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Terminology and notations

N the set of non-negative integers, N = {0, 1, 2, . . .}.
N+ the set of positive integers, N+ = {1, 2, . . .}.
i an imaginary number such that i2 = −1.
Z[i] the ring of Gaussian integers, Z[i] := {a+ ib : a, b ∈ Z}.
<(z),=(z) real and imaginary part of a complex number z.
F the field that represents either R or C.
R+ the positive real numbers, x ∈ R+ if and only if x > 0.
Mn×m(A) the ring of matrices of size n×m, for n,m ∈ N+, with entries

in the ring A.
Mn(A) the ring of n× n matrices, Mn(A) := Mn×n(A).
z the conjugate of a complex number.
XT the transpose of a matrix.
X∗ the conjugate transpose of a matrix. If X = (xjk) ∈ Mn(C),

then (X∗)jk = xkj.
| · | the absolute value of a complex number. If z ∈ C, where

z = x+ iy, with x, y ∈ R, then |z| =
√
x2 + y2.

‖ · ‖ the Euclidean norm of a vector of Fn, with n ∈ N+. If x =

(x1, . . . , xn)T ∈ Fn, then ‖x‖ =
√∑n

j=1 |xj|2. We use it also

for matrices of Mn(F), viewing them as vectors in Fn2 . So, if
X = (xjk) ∈Mn(F), then ‖X‖ =

√∑n
j,k=1 |xjk|2.

# the cardinality of a (finite) set.
Bn(c, R) the n-dimensional ball centered at c ∈ Rn of radius R,

with 0 ≤ R ∈ R. If c = (c1, . . . , cn)T , then Bn(c, R) :=
{(x1, . . . , xn)T ∈ Rn :

∑n
j=1(xj − cj)2 ≤ R2}.

Bn(R) a more concise notation for Bn(0, R).
V the volume of a set.
Γ the Gamma function. For any z ∈ C, with <(z) > 0,

Γ(z) =
∫∞

0
tz−1e−tdt.

Matrices will be represented with capital letters, like A,X, Y , etc.
Vectors will be represented with small letters in bold, like v,x,y, etc.
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Introduction

Reliability of any communication technology, such as wireless channels,
can be measured by the probability of incorrect decoding of a sent message.
The lower is this probability the more reliable is the technology. The main
problem in wireless communication is that the signals are affected not only
by the noise at the receiving antennas (like it is the case for communication
through wires), but also by the degradation due to obstacles of the physical
environment in which the signals run. This kind of degradation is commonly
referred to as fading. In response to this problem and for other technical
reasons, Multiple-Input Multiple-Output (MIMO) channels have become in-
creasingly popular in the past decade.
A MIMO channel consists of n transmitting and m receiving antennas. At
each time slot t, the transmitting antennas send one signal each and each of
the receiving antennas gets a linear superposition of these transmitted sig-
nals. Assuming that the data are transmitted over a time frame of length
T = n, the codewords, i.e., the sent messages, are represented by complex
square matrices of size n. Then a code is just a (finite) subset C of Mn(C) and
since the coding occurs in space (the n transmitting antennas) and time, we
speak of space-time codes. As we will see in chapter 2, studies from the late
nineties (see for instance [1], chapter 5 of [2] or chapters 2− 3 of [3]) showed
that, under certain assumptions, the probability P(X → Y ) of decoding a
sent message X ∈ C as a different codeword Y ∈ C depends mainly on the
absolute value of the determinant of the matrix X − Y . More precisely, the
larger is | det(X − Y )|, the lower is the probability P(X → Y ). This result
led to a criterion for the design of optimal space-time codes: as X, Y range
over pairs of distinct elements of C, the minimal value of | det(X−Y )| should
be large. On the other hand there is a physical constraint on the norm of the
codewords that one can send. In fact, the larger the norm of a codeword is,
the more power is needed to send it and since just a finite amount of power
is available, the codewords of C cannot exceed it.
This leads to the following natural mathematical question:
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Given a subfield L of C, for any n ∈ N+ and any r ∈ R+,
find a set C ⊂ Mn(L) of maximal size such that the
following two conditions are satisfied:

• energy constraint: ‖X‖ ≤ 1, for all X ∈ C,

• determinant criterion: | det(X − Y )| ≥ r, for
all distinct X, Y ∈ C.

We immediately see that there is tension between these two constraints;
as we place more matrices in the unit ball, the determinant criterion will
become harder to satisfy. We also note that this question has the same
flavour of one of the most basic questions in classical coding theory, where
the role of the energy constraint is played by the length of the code and the
role of the determinant criterion is played by the minimal Hamming distance.

The rest of this thesis is structured as follows.
Chapter 1 is devoted to preliminary mathematical results, which are used in
the sequel. In chapter 2 we explain the transition from the engineering prob-
lem to our mathematical question. Sections 2.1 and 2.2 are mainly based on
sections 2.1 and 3.2 of [3]. In chapter 3 we review the relevant material from
classical coding theory, including the sphere packing and Gilbert-Varshamov
bounds. In chapters 4 and 5 we derive similar bounds on the maximal size
of a space-time code, in both the real and the complex case. In chapter 6
we illustrate these bounds by building an explicit code for n = 2, based on a
construction due to S. M. Alamouti. Our main results are as follows.

Theorem 1 (Upper bound). Let L be a subfield of F, n ∈ N+ and r ∈ R+.
Let C ⊂ Mn(L) such that ‖X‖ ≤ 1, for all X ∈ C, and | det(X − Y )| ≥ r,
for all distinct X, Y ∈ C.

• If F = R, then

#C ≤
Γ
(
n
2

+ 1
)n

Γ
(
n2

2
+ 1
) ( 2

n
√
r

+
√
n

)n2

.

• If F = C, then

#C ≤ (n!)n

(n2)!

(
2

n
√
r

+
√
n

)2n2

.
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Theorem 2 (Lower bound). Let L be a subfield of F, n ∈ N+ and r ∈ R+

such that n
√
r ∈ L. There exists then a set C ⊂Mn(L) with ‖X‖ ≤ 1, for all

X ∈ C, and | det(X − Y )| ≥ r, for all distinct X, Y ∈ C, such that

• if F = R,

#C ≥ π
n
2

Γ
(
n
2

+ 1
)n−1

Γ
(
n2

2
+ 1
)

(
1

n√r − n
)n2

(
1

n√r +
√
n
)n2−n∑n−1

k=0
π

k
2

Γ( k
2

+1)

(
1

n√r +
√
k
)k ,

• if F = C,

#C ≥ πn
(n!)n−1

(n2)!

(
1

n√r −
√

2n
)2n2

(
1

n√r +
√

2n
)2n2−2n∑n−1

k=0
πk

k!

(
1

n√r +
√

2k
)2k

.
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Chapter 1

Preliminary results

The purpose of this chapter is to collect mathematical results which will
be repeatedly used in the sequel.

Lemma 1.1. Let n ∈ N+, c ∈ Rn and 0 ≤ R ∈ R. Then

V (Bn(c, R)) =
π

n
2

Γ
(
n
2

+ 1
)Rn.

Proof. See section 11.33 of [6].

Lemma 1.2. For any z ∈ C with <(z) > 0, we have Γ(z + 1) = zΓ(z).
In particular Γ(1/2) =

√
π, Γ(1) = 1 and, if n ∈ N, then Γ(n+ 1) = n!.

Proof. See section 6.23 of [6].

Lemma 1.3. Let X ∈Mn(C). Then ‖X‖2 = tr(XX∗).

Proof. Denote (X)jk by xjk.
We have tr(XX∗) =

∑n
j=1(XX∗)jj and

(XX∗)jj =
n∑
k=1

(X)jk(X
∗)kj =

n∑
k=1

xjkxjk =
n∑
k=1

|xjk|2.

Therefore tr(XX∗) =
∑n

j=1

∑n
k=1 |xjk|2 = ‖X‖2.

Lemma 1.4. Let X = (x1| . . . |xn) ∈ Mn(C). If the columns of X are
mutually orthogonal, then | det(X)| =

∏n
j=1 ‖xj‖.
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Proof. Let (X)jk = xjk and denote by 〈·, ·〉 the usual inner product of the
C-vector space Cn. Notice that

(X∗X)jk =
n∑
l=1

(X∗)jl(X)lk =
n∑
l=1

xljxlk = 〈xk,xj〉 =

{
0, j 6= k

‖xj‖2, j = k.

