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Tout mathématicien digne de ce nom a connu, parfois seulement à de rares
intervalles, ces états d'exaltation lucide où les pensées s'enchaînent comme

par miracle, et où l'inconscient (quel que soit le sens qu'on attache à ce
mot) paraît aussi avoir sa part. [...]

Qui l'a connu en désire le renouvellement mais est impuissant à le
provoquer, sinon tout au plus par un travail opiniâtre dont il apparaît alors

comme la récompense; il est vrai que le plaisir qu'on en ressent est sans
rapport avec la valeur des découvertes auxquelles il s'associe.

André Weil (1906-1998, France).
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List of Notation

Throughout this report, we will try to use as much as possible some
standard notations. Even if the term "standard" has not really a de�nition.
In our case it will mean that we follow the notations of our references. And
thus, for example, our matrices act on the right of our row vectors or in the
same manner for x, y two elements of a group G we denote xy the conjugacy
by y which means xy := y−1xy and [x, y] for the commutator of x and y with
[x, y] = x−1y−1xy . Following these notations we write xG for the conjugacy
class of x, i.e. xG = {g−1xg | g ∈ G}.

In addition, if we de�ne a group by its presentation, for example the
quaternion group Q8 = 〈x, y | x4 = y4 = 1, y−1xy = x−1, y2 = x2〉, and later
in the text we refer to the quaternion group as Q8 = 〈x, y〉 or Q8 = 〈xi, yi〉,
the reader must understand that x, y or xi, yi are in fact the same as those
which appear in the presentation and thus have the same properties.

Without explicit mention, we use the term representation for a complex
representation.

Finally, we shall use these notations :

Φ(G) The Frattini subgroup of a group G.
G1 ◦G2 The central product of the groups G1 and G2.
Sd The symmetric group of order d!.
χ
V The character associated to the module V .
V ∗ The dual of the module V .
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Introduction

The aim of this work is to understand the decomposition, in irreducible
modules, of tensor products of Weil modules for Sp2n(3). To do this, we
begin by computing the Weil modules for Sp4(3), Sp6(3) and Sp8(3) in order
to understand how tensor products decompose for these cases. This leads us
to some results and hypotheses for the general case. The understanding of
the decomposition of two-fold tensor product of Weil modules for Sp2n(3) has
been treated in [12]. Following it, we try to understand as much as possible
the decomposition of three-fold tensor products of Weil modules for Sp2n(3).

In the �rst chapter we recall some basic results in group theory and
we de�ne the symplectic groups as well as the symmetric and alternating
power of a given representation. The goal of this chapter is to give a better
understanding for the next chapters.

The second chapter deals with extraspecial p-groups, especially those with
exponent p. We will see that we understand this class of groups very well.
Indeed, we can describe their structure as a central product of groups of
order p3, which are the smallest cases of extraspecial p-groups. We know
their group of automorphisms too and �nally we have a good knowledge of
their complex representations, which will be the start of our construction
of Weil modules for symplectic groups in chapter three. Here, we start to
give the general construction for Weil modules of Sp2n(p) and then we apply
the construction to the case p = 3 to have an explicit construction. At the
end of this chapter, we are able to construct explicitly the Weil modules for
Sp2n(3). This will allow us in chapter �ve to take some tensor products of
Weil modules for Sp4(3), Sp6(3) and Sp8(3) using the algebra programs GAP
and Magma. After having shown the decomposition of some tensor products
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INTRODUCTION

in tabular form for these three groups, we state some general statement for
Sp2n(3). Before that, in the fourth chapter, we focus on the decomposition
of V ⊗ · · · ⊗ V as GL(V )-module, for a vector space V . This will give us a
�rst idea of how W ⊗ · · · ⊗W will decompose as Sp2n(3)-module, for a Weil
module W . For this purpose, we need to introduce the Young diagrams and
the Schur functors.

Finally, in the last section, we state all the hypotheses we have generated
from consideration of the special cases, but as yet have been unable to prove.
If these hypotheses are right, we are able to understand the decomposition of
three-fold tensor products of Weil modules for Sp2n(3). We derive equivalent
formulations for some of our open questions, which we think will be easier to
prove.

The prerequisites for a good understanding of this work consist of a good
knowledge in representation theory, and some elementary facts about classical
groups, especially for the symplectic group. A novice reader in one of these
topics may refer to the excellent [3] and [14].

For readers interested in how we used GAP and Magma, see the author
codes in [13], and the good tutorial [19] which we used to get started.

A few words about the references are sketched before getting started. The
second chapter is mainly based on [1], while the third chapter picks up the
article [4]. The fourth chapter takes up the ideas of [2].

xi



Chapter 1
Prerequisites

The goal of this chapter is to introduce the prerequisites that we need
to understand the construction of Weil modules for the symplectic groups.
Thus, after some general reminders, we introduce the de�nition of the sym-
plectic group and recall some basic properties. We �nish this chapter with
an overview of the symmetric square and alternating square representations
which is essential to understand the decomposition of tensor products of Weil
modules. During this chapter p will be a prime number.

1.1 Reminders

We state without demonstration some basic facts from group theory. The
demonstrations could be found, for example, in [1] or [3].

Lemma 1.1. Let G be a group and x, y, z ∈ G. Then has

[xy, z] = y−1[x, z]y[y, z] and [x, yz] = [x, z]z−1[x, y]z.

Moreover if [x, y] commutes with x and y, then for all k, n,m ∈ Z we have

[x, y]k = [xk, y] = [x, yk] and [xn, xm] = [x, y]nm.

Lemma 1.2. Let G be a group and N a central normal subgroup. If G/N is
cyclic then G is abelian.

1



CHAPTER 1. PREREQUISITES

Lemma 1.3. Let P be a group of order pn with n ≥ 1. If H is a non-trivial
proper normal subgroup of P then H ∩Z(P ) 6= {1}. In particular, the center
Z(P ) is non-trivial.

1.2 Symplectic Groups

Since our interest is the Weil representations of the symplectic groups we
need to present the usual facts concerning these groups.

