one for the local 3-D mod-
els, the former typically having a smaller time step due to
its explicit nature.
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Models
In the following paragraphs we briefly introduce the
geometrically-heterogeneous models which are the main
ingredientsof our geometrical multiscale framework.

3-D FSI model

In a geometrical multiscale setting, 3-D FSI models are
used for modeling components where the geometrical de-
scription play a fundamental role, e.g., in vessels with
aneurysms, stenoses, or other complex pathologies. In
those cases, a 3-D description of the flow field is manda-
tory in order to capture the true physics of the phenomena.

Equations The blood dynamics of the 3-D FSI model
is described by formulating the incompressible Navier–
Stokes equations for Newtonian fluids in moving domains.
We choose to use an Arbitrary Lagrangian Eulerian (ALE)
frame of reference [14].

Let Ω = Ωf ∪ Ωs be a reference configuration of the
fluid-structure system, withΩf andΩs the reference do-
mains for the fluid and the solid, respectively. We denote

byΓFSI
def
= ∂Ωf∩∂Ωs the fluid-solid interface. The current

configuration of the fluid domain,Ωf(t), is parametrized
by the ALE map

At : Ωf → Ωf(t)

x 7→ At(x) = x+ df(x),

asΩf(t) = At(Ωf , t), wheredf : Ωf × R
+ → R

3 de-
notes the displacement of the fluid domain. We denote

by ΓFSI(t)
def
= ∂Ωf(t) ∩ ∂Ωs(t) the current position of

the fluid-solid interface. In practice,df = Ext(ds|ΓFSI
),

whereds : Ωs × R
+ → R

3 stands for the solid displace-
ment and Ext(·) is an harmonic lifting operator fromΓFSI

toΩf .
The nonlinear fluid-structure problem under consider-

ation reads as follows (see e.g. [7, Chapter 11]): find the
fluid velocityu = u(x, t) : Ωf × R

+ → R
3, the pressure

p = p(x, t) : Ωf × R
+ → R, and the solid displacement

ds = ds(x, t) : Ωs × R
+ → R

3 such that










ρf∂tu|A + ρf(u−w) ·∇u−∇ · σf = 0 in Ωf(t),

∇ · u = 0 in Ωf(t),

ρs∂ttds −∇ ·Π = 0 in Ωs,

with the following fluid-structure interface coupling con-
ditions











df = Ext(ds|ΓFSI
), w = ∂tdf in Ωf ,

u = ∂tds on ΓFSI(t),

Πns = −Jfσf(F f)
−Tnf on ΓFSI.

The initial conditions are:u(0) = 0, ds(0) = 0 and
∂tds(0) = 0; ρf andρs represent the fluid and solid den-
sities, respectively,∂t|A the ALE time derivative,σf =

σf(u, p)
def
= −pI+ 2µǫ(u) the fluid Cauchy stress tensor,

µ the fluid dynamic viscosity,ǫ(u)
def
= 1/2

(

∇u+∇uT
)

the strain rate tensor,Π = Π(ds) the first Piola–Kirchhoff

stress tensor of the structure,F f
def
= ∇A the fluid domain

gradient of deformation andJf
def
= detF f the Jacobian;nf

andns are, respectively, the outward unit normals to the
fluid and solid domains.

In the linearized St. Venant–Kirchhoff model the Piola
tensor is approximated as

Π ≈ λtr(ǫs)I+ 2µsǫs,

with ǫs = 1/2
(

∇ds +∇dT
s

)

andλ andµs the two Lamé
coefficients.

The harmonic extension problem associated to the op-
erator Ext(·) reads: finddf = df(x, t) : Ωf × R

+ → R
3

such that
{

−∆df = 0, in Ωf ,

df = ds, on ΓFSI.
(1)

The problem is finally closed by imposing a suitable
set of boundary conditions on the external wall of the solid
Γwall and at all the other fluid and solid external interfaces.
The later are automatically provided by the adjacent 1-D
models within the geometrical multiscale problem (as we
see in the forthcoming section), while for the former we
postpone the discussion to the section of results.