Hence X∗X is a diagonal matrix and det(X∗X) =
∏n

j=1 ‖xj‖2. On the other
hand, remember that det(X∗) = det(X) and thus

det(X∗X) = det(X) det(X) = | det(X)|2.

Therefore | det(X)| =
∏n

j=1 ‖xj‖, as claimed.

Lemma 1.5 (Cauchy-Schwarz inequality). Let V be a C-vector space with
inner product 〈·, ·〉 and let v,w ∈ V . Then

〈v,w〉 ≤ ‖v‖‖w‖.

Proof. For any α ∈ C we have that

0 ≤ ‖v−αw‖2 = 〈v − αw,v − αw〉 = ‖v‖2−α 〈v,w〉−α〈v,w〉+ |α|2‖w‖2.

Letting α = 〈v,w〉
‖w‖2 , it follows that 0 ≤ ‖v‖2 − |〈v,w〉|

2

‖w‖2 , yielding our result.

Lemma 1.6 (arithmetic-geometric mean inequality). Let x1, x2, . . . , xn be non-
negative real numbers. We then have that

x1 + x2 + . . .+ xn
n

≥ n
√
x1x2 · · ·xn.

Proof. We prove this lemma by induction.
For the base case we take n = 2. It is then well known that

x1 + x2

2
≥
√
x1x2, ∀ x1, x2 ≥ 0,

since
(x1 + x2)2 − 4x1x2 = x2

1 + x2
2 − 2x1x2 = (x1 − x2)2 ≥ 0.

The base case being proved, we have to demonstrate the induction step. The
induction hypothesis is the following

P(n) :

(
x1 + x2 + . . .+ xn

n

)n
≥ x1 · · ·xn, ∀ x1, . . . , xn ≥ 0.
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We have to prove that P(n) implies P(n+ 1). Let then x1, . . . , xn+1 be n+ 1
non-negative real numbers and let

µn+1 =
x1 + x2 + . . .+ xn+1

n+ 1
.

We want to prove that (µn+1)n+1 ≥ x1 · · ·xn+1.
Without loss of generality, we can assume xn to be the largest of the xj and
xn+1 to be the smallest of the xj. Hence xn ≥ µn+1 and xn+1 ≤ µn+1 and
thus

(xn − µn+1)(µn+1 − xn+1) ≥ 0. (1.1)

Consider now the non-negative real numbers x1, . . . , xn−1, x
′
n, where x′n =

xn + xn+1 − µn+1 ≥ xn − µn+1 ≥ 0. By the induction hypothesis

(µ′n)n ≥ x1 · · · xn−1x
′
n, (1.2)

where µ′n = x1+...+xn−1+x′n
n

. Notice that

nµ′n = x1 + . . .+ xn−1 + xn + xn+1︸ ︷︷ ︸
=(n+1)µn+1

−µn+1 = nµn+1,

so µ′n = µn+1. Thanks to (1.1), we also have that

(xn − µn+1)(µn+1 − xn+1) ≥ 0 ⇔ (xn + xn+1)µn+1 − µ2
n+1 ≥ xnxn+1

⇔ x′nµn+1 ≥ xnxn+1.

Combining all this with (1.2) we obtain:

(µn+1)n+1 = (µn+1)nµn+1 = (µ′n)nµn+1 ≥ x1 · · ·xn−1x
′
nµn+1 ≥ x1 · · ·xnxn+1,

as desired.

Theorem 1.7. Let X ∈Mn(C) and let c1, · · · , cn be the columns of X, i.e.,
X = (c1| · · · |cn). Then | det(X)| ≤

∏n
k=1 ‖ck‖.

Proof. First of all, if det(X) = 0 the theorem is obvious.
Let then suppose that det(X) 6= 0. Thus the columns of X are linearly inde-
pendent. Applying the Gram-Schmidt process to c1, . . . , cn we obtain n new
vectors v1, . . . ,vn that are orthogonal. More precisely, for k = 2, . . . , n let
Wk = span(c1, . . . , ck−1) and let wk be the orthogonal projection of ck onWk.
By definition of the v1, . . . ,vn we have that v1 = c1 and, for k = 2, . . . , n,
vk = ck −wk, with 〈vk,wk〉 = 0.
We then consider the matrix Y = (v1| · · · |vn), whose columns are thus or-
thogonal.
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Thanks to lemma 1.4 we have that | det(Y )| =
∏n

k=1 ‖vk‖.
Notice that det(Y ) = det(X), because each column of Y is the sum of the cor-
respondent column of X with a linear combination of the previous columns
of X. In fact v1 = c1 and, for k = 2, . . . , n,

vk = ck −
k−1∑
j=1

〈ck,vj〉
〈vj,vj〉

vj.

Therefore the determinant remains the same.
We then have that

| det(X)| = | det(Y )| =
n∏
k=1

‖vk‖.

Observe also that ‖vk‖ ≤ ‖ck‖.
For k = 1 it is trivial, since we have equality. For k = 2, . . . , n, ck = vk +wk

and therefore

‖ck‖2 = 〈vk + wk,vk + wk〉 = 〈vk,vk〉+〈wk,wk〉 = ‖vk‖2+‖wk‖2 ≥ ‖vk‖2.

Hence we have that ‖vk‖ ≤ ‖ck‖ and so

| det(X)| =
n∏
k=1

||vk|| ≤
n∏
k=1

||ck||,

as claimed.
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Chapter 2

From the engineering problem to
the mathematical question

2.1 The mathematical model of a MIMO chan-
nel

A MIMO channel consists of n ∈ N+ transmitting antennas and m ∈ N+

receiving antennas. At each time slot each of the n transmitting antennas
send simultaneously a signal that is modeled as a complex number. Each
receiving antenna collects all the n signals sent. As we said in the introduc-
tion, fading affects these signals and at each receiving antenna there is some
noise. We model this situation as follows.
At time slot t ∈ N+, let rj,t be the signal collected of receiving antenna j,
xk,t be the signal sent by transmitting antenna k, wj,t the noise at receiving
antenna j and htj,k (here t is a superscript, not a power) the fading coefficient
of the path from transmitting antenna k to receiving antenna j. The two
parameters htj,k and wj,t are modeled as complex random variables (recall
that a complex random variable Z is such that Z = X + iY , where X and
Y are two real random variables). With these notations we have that:

rj,t = htj,1x1,t + htj,2x2,t + · · ·+ htj,nxn,t + wj,t

=
n∑
k=1

htj,kxk,t + wj,t, for all j = 1, . . . ,m,

as illustrated in Figure 2.1.
Let rt = (r1,t, . . . , rm,t)

T ∈ Cm, xt = (x1,t, . . . , xn,t)
T ∈ Cn, wt =

(w1,t, . . . , wm,t)
T ∈ Cm and Ht ∈ Mm×n(C), where Ht =

(
htj,k
)
. Ht is called

the fading (or channel) matrix and it stores all the fading coefficients of all
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Figure 2.1: A MIMO system with n = 2 transmitting and m = 2 receiving
antennas. For the sake of simplicity, we omitted the subscript/superscript t.

possible paths that a signal can follow, at time t. We can then write

rt = Htxt + wt.

The transmission of data is usually separated into time frames of some fixed
length T ∈ N+. Consequently, for a transmission frame of length T , we have

rt = Htxt + wt, for t = 1, . . . , T. (2.1)

In this model we see that the fading matrix Ht depends on time t. This is
because, a priori, nothing ensures that the environment between the trans-
mitter and the receiver remains the same. However we will assume that this
change is slow. Denoting by T ′ ∈ N+ the period in which the fading matrix
remains the same, we will then assume that T � T ′. This hypothesis is
called slow fading and in this work we will only consider this kind of situa-
tion. This means that our fading matrix can be assumed to be fixed for all
t = 1, . . . , T , i.e., Ht = H.
Let R = (r1| · · · |rT) ∈ Mm×T (C), X = (x1| · · · |xT) ∈ Mn×T (C) and W =
(w1| · · · |wT) ∈Mm×T (C). Equation (2.1) can now be rewritten as

R = HX +W. (2.2)

With this model we can then define what a space-time code is.
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Definition 2.1 (space-time code). Let n, T ∈ N+, where n is the number of
transmitting antennas and T the temporal length of the transmission frame.
A space-time code is then a subset C of Mn×T (C).
The codewords are then complex matrices of size n× T .

Here we think of n (the number of transmitting antennas) as the space
parameter and T as the time parameter of our space-time code.

