
 

 

 

 

Heat Transfer in the LHC Main Superconducting Bus Bars 

 

Granieri P.P.
1,2

, Casali M.
 3
, Richter D.

 1
 

 
1
CERN, TE Department, 1211 Geneva 23, Switzerland 

2
 EPFL, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland 

3 
University of Bologna, v.le Risorgimento 2, 40136 Bologna, Italy 

 

 

CERN is performing a systematic analysis of the interconnecting bus bars of the 

Large Hadron Collider (LHC) main magnets. Their thermal, electrical, mechanical 

and hydraulic performances are addressed. In the frame of these studies, the heat 

transfer between the main superconducting (SC) bus bars and the surrounding He 

bath is investigated. It represents a key parameter in the comprehension of the bus 

bars stability and quench propagation mechanisms, thus crucial for the analysis of 

the 2008 incident which was triggered by a defective bus bars joint. This paper 

reports on the experimental tests and relative analysis aiming at describing the 

thermal behavior of the LHC main bus bars. 

 

 

 

INTRODUCTION 

 

The LHC incident occurred in September 2008 triggered a systematic analysis of the interconnecting bus 

bars aiming at determining safe operating conditions for the accelerator [1]. This work includes 

experimental and theoretical studies of defective bus bar joints [2,3], identified as the cause of the incident. 

As part of this study, the heat transfer between the 13 kA main bus bars and the helium bath was 

investigated. The heat extraction plays indeed an important role in the bus bars stability and quench 

propagation mechanisms, hence an appropriate effort was paid to obtain a good insight of the underlying 

thermal phenomena. Heat transfer tests were performed on a bus bar sample both in helium-II and helium-I 

bath. The analysis of the measurements allowed identifying the transient and steady-state driving heat 

transfer mechanisms. A complete overview of the bus bar thermal behaviour was therefore provided.  

 

 

EXPERIMENTAL SETUP 

 

The sample was prepared from an insulated piece of main bending (MB) dipoles bus bar, whose cross-

section is shown in Figure 1(a). The insulation of the LHC bus bar is made of two polyimide tapes 20 mm 



 

wide and 50 μm thick, both overlapped by 50 % and wrapped in opposite direction with respect to each 

other, covered by an ISOPREG EP2047 tape 12 mm wide and 120 μm thick, wound with a 3 mm spacing 

between adjacent turns and cross-wrapped with respect to the second polyimide tape. 

 

Figure 1 Scheme of the bus bar cross section (a) and of the middle cross-section of the sample (b) 

 

The SC cable and the Sn-Ag filler were removed from the central hole of the hollow Cu profile. A 

stainless steel strip was placed in the hole, and electrically insulated from it through polyimide foils. The 

strip was connected to a current supply, in order to simulate a constant heating of the bus stabilizer, 

uniform over its length, due to a resistive transition of the SC cable. The dissipated power was calculated 

using the measurement of the voltage at the strip extremities and of the injected current. The hole was filled 

with teflon, foam and fiberglass plates to keep a good thermal contact between heaters and Cu profile that, 

in the real bus bar, is ensured by the Sn-Ag solder. Figure 1(b) shows a sketch of the sample cross-section. 

The bus stabilizer was instrumented with AuFe0.07at%-Chromel thermocouple junctions (TCJs) that 

were hosted in holes previously drilled in it. Small squares of insulation were removed, allowing the 

varnish insulated TCJs to be installed and then sealed using epoxy resin. The average position of the TCJs, 

considered for the analysis, is shown in Figure 1 (b). The relative error of the measured temperature 

difference between bus bar and bath was evaluated to be less than 5 mK in He-II and less than 10 mK in 

He-I bath. The sample preparation was completed by adding epoxy resin plugs on its extremities to prevent 

longitudinal parasitic cooling. Finally, the sample was installed in a Claudet-bath cryostat, where all its 

faces were in direct contact with the 0.1 MPa pressurized He-II or saturated He-I bath. No stress was 

applied on the sample faces. The bath was stabilized within 0.5 mK in He-II and 0.8 mK in He-I, using Ge 

temperature sensors. The measurements aim at correlating the bus bar steady-state temperature increase to 

the power dissipated in the heater, to determine the overall heat transfer coefficient (HTC) through the 

insulated bus stabilizer. Contrary to the expectations, the observed time constants were not below 1 s. This 

feature required the development of a transient model, described in the next Section. 