De�nitions 1.4.

(i) Let k be a �eld and b be a bilinear form on a k-vector space V . The form
b is skew symmetric if b(x, y) = −b(y, x) for all x, y in V . Moreover, the
form is said to be symplectic if b is nondegenerate and skew symmetric,
and in addition when char(k) = 2 we must have b(x, x) = 0 for all x in
V .

(ii) Given a symplectic form b on V , we de�ne the symplectic group Sp(V )
as the elements of GL(V ) which preserve b, in other words

Sp(V ) := {T ∈ GL(V ) | b(xT, yT ) = b(x, y) for all x, y ∈ V }.

Remark 1.5. Let e1 ∈ V be non-zero and f1 such that b(e1, f1) = 1. Since
b|〈e1,f1〉 is nondegenerate we know that

V = 〈e1, f1〉 ⊕ 〈e1, f1〉⊥ .

Similarly, if we consider the space 〈e1, f1〉⊥ of dimension dim(V )−2 equipped
with the symplectic form b|〈e1,f1〉⊥ we obtain e2, f2 in 〈e1, f1〉⊥ such that

V = 〈e1, f1〉 ⊕ 〈e2, f2〉 ⊕ 〈e2, f2〉⊥ .

Continuing in this fashion, we obtain a basis {e1, f1, e2, f2, . . . , em, fm}, called
a symplectic basis. The matrix of b in the basis is

0 1
−1 0

. . .

0 1
−1 0

 .
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1.3 SYMMETRIC SQUARE AND ALTERNATING SQUARE

Furthermore, the matrix of b in the basis {e1, e2, . . . em, f1, f2, . . . , fm} is(
0 idm
− idm 0

)
.

Finally, we note that if b is a symplectic form on V then V has even dimension.

Proposition 1.6. The order of the symplectic group over Fq is

| Sp2m(q)| =
m∏
j=1

(q2j − 1)q2j−1 = qm
2
m∏
j=1

(q2j − 1).

Proof. We will just give a sketch of the proof and we refer the interested
reader to [14] pages 35 and 36 for the proof. The idea to calculate its order
is to count the number of ways of choosing a standard basis. Pick the �rst
vector in q2m−1 ways. Of the q2m−q vectors which are linearly independent
of the �rst, q2m−1 − q are orthogonal to it, and q2m−1(q − 1) have each non-
zero inner product with the �rst. So there are q2m−1 choices for the second
vector. To �nish the proof we can for example do an induction on m.

Remark 1.7. This is not the purpose of our work, but one can show that
Sp(V ) is a subgroup of SL(V ) and that up to conjugation there exists a
unique symplectic group, that is to say that if b′ is another symplectic form
on V then the group of elements in GL(V ) which preserve b′ is conjugate
to Sp(V ) in GL(V ). One can also show that the groups Sp2m(q) are perfect
except if m = 1 and q = 2 or q = 3 and if m = 2 and q = 2. Furthermore,
the projective groups PSp2m(q) are simple except for the cases cited above.
In fact, one has that PSp2(2) ∼= S3, PSp2(3) ∼= A4 and PSp4(2) ∼= S6.

1.3 Symmetric square and Alternating square

Let V be a k[G]-module with basis (ei)1≤i≤n where k is a �eld of character-
istic di�erent from 2 and G is a �nite group. Then one can de�ne a structure
of k[G]-module on V ⊗k V by (w ⊗ v)g = wg ⊗ vg for g ∈ G and v, w ∈ V .
Let ϑ : V ⊗V → V ⊗V be the automorphism given by (v⊗w)ϑ = w⊗v. Let
λ be an eigenvalue for ϑ. Since ϑ2 = id, it follows that λ ∈ {−1, 1}, because
if x is an eigenvector for λ then one has x = xϑ2 = λ2x. We can see that in
fact both cases occur, see below.
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CHAPTER 1. PREREQUISITES

We de�ne Sym2(V ) := V1 to be the symmetric square and Alt2(V ) :=
V−1 to be the alternating square of the given representation. The elements
(ei⊗ej+ej⊗ei)i≤j form a basis of Sym2(V ) and the elements (ei⊗ej−ej⊗ei)i<j
form a basis of Alt2(V ). So we have

dim Sym2(V ) =
n(n+ 1)

2
and dim Alt2(V ) =

n(n− 1)

2
.

Then ϑ is diagonalizable and V ⊗V decomposes, as a vector space, in a direct
sum of the eigenspaces V1 and V−1.

It's clear that the subspaces Sym2(V ) and Alt2(V ) are both stable under
the action of G and therefore we obtain the following decomposition, as k[G]-
module,

V ⊗ V = Sym2(V )⊕ Alt2(V ).

Moreover if k = C, we can show that, for g in G,

χ
Sym2(V )(g) =

1

2

(
χ
V (g)2+χV (g2)

)
and χ

Alt2(V )(g) =
1

2

(
χ
V (g)2−χV (g2)

)
.

Indeed, we can choose the basis e1, . . . , en of V such that eig = λiei for
1 ≤ i ≤ n, and some complex numbers λi. Then we have

(ei ⊗ ej − ej ⊗ ei)g = λiλj(ei ⊗ ej − ej ⊗ ei)

and hence χAlt2(V )(g) =
∑

i<j λiλj. Now computing

χ
V (g)2 =

n∑
i=1

λi

n∑
j=1

λj =
n∑
i=1

λ2
i + 2

∑
i<j

λiλj

= χ
V (g2) + 2χAlt2(V )(g)

we can see that χAlt2(V )(g) = 1
2

(
χ
V (g)2 − χV (g2)

)
. Finally, recall that

χ
V (g)2 = χ

Alt2(V )(g) + χ
Sym2(V )(g),

and thus we deduce that χSym2(V )(g) = 1
2

(
χ
V (g)2 + χ

V (g2)
)
.