Figure 2.2: Scheme of a space-time encoder of a MIMO channel. The data,
which usually are a set of bits, are the real information the transmitter wants
to send.

2.2 The probability of incorrect decoding
A reliable communication is fundamental for a channel to be useful. The

most natural way of measuring reliability of a communication channel is the
probability of error Pe. Obviously, the smaller is Pe the more reliable is the
channel. We will now compute Pe for our model (2.2) of a slow fading MIMO
channel under the following assumptions:

• the noise entries wj,k are independent samples of a zero-mean circularly
symmetric complex Gaussian random variable of variance σ2/2 per di-
mension, for all j = 1, . . . , n and all k = 1, . . . , T . This means that if
wj,k = uj,k + ivj,k, then(

uj,k
vj,k

)
∼ N

((
0
0

)
,
1

2

(
σ2 0
0 σ2

))
,

where N denotes a Gaussian (or normal) random vector.
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• the fading coefficients hj,k are independent samples of a zero-mean cir-
cularly symmetric complex Gaussian random variable of variance 0.5
per dimension, for all j = 1, . . . ,m and all k = 1, . . . , n. As before, if
hj,k = fj,k + igj,k, this means that(

fj,k
gj,k

)
∼ N

((
0
0

)
,
1

2

(
1 0
0 1

))
.

• Maximum-likelihood decoding is used. Under our assumptions it means
the following. Suppose X ∈ C is the sent codeword and thus RX =
HX +W is the received matrix. The decoder decides in favour of the
codeword Y ∈ C such that ‖RX −HY ‖ is minimal.

Remark 2.2. Notice that if U, V are two independent random variables such
that U, V ∼ N (0, τ 2) then

√
U2 + V 2 has Rayleigh distribution. Since here

the fading coefficients hj,k are such that |hj,k| has Rayleigh distribution, the
channel is called Rayleigh fading channel.

Remark 2.3. It is important to remember that a good code needs to have
as many codewords as possible, so that to have a wider range of possible
signals to transmit.

Let us now compute the probability of incorrect decoding Pe. First of all
we have to define it properly. Denote with P the measure of probability of
an event. For a given space-time code C, we choose to define the probability
of error as follows:

Pe :=
∑
X∈C

P(X is decoded incorrectly, X is sent).

Using conditional probability we obtain

Pe =
∑
X∈C

P(X is decoded incorrectly|X is sent)P(X is sent).

We assume that the codewords are all equally likely to be sent. Hence

Pe =
1

#C
∑
X∈C

P(X is decoded incorrectly|X is sent).
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For X, Y ∈ C, denote by X → Y the event that Y is decoded when X is
sent. For all X ∈ C we then have that

P(X is decoded incorrectly|X is sent) =
∑
Y ∈C
Y 6=X

P(X → Y |X is sent).

The probability P(X → Y |X is sent) is commonly referred to as the pairwise
error probability (PEP). Putting everything together we obtain

Pe =
1

#C
∑
X∈C

∑
Y ∈C
Y 6=X

P(X → Y |X is sent).

Therefore Pe depends only on the PEP and thus minimizing it means mini-
mize Pe. Jafarkhani, in section 3.2 of [3], gives an upper bound of this PEP.
He does it in the following way. He first conditions on H, i.e., he finds an
upper bound for P(X → Y |X is sent, H = h). Then he uses the fact that

P(X → Y |X is sent) = EH [P(X → Y |X is sent, H)]

=

∫
domain of H

P(X → Y |X is sent, H = h)fH(h)dh,

where fH(·) is the probability density function of H.
He then shows that

P(X → Y |X is sent) ≤ 1∏n
k=1

(
1 + λk

4σ2

)m , (2.3)

where λ1, . . . , λn are the non-negative real eigenvalues of the matrixA(X, Y ) =
(X − Y )(X − Y )∗.
Without loss of generality we can assume that λ1, . . . , λr are the non-zero
eigenvalues of A(X, Y ), for some r ∈ {0, 1, . . . , n}. Hence (2.3) can be writ-
ten as

P(X → Y |X is sent) ≤ 1∏r
k=1

(
1 + λk

4σ2

)m .
Since (1 + a)−1 ≤ a−1, for any a ∈ R+, we can write

P(X → Y |X is sent) ≤
r∏

k=1

(
λk
4σ2

)−m
.

We want to choose our code C so that the quantity on the right hand side
of this inequality is small. This happens for example if the determinant of
A(X, Y ) is non-zero and large, for any pair of codewords X, Y ∈ C, with
X 6= Y .
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2.3 The mathematical question
From now on we suppose that T = n, so that the codewords are square

matrices of size n. In this case

det(A(X − Y )) = det(X − Y )det(X − Y ) = | det(X − Y )|2.

Hence, maximizing det(A(X, Y )) is equivalent to maximize | det(X − Y )|.
We can therefore derive one criterion for the design of an optimal space-time
code C in terms of reliability:

• determinant criterion: For a given r ∈ R+, | det(X − Y )| ≥ r, for
all distinct X, Y ∈ C.

At first glance it could seem easy to find optimal space-time codes following
this criterion. In fact, letting In be the identity matrix of Mn(C), we could
consider the scalar matrices, i.e., for a given r ∈ R+, we could denote X1 =
n
√
rIn, X2 = 2 n

√
rIn, X3 = 3 n

√
rIn, . . . and consider C = {X1, X2, X3, . . .}.

Then for any Xj, Xk ∈ C, with j 6= k, j, k ≥ 1,

| det (Xj −Xk) | =
∣∣det

(
(j − k) n

√
rIn
)∣∣ = |j − k|n︸ ︷︷ ︸

≥1

r ≥ r.

So we could build a space-time code of infinite size such that Pe would be as
small as desired.
This would be too easy. Indeed there is an important condition to take
into account in this problem. The power needed to send a signal z ∈ C is
directly proportional to its square norm |z|2 and the available power at the
transmitter is limited. Therefore every codeword X of a space-time code C
has to be such that its square Euclidean norm ‖X‖2 is bounded by some
energy constraint 0 ≤ e2 ∈ R. Hence, returning to the example of the scalar
matrices, for a given r the code would be of fixed size. More precisely its size
could not exceed 2e

n√r
√
n
, since ‖Xj‖ = j n

√
r
√
n, where j ≥ 1.

Therefore we have to consider also this other condition when looking for an
optimal space-time code C:

• energy constraint: For some e ∈ R+, ‖X‖ ≤ e, for all X ∈ C.

We have thus arrived at the following mathematical question:
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Given a subfield L of C, for any n ∈ N+ and any r ∈ R+,
find a set C ⊂ Mn(L) of maximal size such that the
following two conditions are satisfied:

• energy constraint: ‖X‖ ≤ 1, for all X ∈ C,

• determinant criterion: | det(X − Y )| ≥ r, for
all distinct X, Y ∈ C.

Remark 2.4. Note that we have normalized the energy constraint to 1. In
fact, of the two parameters e and r, where ‖X‖ ≤ e and | det(X − Y )| ≥ r,
only one of them is necessary. Indeed we can rescale the matrices by a factor
of 1/e in order to obtain ‖X‖ ≤ 1 and | det(X − Y )| ≥ r

en = r′ (provided
that e ∈ L). We could also normalize r to 1 and leave e as a parameter.
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Chapter 3

Preliminaries from classical
coding theory

In this chapter we give a brief summary of the definitions and results from
classical coding theory which will motivate the arguments in the subsequent
chapters. For a more detailed treatment of classical coding theory, we refer
the reader to [4] or [5].

Definition 3.1 (code, codeword). Let Fq be a finite field of cardinality q =
pm, for some prime p and some m ∈ N+. A code of length n ∈ N+ is a subset
C of (Fq)n.
A codeword is an element of C. So each codeword has the same length.

Definition 3.2 (Hamming distance). Let C ⊂ (Fq)n be a code and let x,y be
two codewords of C. The Hamming distance of x and y, denoted by dH(x,y),
is the number of entries in which x and y differ. In other words

dH(x,y) := #{k : xk 6= yk, k = 1, . . . , n}.

Observe that dH is a metric on (Fq)n, as stated in the following lemma.

Lemma 3.3. Let x,y and z ∈ (Fq)n. They satisfy

1. dH(x,y) ≥ 0, with equality if and only if x = y;

2. dH(x,y) = dH(y,x);

3. dH(x, z) ≤ dH(x,y) + dH(y, z).