 

 

MODEL DESCRIPTION 

 

The numerical simulation of the measurements was performed using the CryoSoft code THEA [4]. The 

original 1-D model with lumped parameters was modified into a quasi 2-D model by taking into account 

the temperature gradients across the polyimide components. Hence, besides the temperature dependent 

material properties of the three thermal components (see below), the thermal resistances between them is 

also considered as temperature dependent. Three thermal components were defined, as shown in Figure 2: 



 

the copper bus stabilizer (Cu), the stainless steel heaters (SS), and a plastic element (Pl) representing the 

plates located in the Cu central hole, with homogenized thermal properties of the different materials.  

 Table 1 Geometric parameters of the sample 

 

Heat transfer length (mm) 150 

Cross sections:  Cu (mm
2
) 266.64 

Cross sections:  SS (mm
2
) 0.8 

Cross sections:  Pl (mm
2
) 45.28 

Contact / wetted perimeters:   

       SS - Cu, SS - Pl (mm) 32 

              Cu - Pl (mm) 5.66 

              Cu - He (mm) 74.37 

Figure 2 Scheme of the lumped parameters model 

 

The following heat balance equation was solved for each component i : 
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where the subscripts i and j refer to the thermal components and h refers to the He bath. Ai is the cross-

section of the component, i its density, Ci the specific heat and Ti the temperature. pij and pih are the 

contact/wetted perimeters between two thermal components or between the bus stabilizer and the external 

He bath, respectively. qi’ is the external heating in the SS component. The HTC between two thermal 

components hij and between bus stabilizer and bath hih before the film boiling formation are defined as: 
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δij is the distance between two adjacent thermal components, equal to the polyimide thickness for the Cu-SS 

link and to the Pl half-thickness or half-width for the other links. δih is the insulation thickness, considered 

to be made of only polyimide material. kij is the temperature dependent thermal conductivity. hih is 

described by pure conduction through the bulk of the dielectric insulation before the film boiling formation, 

otherwise a film boiling layer (HTC of 250 W/m
2
 K [5]) is considered in series with the pure conduction 

mechanism. The Kapitza resistance at the interfaces between the components and the He bath is neglected. 

QHe-II represents the superfluid contribution to heat transfer between the stabilizer and the external bath, 

occurring through the micro-channels located between the insulation tapes. This mechanism, well known 

for the polyimide insulations of SC cables [6,7], cannot be neglected despite the quite sealed insulation 

scheme. This is probably also due to the lack of applied stress on the bus bar faces. QHe-II is evaluated from 

the measured steady-state temperatures, and is assumed decoupled from the conduction mechanism. It is 



 

only present for small powers at 1.9 K, and its ratio with respect to conduction is comparable to that 

measured in similar conditions [7]. Table 1 reports the sample geometric parameters. 

 

 

RESULTS AND ANALYSIS 

 

Transient State 

The measured temperatures as a function of time are reported in Figure 3, for a bath temperature of 1.9 K 

on the left and of 4.25 K on the right. The results obtained using the described model are also shown. 

Different powers are considered in both cases: 1, 1.5, 2 and 6 W at 1.9 K, 1 and 6 W at 4.25 K. 

 

Figure 3 Measured and calculated temp. difference vs. time (see text). 1.9 K bath on the left, 4.25 K on the right 

 

In order to reproduce the experimental data it was necessary to tune the thermal resistances between 

heaters and bus stabilizer (RSS_Cu): a value of RSS_Cu larger than the resistance due to only solid conduction 

across the polyimide bulk (RSS_Cu COND) has to be taken into account. In this case the heat transfer between 

heaters and bus stabilizer is indeed limited, thus yielding a lower temperature increase of the bus stabilizer 

and a bigger temperature increase of the heaters. Moreover, the heat transfer increases with time driven by 

the heaters temperature increase and by the corresponding decrease of thermal resistance RSS_Cu. This 

increase of heat transfer is the cause of the temperature increase with time, and the higher RSS_Cu is, the 

slower is the process. RSS_Cu must be 10 to 100 times larger than the polyimide bulk thermal resistance. This 

cannot be explained in terms of thermal boundary resistance: although dependent on the properties of the 

contact materials and on the surface topography, literature does not show such large values of thermal 

boundary resistance [8]. We believe the reason of the large thermal resistance is the larger thermal 

contraction of the plastic components with respect to the copper. They are supposed to push the heaters 

against the copper, but the differential thermal contraction can cause a detachment of the components in the 

central hole: the lower the temperature is, the larger is the cleavage, thus the higher is RSS_Cu. Furthermore, 

the possible presence of the superfluid contribution in parallel with the conduction one (at 1, 1.5 and 2 W at 