Numerical approximation For the time discretization
of the 3-D FSI problem we use a geometry-convective ex-
plicit scheme (GCE) [15], i.e., the convective field and the
fluid computational domain are extrapolated from the pre-
vious time step. The other terms are treated with a first or-
der backward Euler scheme. The Navier–Stokes equations
therefore reduce to the linear Oseen equations, leading to
a linear 3-D FSI problem at each time step. The Oseen
equations are then discretized in space by aP1–P1 Finite
Element (FE) method, stabilized through interior penalty
(see [16]), which shows a convergence of order one inh
(the spatial discretization of the whole domainΩf ) for both
velocity and pressure.

The structural equations are also linear and require no
special treatment. Since the geometry is treated explicitly,
the fluid computational domainΩf(t

k+1) is computed by
usingdk

Γs as boundary condition in (1). Thus the coupled
3-D FSI model after discretization gives at each time step
tk+1 a monolithic linear system to solve for













Fff FfΓ

FΓf FΓΓ I
Sss SsΓ
SΓs SΓΓ −I

−I I/∆t

























yk+1

yk+1

Γ

dk+1

dk+1

Γ

λk+1













=













fk+1

f

0

fk+1
s

0

dk
Γ/∆t













,

(2)

whereyk := (uk, pk) denotes the fluid variables, vectors
with sub-indicesΓ represent all the variables on the fluid-
structure interfaceΓFSI, λk is a Lagrange multiplier that
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corresponds to the force transferred from fluid to structure,
and the blocksFij andSij , i, j = f, s, or Γ correspond to
the sub-blocks of the finite element matrices of the fluid
and structure problems respectively. The 3-D FSI sys-
tem (2) is solved by a GMRES method preconditioned by
overlapping algebraic Schwarz preconditioners based on
an inexact block factorization of the system in the block-
composed form. The solution strategy of the monolithic
3-D FSI system (2) is detailed in [15].

1-D model

The global arterial circulation can be modeled by a net-
work of 1-D elements, each one characterized by a circu-
lar cross-section (eventually narrowed along the axial di-
rection) and a viscoelastic arterial wall (see, for instance,
[1, 3, 5]). Even if the 1-D model is very simple and does
not account for the 3-D geometrical description of the ves-
sels, it has been proven to be able to accurately capture the
behaviour of the principal physiological quantities, likethe
volumetric flow rate and the mean pressure. For this rea-
son, in a geometrical multiscale setting, the 1-D model is
used to describe the entire arterial system.

Equations A straightforward derivation of the 1-D
model can be found in [17]. The resulting governing equa-
tions for continuity of mass and momentum are



















∂A

∂t
+

∂Q

∂z
= 0,

∂Q

∂t
+

∂

∂z

(

α
Q2

A

)

+
A

ρf

∂P

∂z
+Kr

Q

A
= 0,

(3)

whereA is the area of the vessel,P is the mean pressure,Q
is the volumetric flow rate,α is the Coriolis coefficient, and
Kr is the friction coefficient accounting for fluid viscosity.

In order to close the problem an additional equation re-
lating the averaged pressure with the other unknownsQ
andA is needed. A complete mechanical model for the
structure of the vessel wall is described in [1]. Here we
consider only the elastic and viscoelastic contributions,as
all the other terms are negligible in a cardiovascular set-
ting, leading to the following pressure-area relation (see
[18])

P − Pext = β

(

√

A

A0
− 1

)

+
γ

A
√
A

∂A

∂t
, (4)

with

β :=

√

π

A0

hE

1− ν2
, γ :=

T tanφ

4
√
π

hE

1− ν2
,

wherePext is the external pressure (i.e. the pressure of the
tissues on the external wall),A0 is the area of the cross-
section of the vessel in the pre-stressed configuration,h is
the wall thickness,E is the elastic Young modulus,ν is
the Poisson coefficient,T is a characteristic time (usually

taken equal to the systolic period), andφ is the so-called
viscoelastic angle. Note that the viscoelastic term in (4)
leads to an algebraic-differential equation which requires a
special treatment when plugged into (3), as we show in the
following paragraph.

Numerical approximation By inserting (4) into (3), af-
ter some manipulations, we get a system of differential
equations that can be written in a classical conservative
form as follows

∂U

∂t
+

∂F (U)

∂z
+ S(U) = 0, (5)

whereU are the conservative variables,F the correspond-
ing fluxes, andS represents the source terms.