Proof. The first two properties are trivial.
For the third one, let a = (a1, . . . , an) and b = (b1, . . . , bn) be elements of
(Fq)n and define

DH(a,b) := {k : ak 6= bk, k = 1, . . . , n}.
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Note that dH(a,b) = #DH(a,b).
We claim that DH(x, z) ⊂ DH(x,y) ∪DH(y, z).
In order to prove this, let k ∈ DH(x, z). This means that xk 6= zk. If yk 6= xk,
then k ∈ DH(x,y). Otherwise yk = xk, which means that yk 6= zk and thus
k ∈ DH(y, z). In any case k ∈ DH(x,y)∪DH(y, z), hence proving our claim.
Now, since for any finite set A and B we have that #A∪B ≤ #A+ #B, we
obtain

dH(x, z) = #DH(x, z) ≤ #DH(x,y) ∪DH(y, z) ≤ #DH(x,y) + #DH(y, z)

= dH(x,y) + dH(y, z),

as requested.

Definition 3.4 (minimum Hamming distance). Let C ⊂ (Fq)n be a code. The
minimum Hamming distance of C is

dH(C) := min{dH(x,y) : x 6= y, x,y ∈ C}.

This parameter is very important, especially in the design of error correcting
codes. In fact, suppose we have a code C ⊂ (Fq)n, where d is its minimum
Hamming distance. Then we can correct up to

⌊
d−1

2

⌋
errors, as stated in

following proposition.

Proposition 3.5. Let C ⊂ (Fq)n be a code of minimum Hamming distance
≥ d. If a codeword is sent with at most

⌊
d−1

2

⌋
errors, these errors can be

corrected.

Proof. Let t =
⌊
d−1

2

⌋
and let x ∈ C be a sent codeword. By hypothesis the

received word y ∈ (Fq)n contains at most t errors. Then dH(x,y) ≤ t.
We now claim that for any other codeword z ∈ C, with z 6= x, we have that
dH(z,y) > t. In fact, if this was not the case, i.e., if there were a codeword
z ∈ C, z 6= x, such that dH(z,y) ≤ t, we would obtain that

dH(x, z) ≤ dH(x,y) + dH(y, z) ≤ 2t = 2

⌊
d− 1

2

⌋
≤ d− 1.

But this is a contradiction with the fact that C has minimum distance ≥ d.
Thus our claim is proved. It then follows that x is the only codeword at
a distance at most t from y, therefore y can be decoded correctly, hence
correcting all the errors.

The theory of error correcting codes is a much studied topic since the
second half of the XX century. Thanks to proposition 3.5, the basic goal is
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to find codes that have as many codewords as possible with a fixed desired
minimum distance. Obviously dH((Fq)n) = 1 and it is clear that if we keep
adding elements of (Fq)n to C, its minimum distance will tend to decrease.
Hence the following mathematical question is natural in this context:

Given a prime power q, for any n ∈ N+ and d ≥ 0,
find a set C ⊂ (Fq)n of maximal size such that C has
minimum Hamming distance ≥ d.

An answer is not known in general but various upper and lower bounds
have been proved on the size of C. The simplest of these are the sphere pack-
ing bound and the Gilbert-Varshamov bound, respectively, which we recall
here.

Before stating these bounds, we first define two useful sets. For x ∈ (Fq)n
and ρ ∈ {0, 1, . . . , n}, define

S(x, ρ) = {z ∈ (Fq)n : dH(z,x) = ρ}

and

B(x, ρ) = {z ∈ (Fq)n : dH(z,x) ≤ ρ} =

ρ⋃
k=0

S(x, k).

The set B(x, ρ) may be viewed as a ball in (Fq)n centered at x and of radius
ρ, relatively to the metric dH .

Lemma 3.6. For x ∈ (Fq)n and ρ ∈ {0, 1, . . . , n},

#B(x, ρ) =

ρ∑
k=0

(
n
k

)
(q − 1)k.

Proof. Clearly #B(x, ρ) = #
⋃ρ
k=0 S(x, k) =

∑ρ
k=0 #S(x, k), because the

S(x, k) are disjoint. Since #S(x, k) is the number of elements of (Fq)n which
differ from x in exactly k places,

#S(x, k) =

(
n
k

)
(q − 1)k

and the lemma follows.
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Theorem 3.7 (sphere-packing bound). Let C ⊂ (Fq)n be a code with minimum
Hamming distance ≥ d. Then

#C ≤ qn∑b d−1
2 c

k=0

(
n
k

)
(q − 1)k

.

Proof. Let t =
⌊
d−1

2

⌋
.

Since the Hamming distance is a metric, the ballsB(x, t) are pairwise disjoint,
as x ranges over C. Thanks to lemma 3.6, we then obtain

qn = #(Fq)n ≥ #
⋃
x∈C

B(x, t) =
∑
x∈C

#B(x, t) = #C ·
t∑

k=0

(
n
k

)
(q − 1)k,

as desired.

Theorem 3.8 (Gilbert-Varshamov bound). Let n, d ∈ N+ and q be a prime
power. There exists then a code C ⊂ (Fq)n with minimum Hamming distance
≥ d, such that

#C ≥ qn∑d−1
k=0

(
n
k

)
(q − 1)k

.

Proof. Start with C = {x1}, where x1 is any element of (Fq)n. Then apply
the following procedure:

1. If there is an element z ∈ (Fq)n such that z 6∈
⋃

x∈C B(x, d − 1), then
add z to C, otherwise stop.

2. Repeat step 1 until you have to stop.

Since the total number of elements of (Fq)n is finite, this process will stop in
a finite number of steps and the resulting code C will have minimum distance
at least d by construction.
Moreover, at that point C will be such that⋃

x∈C

B(x, d− 1) = (Fq)n,

because otherwise we could have continued with the process. Hence, again
using lemma 3.6, we obtain

qn = #(Fq)n = #
⋃
x∈C

B(x, d−1) ≤
∑
x∈C

#B(x, d−1) = #C·
d−1∑
k=0

(
n
k

)
(q−1)k,

as desired.
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Chapter 4

An upper bound

Recall that, given a subfield L of C, for n ∈ N+ and r ∈ R+, we are
looking for a set C ⊂ Mn(L) of maximal size such that the following two
conditions are satisfied:

• energy constraint: ‖X‖ ≤ 1, for all X ∈ C,

• determinant criterion: | det(X − Y )| ≥ r, for all distinct X, Y ∈ C.

In this chapter we will prove an upper bound on the size of C by mim-
icking the proof of the sphere packing bound in classical coding theory (see
theorem 3.7).

Since Mn(R) ∼= Rn2 , any matrix X ∈Mn(R) can be seen as an element of
the R vector space Rn2 and vice versa. Similarly, since Mn(C) ∼= Cn2 ∼= R2n2 ,
any matrix X ∈Mn(C) can be seen as an element of the R vector space R2n2 .
Recall that F is either R or C.
For any matrix X = (x1| . . . |xn) ∈ Mn(F) and any 0 ≤ ρ ∈ R we define the
following set:

Bn(X, ρ) := {A = (a1| · · · |an) ∈Mn(F) : ‖ak − xk‖ ≤ ρ, k = 1, . . . , n} .

If F = R, Bn(X, ρ) is the direct product of n copies of n-dimensional balls
of radius ρ. If F = C, it is the direct product of n copies of 2n-dimensional
balls of radius ρ.
Let S be a subset of Rn, with int(S) we mean the interior of S. Clearly

int(Bn(X, ρ)) = {A = (a1| · · · |an) ∈Mn(F) : ‖ak − xk‖ < ρ, k = 1, . . . , n} .

Proposition 4.1. Let X and Y be two distinct matrices of Mn(F) such that
| det(X − Y )| ≥ r, for some r ∈ R+. Then

int(Bn(X, n
√
r/2)) ∩ int(Bn(Y, n

√
r/2)) = ∅.
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Proof. Let X = (x1| . . . |xn) and Y = (y1| . . . |yn). By contradiction, sup-
pose that the intersection of int(Bn(X, n

√
r/2)) and int(Bn(Y, n

√
r/2)) in non-

empty, i.e., there exists a matrix A = (a1| · · · |an) ∈ Mn(F) that belongs to
both of them. For all k = 1, . . . , n, we then have that

‖xk−yk‖ = ‖xk−ak +ak−yk‖ ≤ ‖xk−ak‖+‖ak−yk‖ <
n
√
r

2
+

n
√
r

2
= n
√
r.

