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Abstract

One important source of performance degradation in BCIs is bias towards one of the men-
tal classes. Recent literature has focused on the general problem of classification accuracy
drop, identifying non-stationarity as the generating factor, thus leading to several classi-
fier adaptation approaches suggested as of today. In this work, we explicitly focus on bias
elimination, demonstrating that the problem has two separate components, one related to
non-stationarity and another one attributed to the nature of the feature distributions and the
assumptions made by the classification methods. We propose a cued recalibration protocol
including a supervised adaptation method and a novel framework for unbiased classification
with a modified, unbiased Linear Discriminant Analysis classifier. Preliminary results show
that our protocol can assist the subject to achieve quickly accurate and unbiased control of
the BCI.

1 Introduction

Classification bias has proved to be a major problem in Brain-Computer Interfaces (BCIs), hinder-
ing user training and obstructing BCI operation, since one mental command can be heavily favored
over the other, in which case the latter might often become unusable. However, bias elimination
has received little attention per se so far, since in recent literature bias emergence has been only
treated as part of the more general problem of accuracy degradation. Therefore, bias has been
solely attributed to non-stationarity and thought to be largely eliminated by online adaptation of
the classifier parameters [1, 2]. Alternatively, and although not reported in literature, the common
code of practice in most labs in overcoming a biased classifier involves either a quick re-training
session or “manual” adaptation of the classifier hyperplane.

Biasing effects become most prominent at the transition from the calibration (no feedback)
to the online (BCI feedback) phase or in between consecutive online sessions, proving that non-
stationarity accounts for a large component of the problem. Nevertheless, we discuss here other
potential sources of bias and present a unified approach to tackle classification bias.

In this work, we present a novel method for supervised, adaptive estimation of Loss function
parameters [3] leading to an unbiased Linear Discriminant Analysis (LDA) classifier. This su-
pervised scheme will be applied in a cued recalibration protocol interleaved between the offline
(calibration) phase and online operation of the BCI, thus achieving both classifier adaptation and
explicit bias elimination for improved consecutive BCI experience.

2 Methods

2.1 Motivation

Classification bias is evident from the confusion matrix of a BCI experiment where the per class
accuracy may be significantly different, even for classifiers achieving high total accuracy. Such a
biasing effect can occur for a variety of reasons. During online BCI operation bias can appear
due to the violation of the stationarity assumption. In such case, the class distributions estimated
on the training set and used to define the classifier’s decision rule do not reflect any more the
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class distributions currently generated by the subject (Figure 1(a)), thus introducing bias and
general accuracy degradation. Non-stationarity is a known problem in BCI and several adaptive
parameter estimation approaches have been proposed to eliminate its effects [1, 2], thus implicitly
coping with this source of bias.

Nevertheless, classification bias can still persist, since there are additional reasons that may
contribute to its appearance. These reasons include: (i) violation of the basic LDA assumption
(when LDA is used) of identical covariance matrices for the two classes (Figure 1(b)), and (i%) the
inherent bias emerging when classes are normally distributed with covariance matrices that are
significantly different (Figure 1(c)). In the latter case, even a non-linear, quadratic classifier is not
guaranteed to eliminate bias, since bias alleviation is not explicitly treated by Bayesian classifiers.

w w w
g g 2
Variable x = 8 Variaex Variable x Variable x
(a) Non-stationarity bias (b) LDA assumption bias (c¢) Inherent bias (d) Unbiased decision rule

Figure 1: Sources of bias for the case of a single feature and assuming equal prior probabilities
without loss of generality. Dotted lines correspond to the sample distributions either estimated
from the training set (a) or by assuming identical covariance matrices for the classes (b). Solid
lines correspond to the actual sample distributions. Colored areas S7, S2 represent the error of the
corresponding class. Potential bias is evident comparing the sizes of S7, 55.

The basic idea implemented in this work concerns a two-step algorithm, where in the first step
a supervised LDA classifier adaptation technique is proposed to alleviate the non-stationarity-
related bias and, in the second step, the LDA hyperplane constant term is further adjusted to
eliminate the inherent- and assumption violation-related bias that might occur (Figure 1(d)).

2.2  Algorithm

Step 1 - Supervised adaptation and shrinkage: A supervised adaptation framework is
employed, where for each incoming EEG sample x; at time ¢ the class mean vector u! and covari-
ance matrix X! (where 7 the class that x; belongs to) are iteratively estimated in the Maximum
Likelihood (ML) approach as p! = pli™' + ﬁ(xt —phml) and XY = %2?_1 + %(xt -
ufi_l)T(xt — ufi_l) respectively, while the parameters of the other class retain their previous
values. This straightforward supervised approach is possible, since data samples are acquired in a
cued protocol where data labels are known. The “global” covariance matrix is also calculated at
each step t as Xt = (113} +1238) /¢, t = t1 + to, where iterators t1,ts are only incremented when
the sample at ¢ belongs to the respective class 1.

Parameters t1,ts could generally be set to the respective sizes of the classes in the training
set. However, we set this values to tY = 1000 in order to adapt faster to the distributions of the
online session and recover quickly from any non-stationarity effect. Since for low values of ¢ the
ML estimates are known to be inaccurate and sensitive to outliers, we also G/H\lpl(/)X an analytical

covariance shrinkage method [4] to estimate the final covariance matrices X%, 3%, $t. Shrink-
age also avoids singularity problems. Then, we derive the conventional LDA hyperplane using

1
a 0-1 Loss function 'Lo_; at time t as w¢Z/x + bg—1; = 0, where wy = Xt (u! — pb) and

—~—1
bo-1e = —3(pt — p)TEE (pt — p) + In(5ed).