Following [1] we solve problem (5) by using an opera-
tor splitting technique, where the flow rate is split into two
components such thatQ = Q̂ + Q̃, whereQ̂ is the solu-
tion of the pure elastic problem and̃Q is the viscoelastic
correction. Let us consider the time interval[tn, tn+1], for
n = 0, 1, 2, . . . , with tn = n∆t, ∆t being the time step:

1st step, elastic response:given U
n
h, find Û

n+1

h =
[An+1

h , Q̂n+1

h ]T ∈ Vh such that

(Û
n+1

h , ϕh)= (Un
h , ϕh)+

∆t

[(

F (Un
h),

∂ϕh

∂z

)

− (S(Un
h), ϕh)

]

−
(

−∆t2

2

∂F (Un
h)

∂U
H(Un

h),
∂ϕh

∂z

)

+

(

∆t2

2

∂S(Un
h)

∂U
H(Un

h), ϕh

)

, ∀ϕh ∈ Vh

whereUh is the discrete counterpart ofU , Vh is the
space of piecewise linear Finite Element (FE) func-
tions, and

H(Un
h) :=

∂F (Un
h)

∂z
+ S(Un

h).

2nd step, viscoelastic correction:given Û
n+1

h , find
Q̃n+1

h ∈ Vh such that
(

Q̃n+1

h

An+1

h

, ϕh

)

+∆t

(

γ

ρ
(

An+1

h

)3/2

∂Q̃n+1

h

∂z
,
∂ϕh

∂z

)

=

−∆t

(

γ

ρ
(

An+1

h

)3/2

∂Q̂n+1

h

∂z
,
∂ϕh

∂z

)

, ∀ϕh ∈ Vh.

The first step corresponds to an explicit second-order
Taylor–Galerkin (TG) scheme, where we neglect the vis-
coelastic component of the wall. The problem is closed by
imposing a suitable set of boundary and compatibility con-
ditions on both sides of the 1-D segment. For the second
step, we impose either homogeneous Dirichlet or homoge-
neous Neumann boundary conditions, depending from the
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boundary conditions applied to the previous step. More
details about the boundary conditions are given in [18].

On the one hand, the explicit nature of the TG scheme
leads to a very fast and efficient solution of the numerical
problem. However, on the other hand, it entails a strong
limitation on the time step, that may be problematic when
coupling with 3-D FSI models, as we will see in a forth-
coming section.

0-D model

The peripheral 1-D arterial vessels are terminated with a
three-element windkessel model (see Figure 1), which ac-
counts for the cumulative effects of all distal vessels (small
arteries, arterioles, and capillaries) beyond a terminal site.

P,Q

R1 R2

C

Pv, Qv

Figure 1 Three-element windkessel model.

The three-element windkessel model accounts for the
proximal resistanceR1, the complianceC, and the distal
resistanceR2 of the vascular network. The values of these
parameters are given byin vivomeasurements and reason-
able assumptions (see [5]). This model leads to a differ-
ential relation between the the pressure and the flow in the
time domain

dP

dt
= − P

CR2

− R1 +R2

CR2

Q−R1

dQ

dt
+

Pv

CR2

, (6)

where P and Q are the pressure and the flow rate at
the terminal node of the 1-D segment, respectively, and
Pv = 6666 dyn/cm2 [5 mmHg] is the prescribed venous
pressure.

Numerical approximation Equation (6) can be solved
for the pressure or for the flow rate. In the former case, by
introducing the following approximation















Q(t) ≈ Qn +
Qn+1 −Qn

tn+1 − tn
(t− tn),

dQ

dt
=

Qn+1 −Qn

tn+1 − tn

we can integrate analytically (6), leading to an algebraic
expression for the unknown pressure. The same approach
holds when solving for the flow rate.

Geometrical multiscale algorithms
In this section we briefly describe the techniques we de-
velop to couple the models introduced in the previous sec-
tion.

