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Summary

Variance stabilization constitutes a new approach for computing confidence
intervals to compare binomial probabilities. Kulinskaya et al. (2009) de-
velopp the method for the risk difference and the results are better than
those of the highly applied Newcombe (1998) interval. This Master thesis
develops the same approach for both relative risk and odds ratio.

The transformation from risk difference to either relative risk or odds
ratio causes some bias and the coverage of the obtained intervals is not
satisfying. Thus we compute conditional confidence intervals with the hy-
pergeometric distribution and the obtained results are as good as those of
other well-known methods.

This approach is then applied to combine evidences in meta-analysis and
simulations are run to compare the results with other methods. We found
that our approach performs much better than the widely used inverse vari-
ance method and is competitive with the best known Mantel and Haenszel
(1959) method.
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Introduction

The binary data are often used in the medical field or in social sciences to
study an effect between two groups. It can be for example the effect of a
treatment between a treated and a control group. The outcome will be the
number of successes and the total number of trials in each group. Let us call
X1, X2 the successes and n1, n2 the number of trials, then X1 and X2 are
binomial random variables with probabilities p1 and p2 respectively. The
difference between these two probabilities will attest the difference of the
effect between the two groups. Several statistics may be used to compare
two probabilities. In this paper we deal with the risk difference ∆ = p1−p2,
the relative risk ρ = p1

p2
and the odds ratio γ = {p1(1− p2)}/{(1− p1)p2}.

Since the success probabilities are estimated, so is the parameter of in-
terest, thus a confidence interval should be given. The mainly used method
proposes an estimate of the variance and computes the Wald confidence in-
terval. The problem is that, as the variance is estimated and depends on the
true value of the parameter, the coverage of these intervals might be much
worst than the expected level. Many papers discuss about ways of comput-
ing a confidence interval using different approaches: Storer and Kim (1990)
developp exact tests, Newcombe (1998) proposes a method based on the
Wilson (1927) score method for the single proportion. He compares eleven
different methods and concludes that his new way of computing a confidence
interval is the most satisfying. Mart́ın Andrés and Tapia Garćıa (2004) study
unconditional asymptotic tests, Agresti and Min (2005) compare the effect
of different Bayesian priors and methods inverting a score test. Brown and
Li (2005) compare six methods and conclude that Newcombe’s approach is
the best one.

Kulinskaya et al. (2009) propose a variance stabilizing transformation
(vst) so the obtained statistic has unit variance. Their theory is developed
for the risk difference ∆ and simulations show that the coverage of their
confidence intervals is really satisfying. The new approach works better
than the previously known methods and even better than the Newcombe’s
interval (1998). Since the method of Kulinskaya et al. (2009) works pretty
well for the risk difference we will apply the same approach on the two other
mostly used statistics, namely the relative risk and the odds ratio to verify
if the results are as good as those for the risk difference.



Kulinskaya et al. (2009) combine studies in a meta-analysis with these
transformed statistics. Adding the evidences with weights equal to the
square root of the sample sizes leads to a combined statistic with unit vari-
ance. A confidence interval can then be computed whose coverage is much
more reliable than the widely applied inverse variance approach which is
still used in most of softwares. The authors besides suggest never to apply
this last method.

In this paper we use this variance stabilization for the risk difference
and adapt it for both relative risk and odds ratio (Chapter 1). In Chapter 2
simulations of the coverage of the obtained confidence intervals show that the
results are not as satisfying as for risk difference and different modifications
are tried to attempt to get a good coverage. Finally conditional confidence
intervals are used for odds ratio, given the total number of successes in both
groups (Chapter 3). Simulations show that this method gives satisfying
results, much better than the unconditional previous approach. In Chapter
4 we apply this method to combine evidences in a meta-analysis and compare
the results with other well-known methods. Finally a discussion is drawn to
summarize the obtained results and to suggest further research interests.



Chapter 1

Variance Stabilizing

Transformations

1.1 Variance Stabilisation of the Risk Difference

For two binomial random variables X1 ∼ B(n1, p1) and X2 ∼ B(n2, p2), the
risk difference is defined as ∆ = p1 − p2. Because both probabilities p1 and
p2 are unknown we need to define a nuisance parameter ψ = Ap1+(1−A)p2
for any 0 ≤ A ≤ 1. There seems to be no simple solution for the choice of
A so in the following we will mostly fix A = 1

2 as suggested by Kulinskaya
et al. (2009). We can express the two probabilities as functions of ∆ and ψ
as follows:

p1 = ψ + (1−A)∆ and p2 = ψ −A∆. (1.1)

To satisfy 0 < pi < 1 (i = 1, 2) the following condition should be verified:

max

{
ψ − 1

A
,

ψ

A− 1

}
< ∆ < min

{
ψ

A
,
ψ − 1

A− 1

}
(1.2)

for A /∈ {0, 1}; there is no constraint otherwise.

The usual maximum likelihood estimator (MLE) of ∆ is ∆̂ = x1
n1

− x2
n2

(xi
is a realisation of Xi, i = 1, 2) which is unbiased and has a variance equal
to

var[∆̂] =
p1(1− p1)

n1
+
p2(1− p2)

n2
.

Actually the values of p1 and p2 are unknown so in practice we use the
estimated variance v̂ar[∆̂] = p̂1(1−p̂1)

n1
+ p̂2(1−p̂2)

n2
. This variance is used to

compute the well-known Wald confidence interval but the coverage is im-
proved by replacing the MLE p̂i by p̃i =

xi+c
ni+2c for different values of c (the

most widely used is c = 0.5 (Anscombe 1956)). The main problem here
is that the variance of ∆̂ depends on the values of p1 and p2 and so on its
expectation. The aim of a vst is to make the variance of a statistic constant.
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Let Y be a random variable that depends on a parameter θ with expecta-
tion Eθ[Y ] = µ(θ) = µ. If the variance of Y is varθ[Y ] = σ2(µ) then a vst is
a function h(y) that satisfies h′(y) = 1

σ(y) . The variance of the transformed
variable is then approximately one.

Kulinskaya et al. (2009) (Eq. 2.3) show that the vst of the risk difference
∆ is

T∆
A (∆̂;ψ,∆0) =

√
2Nq(1− q)

u

{
arcsin

(
u∆̂ + v

w

)
− arcsin

(
u∆0 + v

w

)}
,

(1.3)
which they refer as the evidence function, where

N = n1 + n2,

q =
n2
N
,

u = 2
{
(1−A)2q +A2(1− q)

}
,

v = (1− 2ψ) (A− q) and

w =
√
2uψ(1− ψ) + v2.

Notice that the arcsine function is only defined on the interval [−1, 1],
imposing a condition on ∆ to be between −w+v

u and w−v
u .

Under the null hypothesis ∆ = ∆0 the statistic T∆
A (∆̂;ψ,∆0) follows a

normal N(0, 1) distribution. We can easily test this null hypothesis or find

a confidence interval as the set of all ∆0 such that
∣∣∣T∆
A (∆̂;ψ,∆0)

∣∣∣ ≤ z1−α

2

,

the (1 − α
2 )-quantile of the normal distribution, leading to the following

confidence interval (Kulinskaya et al. 2009, Eq. 2.4):

ŵ

u
sin

{
arcsin

(
u∆̂ + v̂

ŵ

)
± z1−α

2

√
u

2Nq(1− q)

}
− v̂

u
, (1.4)

where v̂ = (1− 2ψ̂) (A− q) and ŵ =

√
2uψ̂(1− ψ̂) + v̂2.

1.1.1 Special case when A = 1
2

The notations simplify if we fix the parameter A = 1
2 . In this case the

nuisance parameter becomes p = p1+p2
2 , the mean risk. The vst given in

Eq.(1.3) reduces to

T∆(∆̂; p,∆0) = 2

√
RN

R+ 1

{
arcsin

(
∆̂ + 2v

2w

)
− arcsin

(
∆0 + 2v

2w

)}
, (1.5)

(Kulinskaya 2009, Eq. 2) where R = n1

n2
, v = 2

(
1
2 − p

) (
1
2 − 1

R+1

)
and

w =
√
p(1− p) + v2. In this case ∆ has to be between −2(w + v) and
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2(w−v) to satisfy the constraints of the arcsine function. Note that if p = 1
2

or if R = 1 then v = 0 and w =
√
p(1− p) which is the standard error of a

Bernoulli random variable with probability p.

Thus the limits of the confidence interval are

2ŵ sin

{
arcsin

(
∆̂ + 2v̂

2ŵ

)
± z1−α

2

R+ 1

2
√
RN

}
− 2v̂. (1.6)

1.2 Variance Stabilisation of the Risk Ratio

In Section 1.1 the risk difference ∆ was the parameter of interest but other
statistics may also be used, for example the risk ratio ρ = p1

p2
which is

always a positive number. Using Eq.(1.1) the risk ratio can be expressed as
a function of ∆ and the nuisance parameter ψ as follows:

ρ = g(∆;ψ,A) =
ψ + (1−A)∆

ψ −A∆
. (1.7)

The risk difference is between −1 and 1 but the risk ratio ρ is always positive
so ∆ must lie in the interval

(
max

{
−1,

ψ

A− 1

}
,min

{
1,
ψ

A

})

for A /∈ {0, 1}. When A = 0 or A = 1 then ρ is always positive for all
∆ ∈ (−1, 1). On this domain the function g is monotone increasing so an
inverse can be computed as

∆ = g−1(ρ;ψ,A) =
ψ(ρ− 1)

A(ρ− 1) + 1
. (1.8)

The denominator would be equal to zero if ρ = A−1
A (for A 6= 0) but this

quantity is less than or equal to zero and we know that ρ is positive so
the transformation is always defined. Nevertheless ∆ should lie between −1
and 1 which imposes a constraint between ψ and ρ that is ψ < {A(ρ −
1) + 1}min

{
1, ρ−1

}
. This condition is illustrated in Figure 1.1 for different

values of A. So ρ must be larger than max
{
0, 1 + ψ−1

A

}
for any value of ψ

and moreover if ψ > A then ρ must be smaller than 1−A
ψ−A .