Step 2 - Hyperplane adjustment for unbiased classification: The main novelty of our
approach lies on the introduction of a second adaptation step, aimed to alleviate the additional

10-1 subscript denotes that the quantity in question has been derived with a “0-1” Loss function, [3].



sources of bias based on the accurate estimation of the class distributions by the previous step.
Figure 1(d) shows the basic idea consisting in finding a decision rule that “predicts” equal error
rates for both classes, namely P.(c1) = P.(c2).

By constraining our problem to linear decision rules w{:Tx + by = 0 whose hyperplane is
parallel to the one found by Lg_; LDA, wi = wy, the problem reduces to a single degree of
freedom independently of the dimension of the feature space. Intuitively, we wish to estimate the
bias term b; of the new linear rule that will lead to theoretically equal error rates, thus operating
our LDA classifier in a different point on the ROC curve than that found by conventional LDA.

The geometrical interpretation of the above demand satisfies that the hyper-volumes P, (¢;) =
/[ fDi N(x, p;, 3;5) dx, D; : sgn(c;)(wTx +b) > 0, are equal. The solution by,piqs is the zero
of the function f(b) = P.(¢1) — P.(c2). This complex equation can be significantly simplified by
considering a rotation R of the n-dimensional coordinate system of the feature space, such that
the first dimension of the rotated space is parallel to the normal vector wg, in which case it is
easy to show that f(b) = %er(i}%) + %er(i}%), where m; = (Ru;)1, 02 = (RTX;R)11 and er
is the error function (proof omitted due to lack of space). Solving the last non-linear equation is
possible by means of the Taylor approximation of er and polynomial root identification through
the companion matrix formation, so that finally the only real root is a very close approximation

of the desired bias term bynpigs-
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allowing our linear classifier to operate on the point that ideally produces equal error rates for
both classes when the normal distribution assumptions hold, and thus zero bias. It is also worth
to note that all necessary operations are simple enough to allow online implementation of the
algorithm even in MATLAB for a BCI working at 16 Hz.

3 Results

Formally, the obtained solution b,piqas defines a Loss function Lyppies =

In order to evaluate the effects of the extra bias factors we have identified and the effectiveness
of the unbiased LDA framework in alleviating them, we compute the Bias Index BI = | — 2
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where a; the number of correctly classified samples and k; the total number of samples of class 1.
An ideal, unbiased classifier should have BI = 0.

The first comparison is on a calibration session dataset of 8 subjects with a cued Motor Imagery
(MI) protocol consisting of at least 120, each 5 sec long trials for each subject. BI is is calculated
on the training set, thus largely excluding non-stationarity related bias. In this case we compare
our unbiased LDA approach to the normal LDA.

The results illustrated in Figure 2(a) show the existence of additional bias factors, as well as
the ability of the proposed method to largely eliminate them. The fact that BI does not reach 0,
as theoretically predicted, as well as the exception of subject s3, are attributed to the fact that
the assumption of normally distributed features does not absolutely hold. In the same experiment
total accuracy was not affected, since the maximum reported difference was found to be less than
1% across all subjects and not statistically significant.

The ability of the proposed unbiased LDA framework to reduce bias is further demonstrated
on extra (at least 120) MI trials executed the same day as the above calibration session for each
subject. In this case, online feedback was driven by a Gaussian classifier and variable-length trials
would end when a decision threshold on “accumulated” posterior probabilities was reached. The
comparison on this dataset is done among the following variations of our unbiased LDA method: (%)
unbiased LDA derived from the training set (calibration session) as above, (i) adaptive unbiased
LDA (Step 1 only) running over the whole dataset, (¢iz) full adaptive unbiased LDA (Steps 1 &
2) running over the whole dataset, (iv) full adaptive unbiased LDA running over the first 30% of
the dataset and stopped afterwards, and (v) adaptive unbiased LDA (Step 1 only) running over
the first 30% of the dataset and stopped afterwards. The last two cases are meant to evaluate the
expected bias after the proposed re-calibration protocol has finished, where classifier (iv) would
be the outcome of the proposed protocol. BI was calculated on the last 70% of the dataset.
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Figure 2: Bias elimination through adaptive unbiased LDA on MI EEG data.

Figure 2(b) shows the overall potential of our framework, since for all subjects the proposed
unbiased LDA (4*" bar) achieves a lower BI than the original unbiased LDA derived from the
training set (15! bar) for all subjects except s5, who had a non-stationarity effect that made fea-
ture distributions change abruptly after adaptation was switched off. Differences are statistically
significant for 5/8 subjects. Furthermore, although not shown in the figure due to space limi-
tations, the unbiased LDA derived from the training set has a lower BI than the normal LDA
for 7/8 subjects, 6 statistically significant. Statistical significance is computed at 99% confidence
interval. Additionally, it is verified that the extra “unbiasing” procedure can assist in further
reducing the total bias during the protocol execution (3"¢ bar lower than the 2" for 6/8 cases, 4
statistically significant) as well as after protocol termination (4! bar lower than the 5! for 6/8
cases, 4 statistically significant).

4 Discussion

The overall trends support the utility of the proposed method, while the fact that non-favourable
exceptions are not statistically significant proves that in the worst-case scenarios the recalibration
protocol will not inflict further bias. Concerning the total accuracy, results (not shown due to
lack of space) showed that accuracy can greatly improve when non-stationarity is intense between
calibration and feedback trials, otherwise there is no significant improvement. It should also be
mentioned that our method can equivalently be applied in other types of features or problems.
Ongoing and future work entails online experiments under this protocol, where it can be hoped
that the mutual learning procedure when the protocol directly drives the feedback can further
improve performance. We will also explore an unsupervised version of the unbiased framework.
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