Coupling the fluid

In a geometrical multiscale setting, where the models are
defined in different geometrical spaces (e.g., 0-D, 1-D, 3-
D, etc.), the problem at the coupling interfaces can be for-
mulated in a general way only by writing the conservation
equation in terms of averaged/integrated quantities. In par-
ticular, for a generic fluid coupling interfaceΓf , we select

Q =

∫

Γ

u ·n dΓf and Σ =
1

|Γf |

∫

Γf

(σ ·n) ·n dΓf ,

whereQ is the volumetric flow rate andΣ is the average of
the normal component of the traction vector, hereafter re-
ferred to as thecoupling stress. Specifically, we choose to
consider that(σ·n)·n is constant overΓf in order to close
the problem. This choice leads to the following conserva-
tion equations for the problem at the coupling interfaces:

∀c = 1, . . . , C :















Mc
∑

m=1

Qc,m = 0,

Σc,1 = Σc,m, ∀m = 2, . . . ,Mc,

(7)

whereC is the total number of coupling interfaces of the
network of model andMc is the number of models cou-
pled by thec-th coupling interface (see Figure 2). To sat-

Figure 2 General configuration for thec-th coupling between
Mc models.

isfy the set of equations (7), different coupling strategies
can be used, corresponding to the imposition of different
quantities on the boundaries. In other words, we can set up
each subproblem with different combinations of boundary
data over the coupling interfaces. Some examples are pro-
vided in [13].
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Coupling the solid

The coupling between the solid parts of the models can
be achieved with a similar approach, i.e., by imposing the
continuity of the area over the coupling interfaces. How-
ever, from the practical viewpoint, the imposition of the
area on the 1-D model is equivalent to impose a pressure,
and this is already done by coupling the fluid problem.
Moreover, due to the sub-critical nature of the flow field
(see [1]), the 1-D model can receive just one physical quan-
tity on each side of the 1-D segment, that is already a fluid
quantity. Nevertheless, it is possible to impose on the 3-D
solid ring the value of a given area, for example, by a 1-D
model. Investigations in this direction are subject of future
works. The results presented in this paper are obtained by
clamping the solid interface of the 3-D FSI model. Even if
this condition is not physical, it is necessary for the well-
posedness of the problem, which can be solved only by
removing the rigid modes from the 3-D FSI model.

Numerical approach

Letλ be the global vector of coupling variables. The prob-
lem at the coupling interfaces is solved by using a classical
non-linear Richardson strategy

λ
k+1 = λ

k + δλk,

until convergence to a suitable tolerance has been achieved.
In order to devise a convergent methodology, we make use
of the Newton method

J(λk)δλk = −R(λk),

which requires the computation of the exact Jacobian ma-
trix J(λk) at each iteration. Each coefficient of the Ja-
cobian matrix corresponds to the variation of a boundary
value due to the variation of a coupling quantity on the
same model. Therefore, from the computational point of
view, each coefficient requires the solution of the tangent
problem associated to the corresponding model (see [13]
for more details on the computation and assembling of the
Jacobian matrix). This approach is very expensive, espe-
cially when dealing with many 3-D FSI boundary inter-
faces. Moreover the Jacobian matrix should be updated at
each iteration. In view of these considerations, we use the
Newton method only at the very first iteration, to initialize
the Jacobian matrix. Then we update the matrix at each
iteration through the Broyden method

J(λk) = J(λk−1)+

(

R(λk)−R(λk−1)
)(

δλk−1
)T

(δλk−1)T δλk−1

−

(

J(λk−1)δλk−1
)(

δλk−1
)T

(δλk−1)T δλk−1
,

which does not require the solution of any tangent problem.

A two-level time step technique for coupling
1-D and 3-D FSI models

As anticipated before, the explicit second order TG scheme
entails a strong time step limitation due to the low value
of the Courant–Friedrichs–Lewy (CFL) condition, equal
to

√
3/3. In particular, under physiological conditions

this leads to a maximum time step of about 1e-5 s, that
is around one hundred times smaller that the one typically
used for 3-D FSI simulations. Indeed, 3-D FSI models are
very expensive from the computational viewpoint and for
this reason we aim to solve them as few times as possible,
i.e., using a very large time step.

In order to satisfy the 1-D CFL condition without re-
ducing the 3-D FSI time step, we devise a two-level time
step technique (see Figure 3) where

Figure 3 Two-level time step technique scheme: between the
global time step∆t = t

n+1
− t

n, some local time steps (in
blue) are performed in the 1-D models.

• the inner time step meets the 1-D CFL requirements
and it is used just by the 1-D models;

• the outer time step is used for the 3-D FSI model and
for the strong coupling between the models, i.e., (7)
is satisfied just at this level.

Note that in order to perform the inner time steps, we
need to interpolate the values of the coupling conditions
betweentn andtn+1.