Actually, we can generalize the above de�nitions. Let W be a �nite-
dimensional complex vector space. The symmetric group Sd acts on W⊗d

by permuting the factors. We de�ne the alternating powers AltdW by the
space of anti-invariant vectors of the action of Sd on W

⊗d and the symmetric
powers SymdW by the space of invariant vectors of the action of Sd on W

⊗d.
One can check this is coherent with the de�nition given for d = 2.
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Chapter 2
Extraspecial Groups

To construct the Weil modules, we start with a representation of an ex-
traspecial group. Thus we need to understand those groups before. So we
will, during this chapter, �rst classify their structures with the help of the
notion of central product and then classify their groups of automorphisms.
Finally we will parameterize the representations of an extraspecial group,
which will be the beginning of our construction of Weil representations of
the symplectic groups. Again, during this chapter p will be a prime number.

2.1 Structure of Extraspecial Groups

De�nition 2.1. A p-group E is extraspecial if Z(E) = [E,E] = Φ(E) and
Z(E) is cyclic.

Remark 2.2. The center of an extraspecial p-group E has order p. Indeed,
let g, h ∈ E, then gp ∈ Φ(E) because E/Φ(E) is elementary abelian. But
Z(E) = Φ(E) so gp ∈ Z(E) and 1 = [gp, h] = [g, h]p. Hence [E,E] is
elementary abelian. This shows that Z(E) is cyclic and elementary abelian
which gives us as the only possibility that Z(E) has order p.

Example 2.3. Denote by Q8 the quaternion group, then Q8 is extraspecial.
We already know that Z(Q8) = {1,−1} and that Q8/Z(Q8) ∼= C2 × C2.
So the commutator and the Frattini subgroups are contained in the center,
which has order 2. Thus, because Q8 is not abelian or elementary abelian,
we have Z(Q8) = [Q8, Q8] = Φ(Q8) and Q8 is extraspecial.

5



CHAPTER 2. EXTRASPECIAL GROUPS

Lemma 2.4. Let E be a non-abelian group of order p3, then E is extraspecial.

Proof. By lemma 1.2 , we know that Z(E) has to be cyclic of order p and that
E/Z(E) ∼= Cp×Cp. Because otherwise this would contradict the fact that E
is a non-abelian group. Since E/Z(E) is elementary abelian we have again
that the commutator and the Frattini subgroups are non-trivial subgroups
of the center, thus we have Z(E) = [E,E] = Φ(E).

Lemma 2.5. There are, up to isomorphism, two non-abelian groups of order
p3. When p = 2, they are the dihedral group D8 and the quaternion group
Q8. When p is odd, there are given by the following presentation

Xp3 = 〈x, y | xp = yp = 1, [x, y]p = 1, [x, [x, y]] = [y, [x, y]] = 1〉,
X−p3 = 〈x, y | xp = 1, yp = [x, y], [x, y]p = 1, [x, [x, y]] = [y, [x, y]] = 1〉 .

Moreover these two groups have respectively exponent p and p2.

Proof. We are not going to do this proof because it is a long, not di�cult
and well-known proof that could be found in any book dealing with �nite
group theory. The idea is to take x, y ∈ E such that x, y are generators of
E/Z(E) ∼= Cp×Cp and such that z := [x, y] is a generator of Z(P ) and then
to distinguish when these two elements have both order p or p2 and when one
has order p and the other one has order p2. At least you can �nd a detailed
approach in exercise sheet number 4 of [15].

Remark 2.6. We can see Xp3 as the group of lower triangular matrices of
GL3(Fp) with 1 on the diagonal. This can be shown by sending

x to

1 0 0
1 1 0
0 0 1

 and y to

1 0 0
0 1 0
0 1 1

 .

The group X−p3 can be seen as the semi-direct product of a cyclic group of

order p and a cyclic group of order p2 and is sometimes called the modular
p-group, denoted by Mod3(p).

De�nition 2.7. Let G be a group and (Gi, 1 ≤ i ≤ m) a family of subgroups
of G for some integer m. Then G is said to be a central product of the groups
Gi, if

(i) G = 〈Gi | 1 ≤ i ≤ m〉,

6



2.1 STRUCTURE OF EXTRASPECIAL GROUPS

(ii) [Gi, Gj] = 1 for i 6= j.

In this case, we will write G = G1 ◦ · · · ◦Gm.

Remarks 2.8.

• This de�nition implies in fact that all Gi are normal subgroups of G.
Indeed, let x ∈ Gk and y ∈ G. By the �rst and the second conditions
y = y1 . . . ym with yi ∈ Gi for all i and by the second one we have
[x, y] = [x, y1 . . . ym] = [x, yk] ∈ Gk. Therefore we have shown that
[Gk, G] ≤ Gk which is equivalent to the statement.

• Moreover, we have Gi ∩ Gj ⊆ Z(G) for i 6= j. E�ectively, let x be
an element of Gi ∩ Gj and y = y1 . . . ym like in the �rst point. Then
[x, y] = [x, y1 . . . ym] = [x, yi] because x ∈ Gi, but x is also in Gj so
[x, yi] = 1, which shows that Gi ∩Gj ⊆ Z(G).

• Let G1 and G2 be groups and let Z(G1), respectively Z(G2), be the
center of G1, respectively G2. Suppose that the two subgroups Z(G1)
and Z(G2) are isomorphic. Given an isomorphism θ : Z(G1)→ Z(G2)
we construct a central product G1◦G2 := (G1×G2)/N , where N is the
normal subgroup generated by the elements {(z, (z−1)θ) | z ∈ Z(G1)}.
Now it's an easy exercise to see that this de�nition is coherent with
the above one.

Proposition 2.9. Let G be a �nite group and (Gi, 1 ≤ i ≤ m) a family of
subgroups of G for some integer m such that G = G1 ◦ · · · ◦ Gm. Then the
map φ given by

φ : G1 × · · · ×Gm → G

(x1, . . . , xm) 7→ x1 . . . xm

is a surjective homomorphism with Diφ = Gi and Di ∩ ker(φ) = 1, where Di

consists of those elements of G1×· · ·×Gm with 1 in all but the ith component.