Applying theorem 1.7 to the matrix X − Y we obtain that

r ≤ | det(X − Y )| ≤
n∏
k=1

‖xk − yk‖ <
n∏
k=1

n
√
r = r,

which is a contradiction, thus proving our proposition.

Figure 4.1 illustrates the next lemma.

Figure 4.1: The disk of radius 1 represent the energy constraint: every el-
ement of C must lie inside it. The disk of radius ε =

√
n n
√
r/2 is meant to

represent the set Bn(X, n
√
r/2), for some X on the boundary of the disk or

radius 1. We see that these sets, for X ∈ C, have to lie in a ball of radius
1 + ε centered at the origin.

Lemma 4.2. Let X ∈Mn(F) such that ‖X‖ ≤ 1.

• If F = R, then Bn(X, n
√
r/2) ⊆ Bn2

(
1 +

√
n n√r
2

)
.

• If F = C, then Bn(X, n
√
r/2) ⊆ B2n2

(
1 +

√
n n√r
2

)
.
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Proof. LetX = (x1| . . . |xn) and letA ∈ Bn(X, n
√
r/2), withA = (a1| . . . |an).

We then have that ‖ak − xk‖ ≤ n
√
r/2, for all k = 1, . . . , n. Therefore, we

have that

‖A−X‖2 =
n∑
k=1

‖ak − xk‖2 ≤ n

(
n
√
r

2

)2

.

Thus
‖A‖ ≤ ‖A−X‖+ ‖X‖︸︷︷︸

≤1

≤
√
n n
√
r

2
+ 1.

Hence, if F = R, A ∈ Bn2

(
1 +

√
n n√r
2

)
and if F = C, A ∈ B2n2

(
1 +

√
n n√r
2

)
.

We can now give an upper bound for the size of our set C.

Theorem 4.3. Let L be a subfield of F, n ∈ N+ and r ∈ R+. Let C ⊂Mn(L)
such that ‖X‖ ≤ 1, for all X ∈ C, and | det(X − Y )| ≥ r, for all distinct
X, Y ∈ C.

• If F = R, then

#C ≤
Γ
(
n
2

+ 1
)n

Γ
(
n2

2
+ 1
) ( 2

n
√
r

+
√
n

)n2

.

• If F = C, then

#C ≤ (n!)n

(n2)!

(
2

n
√
r

+
√
n

)2n2

.

Proof. Proposition 4.1 tells us that

V

(⋃
X∈C

int(Bn(X, n
√
r/2))

)
=
∑
X∈C

V
(
int(Bn(X, n

√
r/2))

)
,

since this union is disjoint. Clearly V(int(Bn(X, n
√
r/2))) = V(Bn(X, n

√
r/2))

and ⋃
X∈C

int(Bn(X, n
√
r/2)) ⊆

⋃
X∈C

Bn(X, n
√
r/2).

Therefore

∑
X∈C

V
(
Bn(X, n

√
r/2)

)
≤ V

(⋃
X∈C

Bn(X, n
√
r/2)

)
.
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Applying lemma 4.2 to all the elements of C we have that

V

(⋃
X∈C

Bn

(
X,

n
√
r

2

))
≤


V
(
Bn2

(
1 +

√
n n√r
2

))
= π

n2

2

Γ
(

n2

2
+1
) (1 +

√
n n√r
2

)n2

, F = R

V
(
B2n2

(
1 +

√
n n√r
2

))
= πn2

(n2)!

(
1 +

√
n n√r
2

)2n2

, F = C.

For any X ∈Mn(F), notice that the volume of Bn(X, n
√
r/2) does not depend

on X, since it is the direct product of n balls of radius n
√
r/2. These balls

are n-dimensional if F = R and 2n-dimensional if F = C. Therefore∑
X∈C

V
(
Bn(X, n

√
r/2)

)
= #C · V

(
Bn(X, n

√
r/2)

)
and

V
(
Bn(X, n

√
r/2)

)
=


V
(
Bn

(
n√r
2

))n
= π

n2

2

Γ(n
2

+1)
n

(
n√r
2

)n2

, if F = R

V
(
B2n

(
n√r
2

))n
= πn2

(n!)n

(
n√r
2

)2n2

, if F = C.

We then obtain

#C ≤

V
(
Bn2

(
1 +

√
n n√r
2

))
/V
(
Bn

(
n√r
2

))n
, if F = R

V
(
B2n2

(
1 +

√
n n√r
2

))
/V
(
B2n

(
n√r
2

))n
, if F = C,

which yields the desired results.

We give here the upper bound for the special case n = 2.

Example 4.4. Let L be a subfield of F and r ∈ R+. Let C ⊂ Mn(L) such
that ‖X‖ ≤ 1, for all X ∈ C, and | det(X−Y )| ≥ r, for all distinct X, Y ∈ C.

• If F = R, then

#C ≤ 2

(√
2

r
+ 1

)4

.

• If F = C, then

#C ≤ 8

3

(√
2

r
+ 1

)8

.
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Chapter 5

A lower bound

Recall that, given a subfield L of C, n ∈ N+ and r ∈ R+, we are looking
for a set C ⊂ Mn(L) of maximal size such that the two following conditions
are satisfied:

• energy constraint: ‖X‖ ≤ 1, for all X ∈ C,

• determinant criterion: | det(X − Y )| ≥ r, for all distinct X, Y ∈ C.
After rescaling the codewords of C by a factor of 1/ n

√
r, i.e., considering the

set C ′ = C/ n
√
r ⊂Mn(L), the two conditions, for all distinct X ′, Y ′ ∈ C ′, are

‖X ′‖ =
1

n
√
r
‖X‖ ≤ 1

n
√
r

and | det(X ′ − Y ′)| = 1

r
| det(X − Y )| ≥ 1.

In order to do this the only condition is that n
√
r belongs to L, otherwise C ′

would not be a subset of Mn(L). Letting W represent either Z or Z[i], we
also want the entries of the codewords X ∈ C ′ to belong to W.

Letting R = 1
n√r , we then concentrate on the equivalent problem of finding

a set C ⊂ Mn(W) of maximal size, such that, for some fixed R ∈ R+, the
following two conditions hold:

• energy constraint: ‖X‖ ≤ R, for all X ∈ C and

• determinant criterion: | det(X − Y )| ≥ 1, for all distinct X, Y ∈ C.
The interesting point in this formulation is that if two matrices X, Y ∈
Mn(W) do not satisfy the determinant criterion, then det(X − Y ) = 0, be-
cause | det(X − Y )| ∈ N.

The purpose of this chapter is to prove a lower bound on the size of a
space-time code by mimicking the proof of the Gilbert-Varshamov bound in
classical coding theory (see theorem 3.8).
The following notations will be useful.
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• Let m ∈ N+, 0 ≤ R ∈ R and d ∈ R+. The lattice (dZ)m cuts the m-
dimensional euclidean space Rm into hypercubes of side d. We define
γm(d,R) to be the number of these hypercubes that have a non-empty
intersection with Bm(R). If d = 1, we denote it simply by γm(R).

• For m ∈ N+ and 0 ≤ R ∈ R, define

βm(R) := #Zm ∩ Bm(R),

the number of integer points inside the m-dimensional ball of radius R
centered at the origin.

• For n ∈ N+ and 0 ≤ R ∈ R, define

Bn(R) := {X ∈Mn(W) : ‖X‖ ≤ R}

and bn(R) := #Bn(R).
Note that

bn(R) =

{
βn2(R), if W = Z
β2n2(R), if W = Z[i].

• For n ∈ N+, 0 ≤ R ∈ R and X ∈ Bn(R), define

Fn(X,R) := {A ∈ Bn(R) : det(A−X) = 0}.

Lemma 5.1. Let m ∈ N+, 0 ≤ R ∈ R and d ∈ R+. Then

V
(

Bm

(
R

d

))
≤ γm(d,R) ≤ V

(
Bm

(
R

d
+
√
m

))
.

Proof. Note that the volume of these γm(d,R) hypercubes is γm(d,R) · dm.
Since we are counting any hypercube that has a non-empty intersection with
Bm(R), it is clear that the union of all these hypercubes contains this ball.
In particular we then have that

V (Bm (R)) ≤ γm(d,R) · dm ⇔ γm(d,R) ≥ V
(

Bm

(
R

d

))
.

On the other hand, inside a hypercube of side d, two points can be at a
distance which is at most d

√
m. Therefore if we expand our ball Bm(R) to

have radius R + d
√
m, we will be sure that this new sphere will contain all

the γm(d,R) hypercubes. Hence

γm(d,R) · dm ≤ V
(
Bm

(
R + d

√
m
))
⇔ γm(d,R) ≤ V

(
Bm

(
R

d
+
√
m

))
,

as claimed.