The resulting scheme is robust from the computational
point of view, however two problems may arise. First of
all, we need to find a different strategy for the computation
of the Jacobian coefficients, since the analytical formula-
tion of the tangent problem is too complex due to the recur-
sion of the problem. To address this issue we use two dif-
ferent techniques: a finite difference approximation and an
approximated formulation of the tangent problem. In both
cases we end up with convergent inexact-Newton schemes.
Another issue regards the possible presence of numerical
reflections at the coupling interfaces, due to the fact that
(7) are satisfied just at the outer time step. Nevertheless,
investigations in this direction show that these reflections
are strongly related to the size of the wavelength. In par-
ticular under physiological conditions the wavelengths are
long and the numerical reflection are negligible.

More details and investigations about the two-level
time step technique and these issues are given in [18].
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Results
In this section we show some numerical results and appli-
cations of the methodology discussed in the previous sec-
tions.

1-D modeling of the human arterial network

First of all, we validate our methodology by using the ar-
terial network provided in [5, Figure 2 and Table 2]. This
model is composed by 103 elements (4 coronary, 24 aortic,
51 cerebral, 10 in the arms, and 14 in the legs) and includes
all the parameters required to describe the true physiologi-
cal flow, such as the narrowing of the area, the viscoelastic
response of the arterial wall, and the terminals, which are
modeled as 0-D windkessel elements. The resulting cou-
pled problem is composed of 255 interface variables. Even
if the number is relatively small, it represents the implicit
coupling of 150 (103 1-D plus 47 0-D) non-linear prob-
lems, in a complex network topology (that includes bifur-
cations and closed loops), hence the solution is not trivial.

In Figure 4 we present the result of the last of six car-
diac cycles, when the periodic regime has been reached.
We can observe that our results follow the ones given in [5,
Figure 4], even if some differences are present, due to the
different model for the viscoelastic part of the arterial wall
and to the different heart flow rate time profile. Regard-
ing the number of iterations of the coupling algorithm we
tested different methods in presence of the two-level time
step technique (in view of the coupling with 3-D FSI mod-
els), using an outer time step of 0.001 s, which is the typical
one for 3-D FSI simulations. The results are shown in Fig-
ure 5, where we observe that the Broyden strategy leads
to a reduction factor of five with respect to the inexact-
Newton method. Note that there are no significant differ-
ences between the cases with and without the viscoelastic
term, even if it adds some additional non-linearities to the
problem.

1-D arterial network with 3-D FSI aorta

In this paragraph we present some preliminary results
about the coupling of the full 1-D network with a 3-D FSI
aorta. The layout of the model is shown in Figure 6. To
set up the model, first of all we identify the position of the
7 coupling interfaces of the 3-D aorta in the 1-D arterial
network. Then, we perform a cut of the 1-D segments at
those positions, such that we match the original length of
the 1-D arterial network. Finally, we also change the prox-
imal diameter in those segments in order to match the one
of the corresponding 3-D FSI interfaces. On the one hand,
this procedure may seem somehow arbitrary, in the sense
that there is not a unique technique to identify the cutting
sections, nor the correct length of the 1-D segments. How-
ever, on the other hand, this arbitrariness should not affect
the results, as the values of the averaged/integrated quanti-
ties (volumetric flow rate and normal stress) is not affected
by small geometrical changes.

The mesh of the fluid part of the aorta consists of
271,970 tetrahedral elements with 54,131 vertices, while
the solid part is made of 108,720 tetrahedral elements with
35,944 vertices. All simulations were performed on three
computational nodes with eight cores each of the Intel Ne-
halem clusterAntaresat the EPFL. The simulation of one
heartbeat takes approximately 52 hours of wall-clock time.
In Figure 7 we show a detailed view of the velocity field
inside the 3-D FSI aorta, while regarding the number of
iterations in Figure 8 we can observe that there is no sig-
nificant difference between the full 1-D arterial network
case and the coupled 1-D plus 3-D FSI aorta one. Note
that the two green peaks correspond to a restart of the sim-
ulation where, at the present time, we lose the information
about the previous Jacobian matrix; in the future we plan
to store the last Jacobian matrix for the next restart, in or-
der to solve this small issue. For the full 1-D network a
restart is not needed due to the small computational cost.