The vst for the risk ratio ρ is found using the composition of the vst for ∆
and the inverse transformation g−1, giving the following evidence function:

T ρA(ρ̂;ψ, ρ0) = T∆
A

(
g−1(ρ̂;ψ,A);ψ,∆0

)
. (1.9)

To find a confidence interval for ρ we can simply use Eq.(1.4), replace ∆̂
by g−1(ρ̂;ψ,A) and then apply the transformation g to the obtained limits.
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Figure 1.1: Restrictions between ρ and the nuisance parameter ψ for different values
of A, A ∈ {0, 0.2, 0.5, 0.7, 0.9, 1}.

Nevertheless we have to check whether the limits of the confidence interval
for ∆ lie between ψ

A−1 and ψ
A before applying the transformation g, otherwise

it will return negative values. If the lower limit of the confidence interval for
∆ is smaller than ψ

A−1 then the lower limit for ρ will be zero. If the upper

limit for ∆ is larger than ψ
A we take the interval for ρ up to infinity.

1.2.1 Special case when A = 1
2

As in the previous section we compute the vst for a fixed value of A = 1
2 .

In this case the transformation simplifies to

ρ = g(∆; p) =
2p+∆

2p−∆

and the inverse transformation is

∆ = g−1(ρ; p) =
2p(ρ− 1)

ρ+ 1
.

The function g is not defined for ∆ = 2p = p1 + p2 but as p2 > 0 then it
is impossible that ∆ takes this value. The inverse transformation is defined
for all ρ > 0. To satisfy the condition for ∆ to be between −1 and 1, p must
be smaller than ρ+1

2 min
{
1, ρ−1

}
. This condition is illustrated in Figure 1.1

on the top right panel. If p ≤ 0.5 all values of ρ are allowed but when p is
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larger ρ must lie between 2p− 1 and 1
2p−1 . Nevertheless if p is very close to

zero and ρ is quite large then p2 must be almost zero. In this case when the
binomial random variable X2 is generated it will be zero most of the time
and so the probability is estimated by p̂2 = 1

2(n2+1) . The problem is when
n2 is small because then p̂2 ≫ p2 and so ρ̂ ≪ ρ. So the confidence interval
will never cover the true value of the risk ratio.

Thus for the risk ratio the only condition to check is the constraint
between ρ and the nuisance parameter ψ otherwise all the given transforma-
tions are well-defined whatever the values of the different parameters are.

1.3 Variance Stabilisation of the Odds Ratio

Another statistic of interest is the odds-ratio γ = p1(1−p2)
(1−p1)p2

that we can also

express as a function of ∆ and ψ. Using Eq.(1.1) and doing few computation
we get

γ = f(∆;ψ,A) =
a∆2 + b∆+ c

a∆2 + (b− 1)∆ + c
(1.10)

with a = A(1 − A), b = ψA + (1 − ψ)(1 − A) and c = ψ(1 − ψ). We
first consider the case where A is different from 0 or 1. To get a positive
odds-ratio the condition on ∆ is the following:

∆ ∈
(
max

{
−1,

−b+
√
b2 − 4ac

2a

}
,min

{
1,

1− b−
√
b2 − 4ac+ 1− 2b

2a

})
.

In the cases when A = 0 or A = 1 the domain of definition for ∆ is

∆ ∈
(
max

{
−1,−c

b

}
,min

{
1,

c

1− b

})
.

In both domains the function f is monotone increasing so an inverse can be
defined as

∆ = f−1(γ;ψ,A) =





γ − b(γ − 1)−
√
{b(γ − 1)− γ}2 − 4ac(γ − 1)2

2a(γ − 1)
, if A 6= 0 and A 6= 1

c(γ − 1)

(1− b)γ + b
, if A = 0 or A = 1.

(1.11)
Of course f−1 is not defined for γ = 1 (A /∈ {0, 1}) but in this case we know
that ∆ = 0.

The argument under the square root in Eq.(1.11) can be written as

(b2 − 4ac+ 1− 2b)γ2 − 2(b2 − 4ac− b)γ + b2 − 4ac
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and the factor of the quadratic term is thought to be always positive (it is
easy to prove it for A = 0.5). To satisfy the non-negativity of the square
root, γ needs to lie outside the interval

[
b2 − 4ac− b− 2

√
ac

b2 − 4ac− 2b+ 1
,
b2 − 4ac− b+ 2

√
ac

b2 − 4ac− 2b+ 1

]
,

the bounds being defined by the two roots of the polynomial.
To compute a confidence interval for γ we use Eq.(1.4), check if the

limits of this interval fall in the domain of definition of f and then apply
the transformation f on the two limits. If the lower limit of the interval for
∆ is outside the domain then the lower bound for γ is zero and if the upper
limit of ∆ is outside then the upper bound for γ goes up to infinity.

1.3.1 Special case when A = 1
2

With A = 1
2 , the transformation f simplifies to

γ = f(∆; p) =
∆2 + 2∆+ 4p(1− p)

∆2 − 2∆ + 4p(1− p)

and since this is a monotone function in ∆, the inverse can be computed as
follows:

∆ = f−1(γ; p) =





γ + 1−
√
(γ + 1)2 − 4p(1− p)(γ − 1)2

γ − 1
, if γ 6= 1

0 , otherwise.

The transformation f is not defined for ∆ = 1 −
√

1− 4p(1− p) in which
case the denominator is zero. The quadratic polynomials give two solutions
but only this one is valid because ∆ should lie between −1 and 1. Moreover
the argument under the square root must be non-negative but this is always
the case because 4p(1− p) < 0 for all p as p = p1+p2

2 and so

(γ + 1)2 − 4p(1− p)(γ − 1)2 ≥ (γ + 1)2 − (γ − 1)2 = 4γ > 0.

Thus the function f−1 is always well-defined.



Chapter 2

Simulations for One Study

The transformations presented in Chapter 1 allow to compute confidence
intervals for both relative risk and odds ratio starting from the results of
Kulinskaya et al. (2009). With monotone transformations the behaviour of
the confidence intervals would be the same as for the risk difference ∆ but
these functions have to be restricted in a particular domain to be monotone.
In this chapter simulations test the coverage of these intervals to attest the
efficiency of the method.

2.1 Confidence Intervals for the Risk Ratio

For each simulation the input is the total sample size N , the proportion

between the two samples R = n1

n2
(this allows to find n2 =

⌈
N
R+1

⌉
and

n1 = N − n2) and a value for the nuisance parameter ψ = Ap1 + (1− A)p2
for a given A. Then for any value of ρ the probabilities p1 = ψρ

A(ρ−1)+1

and p2 =
ψ

A(ρ−1)+1 are determined and binomial samples are generated with

respective parameters (n1, p1) and (n2, p2). We can choose whether or not
to remove studies with 0 or ni events (i = 1, 2) in both arms and there is also
an option to decide how to estimate the probability of success p̂i =

xi+c
ni+2c

(i = 1, 2). We can give the value of c and decide to add this c always or only
if xi = 0 or xi = ni (i = 1, 2) and use the MLE otherwise. For each pair
of samples the 95% confidence interval defined in Section 1.2 is computed.
We also test whether the true value of ρ lies in the interval and thus we
can compute the mean coverage level. The average length of the confidence
intervals is also computed, in the case where the length is finite.

To present the results of the simulations we can either fix the value of ρ
and give the coverage of the intervals for a range of ψ-values, or fix ψ and
plot the results as a function of ρ. Another way is to represent the results on
the log scale to better see what is happening for ρ between 0 and 1. When
plotting as a function of ψ for a fixed value of ρ we represent the x-axis as
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the average probability p̄, so if A is changed the results are still presented
with the same scale. To do this we simply express p̄ as a function of ρ, ψ
and A using Eq.(1.1) and (1.8). We get the following result:

p̄ =
ρ+ 1

2A(ρ− 1) + 2
ψ,

so, given a range of values for ψ, we can plot the results as a function of p̄
using this simple transformation which is basically only a rescaling of the
x-axis.

To attest the quality of the variance stabilized confidence intervals, they
need to be compared with the ones obtained with other well-known methods.
We use three other confidence intervals. Two very similar methods are
those of Woolf (1955) and Gart (1966). The Woolf method is described by
Agresti and Min (2002) and studied by Brown (1981) who concludes that
this method is reasonable for large sample sizes. Agresti (1999) reports
both Woolf and Gart methods which define confidence intervals for the log
relative risk with the estimated variance

var[log(ρ̂)] =
1

x1
+

1

x2
− 1

n1
− 1

n2
,

so the confidence limits are given with log(ρ̂) ± z1−α

2

var[log(ρ̂)] and the
exponential of these limits gives the confidence interval for ρ. The difference
between these two methods lies in the way of estimating the risk ratio ρ̂.
Woolf (1955) defines ρ̂ = x1/n1

x2/n2

and modifies it only if one of the xi’s is equal

to 0 or ni replacing xi by xi + 0.5 and ni by ni + 1 (i = 1, 2). This avoids a
null variance if both x1 = n1 and x2 = n2. Gart (1966) always estimates ρ̂
using xi+0.5 and ni+1 whatever the values of xi (i = 1, 2) are. These two
methods are known to perform pretty well for large sample sizes.

The third method is based on inverting a score test and is suggested
by Koopman (1984) and Miettinen and Nurminen (1985). Agresti and Min
(2005) compare this method to Bayesian confidence intervals and recom-
mend the use of score intervals that tend to be better in terms of coverage
probability. The code used for the simulations is available1 and has been
written by Y. Min where confidence intervals for all risk difference, relative
risk and odds ratio are computed.