Proof. Since G is generated by the Gi as G = G1 . . . Gm, the map φ is
surjective, and it is a homomorphism since Gi and Gj commute. Moreover
we have Diφ ≤ Gi, and since G is a �nite group, this map is a bijection.
Now suppose x ∈ Di ∩ ker(φ) so x = (1, . . . , xi, . . . , 1) for some xi ∈ Gi and
1 = xφ = xi and therefore Di ∩ ker(φ) = 1.

7



CHAPTER 2. EXTRASPECIAL GROUPS

Proposition 2.10. Let E be an extraspecial p-group. Regard Z(E) as the
�eld of integers modulo p and E/Z(E) as a vector space over Z(E) and de�ne
β : E/Z(E) × E/Z(E) → Z(E) by β(x̄, ȳ) = [x, y]. Then β is a symplectic
form on E/Z(E).

Proof. Let x, y, w be elements of E then by lemma 1.1, we have

[xy, w] = y−1[x,w]y[y, w] = y−1y[x,w][y, w] = [x,w][y, w],

since the element [x,w] belongs to Z(E). Which in additive notation is
β(x̄+ ȳ, w̄) = β(x̄, w̄) + β(ȳ, w̄). Moreover, we have

β(λx̄, w̄) = [xλ, w] = [x,w]λ = λβ(x̄, w̄),

where λ ∈ Fp. This says β is linear in its �rst variable and a similar argument
gives linearity in the second variable.

If β(x̄, w̄) = 0 for all w̄ ∈ E/Z(E) then [x,w] = 1 for all w ∈ E and thus
x is an element of the center Z(E), which shows that β is nondegenerate.

Finally as [x,w] = [w, x]−1 we have that β(x̄, w̄) = −β(w̄, x̄), which means
that β is skew-symmetric and therefore a symplectic form.

Remark 2.11. The di�culty of this proof lies in the passage between ad-
ditive and multiplicative notation. Another way, but equivalent, to de�ne
the symplectic form is the following : let z be a generator of Z(E), now if
x, y ∈ E and the commutator [x, y] is zk for some 0 ≤ k ≤ p − 1, de�ne
β : E/Z(E)× E/Z(E)→ Fp by β(x̄, ȳ) = k.

Theorem 2.12. Let E be an extraspecial p-group. Then there exists r ≥ 1
such that |E| = p2r+1 and E is the central product of r non-abelian subgroups
of order p3.

Proof. By proposition 2.10 and the theory of symplectic forms we know that
we can write

E/Z(E) = Ē1 ⊕ · · · ⊕ Ēr
where Ēi = 〈xi, yi〉 has dimension 2, and β(xi, yi) = 1 and all Ei and Ej
are orthogonal for i 6= j. Let E1, . . . , Er be preimages of Ē1 . . . Ēr in E.
Then E1, . . . , Er are non-abelian groups of order p3, generating E, such that
[Ei, Ej] = 1 if i 6= j. Thus E is a central product of E1, . . . , Er as required.

8



2.1 STRUCTURE OF EXTRASPECIAL GROUPS

Remark 2.13. It's important to notice that even if G and H are two non-
isomorphic groups, it's possible that G ◦ G is isomorphic to H ◦ H. For
example we have D8 ◦ D8

∼= Q8 ◦ Q8. Indeed, we can take the following
presentations for D8 and Q8,

D8 =
〈
x, y | x4 = y2 = 1, y−1xy = x−1

〉
,

Q8 =
〈
x, y | x4 = y4 = 1, y−1xy = x−1, y2 = x2

〉
.

Let P = Q8 ◦Q8, which by de�nition is equal to 〈x1, y1, x2, y2〉 with 〈xi, yi〉 ∼=
Q8 and 〈x1, y1〉 centralizing 〈x2, y2〉. Let H1 := 〈x1, x2y1〉, and let H2 :=
〈x2, x1y2〉, we want to show that Hi

∼= D8. It's clear that x
4
1 = (x2y1)

2 = 1,
furthermore (x2y1)

−1x1(x2y1) = y−1
1 x1y1 = x−1

1 proving thatH1 is isomorphic
to a quotient of D8, but we can easily see that H1 has order bigger than four
and thus H1

∼= D8, likewise we can prove that H2
∼= D8 and so Q8 ◦ Q8

∼=
D8 ◦D8 because 〈x1, x2y1, x2, x1y2〉 = P and [H1, H2] = 1. We can also prove
that Q8◦D8 6∼= D8◦D8, see for example Chapter 8 in [1] or pages 117 and 118
in [6], which gives us, with theorem 2.12 that if E is an extraspecial 2-group
then either E ∼= D8 ◦ · · · ◦D8 or E = Q8 ◦D8 ◦ · · · ◦D8.

Our purpose is to have a similar result when p is odd. For that, we need
to understand the central products between X−p3 and Xp3 .

Proposition 2.14. Let E be an extraspecial p-group. If p is odd we have

X−p3 ◦X
−
p3
∼= X−p3 ◦Xp3 and X−p3 ◦X

−
p3 6∼= Xp3 ◦Xp3 .

Then either E ∼= X−p3 ◦ · · · ◦X
−
p3 or E ∼= Xp3 ◦ · · · ◦Xp3.

Proof. SinceXp3 has exponent p and the elements of each subgroup commute,
we see that Xp3 ◦Xp3 has exponent p, whereas X

−
p3 ◦Xp3 and X

−
p3 ◦X

−
p3 have

exponent p2, which prove that X−p3 ◦X
−
p3 6∼= Xp3 ◦Xp3 . Now let P := X−p3 ◦X

−
p3 ,

which by de�nition of the central product means that P = 〈x1, y1, x2, y2〉 with
〈xi, yi〉 = X−p3 and 〈x1, y1〉 centralizing 〈x2, y2〉 and since 〈ypi 〉 = Z(P ) we can

suppose that yp1 = yp2. Consider the subgroups H1 :=
〈
y2y
−1
1 , x2

〉
. Then

H1
∼= Xp3 , indeed we have (y2y

−1
1 )p = 1 and x2 does not centralize y2y

−1
1

hence H1 is a non-abelian group isomorphic to a quotient of Xp3 , but since
a group of order p2 or p is abelian one has that H1 is isomorphic to Xp3 . It
turns out that if we set H2 :=

〈
x1x2, y1y

−p
2

〉
, then x1x2 has order p, y1y

−p
2 has

order p2 and they satisfy the relations of the presentation of X−p3 and one can

check that H2 is actually isomorphic to X−p3 . Besides H1 and H2 generate P

and we have [H1, H2] = 1, so P ∼= Xp3 ◦X−p3 .