27



Lemma 5.2. Let m ∈ N+ and 0 ≤ R ∈ R. Then

γm(R−
√
m) ≤ βm(R) ≤ γm(R).

Proof. We consider the lattice Zm that divides Rm into hypercubes of side 1.
Each of these hypercubes has 2m vertices, which are integer points. To the
hypercube [a1, a1 + 1]× . . .× [am, am + 1] we associate the point (a1, . . . , am),
for all (a1, . . . , am) ∈ Zm, as shown in figure 5.1.

Figure 5.1: Here m = 2. To each square we associate its lower left vertex.
The black circle is the boundary of B2(R) for R = 2.5.

If we now consider those hypercubes that have non-empty intersection
with Bm(R), we see that their number will exceed the number of integer
points inside Bm(R). In fact, using the one-to-one correspondence we just
defined between integer points and hypercubes, we have that the hypercube
associated to some integer point inside Bm(R) will have a non-empty intersec-
tion with the ball (the point itself for instance). Therefore we have that the
set of hypercubes associated to the integer points inside Bm(R) is included
in the the set of hypercubes that have a non-empty intersection with Bm(R).
Hence βm(R) ≤ γm(R).
On the other hand, consider the set of hypercubes that have a non-empty
intersection with the m-dimensional ball Bm(R −

√
m). These hypercubes

are completely included in the m-dimensional ball Bm(R), since the greatest
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distance between two points inside one of these hypercubes is
√
m. There-

fore also their left-most vertex is included in Bm(R) and thus, using again the
one-to-one relation between integer points and hypercubes, γm(R −

√
m) ≤

βm(R).

Corollary 5.3. Let m ∈ N+ and 0 ≤ R ∈ R. Then

V
(
Bm

(
R−
√
m
))
≤ βm(R) ≤ V

(
Bm

(
R +
√
m
))
.

Proof. Follows combining lemma 5.1 and lemma 5.2.

Proposition 5.4. Let m ∈ N+, 0 ≤ R ∈ R and k ∈ N such that k < m. Let
v1, . . . ,vk,p ∈ Zm and define the set

Hk,m :=

{
a ∈ Zm : a = p +

k∑
t=1

λtvt, where λt ∈ R, ∀ t = 1, . . . , k

}
.

We then have that #Hk,m ∩ Bm(R) ≤ βk(R).

Figure 5.2 illustrates the proposition.

Figure 5.2: Here m = 2 and R = 4.5. We see that no matter how a line is
chosen (the red lines), those that will contain the highest number of integer
points inside Bm(R) are the two lines (in blue) that pass through the origin
with direction e1 = (1, 0) and e2 = (0, 1). As one can see, the integer points
that lie on the x or y axis inside B2(R) are the integer points inside B1(R).
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Proof. We have k vectors v1, . . . ,vk ∈ Zm, where vt = (v1t, . . . , vmt)
T , for

all t = 1, . . . , k. For some d ∈ {1, . . . , k}, the matrix V = (v1| . . . |vk) will
have rank d. This means that among v1, . . . ,vk, the maximum number of
linearly independent vectors is d. So Hk,m is a d-dimensional lattice in Rm.
Without loss of generality, let us assume that these d linearly independent
vectors are v1, . . . ,vd and so

Hk,m =

{
a ∈ Zm : a = p +

d∑
t=1

λtvt, where λt ∈ R, ∀ t = 1, . . . , d

}
.

Consequently, the m × d matrix A = (v1| . . . |vd) has rank d. Since d < m,
because by hypothesis k < m, this means that we can find a non-zero minor
of size d × d, i.e., we can find d rows among the m of A such that the
corresponding square matrix has non-zero determinant. Let us denote this
rows by 1 ≤ j1 < . . . < jd ≤ n. Hence the matrix

B =

 vj1,1 . . . vj1,d
... . . . ...

vjd,1 . . . vjd,d


is such that det(B) 6= 0.
Let H0

j1,...,jd
be the lattice generated by the basis vectors ej1 , . . . , ejd and

passing from the origin:

H0
j1,...,jd

:=

{
a ∈ Zm : a =

d∑
t=1

λtejt , λt ∈ R, t = 1, . . . , d

}
.

Note that H0
j1,...,jd

∼= Zd.
Now consider the orthogonal projection of Hk,m on H0

j1,...,jd
:

πj1,...,jd : Hk,m ⊂ Zm → H0
j1,...,jd

⊂ Zm

(x1, . . . , xm) 7→ (x̃1, . . . , x̃m), where x̃j =

{
xj, j ∈ {j1, . . . , jd}
0, otherwise.

We claim that this map is one-to-one.
In order to prove this, let x = (x1, . . . , xm)T ,y = (y1, . . . , ym)T ∈ Hk,m such
that πj1,...,jd(x) = πj1,...,jd(y). This means that xj = yj ⇔ xj − yj = 0, for all
j ∈ {j1, . . . , jd}. On the other hand there are λ1, . . . , λd and µ1, . . . , µd ∈ R
such that x = p+

∑d
t=1 λtvt and y = p+

∑d
t=1 µtvt. The fact that xj−yj = 0,

for all j ∈ {j1, . . . , jd}, means that
d∑
t=1

(λt − µt)vjt = 0, for all j ∈ {j1, . . . , jd}. (5.1)
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Letting λ = (λ1 − µ1, . . . , λd − µd)
T ,0d = (0, . . . , 0)T ∈ Rd, (5.1) can be

rewritten as
Bλ = 0d.

Since det(B) 6= 0 we can invert B and thus this linear system has exactly
one solution, i.e., λ = 0d, which means that λt = µt, for all t = 1, . . . , d,
implying that x = y, as desired.
Now let a ∈ Hk,m ∩ Bm(R), then clearly πj1,...,jd(a) ∈ H0

j1,...,jd
∩ Bm(R), since

‖a‖ ≥ ‖πj1,...,jd(a)‖. Therefore, since the projection is one-to-one, we must
have that

#Hk,m ∩ Bm(R) ≤ #H0
j1,...,jd

∩ Bm(R) = #Zd ∩ Bm(R) = βd(R).

Since obviously βs(R) ≤ βs′(R), for all positive integers s ≤ s′, we have that
βd(R) ≤ βk(R), thus proving our proposition.

Theorem 5.5. Let n ∈ N+, R ∈ R+ and W be either Z or Z[i]. There exists
then a set C ⊂Mn(W) with ‖X‖ ≤ R, for all X ∈ C, and | det(X − Y )| ≥ 1,
for all distinct X, Y ∈ C, such that

• if W = Z,

#C ≥ π
n
2

Γ
(
n
2

+ 1
)n−1

Γ
(
n2

2
+ 1
) (R− n)n

2

(R +
√
n)

n2−n∑n−1
k=0

π
k
2

Γ( k
2

+1)

(
R +
√
k
)k ,

• if W = Z[i],

#C ≥ πn
(n!)n−1

(n2)!

(R−
√

2n)2n2(
R +
√

2n
)2n2−2n∑n−1

k=0
πk

k!

(
R +
√

2k
)2k

.

Proof. Start with C = {X1}, for any X1 ∈ Bn(R), and apply the following
procedure:

1. If there exists A ∈ Bn(R) such that A 6∈
⋃
X∈C Fn(X,R), add A to C,

otherwise stop.

2. Repeat step 1 until you have to stop.

This process will stop in a finite number of step, since Bn(R) contains only a
finite number of elements. By construction, the resulting set C is such that

31



‖X‖ ≤ R, for all X ∈ C, and | det(X − Y )| ≥ 1, for all distinct X, Y ∈ C.
Moreover, at this point C is such that

Bn(R) =
⋃
X∈C

Fn(X,R),

because otherwise we could have continued with the process.
We then obtain that

bn(R) = #Bn(R) = #
⋃
X∈C

Fn(X,R) ≤
∑
X∈C

#Fn(X,R).

Define

B′n(R) := {X = (x1| . . . |xn) ∈Mn(W) : ‖xj‖ ≤ R, ∀j = 1, . . . , n}.

Note that Bn(R) ⊂ B′n(R). For X ∈ B′n(R), define also

F ′n(X,R) := {A ∈ B′n(R) : det(A−X) = 0}.