Figures 2.1 to 2.4 present the results of the simulations. A thousand
replications are performed and the average coverage probability and length
of the confidence intervals are computed. The x-axis of these plots displays
a hundred equally-spaced values of the average probability p̄ = p1+p2

2 . Dif-
ferent values of the relative risk ρ and allocation ratio R = n1

n2
are tested

with a total sample size of N = 100 and with A = 1
2 . The plots present the

coverage of ∆ given by Eq.(1.4) and the coverage of the convidence interval

1http://www.stat.ufl.edu/~aa/cda/R/two_sample/R2 visited in January 2010.
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for ρ found by transforming the interval for ∆ so we can see if the transfor-
mation from ∆ to ρ affects the coverage. Three other methods are used to
compare the results: the methods of Gart (1966), Woolf (1955) and Agresti
and Min (2005). The black line represents the coverage of the confidence in-
tervals found with the modified transformation based on the expected value
of ρ described later in Section 2.3.

Figures 2.1 and 2.2 show that when ρ = 1 the vst method (red line)
performs quite well, being a little bit conservative for very small or large
values of p̄ but for all values between 0.1 and 0.9, the coverage remains close
to the expected 95% in both balanced and unbalanced cases. Notice that
the coverage with the vst is exactly the same as the coverage of ∆ which
shows that, in this case, applying the transformation does not affect the
coverage. The other methods perform well too, except the Woolf method
for p̄ between 0.7 and 0.9 when R = 3. In the unbalanced case the vst and
score methods behave very similarly for all p̄. Nevertheless, both Gart and
Woolf methods are too conservative for small p̄ so the score method would
be prefered here. Moreover the average length of the score intervals is much
smaller than all other methods especially for small p̄.
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Figure 2.1: Plots of the coverage probabilities (top) and the lengths (bottom) of the
nominal 95% confidence intervals given with the vst (red line), the Gart and Woolf
methods (cyan and green lines respectively), the score method (blue line) and the
vst with the modified transformation (black line). The orange line represents the
coverage for ∆ with the vst method from Kulinskaya et al. (2009). The horizontal
line is at 0.95. These plots are based on balanced sampling with n1 = n2 = 50. The
relative risk is taking the value ρ = 1 and the x-axis displays the whole possible
range of values for the nuisance parameter.

The troubles appear when ρ = 3. In the balanced case (Figure 2.3),
when p̄ is larger than 0.4, the coverage of the vst (red line) starts going
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Figure 2.2: Plots of the coverage probabilities (top) and the lengths (bottom) of the
nominal 95% confidence intervals given with the vst (red line), the Gart and Woolf
methods (cyan and green lines respectively), the score method (blue line) and the
vst with the modified transformation (black line). The orange line represents the
coverage for ∆ with the vst method from Kulinskaya et al. (2009). The horizontal
line is at 0.95. These plots are based on unbalanced sampling with n1 = 75, n2 = 25.
The relative risk is taking the value ρ = 1 and the x-axis displays the whole possible
range of values for the nuisance parameter.

down, falling under 90% for p̄ > 0.55 whereas it was too conservative for
small p̄. We see here that the problem comes from the transformation from
∆ to ρ because the coverage of ∆ (orange line) is very satisfying all over
the range of p̄. It becomes even much worst in the unbalanced case (Figure
2.4). The coverage of ∆ is too conservative for small values of p̄ but when
p̄ > 0.15 it perfoms very well. For ρ the coverage is disastrous for all p̄ > 0.15
which clearly shows the bias caused by the transformation. As expected the
score method is again the one that behaves the best, giving a good coverage
with much shorter intervals than the Gart and Woolf methods, even if their
coverages are quite similar.

We also tried to simulate with the same parameters but with N = 1000
to see if the vst method behaves better for large sample sizes. All the results
are not shown here but for ρ = 1 all methods give similar coverage and the
lengths of the intervals are much shorter than when N = 100. The methods
are not conservative any more in the unbalanced case but no big difference is
noticeable. When ρ = 3 the Gart, Woolf and score methods are all very good
but the vst still has a wrong behaviour either in the balanced or unbalanced
case. Figure 2.5 shows the unbalanced case when ρ = 3. The level of
coverage is even worst than with N = 100 (Figure 2.4) with a coverage
falling down to 80% for large p̄. The initial coverage of ∆ (orange line) is
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Figure 2.3: Plots of the coverage probabilities (top) and the lengths (bottom) of the
nominal 95% confidence intervals given with the vst (red line), the Gart and Woolf
methods (cyan and green lines respectively), the score method (blue line) and the
vst with the modified transformation (black line). The orange line represents the
coverage for ∆ with the vst method from Kulinskaya et al. (2009). The horizontal
line is at 0.95. These plots are based on balanced sampling with n1 = n2 = 50. The
relative risk is taking the value ρ = 3 and the x-axis displays the whole possible
range of values for the nuisance parameter..

improved by increasing the sample sizes which shows that the problem really
comes from the transformation from ∆ to ρ.

2.2 Modification of the Confidence Interval

The transformation of the confidence interval for ∆ into a confidence interval
for ρ causes a lost of the coverage due to the fact that the limits have to
be restricted to lie into ( ψ

A−1 ,
ψ
A), the definition domain of the function g

given in Eq.(1.7). To avoid loosing coverage the idea is that if one limit of
the confidence interval for ∆ is restricted to lie into the definition domain
of g then we move the other limit such that the coverage of the interval
remains 95%. If the lower bound is restricted to ψ

A−1 then the upper bound
is modified as

U = T−1
A

(
Φ−1

[
0.95 + Φ

{
TA

(
ψ

A− 1

)}])
,

(see Appendix A.1 for details of computation) and if the upper bound is
restricted to ψ

A then the lower bound is

L = T−1
A

(
Φ−1

[
0.95− Φ

{
TA

(
ψ

A

)}])
.
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Figure 2.4: Plots of the coverage probabilities (top) and the lengths (bottom) of the
nominal 95% confidence intervals given with the vst (red line), the Gart and Woolf
methods (cyan and green lines respectively), the score method (blue line) and the
vst with the modified transformation (black line). The orange line represents the
coverage for ∆ with the vst method from Kulinskaya et al. (2009). The horizontal
line is at 0.95. These plots are based on balanced sampling with n1 = 75, n2 = 25.
The relative risk is taking the value ρ = 3 and the x-axis displays the whole possible
range of values for the nuisance parameter.

The explicit inverse function of TA is easily computed. Unfortunately if both
limits lie outside the domain we can do nothing to avoid loosing coverage
but simulations show that this hardly ever happens. Once we get this new
confidence interval for ∆ we can apply the transformation g to these limits
and obtain a confidence interval for ρ.

Figure 2.6 illustrates the coverage of the confidence intervals for both ∆
and ρ before and after moving the limits. The results are presented for fixed
nuisance parameter ψ and allocation ratio R, and for the whole range of
possible values of ∆. We see that when ψ = 0.5 (top plots) the restriction of
the limits does not change the coverage of the intervals (the red and the blue
lines, corresponding to the coverage of ∆ before and after the restrictions
respectively, are superposed) but once they are transformed into intervals
for ρ their coverage does not remain as good as they were for ∆ because of
the bias induced by the transformation. In the bottom plots, when ψ = 0.1,
the restriction of the interval astonishingly leads to quite a large loss of
coverage. This is due to large frequently needed restrictions. In this case
the definition domain of the function g narrows to (−0.2, 0.2) so if we restrict
one limit of the interval we can not move the other one far enough such that
the coverage remains 95%. Restrictions are needed for almost all simulated
confidence intervals when ψ = 0.1: for negative values of ∆ the lower bound
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Figure 2.5: Plots of the coverage probabilities (top) and the lengths (bottom) of the
nominal 95% confidence intervals given with the vst (red line), the Gart and Woolf
methods (cyan and green lines respectively), the score method (blue line) and the
vst with the modified transformation (black line). The orange line represents the
coverage for ∆ with the vst method from Kulinskaya et al. (2009). The horizontal
line is at 0.95. These plots are based on balanced sampling with n1 = 750, n2 = 250.
The relative risk is taking the value ρ = 3 and the x-axis displays the whole possible
range of values for the nuisance parameter.

must be moved and for positive values of ∆ the upper bound is moved up to
more than 90% of the time whereas the modification was needed in about
only 20% of the cases with ψ = 0.5. The more extreme the value of ∆ is the
more often a modification is needed that is why the transformation is less
biased in the middle of the plots.

Exactly the same procedure can be applied for the odds ratio where
the restriction domain is given in Section 1.3. Since these modifications
of the confidence intervals do not give the expected results we do not use
this approach anymore in the remaining of this study. We then try another
modification based on the expected value.

2.3 Modification of the Transformation Based on

the Expected Value of the Risk Ratio

In Section 1.2 the risk ratio ρ was computed as g(∆) but if we use the
evidence function given in Eq.(1.3) we get

κ = h(∆) =
1√
N
T∆
A (∆).
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Figure 2.6: Coverage of the nominal 95% confidence intervals as a function of ∆
for different values of R, R ∈ {1, 3}, and ψ, ψ ∈ {0.1, 0.5}. The total sample size
is N = 100. The red line shows the coverage of the confidence interval for ∆ of
Eq.(1.4) and the blue line presents the coverage of this interval once the limits
have been modified according to the above explanation. These two intervals are
transformed into confidence intervals for ρ (orange and cyan lines respectively).

Then we can write ρ as a function of κ as follows:

ρ = (g ◦ h−1)(κ)

and compute the expected value of ρ. For any function f the expected value
of f(X) is

E[f(X)] ≈ f(E[X]) +
f

′′

(E[X])

2
var[X].

Here E[κ] = 0 and var[κ] = 1
N as, under H0 : ∆ = ∆0, T

∆
A ∼ N(0, 1), thus

E[ρ] =
ψ + (1−A)∆0

ψ −A∆0
− ψ(u∆0 + v)

4Nq(1− q)(ψ −A∆0)2
+

Aψ{w2 − (u∆0 + v)2}
2Nuq(1− q)(ψ −A∆0)3

(2.1)
(see Appendix A.2 for the details of computation).