9



CHAPTER 2. EXTRASPECIAL GROUPS

Proposition 2.15. Let E be an extraspecial p-group of exponent p and order
p2r+1 where p is odd. Then E is isomorphic to the subgroup H of GLr+2(Fp),
where

H :=


1

?
. . . 0

... 0 . . .

? · · · ? 1

 .

Proof. For 1 < j < r + 2, let Hj be the subgroup of H generated by id +ej,1
and id +er+2,j. For 1 < j, k < r + 2, an elementary calculation shows that

[id +er+2,k, id +ej,1] = id +δk,jer+2,1

and
[id +er+2,k, id +er+2,j] = [id +ek,1, id +ej,1] = id .

Thus Hj and Hk commute for k 6= j. Furthermore it's clear that

〈Hj | 1 < j < r + 2〉 = H

and so H is the central product of (Hj | 1 < j < r + 2). But since
[id +er+2,k, id +ek,1] = id +er+2,1 we can see that Hk is a non-abelian group
of order p3 and exponent p and thus isomorphic to Xp3 . Therefore we have

E ∼= Xp3 ◦ · · · ◦Xp3
∼= H2 ◦ · · · ◦Hr+1

∼= H.

2.2 Automorphisms and Extraspecial Groups

Proposition 2.16. Let E be an extraspecial p-group of order p2r+1, where p
is odd. Let α be an automorphism of Z(E), then the automorphism α can be
extended to an automorphism α↗ E of E.

Proof. Fix a generator z of Z(E). An automorphism α of Z(E) is given
by zα = zk, for some k prime to p. By proposition 2.14 we know that,
for 1 ≤ i 6= k ≤ r, either

E ∼= X−p3 ◦ · · · ◦X
−
p3

=
〈
x1, y1, . . . , xr, yr | 〈xi, yi〉 ∼= X−p3 and [〈xi, yi〉 , 〈xk, yk〉] = 1

〉
10
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or

E ∼= Xp3 ◦ · · · ◦Xp3

=
〈
x1, y1, . . . , xr, yr | 〈xi, yi〉 ∼= Xp3 and [〈xi, yi〉 , 〈xk, yk〉] = 1

〉
.

In both cases de�ne

α↗ E : E → E

xi 7→ xki
yi 7→ yi.

An easy calculation shows that all the relations de�ning E are preserved
because xi has order p and k is prime to p. So that α ↗ E extends to a
endomorphism of E. Now we prove that α ↗ E is injective. Let g ∈ E
such that g ∈ Ker(α↗ E), where g can be written as zm

∏
i x

si
i y

ri
i for some

integers m, si, ri and zkm
∏

i x
ksi
i yrii = 1. This last condition implies that

ksi = km = ri = 0 modulo p for all i. This is because {xi, yi}i is a basis of
the vector space E/Z(E) and thus one has uniqueness in the decomposition.
Now, since k is prime to p we deduce that si = m = ri = 0 modulo p for all
i, thus g = 1 and α↗ E is injective. Therefore because E is �nite we obtain
that α↗ E is an automorphism of E.

Remark 2.17. Since, for 1 ≤ i ≤ r, one has that xi and z the have same
order, one can see that α and α↗ E have the same order as well.

Lemma 2.18. Let E be an extraspecial p-group and let AutC(E) be the sub-
group of Aut(E) which acts trivially on Z(E). Then AutC(E) is a normal
subgroup of Aut(E).

Proof. Let g ∈ Aut(E), α ∈ AutC(E) and z ∈ Z(E); as g is an automorphism
of E it sends z to another element of the center and thus

(z)(g−1αg) =
(
(z)g−1

)
αg

α|Z(E)=id
= (z)g−1g = z.

Theorem 2.19. Let E be an extraspecial p-group of exponent p and order
p2r+1, where p is odd. Then Aut(E) = AutC(E) 〈θ〉 where θ has order p− 1,
AutC(E) ∩ 〈θ〉 = 1 and AutC(E)/ Inn(E) ∼= Sp2r(p).

11
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Proof. Let z be a generator of Z(E). We know that Aut
(
Z(E)

) ∼= Cp−1

and thus applying proposition 2.16 to a generator of Aut
(
Z(E)

)
we obtain

an automorphism θ of E of order p − 1 such that zθ = zm for some m
prime to p. Therefore the �rst statement is clear since if ψ ∈ Aut(E) then
θkψ ∈ AutC(E) for a suitable power k. Clearly we have AutC(E) ∩ 〈θ〉 = 1
because a non-trivial element of 〈θ〉 acts non-trivially on the center.

For the second statement let ϕ ∈ AutC(E), and denote by ϕ the map
induced by ϕ on E/Z(E). Then for x, y ∈ E we have

[xϕ, yϕ] = [x, y]ϕ = [x, y].

Therefore, ϕ preserves the symplectic form β, indeed we have

β
(
(x)ϕ, (y)ϕ

)
= β

(
xϕ, yϕ

)
= [xϕ, yϕ] = [x, y] = β(x, y).

This leads us to a homomorphism Φ from AutC(E) to Sp
(
E/Z(E)

)
.

First we prove that the kernel of Φ is the group of inner automorphisms.
It's clear that an inner automorphism is sent to the identity by Φ, because
E/Z(E) is elementary abelian. Since Inn(E) ∼= E/Z(E) the order of Inn(E)
is p2r. But there are at most p2r elements in Ker Φ because, by de�nition,
such an element has to send each generator of E to itself modulo the center,
so there are p choices for each generator and there are 2r generators of E,
see proposition 2.16. Therefore we have Ker Φ = Inn(E).