Since Bn(R) ⊂ B′n(R), clearly Fn(X,R) ⊂ F ′n(X,R) and so #Fn(X,R) ≤
#F ′n(X,R), for all X ∈ B′n(R).
Let A = (a1| . . . |an), X = (x1| . . . |xn) ∈Mn(W) and note that

det(A−X) = 0 ⇔ a1 − x1 = 0 or ∃ k ∈ {2, . . . , n} such that
ak−xk is a linear combination (LC) of a1−
x1, . . . , ak−1 − xk−1.

Therefore

F ′n(X,R) = {A = (a1| . . . |an) ∈ B′n(R) : a1 = x1} ∪
n⋃
k=2

{A = (a1| . . . |an) ∈ B′n(R) : ak − xk = LC(a1 − x1, . . . , ak−1 − xk−1)}.

We now have to count how many matrices there are in these sets. For this
purpose, we have to separate the two cases W = Z and W = Z[i].
Let us begin with W = Z.
We have that

#{A = (a1| . . . |an) ∈ B′n(R) : a1 = x1} = 1 · βn(R)n−1

since for a1 we have only one possible choice and for the other n−1 columns
we have βn(R) possible choices each, since ak ∈ Zn ∩ Bn(R), for all k =
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1, . . . , n.
For k ∈ {2, . . . , n}

#{A = (a1| . . . |an) ∈ B′n(R) : ak − xk = LC(a1 − x1, . . . , ak−1 − xk−1)}
≤ βk(R)βn(R)n−1.

In fact, for column ak we have at most βk(R) possibilities, thanks to propo-
sition 5.4, where here p = xk and vj = aj − xj, for j = 1, . . . , k − 1. For
the others columns of A we have no restriction, so we have βn(R) for each of
them, as before.
Therefore

#F ′n(X,R) ≤ βn(R)n−1

(
1 +

n−1∑
k=1

βk(R)

)
.

Exactly in the same way, for W = Z[i] we have that

#F ′n(X,R) ≤ β2n(R)n−1

(
1 +

n−1∑
k=1

β2k(R)

)
,

since ak ∈ Z2n ∩ B2n(R), for all k = 1, . . . , n, because ak ∈ Z[i]n ∼= Z2n and
‖ak‖ ≤ R.
Resuming, we have that

bn(R) ≤
∑
X∈C

#F ′n(X,R) ≤

{
#C · βn(R)n−1

(
1 +

∑n−1
k=1 βk(R)

)
, W = Z

#C · β2n(R)n−1
(
1 +

∑n−1
k=1 β2k(R)

)
, W = Z[i].

Remembering that bn(R) = βn2(R) if W = Z and bn(R) = β2n2(R) if W =
Z[i], we then have that

#C ≥


βn2 (R)

βn(R)n−1(1+
∑n−1

k=1 βk(R))
, W = Z

β2n2 (R)

β2n(R)n−1(1+
∑n−1

k=1 β2k(R))
, W = Z[i].

Thanks to corollary 5.3 these fractions can be bounded from below using
only volumes of balls. In factβn

2(R) ≥ V (Bn2(R− n)) = π
n2

2

Γ
(

n2

2
+1
)(R− n)n

2

β2n2(R) ≥ V
(
B2n2

(
R−
√

2n
))

= πn2

(n2)!

(
R−
√

2n
)2n2

and, for all k = 1, . . . , n,
βk(R) ≤ V

(
Bk

(
R +
√
k
))

= π
k
2

Γ( k
2

+1)

(
R +
√
k
)k

β2k(R) ≤ V
(
B2k

(
R +
√

2k
))

= πk

k!

(
R +
√

2k
)2k

.

Putting everything together we complete the proof.
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Theorem 5.6. Let L be a subfield of F, n ∈ N+ and r ∈ R+ such that
n
√
r ∈ L. There exists then a set C ⊂ Mn(L) with ‖X‖ ≤ 1, for all X ∈ C,

and | det(X − Y )| ≥ r, for all distinct X, Y ∈ C, such that

• if F = R,

#C ≥ π
n
2

Γ
(
n
2

+ 1
)n−1

Γ
(
n2

2
+ 1
)

(
1

n√r − n
)n2

(
1

n√r +
√
n
)n2−n∑n−1

k=0
π

k
2

Γ( k
2

+1)

(
1

n√r +
√
k
)k ,

• if F = C,

#C ≥ πn
(n!)n−1

(n2)!

(
1

n√r −
√

2n
)2n2

(
1

n√r +
√

2n
)2n2−2n∑n−1

k=0
πk

k!

(
1

n√r +
√

2k
)2k

.

Proof. Again W will represent either Z or Z[i], depending if F represents R
or C respectively.
Letting R = 1

n√r , thanks to theorem 5.5 we know that there exists a set
C ′ ⊂ Mn(W) with ‖X‖ ≤ 1/ n

√
r, for all X ∈ C ′, and | det(X − Y )| ≥ 1, for

all distinct X, Y ∈ C, such that

• if W = Z (i.e., if F = R),

#C ′ ≥ π
n
2

Γ
(
n
2

+ 1
)n−1

Γ
(
n2

2
+ 1
)

(
1

n√r − n
)n2

(
1

n√r +
√
n
)n2−n∑n−1

k=0
π

k
2

Γ( k
2

+1)

(
1

n√r +
√
k
)k ,

• if W = Z[i] (i.e., if F = C),

#C ′ ≥ πn
(n!)n−1

(n2)!

(
1

n√r −
√

2n
)2n2

(
1

n√r +
√

2n
)2n2−2n∑n−1

k=0
πk

k!

(
1

n√r +
√

2k
)2k

.

Letting C := n
√
rC ′, we have that C ⊂ Mn(L), because n

√
r ∈ L and W ⊂ L.

Moreover, for all X ∈ C

‖X‖ = ‖ n
√
rX ′‖ = n

√
r‖X ′‖ ≤ n

√
r

1
n
√
r

= 1,

and, for all distinct X, Y ∈ C,

| det(X − Y )| = | det( n
√
r(X ′ − Y ′))| = r| det(X ′ − Y ′)| ≥ r · 1 = r.

Since #C = #C ′, the theorem is proved.
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We give here the lower bound for the special case n = 2.

Example 5.7. Let L be a subfield of F and r ∈ R+ such that
√
r ∈ L.

There exists then a set C ⊂ M2(L) with ‖X‖ ≤ 1, for all X ∈ C, and
| det(X − Y )| ≥ r, for all distinct X, Y ∈ C, such that

• if F = R,

#C ≥ π

2

(
1√
r
− 2
)4

(
1√
r

+
√

2
)2 (

2√
r

+ 3
) ,

• if F = C,

#C ≥ π2

12

(
1√
r
− 2
√

2
)8

(
1√
r

+ 2
)4
(
π
(

1√
r

+
√

2
)2

+ 1

) .
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Chapter 6

An example: the Alamouti code

In 1998 the electrical engineer Siavash M. Alamouti proposed in his paper
[7] the following space-time code for two transmitting antennas:

CA =

{(
z −w
w z

)
: (z, w) ∈ A

}
⊂M2(C),

where A is any subset of C2. This kind of code has become very popular
because of its simplicity and of its good performance.
Letting X,X ′ ∈ CA we have that

det(X −X ′) =

∣∣∣∣ z − z′ −(w − w′)
w − w′ z − z′

∣∣∣∣ = (z − z′)(z − z′) + (w − w′)(w − w′)

= |z − z′|2 + |w − w′|2 ≥ 0

and it is zero if and only if z = z′ and w = w′, i.e., when X = X ′. Moreover

‖X‖2 = 2
(
|z|2 + |w|2

)
.

The non-trivial question that follows is how to choose A in order to have a
code of maximal size that satisfies the energy constraint and the determinant
criterion. Here we want to give an example of an Alamouti code in order to
test the bounds we proved in chapters 4 and 5.
We then fix n = 2 and L = C. Let

C2

(√
2/4
)

:=
{
z ∈ C : |<(z)|, |=(z)| ≤

√
2/4
}

and define the Alamouti code

CA =

{(
z −w
w z

)
: z, w ∈

√
rZ[i] ∩ C2

(√
2/4
)}

,
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where we set A =
(√

rZ[i] ∩ C2

(√
2/4
))2

.
Let X ∈ CA. We have that

‖X‖2 = 2
(
|z|2 + |w|2

)
= 2

(
<(z)2 + =(z)2 + <(w)2 + =(w)2

)
(6.1)

≤ 2

(
1

8
+

1

8
+

1

8
+

1

8

)
= 1, (6.2)

and so ‖X‖ ≤ 1, for all X ∈ CA.
Let also X,X ′ ∈ CA, with X 6= X ′. The fact that X and X ′ are distinct
means that either z 6= z′ or w 6= w′, which implies that either |z − z′| ≥

√
r

or |w − w′| ≥
√
r. Hence

| det(X −X ′)| = |z − z′|2 + |w − w′|2 ≥ r,

for all distinct X,X ′ ∈ CA.
Therefore CA is a code that satisfies the energy constraint and the determi-
nant criterion. Its cardinality is easily computed, since both z and w lie in
the same square grid in the complex plane:

#CA =

(⌊2 ·
√

2
4√
r

⌋
+ 1

)2
2

=

(⌊
1√
2r

⌋
+ 1

)4

.