1.9 K), or the series between the conduction and the film boiling (at 6 W at 1.9 K, at 1 and 6 W at 4.25 K) 

was deduced from the steady-state results discussed in the next sub-section. The transient analysis of the 



 

tests showed that the observed time constants are due to the experimental setup, and are not characteristic 

of a well soldered LHC bus bar, i.e. entirely filled with Sn-Ag (as shown schematically in Figure 1(a)). 

 

Steady State 

Figure 4 reports the measured steady-state temperature difference between bus bar and bath as a function of 

the power dissipated in the 150 mm long sample. The results obtained with two heat transfer models are 

also shown, based on conduction through the polyimide insulation, and on the series between conduction 

and a film boiling layer. This approach allows identifying the different heat transfer mechanisms. 

 

Figure 4 Measured steady-state temperature difference vs. dissipated power. Bath at 1.9 K on the left, at 4.25 K on 

the right. Two heat transfer models are considered: conduction and series between conduction and film boiling 

 

 In 1.9 K bath the He-II permeating the micro-channels between the insulation layers contributes to 

cooling for small powers. The effect of this contribution amounts to two to eight times the solid conduction 

one. It decreases with increasing the power, until the point (at around 3 W) where the measured curve 

crosses the calculated conduction curve. It is worth noting that this point where QHe-II becomes negligible 

corresponds to a bus bar temperature much higher than 

the He λ transition temperature. This might be related 

to the large temperature gradient associated to the 

thick insulation scheme. Above 3 W the measured 

curve tends towards the calculated conduction + film 

curve, which it reaches at around 7 W. It seems 

therefore possible to describe the heat transfer above 

7 W by the series between conduction and a film 

boiling layer blanketing the bus bar external surface. 

This is more evident for the 4.25 K bath because 

always the case from the smallest measured power of 

0.2 W. The film boiling thermal barrier effect is more 

significant at high temperatures, where the thermal 

resistance associated to the conduction mechanism 

 

  Figure 5 HTC for bath at 1.9, 1.95, 2 and 4.25 K. The 

     conduction + film boiling model is also shown 

 



 

decreases and the film boiling becomes the limiting mechanism. 

The HTC is reported in Figures 5 for bath temperatures of 1.9, 1.95, 2 and 4.25 K. The results using 

the conduction + film boiling model both at 1.9 and 4.25 K are also shown: they aim at extending the 

results to larger temperatures, where the HTC saturates at a value of 200 W/m
2
 K for both the 1.9 K and 

4.25 K bath. The HTC does not show differences for bath temperatures of 1.9, 1.95 and 2 K but for the 

small temperatures region, where the He-II plays a significant role. Except for this region, the HTC in 

4.25 K bath is always larger than in 1.9 K bath, thus confirming the relevance of the solid conduction 

mechanism, due to the large insulation thickness. 

Because of the normalization over the heat transfer area, all considerations concerning the HTC are 

valid for both the MB dipoles and main quadrupoles (MQ) bus bars. These results will be used to analyze 

in terms of local HTC the tests reproducing defective interconnections [2]. This will allow improving the 

reliability of the stability calculations of the bus bars interconnection [3]. 

 

 

CONCLUSIONS 

 

The modeling of the LHC interconnecting bus bars, following the 2008 incident, called for better 

understanding of the heat transfer from the bus bar to the cooling He bath. 

Dedicated measurements were carried out on a bus bar sample in He-II and He-I bath. The relative 

analysis allowed describing the transient temperature behavior. The steady-state heat transfer was 

determined and the driving mechanisms identified. In particular, the effect of superfluid helium was shown, 

as well as that of conduction through the bus bar insulation and the film boiling formation. A complete 

picture of the LHC main dipoles and quadrupoles bus bars heat transfer coefficient was obtained. 
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