Afterward we want to show that Φ is surjective. Recall that

E =
〈
x1, y1, . . . , xr, yr | 〈xi, yi〉 ∼= Xp3 and [〈xi, yi〉 , 〈xk, yk〉] = 1

〉
.

Let T ∈ Sp
(
E/Z(E)

)
, x ∈ E and write x as zm

∏
i x

si
i y

ri
i for some integers

si, ri. We want to de�ne an automorphism ψ : E → E acting trivially on
Z(E) such that ψ = T . In order to do this, write

(x)T as
r∏
i=1

xi
miyi

ni for some integers mi, ni

and now de�ne

ψ : E → E

x 7→ zm
r∏
i=1

xmii ynii .

12
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By construction ψ induces T on E/Z(E) and acts trivially on Z(E) and is
injective, moreover since T preserves the symplectic form we have, for all
x, y ∈ E,

[x, y] = β
(
x, y
)

= β
(
(x)T, (y)T

)
= [xψ, yψ].

This shows that the elements {x1ψ, y1ψ, . . . , xrψ, yrψ} satisfy the same rela-
tion as {x1, y1, . . . , xr, yr} except the conditions xpi = ypi = 1 and [xi, yi]

p = 1
for all 1 ≤ i ≤ r, but this is always satis�ed because E has exponent p. So
ψ is an automorphism of E with the desired properties, which shows that Φ
is surjective and concludes the proof.

Remarks 2.20.

• This theorem shows us that Sp2r(p) acts on E as a group of automor-
phisms and this action is trivial on the center Z(E).

• The general classi�cation of the automorphism group of an extraspe-
cial p-group is done in [18].

2.3 Representations of Extraspecial Groups

Theorem 2.21. Let E be an extraspecial p-group of order p2r+1 and z a
generator for Z(E). Then

(i) E has exactly p2r + p− 1 irreducible representations over C.

(ii) E has p2r linear representations.

(iii) E has p − 1 faithful irreducible representations φ1, . . . , φp−1. Notation
can be chosen so that zφi acts via the scalar ωi on the representation
module Vi of φi, where ω is some �xed primitive pth root of unity in C.

(iv) φi is of degree p
r for all 1 ≤ i ≤ p− 1.

Proof.

(i) We know that the number of irreducible representations is equal to the
number of conjugacy classes in E. Let x ∈ E, then if x ∈ Z(E) we have
xG = {x} and otherwise xG = xZ(E). Indeed, since Z(E) = [E,E] we
have

xG = {g−1xg | g ∈ E} = {x[x, g] | g ∈ E} = xZ(E).

13
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But we already know that E/Z(E) has order p2r and thus there are
p2r−1 di�erent classes of the form xZ(E) with x a non central element.
Since Z(E) has order p this gives us p2r−1+p di�erent conjugacy classes
in E.

(ii) We already know that the number of linear representations is equal to
the order of E/[E,E], but again since Z(E) = [E,E] and E/Z(E) has
order p2r we deduce that E has p2r linear representations.

(iii) The �rst two statements show that there are p−1 nonlinear irreducible
representations. Let φ be such a representation. Suppose Kerφ is
nontrivial, thus by lemma 1.3 we have Z(E)∩Kerφ 6= 1 but since Z(E)
has order p this means that Z(E) ∩ Kerφ = Z(E). Now recall that if
φ is a nonlinear irreducible representation then [E,E] 6≤ Kerφ and so
Z(E) 6≤ Kerφ which is a contradiction with Z(E) ∩ Kerφ = Z(E)
and therefore Kerφ is trivial and φ is faithful. It's well known that
zφ = ω id for some primitive pth root of unity, see for example [3]. We
know that Aut

(
Z(E)

) ∼= Cp−1 and thus applying proposition 2.16 to a
generator of Aut

(
Z(E)

)
we obtain an automorphism α of E of order

p−1 which restricted to Z(E) is still a non-trivial automorphism, given
by zα = zj, for some j prime to p. For 1 ≤ i ≤ p − 1 let φi := αi−1φ
then we have

zφi = zαi−1φ = zj
(i−1)

φ = ωj
(i−1)

id .

So, renumbering, we may take zφi = ωi id for 1 ≤ i ≤ p− 1.

(iv) Recall that the order of E is equal to the sum of the squares of the
dimensions of its irreducible representations. Thus we have

p2r+1 = |E| = p2r + (dimV1)
2 + · · ·+ (dimVp−1)

2.

But by construction, we have dimV1 = dimV2 = · · · = dimVp−1 and
so p2r+1 = p2r + (p− 1)(dimV1)

2. Therefore we can conclude with the
following calculation

dimV1 =

√
p2r+1 − p2r

p− 1
=

√
p2r(p− 1)

p− 1
= pr.

14



2.3 REPRESENTATIONS OF EXTRASPECIAL GROUPS

Corollary 2.22. Let E be an extraspecial p-group of order p2r+1. Then the
characters χVi vanish outside Z(E) and satisfy (χVi)|Z(E) = prλi, where λi is
a faithful linear character of Z(E).

Proof. It follows from the last theorem and the fact that the irreducible
linear characters of E are the lifts of the irreducible characters of E/[E,E] ∼=
Cp × · · · × Cp, which are well-known. And thus the character table of an
extraspecial group is completely described. For more details, a reference
may be page 813 of [8].
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Chapter 3
Construction of Weil Modules

We are now able to give the construction of the Weil representations
for the symplectic groups. We �rst of all present the general and abstract
construction, based on paragraph 5 of [4]. This construction is valid for
Sp2n(q), where q is a power of a prime number and n is a positive integer,
even if we present it only for Sp2n(p), where p is an odd prime. After this,
we focus on the case p = 3 and give an explicit construction, in terms of
matrices, of the Weil representations. The second case, which is the interest
of this work, is of course almost the �rst one in the case p = 3. But since we
wanted an explicit construction we had to make some minor changes in the
presentation.