The idea is to use Eq.(2.1) to transform the confidence interval for ∆
into an interval for ρ as we did before with the function g (Eq.(1.7)). The
above transformation is basically only a correction of the function g. Once
we get the interval for ∆ we apply this transformation on the bounds to
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get an interval for ρ. The coverage of the confidence intervals found with
this transformation is shown in Figures 2.1 to 2.4 (black line). It appears
that the coverage is even worst than the one with the transformation g
(red line). Moreover the lengths of these intervals are often huge, giving no
precise information on the value of the parameter. It would be interesting
to test whether the length is most of the time large or only rarely. However
we are not able to see it applying the mean length, a more robust method
should be applied like a trimmed mean or the median. In the simulation
with a total sample size of N = 1000 (Figure 2.5) the coverage is very close
to the one with the standard vst (red line) because as N increases E[ρ] tends
to g(∆) so the two methods become similar. In this case the lengths are
much shorter except for very small p̄.

A similar computation can be performed for the odds ratio leading to

E[γ] =
a∆2

0 + b∆0 + c

a∆2
0 + (b− 1)∆0 + c

− (−a∆0 + c)(u∆0 + v)

4Nq(1− q){a∆2
0 + (b− 1)∆0 + c}2

+
{2a2∆3

0 − 6ac∆0 − 2c(b− 1)}{w2 − (u∆0 + v)2}
4Nuq(1− q){a∆2

0 + (b− 1)∆0 + c}3 .

(see Appendix A.3 for the details of computation) but since the results are
not improved with this transformation we will not apply it in the later
simulations.

2.4 Relation between the True and the Simulated

Values of the Risk Ratio

To check whether the vst gives the expected results we compute the bias
between the true value of the variance stabilized relative risk and the value
obtained with the simulated values. We also compute the sample variance
of the simulated values to see if it lies close to one.

Two binomial samples of 10, 000 replications are generated, for each
couple the evidence function T ρA(ρ̂;ψ, ρ0) given in Eq.(1.9) is computed with
ρ̂ as well as with the modified transformation from Eq.(2.1). Then the
mean and sample variance of these functions are computed. Figures 2.7 to
2.9 show the results of the simulations for different values of ψ, R and N .
The black curves are obtained using ρ̂ whereas the red ones are those based
on the expected value. On all these figures we see that a large N (right
panels) reduces the bias. When ψ = 0.5 (Figure 2.7) the sample variance
is always close to one even for small N but for ψ = 0.1 or 0.9 (Figure 2.8
and Figure 2.9 respectively) it can be quite different from one especially for
small values of N (left panels). Notice that when ψ is large there is no big
difference between the value with ρ̂ and with the modified transformation
but otherwise the difference can be quite important. The bias is always
positive and larger with the transformation based on the expected value.
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Figure 2.7: Bias and sample variance (top and bottom panels respectively) of the
variance stabilized value of the relative risk for balanced sample sizes of n1 = n2 =
50 (left panels) and n1 = n2 = 500 (right panels). The value of the nuisance
parameter is ψ = 0.5. The black line represents the results with ρ̂ whereas a red
line is used for the transformation based on E[ρ]. In the labels RR denotes the
relative risk.

−3 −2 −1 0 1 2

−
0.

2
0.

1

Exact Values of vst(RR)

B
ia

s 
of

 v
st

(R
R

)

psi =  0.1 , R =  1 , N =  100 , A =  0.5

−3 −2 −1 0 1 2

0.
90

1.
05

Exact Values of vst(RR)

V
ar

 o
f v

st
(R

R
)

−10 −5 0 5

−
0.

2
0.

1

Exact Values of vst(RR)

B
ia

s 
of

 v
st

(R
R

)

psi =  0.1 , R =  1 , N =  1000 , A =  0.5

−10 −5 0 50.
96

1.
04

Exact Values of vst(RR)

V
ar

 o
f v

st
(R

R
)

Figure 2.8: Bias and sample variance (top and bottom panels respectively) of the
variance stabilized value of the relative risk for balanced sample sizes of n1 = n2 =
50 (left panels) and n1 = n2 = 500 (right panels). The value of the nuisance
parameter is ψ = 0.1. The black line represents the results with ρ̂ whereas a red
line is used for the transformation based on E[ρ]. In the labels RR denotes the
relative risk.

2.5 Confidence Intervals for the Odds Ratio

The procedure to compute the coverage of confidence intervals for odds
ratio is the same as for relative risk except the value of γ instead of ρ in the
input. After having generated the binomial samples the confidence interval
is determined using the results of Section 1.3. The presentation of the results
is the same as for the risk ratio, namely as a function of ψ or as a function of
γ or its logarithm. If the results are expressed as a function of ψ the x-axis
of the plot will be p̄ so a different choice of A does not affect the scale. To
express p̄ as a function of ψ and γ we first compute ∆ using Eq.(1.11) and
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Figure 2.9: Bias and sample variance (top and bottom panels respectively) of the
variance stabilized value of the relative risk for unbalanced sample sizes of n1 = 75,
n2 = 25 (left panels) and n1 = 750, n2 = 250 (right panels). The value of the
nuisance parameter is ψ = 0.9. The black line represents the results with ρ̂ whereas
a red line is used for the transformation based on E[ρ]. In the labels RR denotes
the relative risk.

then p̄ = ψ + 1−2A
2 ∆.

The same methods are also used to compare the results. The Woolf
(1955) and Gart (1966) confidence intervals for the log odds ratio are com-
puted as follows:

log(γ̂)± z1−α

2

var[log(γ̂)],

with the sampling variance

var[log(γ̂)] =
1

x1
+

1

n1 − x1
+

1

x2
+

1

n2 − x2
. (2.2)

The approach recommended by Agresti and Min (2005) that consists of
inverting a score test is also applied. The code has been written by Y.
Min based on the papers of Cornfield (1956) and Miettinen and Nurminen
(1985).

Figures 2.10 to 2.13 show the results of the simulations for different
values of γ and R with N = 100 and for the whole range of values of ψ. The
four different methods are represented and the coverage of ∆ with the vst
is also plotted so we can compare it with the coverage for odds ratio to see
whether the transformation from ∆ to γ causes some bias.

In Figures 2.10 and 2.11, where the odds ratio is one, we see that the
coverage is pretty good for all tested methods for p̄ between 0.1 and 0.9 and
they are conservative for the other values of p̄. We do not see the coverage
of ∆ on these plots because it is exactly the same as the one with the vst
(red line). This shows that the applied transformation works perfectly in
this case when γ = 1. As with the relative risk, the score method should
be prefered for very small or large values of p̄ because it is less conservative
than the others and the lengths of the intervals are much smaller. But in
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the other cases, our vst method performs a bit better, especially in the
unbalanced case where the score method is often a bit liberal, even if all
methods give very similar coverage and length for p̄ between 0.2 and 0.8.
The main drawback of the score method is the huge needed computation
time so when the results are similar we would recommend another method.
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Figure 2.10: Plots of the coverage probabilities (top) and the lengths (bottom) of
the nominal 95% confidence intervals given with the vst (red line), the Gart and
Woolf methods (cyan and green lines respectively) and the score method (blue line).
The orange line represents the coverage for ∆ with the vst method from Kulinskaya
et al. (2009). The horizontal line is at 0.95. These plots are based on balanced
sampling with n1 = n2 = 50. The odds ratio is taking the value γ = 1 and the
x-axis displays the whole possible range of values for the nuisance parameter.

When the odds ratio equals three (Figures 2.12 and 2.13) a bias appears
with the transformation from ∆ to γ. In the balanced case the coverage
of ∆ (orange line) is very satisfying but it becomes too conservative once
transformed into intervals for γ (red line). The difference is much more
important in the unbalanced case where the vst method can clearly not be
used. Even if the results are not as dramatic as with the relative risk, the
coverage is clearly biased by the transformation, it is liberal for p̄ < 0.5
and conservative for larger p̄. The methods of Gart and Woolf are too
conservative and once again the score method is the best one, not being too
conservative and with much smaller intervals.

Either with relative risk or odds ratio the coverage of the confidence in-
tervals computed with the vst is satisfying under the null hypothesis when
the parameter equals one. For a larger value of the parameter of interest
the coverage becomes far unsatisfying especially with unbalanbed studies
because the function applied to transform ∆ causes some bias. We tried to
improve the results either by moving the limits before the transformation
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Figure 2.11: Plots of the coverage probabilities (top) and the lengths (bottom) of
the nominal 95% confidence intervals given with the vst (red line), the Gart and
Woolf methods (cyan and green lines respectively) and the score method (blue line).
The orange line represents the coverage for ∆ with the vst method from Kulinskaya
et al. (2009). The horizontal line is at 0.95. These plots are based on unbalanced
sampling with n1 = 75, n2 = 25. The odds ratio is taking the value γ = 1 and the
x-axis displays the whole possible range of values for the nuisance parameter.

or by modifying the transformation but none of the modifications gave ac-
ceptable results. Thus the vst method is satisfying when the parameter of
interest is taking the value ρ = 1 (γ = 1) giving results similar to the other
methods and with a short computational time. Nevertheless the bias caused
by the transformation is too important to be able to use this method for
values of the relative risk or odds ratio different from one and especially for
unbalanced sample sizes.
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Figure 2.12: Plots of the coverage probabilities (top) and the lengths (bottom) of
the nominal 95% confidence intervals given with the vst (red line), the Gart and
Woolf methods (cyan and green lines respectively) and the score method (blue line).
The orange line represents the coverage for ∆ with the vst method from Kulinskaya
et al. (2009). The horizontal line is at 0.95. These plots are based on balanced
sampling with n1 = n2 = 50. The odds ratio is taking the value γ = 3 and the
x-axis displays the whole possible range of values for the nuisance parameter.
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Figure 2.13: Plots of the coverage probabilities (top) and the lengths (bottom) of
the nominal 95% confidence intervals given with the vst (red line), the Gart and
Woolf methods (cyan and green lines respectively) and the score method (blue line).
The orange line represents the coverage for ∆ with the vst method from Kulinskaya
et al. (2009). The horizontal line is at 0.95. These plots are based on unbalanced
sampling with n1 = 75, n2 = 25. The odds ratio is taking the value γ = 3 and the
x-axis displays the whole possible range of values for the nuisance parameter.