Let us now see how this fits with the upper and lower bound we proved.

Example 4.4 says that, for n = 2 and L = C, for any code C ⊂ M2(C)
that satisfies the energy constraint and the determinant criterion,

#C ≤ 8

3

(√
2

r
+ 1

)8

.

Indeed we have that

#CA =

(⌊
1√
2r

⌋
+ 1

)4

≤
(

1√
2r

+ 1

)4

<
8

3

(√
2

r
+ 1

)8

.

On the other hand, in example 5.7, for n = 2 and L = C, we found that
there exists a code C ⊂ Mn(C) that satisfies the energy constraint and the
determinant criterion such that

#C ≥ π2

12

(
1√
r
− 2
√

2
)8

(
1√
r

+ 2
)4
(
π
(

1√
r

+
√

2
)2

+ 1

) .
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Again, we have

π2

12

(
1√
r
− 2
√

2
)8

(
1√
r

+ 2
)4
(
π
(

1√
r

+
√

2
)2

+ 1

) <
π2

12

(
1√
r

)8

(
1√
r

)4
(
π
(

1√
r

)2
) =

π

12

(
1√
r

)2

<
1

2

(
1√
r

)2

=

(
1√
2r

)2

≤
(⌊

1√
2r

⌋
+ 1

)2

≤
(⌊

1√
2r

⌋
+ 1

)4

= #CA.

So the size of our code is better than the lower bound.

The Alamouti code is closely related to the theory of quaternion algebras.
For further applications of the theory of central simple algebras to the design
of MIMO codes, see, e.g., [8], [9], [10].
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Conclusion

While the use of multiple receiving antennas in wireless communication
is a much more old topic, the theoretical engineering framework on MIMO
channels rose only in the late nineties (see e.g., [1], [12], [13], [14], [15]). Very
quickly this area of research turned out to be very attractive also for mathe-
matics, because of the challenges that MIMO communication was bringing.
Hence, since the beginning of the new century, there have been several math-
ematical studies on this topic (see e.g., [8], [9], [10], [16], [17]).
A novel feature of our approach is the precise mathematical question which
is deduced from the engineering problem in chapter 2: Find the largest size
of a space-time code over a subfield L of the complex numbers satisfying the
energy constraint and the determinant criterion. This question is analogous
to the main problem of classical error-correcting coding theory (see chapter
3); here L replaces the choice of a finite field (the alphabet) in classical cod-
ing theory, the energy constraint is analogous to choosing the length of a
classical error-correcting code and the determinant criterion is analogous to
a lower bound on its minimal (Hamming) distance. We used this analogy to
derive upper and lower bounds on the maximal size of space-time codes in
chapter 4 and 5 respectively.

Our proofs are entirely geometric; for this reason our bounds are primarily
of interest in the cases where L is the field of real or complex numbers.
It would be then interesting to try to sharpen them for other fields L. If
we had more time, it would also have been fascinating to deepen in the
subject of division algebras (see e.g., [8], [9], [10], [11]), which give the tools
of constructing interesting space-time codes not only for n = 2 - as we did
very briefly in chapter 6 -, but also for higher dimensions.
Another interesting line of research is to try to sharpen our lower bound
by using the theory of random matrices. In the proof of theorem 5.5 the
key point is the estimate of the number of matrices A that belong to the
ball of radius R centered at the origin with integer entries and satisfying the
inequality det(A−X) = 0, where X is a fixed n× n matrix. Allowing A to
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have real or complex entries, this is analogous to computing the volume of
the set such that ‖A‖ ≤ R and satisfying | det(A −X)| < 1, for some fixed
X ∈ Mn(C). Conjecturally, for fixed R and n, the largest volume occurs if
X is the zero matrix. In this case there are chances that one may be able to
use the theory of random matrices and their eigenvalue distribution to give a
stronger upper bound on this volume, which would improve the lower bound
on the maximal size of a code. Though, this idea needs to be inspected much
more in order to tell if it can lead to some concrete result.

Acknowledgments
I owe the spirit and the main ideas of this work to Professor Zinovy

Reichstein, whom I want to thank also for his kindness and availability to help
me whenever I needed it. I would also like to thank Professors Brian Marcus
and Lutz Lampe who helped me with the engineering problem. Finally, I am
very grateful to Professor Eva Bayer Fluckiger, who agreed to supervise my
Master’s project and gave me the opportunity to live this great experience
at the University of British Columbia in Vancouver.

40



Appendix

In this section we just show that if we want to test the upper and the
lower bound that we proved in chapter 4 and 5, only a certain interval of r
is relevant.

Lemma 6.1. Let n ∈ N+, 0 ≤ R ∈ R and X, Y ∈Mn(C) two matrices such
that ‖X‖, ‖Y ‖ ≤ R. We then have that

| det(X − Y )| ≤
(

2R√
n

)n
.

Proof. Let x1, . . . ,xn and y1, . . . ,yn be the columns of X and Y respectively,
i.e., X = (x1| . . . |xn) and Y = (y1| . . . |yn).
Applying theorem 1.7 and lemma 1.6 we have that

| det(X−Y )| ≤
n∏
k=1

‖xk−yk‖ =

( n∏
k=1

‖xk − yk‖

)1/n
n ≤ (∑n

k=1 ‖xk − yk‖
n

)n
.

Let v = (‖x1 − y1‖, . . . , ‖xn − yn‖)T , 1n = (1, . . . , 1)T ∈ Rn and denote by
〈·, ·〉 the usual inner product of the R-vector space Rn. Using Cauchy-Schwarz
inequality, we know that 〈v,1n〉 ≤ ‖v‖‖1n‖, i.e.,

n∑
k=1

‖xk − yk‖ ≤

√√√√ n∑
k=1

‖xk − yk‖2
√
n.

We also have that
n∑
k=1

‖xk − yk‖2 = ‖X − Y ‖2 ≤ (‖X‖+ ‖Y ‖)2 ≤ (R +R)2 = (2R)2.

So
√∑n

k=1 ‖xk − yk‖2 ≤ 2R.
Therefore

| det(X−Y )| ≤
(∑n

k=1 ‖xk − yk‖
n

)n
≤

(√∑n
k=1 ‖xk − yk‖2

√
n

n

)n

≤
(

2R√
n

)n
,

as claimed.
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Remark 6.2. The bound that we obtained in lemma 6.1 is tight for any
n ∈ N+ and R ≥ 0. Indeed, choose n mutually orthogonal column vectors
a1, . . . , an ∈ Cn of length R/

√
n and set A = (a1| · · · |an) and B = −A.

Clearly ‖A‖ = ‖B‖ ≤ R and then, thanks to lemma 1.4,

| det(A−B)| = | det(2A)| = 2n| det(A)| = 2n
n∏
j=1

‖aj‖ =

(
2R√
n

)n
.

Corollary 6.3. Let L be a subfield of C, n ∈ N+ and r ∈ R+. Let C ⊂Mn(L)
be a set such that ‖X‖ ≤ 1, for all X ∈ C, and | det(X − Y )| ≥ r, for all
distinct X, Y ∈ C.
If C has more than one element, then r ≤

(
2√
n

)n
and in particular

1. r ≤ 2 and

2. if n ≥ 4, r ≤ 1.

Proof. By hypothesis, we know that C contains at least two distinct elements
X and Y . Thanks to lemma 6.1 for R = 1, we have that r ≤ | det(X−Y )| ≤
(2/
√
n)n and hence r ≤ (2/

√
n)n. Since (2/

√
n)n ≤ 2, for all n ∈ N+, r ≤ 2,

and if n ≥ 4, then (2/
√
n)n ≤ 1 and thus r ≤ 1.
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