Sensitivity analysis of the external wall Robin
boundary condition for the 3-D FSI model

From the modeling point of view, one critical aspect to get
physiological results in the 3-D FSI aorta is the tuning of
the boundary condition on the solid external wall. The in-
fluence of external tissues and organs tethering and con-
straining the movement of blood vessels is of critical im-
portance when simulating 3-D FSI problems in the arterial
system. Obviously, it is currently unfeasible to model the
detailed multi-contact relations between the aortic system
and the other tissues. In [19] the authors propose to han-
dle the external tissue support on the outer arterial wall by
enforcing a Robin boundary condition which models the
elastic and viscoelastic response of the tissue. For the sake
of simplicity, we start our analysis by neglecting the vis-
coelastic component. Therefore on the solid wall of the
3-D FSI problem we impose

Π · ns + ks · ds + Pwall · ns = 0, on Γwall,

whereks is an empiric elastic coefficient. Then we set
up different test cases of the same problem. In particu-
lar, we identify three main regions in the aortic arch and
we select different sets of values for the elastic coeffi-
cient ks (see Table 1). The results at the ascending and
thoracic aorta coupling interfaces are shown in Figures 9
and 10, respectively. As we can see from the images, the
first three sets of coefficients (the smallest ones, including
also a Neumann case) lead to unphysiological results. Re-
moving those cases from the graphs we end up with very
similar results (see the second row in Figures 9 and 10),
where strong variations of the elastic coefficient does not
produce sensible variations of the main quantities. More-
over, these latest results are in a physiological range and
comparable to the ones obtained with the full 1-D arterial
network. Further tests including the viscoelastic term in
the Robin boundary condition are subject of future works.
For more details see [20].
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Figure 4 Periodic flow rate (solid line) and pressure (dashedline) results in six different arterial segments. Positioning of 1-D
network elements is purely visual.
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Figure 5 Comparison, in terms of number of iterations, of
different algorithms for the coupling of the full 1-D networ k.
The first three heart beats are shown. Note that in the Broy-
den methodJ(λ0) is the Jacobian matrix of the previous time
step, while in the reinitialized version, it is recomputed using

the inexact-Newton method.

Conclusions
In the present work, a geometrical multiscale framework
for modeling the human cardiovascular system has been
presented. The main ingredients of the framework are (i)
a complete set of models for describing each compartment
of the arterial network with a proper level of detail (0-D,
1-D, and 3-D), and (ii) a general and robust coupling algo-
rithm to assemble the heterogeneous models into one large
geometrical multiscale problem.

We show that our geometrical multiscale framework
is able to assemble and solve complex problems, includ-
ing networks of more that 100 elements, with a reason-
able computational cost. Moreover, we also demonstrate
that the resulting geometrical multiscale model provides
physiological results, comparable with the ones of Rey-
mond et al. [5].

Finally we also show some preliminary results of het-
erogeneous networks, coupling a 3-D FSI aorta with a full
1-D arterial tree. For this challenging application we show
that correctly tuning the value of the external wall Robin
boundary condition on the 3-D FSI problem we obtain
physiological results, comparable to the ones of the full
1-D arterial network. Further test and investigations on
this field are subject of future works.
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Figure 6 A global view of the 1-D arterial network coupled
with the 3-D FSI aorta at the beginning of the 3rd systole.

Positioning of 1-D network elements is purely visual.
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Figure 9 Comparison between the result at the ascending
aorta of the full 1-D arterial network (black thick line) wit h
the ones of the 1-D arterial network coupled with the 3-D FSI
aorta in presence of different wall conditions. The first line
shows the results of all the tested cases, while the second line

shows just a subset of them.
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Figure 10 Comparison between the result at the thoracic
aorta of the full 1-D arterial network (black thick line) wit h
the ones of the 1-D arterial network coupled with the 3-D FSI
aorta in presence of different wall conditions. The first line
shows the results of all the tested cases, while the second line

shows just a subset of them.

Table 1 Sets of values for the elastic coefficientks of the 3-D
FSI aorta external wall Robin boundary condition. See the
figure below to identify the three regions (Top, Center, and

Bottom).

Center TopBottom

ks

Wall condition Top Center Bottom

Neumann 0 0 0

Robin 0 30000 10000 19000

Robin 1 40000 15000 25000

Robin 2 55000 20000 35000

Robin 3 80000 30000 50000

Robin 4 95000 40000 65000

Robin 5 110000 50000 80000

(Sc. Comp) in the USA.
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