Chapter 3

Conditional Confidence

Intervals

Since the results of the previous chapter are not satisfactory in each case
we developp here a different approach conditionally on the total number of
successes.

3.1 Odds Ratio

Two binary random variables Xi ∼ B(ni, pi), i = 1, 2, return xi successes
and ni − xi failures. Suppose that m = x1 + x2, n1 and N = n1 + n2 are
known then, given x1, all the values of the 2× 2 table can be found. Given
the odds ratio γ, estimated by γ̂ = x1(n2−x2)

x2(n1−x1)
, x1 follows the hypergeometric

distribution

f(x1;m,n1, N, γ) =

(
n1

x1

)(
N−n1

m−x1

)
γx1

∑
u

(
n1

u

)(
N−n1

m−u

)
γu
,

where the sum goes from u = max{0,m− n2} up to min{m,n1}.
We can use this distribution in the simulations instead of the binomial.

The given parametersm, N , R = n1

n2
and γ allow to find both n1, n2 and then

x1 is generated with the hypergeometric distribution and x2 = m−x1. Once
we get these values we use the same procedures as in Section 2.5 to compute
confidence intervals and determine the coverage of them. In this method
A = R

R+1 is fixed thus the nuisance parameter is now completely determined
as m is given by the relation m = Nψ. The major advantage to remove the
nuisance parameter is that the confidence interval is not estimated anymore,
using Eq.(1.4) the parameters v and w are known.

Figures 3.1 to 3.4 show the results of the simulations for 1000 replications.
The mean coverage and the average length of the confidence intervals are
computed and the results are presented for all values of m ∈ {1, . . . , N −
1}. In this case the x-axis of the plot displays the values of the average
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probability p̄ which is found as in Section 2.5 with ψ = m
N .

The coverage of these confidence intervals has more variation than with
the unconditional method but the level of coverage is satisfying for all the
four applied methods and it would be difficult to say which of them gives the
best results even if the score method would probably be chosen because of
the shorter length both for small and large p̄. Nevertheless the vst method
performs quite well in all cases now and is much faster to compute than the
score method (about 100 times faster). Whereas the coverage was unaccept-
able with the unconditional intervals it gives now a good coverage even for
γ = 3 (Figures 3.3 and 3.4) for both balanced and unbalanced cases. It is a
little bit conservative for small and large values of p̄ but the other methods
do not perform better in this case. Moreover the length of the intervals
remains quite small except for rare cases but this is perhaps only due to the
use of the mean which is not robust at all.
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Figure 3.1: Coverage probabilities (top) and average lengths (bottom) of the nom-
inal 95% confidence intervals based on the conditional distribution with the vst
(red line), the Woolf and Gart methods (green and cyan lines respectively) and the
score method (blue line). The sample sizes are balanced with n1 = n2 = 50 and
the odds ratio is γ = 1.

3.2 Risk Ratio

The approach in the previous section uses the odds ratio to generate the
data with the hypergeometric distribution. If a confidence interval for the
relative risk is required we need to transform it into the odds ratio. This
can be achieved writing p1 and p2 as functions of ρ and ψ as in Section 2.1
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Figure 3.2: Coverage probabilities (top) and average lengths (bottom) of the nom-
inal 95% confidence intervals based on the conditional distribution with the vst
(red line), the Woolf and Gart methods (green and cyan lines respectively) and the
score method (blue line). The sample sizes are unbalanced with n1 = 75, n2 = 25
and the odds ratio is γ = 1.

leading to

γ = ρ
A(ρ− 1) + 1− ψ

A(ρ− 1) + 1− ψρ
.

This transformation is not defined for ρ = 1−A
ψ−A but the constraint between

ψ and ρ illustrated in Figure 1.1 avoids this case happening.
It seems that the transformation from ρ to γ might cause bias and thus

we can not use it straightforward. Due to lack of time we did not investigate
this point further. Nevertheless it would be of interest to be able to use the
conditional method for the relative risk too.
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Figure 3.3: Coverage probabilities (top) and average lengths (bottom) of the nom-
inal 95% confidence intervals based on the conditional distribution with the vst
(red line), the Woolf and Gart methods (green and cyan lines respectively) and the
score method (blue line). The sample sizes are balanced with n1 = n2 = 50 and
the odds ratio is γ = 3.
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Figure 3.4: Coverage probabilities (top) and average lengths (bottom) of the nom-
inal 95% confidence intervals based on the conditional distribution with the vst
(red line), the Woolf and Gart methods (green and cyan lines respectively) and the
score method (blue line). The sample sizes are unbalanced with n1 = 75, n2 = 25
and the odds ratio is γ = 3.



Chapter 4

Meta-analysis

4.1 Combining the Risk Difference

To find a combined effect using the vst, a weighted average is performed.
Since the variance stabilized parameters T∆

A (∆̂k;ψk,∆0), k = 1, . . . ,K, fol-
low a normal distribution with unit variance, they can be averaged with
known weights

√
Nk giving the following combined effect:

Tcomb(∆0) =

∑K
k=1

√
NkT

∆
A (∆̂k;ψk,∆0)√∑K
k=1Nk

(4.1)

(Kulinskaya et al. 2009, Eq. 2.4). The combined effect in Eq.(4.1) still has
unit variance. A confidence interval for Tcomb is the set of all ∆0 such that
|Tcomb(∆0)| ≤ z1−α

2

. As Tcomb is monotone decreasing in ∆0 any root-finding
algorithm might be used to find the limits of the confidence interval.

If we want a confidence interval for the relative risk or the odds ratio
exactly the same method can be applied. We write the quantity of interest
as a function of ∆ and ψ and replace it in Eq.(4.1).

4.2 Simulations Design

The coverage of the confidence intervals is computed by simulation. We com-
pare our method with three other well-known approaches. These methods
are used in RevMan

1, software of the Cochrane Collaboration, and described
by Deeks and Higgins (2007). Two of them are based on the inverse variance
(IV) weights, namely the methods of Woolf (1955) and Gart (1966). Here θ

1Review Manager (RevMan). [Computer Program]. Version 5.0. Copenhagen: The
Nordic Cochrane Centre, The Cochrane Collaboration, 2008.
See http://www.cc-ims.net/revman (visited in January 2010).
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denotes the log odds ratio. The combined estimator is

θ̂IV =

∑K
k=1wkθ̂k∑K
k=1wk

with the weights equal to wk = var[θ̂k]
−1 and where the estimated variance

is given in Eq.(2.2). The sampling variance of the pooled estimate is

var[θ̂IV] =

(
K∑

k=1

wk

)−1

.

A confidence interval is thus easily computed. The difference between the
two methods has been explained in Section 2.1.

The Mantel and Haenszel (1959) method (MH) which is described by
Agresti and Hartzel (2000) computes the weights in another way, that is

wk =
(n1k−x1k)x2k

Nk
. The pooled odds ratio is in this case

γMH =

∑K
k=1wkγ̂k∑K
k=1wk

and the sampling variance of its logarithm is

var[log(γMH)] =
1

2

(
E

R2
+
F +G

RS
+
H

S2

)
,

where

R =
K∑

k=1

x1k(n2k − x2k)

Nk
,

S =
K∑

k=1

x2k(n1k − x1k)

Nk
,

E =
K∑

k=1

(x1k + n2k − x2k)x1k(n2k − x2k)

N2
k

,

F =
K∑

k=1

(x1k + n2k − x2k)x2k(n1k − x1k)

N2
k

,

G =
K∑

k=1

(x2k + n1k − x1k)x1k(n2k − x2k)

N2
k

,

H =
K∑

k=1

(x2k + n1k − x1k)x2k(n1k − x1k)

N2
k

.
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We can then compute a confidence interval for the log odds ratio and trans-
form it into an interval for the odds ratio.

We follow the simulation’s design described by Sánchez-Meca and Maŕın-
Mart́ınez (2000) which is based on 30 real meta-analyses in the field of health
and behavioural sciences. This same setup has also been used by Kulinskaya
(2009). The total number of studies takes the valuesK = 10, 20 and 40. The
total sample sizes are selected as follows (Sánchez-Meca and Maŕın-Mart́ınez
2000):

• the set {24, 24, 32, 32, 36, 36, 40, 40, 168, 168} with an average size N̄ =
60,

• the set {64, 64, 72, 72, 76, 76, 80, 80, 208, 208} with N̄ = 100

• and the set {124, 124, 132, 132, 136, 136, 140, 140, 268, 268} with N̄ =
160.

For K = 20 these values are repeated twice and for K = 40 four times.
The allocation ratio is R ∈ {1, 2, 3} when simulating under the null hy-
pothesis γ = 1 and R ∈ {1, 1/2, 2, 1/3, 3} under the alternatives γ = 1.3
and γ = 1.7. For each of the 45 configurations of the above parame-
ters 1000 simulations are run and the average coverage, level and length
of the confidence intervals are computed for eight different values of ψ,
ψ ∈ {0.05, 0.1, 0.15, 0.2, 0.3, 0.5, 0.85, 0.95}. In simulations with γ = 1 the
proportion of rejection of the null hypothesis is the estimated Type I error
rate whereas with γ ∈ {1.3, 1.7} this proportion represents the estimated
power.

4.3 Results under the Null Hypothesis

This section presents the results of simulations under the null hypothesis
γ = 1. Figures 4.1 to 4.3 show the mean coverage of the confidence intervals
with the four compared approaches for different values of the average sample
size and allocation ratio and for a different number of studies.

Figure 4.1 shows the results for K = 10 studies. For the balanced case
(left column) all the four methods perform quite well but we would prefer
MH (black line) because the others are a bit conservative, especially for small
and large values of ψ. When R = 2 all methods perform really similar but
when the allocation ratio isR = 3 the Gart method (cyan line) becomes quite
liberal and the increase of the sample size does not improve its coverage.
Overall the vst method (red line) performs very well even if it is a bit
conservative in the edges.