During this chapter ω will be a complex primitive third root of unity.

3.1 The general case

Let E be an extraspecial group of exponent p and order p1+2n for n ≥ 1.
Let M be the unique irreducible C[E]-module of dimension pn where Z(E)
acts via χ, for a �xed character χ of Z(E), see corollary 2.22 for the existence.
We have also seen that Sp2n(p) acts on E as a group of automorphisms, see
remark 2.20. Thus we can consider the group E n Sp2n(p). It turns out that
one can extend M to an irreducible faithful C[E n Sp2n(p)]-module, which
restricts to the irreducible C[E]-module as given. The proof of this fact is
deductive, and since we want something constructive we are only going to
discuss it in the case p = 3, in the section 3.2, and refer to [4] for more details

17
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about the general case. Now we consider M as a C[Sp2n(p)]-module, which
in fact is no longer irreducible. Indeed, denote by z the central involution in
Sp2n(p) and recall the following lemma.

Lemma 3.1. Let A,B ∈ GLm(C) such that BA = BA. Then if E1, . . . , Ek
are eigenspaces for A we have EiB ⊂ Ei for 1 ≤ i ≤ k.

Proof. Let v ∈ Ei and λi the eigenvalues for Ei. Then

(vB)A = v(BA) = (vA)B = λi(vB).

Thus vB ∈ Ei and the result follows.

So if we show that z has two eigenvalues on M then with the above
lemma we can conclude that M is reducible as C[Sp2n(p)]-module. Suppose
by contradiction that z is a scalar, so by Schur's lemma, applied to M as
C[E n Sp2n(p)]-module, we obtain that ze = ez for all e ∈ E, i.e. zez−1 = e
for all e ∈ E, which means that z acts trivially on E but since Sp2n(p) acts
on E as a group of automorphisms, it's a contradiction. And thus z has
at least two eigenvalues. As z has order 2 this implies that z has in fact
exactly two eigenvalues, namely 1 and −1. Finally, we obtain the following
decomposition as C[Sp2n(p)]-module

M = V1 ⊕ V−1 = CM(z)⊕ [z,M ].

We call these C[Sp2n(p)]-submodules the Weil modules.

Proposition 3.2.

(i) The Weil modules are irreducible of dimensions (pn±1)
2

.

(ii) The Weil modules are self-dual if and only if p ≡ 1 mod 4.

Proof.

(i) In [10], it's proved that the minimal degree of an irreducible nonlinear
representation of Sp2n(p) is (pn − 1)/2. Thus, because the sum of the
degrees of our Weil modules is pn we must be in one of the following
cases

• At least one of the Weil modules is a sum of representations of
degree 1.

18
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• One Weil module is irreducible of dimension (pn − 1)/2 and the
other one is a sum of representations of dimension (pn − 1)/2
and 1.

• The Weil modules are irreducible of dimensions (pn±1)
2

.

Thus if we show that there is not a subrepresentation of degree 1 in a
Weil module, the claim will follow. But this is equivalent, except for
Sp2(3), to saying that there is not a trivial subrepresentation in a Weil
module because in these cases Sp2n(p) is perfect 1.

It's clear that V−1 can't contain the trivial representation, since the
central involution z acts on V−1 as − id and on the trivial representation
as id. Now we prove by induction that V1 doesn't contain the trivial
representation. In order to do it, write E2n for an extraspecial group of
order p2n+1, M2n for the irreducible module of dimension pn of E2n n
Sp2n(p) and V1(2n) and V−1(2n) for the Weil modules of Sp2n(p).

The case n = 1 can be checked with the character table of Sp2(p), see
[7] page 30, looking at the dimension and the action of the center if
p ≡ 3 mod 4 and using the fact that |χM2n(g)|2 = pr(g) where r(g) =
dim ker(g − id), see proposition 2 of [5], if p ≡ 1 mod 4.

Suppose V1(2n − 2) doesn't contain the trivial representation. We
want to prove the same result for V1(2n) and so we want to look

at Res
Sp2n(p)
Sp2n−2(p)

(
V1(2n)

)
to use the induction. Now because E2n =

E2 ◦ E2n−2, one can easily check that M2n = M2 ⊗M2n−2. Moreover if
z2n denotes the generator of Z

(
Sp2n(p)

)
, we can write z2n as z2z2n−2.

Therefore, one has

Res
E2nnSp2n(p)
Sp2(p)×Sp2n−2(p)(M2n) = Res

E2nSp2(p)
Sp2(p) (M2)⊗ Res

E2n−2nSp2n−2(p)

Sp2n−2(p) (M2n−2)

=
(
V1(2)⊕ V−1(2)

)
⊗
(
V1(2n− 2)⊕ V−1(2n− 2)

)
= V1(2)⊗ V1(2n− 2)⊕ V−1(2)⊗ V−1(2n− 2)

⊕ V1(2)⊗ V−1(2n− 2)⊕ V−1(2)⊗ V1(2n− 2).

We see that z2n = z2z2n−2 acts trivially on V1(2) ⊗ V1(2n − 2) since
z2 acts trivially on V1(2) and z2n−2 acts trivially on V1(2n − 2) and
since − id⊗ − id = id⊗ id we see that z2n acts trivially on V−1(2) ⊗

1We postpone the case Sp2(3) to the next section where we are going to prove (i) by
hand.
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V−1(2n−2). Using a similar argument we see that z2n acts non-trivially
on V1(2)⊗ V−1(2n− 2) and V−1(2)⊗ V1(2n− 2). Therefore, because

Res
E2nnSp2n(p)
Sp2(p)×Sp2n−2(p)(M2n) = Res

Sp2n(p)
Sp2(p)×Sp2n−2(p) Res

E2nnSp2n(p)
Sp2n(p) (M2n)

= Res
Sp2n(p)
Sp2(p)×Sp2n−2(p)

(
V1(2n)⊕ V−1(2n)

)
= Res

Sp2n(p)
Sp2(p)×Sp2n−2(p)

(
V1(2n)

)
⊕Res

Sp2n(p)
Sp2(p)×Sp2n−2(p)

(
V−1(2n)

)
one has

Res
Sp2n(p)
Sp2(p)×Sp2n−2(p)

(
V1(2n)

)
= V1(2)⊗ V1(2n− 2)⊕ V−1(2)⊗ V−1(2n− 2)

Res
Sp2n(p)
Sp2(p)×Sp2n−2(p)

(
V−1(2n)

)
= V1(2)⊗ V−1(2n− 2)⊕ V−1(2)⊗ V1(2n− 2)

and so �nally

Res
Sp2n(p)
Sp2n−2(p)

(
V1(2n)

)
= V1(2n− 2)⊕ · · · ⊕ V1(2n− 2)︸ ︷︷ ︸

dimV1(2) times

⊕ V−1(2n− 2)⊕ · · · ⊕ V−1(2n− 2)︸ ︷︷ ︸
dimV−1(2) times

.