When the number of studies is K = 20 (Figure 4.2) the methods are
still conservative in the balanced case except MH whose coverage remains
always pretty close to the 95% nominal level. In the unbalanced cases the
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Figure 4.1: Mean coverage of the nominal 95% confidence intervals determined with
the vst (red line), the Woolf and Gart methods (green and cyan lines respectively)
and the Mantel–Haenszel method (black line). The horizontal dashed line represents
the 95% level. The number of studies is K = 10, the allocation ratio takes values
R = 1 (left column), R = 2 (central column) and R = 3 (right column) and the
average sample size is N̄ = 60 (top row), N̄ = 100 (central row) and N̄ = 160
(bottom row).

two inverse variance approaches (cyan and green lines) become much too
liberal especially for R = 3 (right column). The results are similar even for
large sample sizes whereas both vst and Mantel–Haenszel methods perform
well. The only case where MH drops is when ψ = 0.95 (top right panel) and
this is also observed when K = 10 and K = 40. Otherwise there is no big
difference between these two methods.

With K = 40 studies (Figure 4.3) we see that the inverse variance meth-
ods should really be avoided for unbalanced sample sizes. Their coverages
fall down under 90% for the majority of values of ψ which is worst than with
20 studies. In this case the results are unacceptable even when R = 2. The
vstmethod seems to perform at least as well as the Mantel–Haenszel’s except
in the balanced case where the last method is still prefered, the vst being
more conservative. In the unbalanced cases these two approaches behave
quite similar but the vst would be prefered when R = 3 and N̄ = 60 (top
right panel) because MH drops under 90% for ψ = 0.05 and 0.95 whereas
the vst always has a coverage above 93%.
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Figure 4.2: Mean coverage of the nominal 95% confidence intervals determined with
the vst (red line), the Woolf and Gart methods (green and cyan lines respectively)
and the Mantel–Haenszel method (black line). The horizontal dashed line represents
the 95% level. The number of studies is K = 20, the allocation ratio takes values
R = 1 (left column), R = 2 (central column) and R = 3 (right column) and the
average sample size is N̄ = 60 (top row), N̄ = 100 (central row) and N̄ = 160
(bottom row).

All these observed results tally with the ones of Kulinskaya (2009) for the
risk difference. Moreover the simulations return the average length of the
confidence intervals. The results are not shown but there is no significative
difference between the four methods, the intervals being a bit longer for
small and large values of the risk ψ and smaller for ψ around 0.5 but the
lengths cannot be used to decide which method is preferable.

4.4 Results under the Alternatives

In this section the simulations are first performed with a true value of the
odds ratio γ = 1.3 with the same sample sizes and number of studies as in
the previous section. This alternative value is chosen to have a reasonable
power of the test. The power is proportional to both sample size N̄ and
number of studies K. For fixed N̄ and K the power is usually maximum
for ψ around 0.5. The allocation ratio R has little effect on the power. For
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Figure 4.3: Mean coverage of the nominal 95% confidence intervals determined with
the vst (red line), the Woolf and Gart methods (green and cyan lines respectively)
and the Mantel–Haenszel method (black line). The horizontal dashed line represents
the 95% level. The number of studies is K = 40, the allocation ratio takes values
R = 1 (left column), R = 2 (central column) and R = 3 (right column) and the
average sample size is N̄ = 60 (top row), N̄ = 100 (central row) and N̄ = 160
(bottom row).

example with N̄ = 60 and K = 10 the power remains under 40% but grows
up to 80% with N̄ = 160. The increase is about 20% with K = 20 and
another 20% when K = 40 such that the power is always close to 100% in
this last situation.

Figures 4.4 to 4.6 show the coverage of the confidence intervals for
K = 10, 20 and 40 studies respectively. As in the previous section with
γ = 1 the results become worst when increasing the number of studies and
the inverse variance methods (cyan and green lines) are far unsatisfying in
unbalanced cases and should be avoided. Moreover in the balanced case the
Mantel–Haenszel method (black line) is the best one, the others being too
conservative.

When K = 10 (Figure 4.4) the vst (red line) and MH perform quite
similarly even if the vst is a bit more conservative. For large sample sizes
(bottom panels) these two approaches have a very satisfying coverage for all
values of ψ.

With 20 studies (Figure 4.5) both Woolf and Gart methods become worst
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in every unbalanced case but the vst and Mantel–Haenszel still perform quite
well in most of the cases. The only bad point for MH is with N̄ = 60, R = 1

3
and ψ = 0.95 (fourth panel on the top row) where the coverage drops under
90% and when R = 1

2 the intervals are a bit liberal for large values of ψ.
As before the vst and Mantel–Haenszel behave quite similarly especially for
N̄ = 160 and it would be difficult to decide for the best one.

The results deteriorate when the number of studies is K = 40 (Fig-
ure 4.6) in the unbalanced cases. For R = 1 the coverage is as described
previously, satisfying but a bit conservative except with Mantel–Haenszel.
All methods deteriorate in the unbalanced cases especially with R = 3 and
R = 1

3 . As usual the inverse variance methods are the worst ones. For
large sample sizes (central and bottom panels) the coverage with the vst
and MH are good except for the vst with extreme values of ψ. Basically
the two approaches do not behave that differently for all ψ between 0.2 and
0.8. When N̄ = 60 (top panels) the coverage is not very satisfying for all
methods especially for R = 1

3 where the coverage drops even for values of
ψ close to 0.5. Since no method is satisfactory enough in these situations
we have tried to run simulations with N̄ = 320 (bottom row) to check if
a larger sample size improves the coverage. This sample is defined as the
sum of the three other samples with N̄ = 60, 100 and 160. The two inverse
variance methods still do not behave correctly in the unbalanced cases but
both vst and MH are now better than previously; the intervals everywhere
have a coverage above 92% and the two methods are close from each other
except for very few values where MH would be prefered (see for example the
leftmost point in the bottom right panel).
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Figure 4.4: Mean coverage of the nominal 95% confidence intervals determined with the vst (red line), the Woolf and Gart methods
(green and cyan lines respectively) and the Mantel–Haenszel method (black line). The horizontal dashed line represents the 95% level.
The number of studies is K = 10, the allocation ratio takes values R = 1, 1

2
, 2, 1

3
and 3 (from left to right columns) and the average

sample size is N̄ = 60 (top row), N̄ = 100 (central row) and N̄ = 160 (bottom row). The true odds ratio is γ = 1.3.
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Figure 4.5: Mean coverage of the nominal 95% confidence intervals determined with the vst (red line), the Woolf and Gart methods
(green and cyan lines respectively) and the Mantel–Haenszel method (black line). The horizontal dashed line represents the 95% level.
The number of studies is K = 20, the allocation ratio takes values R = 1, 1

2
, 2, 1

3
and 3 (from left to right columns) and the average

sample size is N̄ = 60 (top row), N̄ = 100 (central row) and N̄ = 160 (bottom row). The true odds ratio is γ = 1.3.
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Figure 4.6: Mean coverage of the nominal 95% confidence intervals determined with the vst (red line), the Woolf and Gart methods
(green and cyan lines respectively) and the Mantel–Haenszel method (black line). The horizontal dashed line represents the 95% level.
The number of studies is K = 40, the allocation ratio takes values R = 1, 1

2
, 2, 1

3
and 3 (from left to right columns) and the average

sample size is N̄ = 60 (top row), N̄ = 100 (second row), N̄ = 160 (third row) and N̄ = 320 (bottom row). The true odds ratio is γ = 1.3.
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We also run simulations with a much larger value of the odds ratio γ =
1.7 to verify if the coverage remains correct for more extreme cases. Figures
4.7 to 4.9 show the results of simulations for the same configurations of
parameters as above with γ = 1.3. As before we notice that the results for
unbalanced cases are symmetric. For example the coverage for a small ψ
when R = 2 is similar to the coverage for a large ψ and R = 1

2 .
For K = 10 studies (Figure 4.7) all four approaches are too conservative

in the balanced cases (left panels) whatever the value of ψ is. In unbalanced
cases the inverse variance methods are far too liberal. The Gart intervals
(cyan lines) fail to reach the nominal level even for R = 2 or R = 1

2 and
both Gart and Woolf (green lines) have a poor behaviour when R = 3 or
R = 1

3 . The two other methods, namely the vst and MH (red and black
lines respectively) perform relatively well in all cases but we notice that their
coverage is not as satisfying as when γ = 1.3 (Figure 4.4).

When K = 20 (Figure 4.8) all four methods behave well when R = 1 but
the coverage of the two inverse variance methods drops in unbalanced cases.
When R = 2 or 1

2 the vst and MH still behave very well for large sample
sizes. They are sometimes a little bit conservative but for N̄ = 60 (top
panels) it happens that the coverage fails to reach the nominal 95% level. In
the most unbalanced cases (R = 1

3 and 3) the coverage of these two methods
is satisfying for N̄ = 160 but for small sample sizes and extreme values of
ψ the coverage sometimes drops under 90%. This happens for both vst and
MH and there is basically no great difference between these two approaches.

Figure 4.9 shows that the results are globally unsatisfying for K = 40
studies. As usual the inverse variance methods are the worst ones but here
Gart intervals (cyan lines) behave badly even in balanced cases for small
or large values of ψ. In unbalanced cases both Gart and Woolf are much
too liberal, Gart intervals never reach the 95% level when R = 3 (rightmost
panels). The vst and MH perform pretty well when R = 1 but all four
approaches behave badly in unbalanced cases with small sample sizes with
a coverage under 90% for some values of ψ. For large N̄ Mantel–Haenszel
intervals have a very satisfying coverage even in very unbalanced cases but
the vst is not as reliable. Even if it performs much better than the inverse
variance methods its coverage sometimes fails to reach an acceptable level.
However we see that the increase of the sample sizes really has a postive
effect on the behaviour of the confidence intervals of any methods.
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Figure 4.7: Mean coverage of the nominal 95% confidence intervals determined with the vst (red line), the Woolf and Gart methods
(green and cyan lines respectively) and the Mantel–Haenszel method (black line). The horizontal dashed line represents the 95% level.
The number of studies is K = 10, the allocation ratio takes values R = 1, 1

2
, 2, 1

3
and 3 (from left to right columns) and the average

sample size is N̄ = 60 (top row), N̄ = 100 (central row) and N̄ = 160 (bottom row). The true odds ratio is γ = 1.7.
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Figure 4.8: Mean coverage of the nominal 95% confidence intervals determined with the vst (red line), the Woolf and Gart methods
(green and cyan lines respectively) and the Mantel–Haenszel method (black line). The horizontal dashed line represents the 95% level.
The number of studies is K = 20, the allocation ratio takes values R = 1, 1

2
, 2, 1

3
and 3 (from left to right columns) and the average

sample size is N̄ = 60 (top row), N̄ = 100 (central row) and N̄ = 160 (bottom row). The true odds ratio is γ = 1.7.
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Figure 4.9: Mean coverage of the nominal 95% confidence intervals determined with the vst (red line), the Woolf and Gart methods
(green and cyan lines respectively) and the Mantel–Haenszel method (black line). The horizontal dashed line represents the 95% level.
The number of studies is K = 40, the allocation ratio takes values R = 1, 1

2
, 2, 1

3
and 3 (from left to right columns) and the average

sample size is N̄ = 60 (top row), N̄ = 100 (central row) and N̄ = 160 (bottom row). The true odds ratio is γ = 1.7.
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4.5 Examples with Fixed Numbers of Successes

In the previous sections the value of the odds ratio was fixed and the sim-
ulations were run for different values of ψ. Here we fix the total number of
successes from real datasets and simulate the confidence intervals for differ-
ent values of the odds ratio. In what follows the data give the number of
deaths among the total number of patients. Thus the probability of success
is actually the probability to die.

4.5.1 Angiotensin-Converting Enzyme Data

The data used for this first example come from Garg and Yusuf (1995) and
consist of a meta-analysis of 32 studies testing the effect of angiotensin-
converting enzyme (ACE) inhibitors on mortality in patients with heart
failure. Different kinds of agents are tested and there is a control group to
see the efficiency of the treatment. For more details about the studies the
reader is refered to Garg and Yusuf (1995). Figure 4.10 gives the estimates
of the odds ratio and 95% confidence intervals for each study computed with
the Woolf method in addition to the number of events and total number of
subjects in both treated and control groups. The four studies with zero
event in both arms are not displayed. The Mantel–Haenszel method returns
a pooled odds ratio of 0.77 and 95% confidence limits of [0.67, 0.88] which
indicate a significant effect of the treatment. Table 4.1 gives the values
of the pooled odds ratio and 95% confidence intervals for each of the four
methods, namely the vst, Woolf, Gart and MH. We see that the results are
very similar even if the vst returns slightly smaller values. We compute the
vectors m and N of total successes and sample sizes respectively and run
the simulations with this setup for different values of the odds ratio.

Most of the studies have a really small number of deaths in both treat-
ment and control groups. Except four or five studies with more successes
most of the estimated probabilities are much smaller than 10% in both treat-
ment and control.

Results are presented in Figure 4.11 that shows the mean coverage, power
and length of simulated confidence intervals for different values of the odds
ratio γ ∈ {0.666, 0.8, 0.9, 0.95, 0.975, 1, 1.025, 1.05, 1.1, 1.2, 1.5}. All methods
except the vst perform very similarly and quite well which is not surprising:
MH is always satisfying and so do the inverse variance methods with such
balanced studies. Nevertheless the vst is worst than the other methods. A
too conservative coverage, small power and longer length of the intervals
indicate that this method should not be used with these studies. Indeed
with very small success probabilities the Mantel–Haenszel method would
usually be recommended. We notice that the two inverse variance methods
perform well too.

This is an example where the vst should not be used. In what follows
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we run the same simulations for other datasets to assess the performance of
the developed method.

Study

Fixed effect model

Colfer et al. 1992
McGarry 1991
Magnani et al. 1986
Bussmann et al. 1987
Captopril Res. Group 1988
CMRG 1988
Barabino et al. 1991
Kleber et al. 1992
Drexler et al. 1989
Rucinska 1991
CONSENSUS 1987
Enalapril CHF 1987
Dickstein et al. 1991
SOLVD 1991
Rucinska 1991
Zwehl et al. 1990
Giles 1990
Rucinska 1991
Lechat et al. 1993
Uprichard 1994
Uprichard 1994
Uprichard 1994
Swedberg et al. 1991
Maass 1991
Gordon 1991
Maass 1991
Maass 1991
Lemarie 1992

Events

611

  0
  2
  7
  2

 18
  2

 12
 22
  0
  2
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  5
  0
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  0
  5
  4
  1
  0
  1
  2
  2
  3
  8
  1
  8
  1
  1

Total
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  52
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  11
  67
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  55
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  28
  61
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 139
 115
  87
  94
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  47
  42
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Events
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  3
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  1
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  9
  1
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  1
  3
  5
  0
  1
  2
  3
  0
  7
  4
  5
  5
  1
  0

Total
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  58
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  46
  11
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  49
  87
  10
  65
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  21
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  92
  63
  30
  64
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  47
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  45
  98

 171
  48
  43

Control

0.1 0.5 1 2 10
Odds Ratio

OR

0.77

0.07
2.30
1.14
0.53
1.19
0.15
0.52
1.07
0.28
0.47
0.55
0.56
0.33
0.82
0.33
0.83
0.37
3.33
0.34
0.48
0.65
1.73
0.39
1.04
0.20
0.83
1.02
3.14

95%−CI

 [0.67;  0.88]

 [0.00;  1.36]
 [0.20; 26.75]
 [0.35;  3.68]
 [0.07;  4.01]
 [0.56;  2.51]
 [0.03;  0.70]
 [0.22;  1.23]
 [0.54;  2.12]
 [0.01;  7.57]
 [0.08;  2.65]
 [0.34;  0.91]
 [0.18;  1.71]
 [0.01;  8.67]
 [0.70;  0.97]
 [0.01;  8.21]
 [0.19;  3.57]
 [0.10;  1.42]

 [0.13; 85.11]
 [0.01;  8.61]
 [0.04;  5.35]
 [0.11;  3.96]

 [0.08; 36.63]
 [0.10;  1.53]
 [0.29;  3.65]
 [0.02;  1.74]
 [0.27;  2.57]

 [0.06; 16.83]
 [0.12; 79.39]

W(fixed)

 100%

 0.9%
 0.2%
 1.1%
 0.5%
 2.5%
 2.1%
 2.9%
 3.2%
 0.3%
 0.8%
 8.3%
 1.7%
 0.3%

66.4%
 0.3%
 0.8%
 1.3%
 0.1%
 0.3%
 0.4%
 0.6%
 0.1%
 1.4%
   1%
   1%

 1.3%
 0.2%
 0.1%

Figure 4.10: Studies testing the effect of ACE inhibitors with a forest plot repre-
senting the estimate of the odds ratio and the limits of a 95% confidence interval
computed with the Woolf method. The rightmost column gives the weights used
to compute the pooled odds ratio represented in the last row and determined with
MH.

γpooled L U

vst 0.745 0.641 0.864
Woolf 0.775 0.678 0.887
Gart 0.775 0.679 0.885
MH 0.767 0.671 0.875

Table 4.1: Pooled odds ratio (first column) and 95% confidence limits (lower bound
and upper bound) computed with the vst, Woolf, Gart and MH methods.

4.5.2 Pre-eclampsia Data

The data presented in Figure 4.12 have been collected by Collins et al.
(1985) and have also been later studied by Hardy and Thompson (1996) and
Viechtbauer (2006). Nine studies are reviewed concerning the effectiveness
of taking diuretics during pregnancy for preventing pre-eclampsia. These
studies involve a total of about 7000 patients. The pooled odds ratio of 0.67
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Figure 4.11: Coverage (top), power (central) and average length (bottom) of the
confidence intervals based on the vst (red line), the Gart and Woolf methods (cyan
and green lines respectively) and the Mantel–Haenszel method (black line).

with confidence limits of [0.56, 0.79] computed with MH indicate a positive
effect of the treatment. Table 4.2 gives the pooled odds ratio estimated with
each of the four methods and the corresponding confidence limits. As in the
previous example the vst estimate is a bit smaller than the others.

Results of the simulations are presented in Figure 4.13 showing the mean
coverage, power and length of the confidence intervals. The coverage (top
panel) is very similar for all four compared methods, staying very close to
the nominal 95% for the whole range of values of the odds ratio. The power
(middle panel) is also relatively the same for every method even if the vst
is slightly lower and MH is a bit higher for larger odds ratios. As in the
previous example the vst gives longer confidence intervals (bottom panel)
than the three other methods.

In this example it would be difficult to say which method performs the
best because they all are very similar but it seems that the vst is a bit worst
and MH has a slightly better power.

4.5.3 Angiotensin Receptor Blockers Data

This data (explained in Figure 4.14) come from Jong et al. (2002) who
identify 17 relevant studies to determine the effect of angiotensin receptor
blockers (ARBs) on mortality in patients with heart failure. A total of
12469 patients participated to these studies: 7060 with ARBs and 5409 used
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Study

Fixed effect model

Weseley et al. 1962
Flowers et al. 1962
Menzies 1964
Fallis et al. 1964
Cuadros et al. 1964
Landesman et al. 1965
Kraus et al. 1966
Tervila et al. 1971
Campbell et al. 1975
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W(fixed)
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   6%
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Figure 4.12: Studies testing the effect of diuretics for preventing pre-eclampsia with
a forest plot representing the estimate of the odds ratio and the limits of a 95%
confidence interval computed with the Woolf method. The rightmost column gives
the weights used to compute the pooled odds ratio represented in the last row and
determined with MH.

γpooled L U

vst 0.631 0.522 0.759
Woolf 0.672 0.564 0.800
Gart 0.673 0.566 0.801
MH 0.668 0.562 0.793

Table 4.2: Pooled odds ratio (first column) and 95% confidence limits (lower bound
and upper bound) computed with the vst, Woolf, Gart and MH methods.

placebo or ACE inhibitors as controls. Table 4.3 represents the pooled odds
ratios and corresponding 95% confidence intervals obtained with the four
compared methods. There is almost no difference between the methods in
this example. The value of the odds ratio close to 1.03 with confidence limits
(0.93, 1.15) indicate no statistical difference in the mortality rate between
the treated and control groups.

The probabilities of death are small in most of the studies (less than
10% in all studies but two) but the particularity of this meta-analysis is that
most of the studies have unbalanced sample sizes. Some of them are bal-
anced (ADEPT 2001, ELITE II 2000, Hamroff 1999) and others are strongly
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Figure 4.13: Coverage (top), power (central) and average length (bottom) of the
confidence intervals based on the vst (red line), the Gart and Woolf methods (cyan
and green lines respectively) and the Mantel–Haenszel method (black line).

unbalanced (Crozier 1995, RESOLVD 1999). However if we compute the al-
location ratio of the total number of patients we get R = 7060

5409 ≈ 1.3 which is
still much less than R = 2 or R = 3 used for the simulations in the previous
sections.

Figure 4.15 shows the results of the simulations. We notice that the
coverage of the vst (red line) is a bit conservative for small values of the
odds ratio (top panel) but is very satisfying for all values larger than 0.9
whereas the two inverse variance methods become too liberal when the odds
ratio increases, especially the Woolf method (green line). The power of all
four methods is really close but MH is still a bit higher for large values of
the odds ratio. As in the previous examples the length of the vst intervals
is larger than the others but the difference tends to be smaller.

In this particular example the Woolf method should be avoided and the
vst performs better than previously. Nevertheless MH remains the best
method as in all other considered examples. Even if the studies are un-
balanced the inverse variance methods do not perform so bad because the
sample sizes are quite large (larger than in the two previous examples) and
the studies are not as unbalanced as in the simulations from the previous
sections. Moreover the pooled odds ratio is 0.96 corresponding to the sim-
ulations under the null hypothesis of Section 4.3. The average sample size
is here N̄ = 733, much more than the values previously tested in the simu-
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lations. This explains why there is much less variation is these results than
in Figure 4.2.

Study

Fixed effect model

ADEPT 2001
Crozier 1995
Dickstein 1995
ELITE 1997
ELITE II 2000
Hamroff 1999
Lang 1997
Mazayev 1998
Phase III−Int’l 1996
Phase III−US 1995
RESOLVD 1999
SPICE 2000
STRETCH 1999
Tonkon 2000
V−HeFT 1999
Val−HeFT 2001
Weber 1997
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 [0.25;   4.16]

 [0.43;  26.49]

 [0.12;  57.39]
 [0.89;   1.18]
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Figure 4.14: Studies testing the effect of ARBs with a forest plot representing the
estimate of the odds ratio and the limits of a 95% confidence interval computed
with the Woolf method. The rightmost column gives the weights used to compute
the pooled odds ratio represented in the last row and determined with MH.

γpooled L U

vst 1.034 0.924 1.159
Woolf 1.035 0.930 1.153
Gart 1.032 0.927 1.149
MH 1.039 0.934 1.156

Table 4.3: Pooled odds ratio (first column) and 95% confidence limits (lower bound
and upper bound) computed with the vst, Woolf, Gart and MH methods.
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Figure 4.15: Coverage (top), power (central) and average length (bottom) of the
confidence intervals based on the vst (red line), the Gart and Woolf methods (cyan
and green lines respectively) and the Mantel–Haenszel method (black line).





Conclusion

Kulinskaya et al. (2009) developed a new approach for computing confidence
intervals for the difference of two binomial probabilities using a variance
stabilization. Results of their simulations show very good performances:
their method is even better than the highly regarded Newcombe procedure.
It was then of interest to test if the same kind of approach could be adapted
for the relative risk and the odds ratio. We defined transformations to
compute confidence intervals for both risk ratio and odds ratio. However
these transformations induce some bias so that the coverage of the obtained
intervals fails to reach an acceptable level. This bias is due to the nuisance
parameter that needs to be estimated. It performs well only under the
null hypothesis of no difference between the two groups. Under alternatives
the results for the odds ratio are better than those for the relative risk but
they remain unacceptable especially in unbalanced cases. Several corrections
have been implanted but none of them have succeeded in improving the
performance of the confidence intervals.

To obtain better results we have developed a new approach based on a
conditional distribution with fixed number of successes to remove the nui-
sance parameter. Simulations show that these confidence intervals now per-
form very well for all configurations of the parameters. The coverage of the
obtained confidence intervals is as good as the applied score method rec-
ommended by Agresti and Min (2005). Based on this satisfying method we
have then combined the results of many studies to get a confidence inter-
val for the global result of a meta-analysis. The simulations under the null
hypothesis of an odds ratio equal to one show that even if the vst method
is sometimes a bit conservative it performs quite well and never has a too
low level of coverage. This method is much better than the widely applied
inverse variance intervals and performs as well as Mantel–Haenszel’s which
is one of the best known approach. Under alternatives the vst still performs
quite well especially for a small number of studies. For more studies results
are not as satisfying but Mantel–Haenszel does not perform much better and
both are far more reliable than the inverse variance approaches. For a larger
odds ratio the performances decrease for all methods and larger sample sizes
are needed to achieve a satisfying level of coverage.

In further researches it would be of interest to investigate several types



of correction in the transformation from the risk difference to either the
relative risk or the odds ratio. Appropriate corrections would allow to use
an unconditional distribution in the simulations of the confidence intervals.
Another point that needs to be developed is to compute conditional intervals
for the relative risk too. It seems that the transformation from relative risk
to odds ratio introduces bias so corrections would perhaps be needed.

In summary the use of a variance stabilization is a recent but very promis-
ing way of computing confidence intervals either to compare two binomial
proportions or to combine evidences in a meta-analysis. Its behaviour per-
forms much better than widely used inverse variance methods and is often
as reliable as the actual best known methods. Moreover the vst intervals
can be easily computed and need a much shorter computation time than for
example the score method. Further work is needed to really highlight the
quality of this approach.
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Appendix A

Details of Computations

A.1 Modification of the Confidence Limits

To find how to modify the limits of the confidence interval such that the
coverage remains 95% we proceed as follows: we only explain the case when
the lower bound is restricted to ψ

A−1 because the procedure is the same for

the upper bound. We want to find U such that P

{
ψ

A−1 < ∆ < U
}

= 0.95

so we apply the evidence function defined in Eq.(1.3) because we know

that TA(∆) ∼ N(0, 1). So we get Φ {TA(U)} − Φ
{
TA

(
ψ

A−1

)}
= 0.95,

where Φ is the standard normal distribution function. Taking the inverse of

these functions we find U = T−1
A

(
Φ−1

[
0.95 + Φ

{
TA

(
ψ

A−1

)}])
as given in

Section 2.2.

A.2 Expected Value of the Risk Ratio

We need the second derivative of g ◦ h−1 which is given as

(g ◦ h−1)
′′

= (g
′′ ◦ h−1) · (h−1

′

)2 + (g
′ ◦ h−1) · h−1

′′

.

The first and second derivatives of g and h−1 are first computed:

g(∆) =
ψ + (1−A)∆

ψ −A∆

g
′

(∆) =
ψ

(ψ −A∆)2

g
′′

(∆) =
2Aψ

(ψ −A∆)3
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h−1(κ) =
w

u
sin

{
arcsin

(
u∆0 + v

w

)
+

√
u

2q(1− q)
κ

}
− v

u

h−1
′

(κ) =
w

u

√
u

2q(1− q)
cos

{
arcsin

(
u∆0 + v

w

)
+

√
u

2q(1− q)
κ

}

h−1
′′

(κ) = − w

2q(1− q)
sin

{
arcsin

(
u∆0 + v

w

)
+

√
u

2q(1− q)
κ

}
.

Since κ = 1√
N
T∆
A (∆) and under H0 : ∆ = ∆0, T

∆
A follows a standard

normal distribution, the expected value of κ is 0 and its variance is N−1 so

the expected value of ρ is E[ρ] = (g ◦ h−1)(0) +
(g ◦ h−1)

′′

(0)

2N
. Evaluating

the above functions at 0 gives the following:

h−1(0) = ∆0

h−1
′

(0) =
w

u

√
u

2q(1− q)
cos

{
arcsin

(
u∆0 + v

w

)}

h−1
′′

(0) = − u∆0 + v

2q(1− q)
,

and thus, putting everything together leads to the expected value of ρ

E[ρ] =
ψ + (1−A)∆0

ψ −A∆0
− ψ(u∆0 + v)

4Nq(1− q)(ψ −A∆0)2
+

Aψ{w2 − (u∆0 + v)2}
2Nuq(1− q)(ψ −A∆0)3

given in Eq.(2.1).

A.3 Expected Value of the Odds Ratio

The method is the same as for relative risk but here we need the derivatives
of the function f given in Eq.(1.10) which are

f(∆) =
a∆2 + b∆+ c

a∆2 + (b− 1)∆ + c

f
′

(∆) =
−a∆2 + c

{a∆2 + (b− 1)∆ + c}2

f
′′

(∆) =
2a2∆3 − 6ac∆− 2c(b− 1)

{a∆2 + (b− 1)∆ + c}3 .

The key function h is the same as for the risk ratio so, using the above
results, the expected value of γ is

E[γ] =
a∆2

0 + b∆0 + c

a∆2
0 + (b− 1)∆0 + c

− (−a∆0 + c)(u∆0 + v)

4Nq(1− q){a∆2
0 + (b− 1)∆0 + c}2

+
{2a2∆3

0 − 6ac∆0 − 2c(b− 1)}{w2 − (u∆0 + v)2}
4Nuq(1− q){a∆2

0 + (b− 1)∆0 + c}3 .