By induction and the above formula, Sp2n−2(p) centralizes no vector
of V1(2n), thus neither does Sp2n(p). This implies that there is no
trivial subrepresentation in a Weil module and so the Weil modules are
irreducible of dimensions (pn±1)

2

(ii) First of all, recall that for a group G a k[G]-module is self dual if and
only if g and g−1 are conjugate for all g ∈ G. It's clear that if g and h
are conjugate in G and g is conjugate to g−1 then h is conjugate to h−1.
Now for G = Sp2n(p) this is equivalent to say that t is conjugate to t−1

for a �xed symplectic transvection t, since the symplectic transvections
generate the group and there are all conjugated to a transvection of the
form

t :=


1 λ

1 0
. . .

0 1
1

 ,
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for some λ ∈ F∗p. We can write t = id +λe12 and we have t
−1 = id−λe12.

We see that t is conjugate to t−1 in Sp2n(p) if and only if(
1 λ
0 1

)
is conjugate to

(
1 −λ
0 1

)
in Sp2(p).

We want to see when AtA−1 = t has a solution, where A = (aij) is an
element of Sp2(p). So we solve(

a11 a12

a21 a22

)(
1 λ
0 1

)(
a22 −a12

−a21 a11

)
=

(
1 −λ
0 1

)
,

and we �nd the following conditions : a21 = 0, a12 ∈ F∗p, a11a22 = 1
and (a11)

2 + 1 = 0. Therefore, the system has a solution, and thus t is
conjugate to t−1, if and only if the last equation has a solution, which
occurs if and only if p ≡ 1 mod 4.

3.2 The case p = 3

Let E be an extraspecial group of exponent 3 and order 33 = 27. By
proposition 2.15, we know that E is isomorphic to{1

a 1
c b 1

 ∣∣ a, b, c ∈ F3

}
.

We want to �nd a faithful irreducible representation ρ : E → GL3(C). To do
it we consider the subgroup H ≤ E de�ned by

H :=

〈1
0 1
1 0 1

 ,

1
1 1
0 0 1

〉 .
Since the �rst matrix is in the center of E, we can easily see thatH ∼= C3×C3.
So we know that the irreducible characters of H are of the form χ

i × χj for
1 ≤ i, j ≤ 3 and the χi are the irreducible characters of C3, which we can see
in the following tableau, where g is a generator of C3,
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1 g g2

χ
1 1 1 1
χ

2 1 ω ω2

χ
3 1 ω2 ω

We consider the induced representation ρ := IndEH(χ2 × χ
2) acting on the

right on the vector space C∗⊗C[H] C[E] with basis {1⊗1, 1⊗x, 1⊗x2} where

x :=

1
0 1
0 1 1

 .

Since, by de�nition of the induced representation, we have (1⊗1)(xρ) = 1⊗x,
(1⊗ x)(xρ) = 1⊗ x2 and (1⊗ x2)(xρ) = 1⊗ 1. We see that

(x)ρ =

0 0 1
1 0 0
0 1 0

 .

As E = 〈H, x〉 we just need to understand the representation of the two
generators of H, which we call respectively z and y. Because z is in the
center of E and in C[H] we have (1 ⊗ 1)(zρ) = 1 ⊗ z = χ

2(z) ⊗ 1 = ω ⊗ 1,
(1⊗ x)(zρ) = 1⊗ xz = 1⊗ zx = χ

2(z)⊗ x and (1⊗ x2)(zρ) = χ
2(z)⊗ x2 so

we have

(z)ρ =

ω 0 0
0 ω 0
0 0 ω

 .

In the same manner and because [x, y] = z, we have (1 ⊗ 1)(yρ) = 1 ⊗ y =
χ

2(y)⊗1 = ω⊗1, (1⊗x)(yρ) = 1⊗xy = 1⊗zyx = χ
2(z)χ2(y)⊗x = ω2(1⊗x)

and (1⊗ x2)(yρ) = χ
2(z

2)χ2(y)⊗ x2 = 1⊗ x2. So we see that

(y)ρ =

ω 0 0
0 ω2 0
0 0 1

 .

It's easy to see that 〈xρ, yρ〉 ∼= E and thus the representation is faithful.
Because the irreducible representations of degree 1 are trivial on the center
and there is no irreducible representation of degree 2, see theorem 2.21 and
as the character values of elements of the center are imaginary, we have that
ρ is irreducible.
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3.2 THE CASE P = 3

Proposition 3.3. NGL3(C)(Eρ) = Z
(

GL3(C)
)
(Eρ)C, where C ∼= Sp

(
E/Z(E)

)
.

Proof. To lighten the notation, we write N for NGL3(C)(Eρ). If A ∈ N , then
the action by conjugation acts trivially on the center of Eρ which gives us a
homomorphism Φ

Φ : N → AutC(E)

A 7→ Action of A.

which leads us to the injective homomorphism

Φ : N
/(
Z
(

GL3(C)
)
(Eρ)

)
→ AutC(E)/ Inn(E)

since (Eρ)Φ = Inn(E) and Z
(

GL3(C)
)

= {λ id | λ ∈ C∗} is its kernel.
Indeed if a matrix A commutes with yρ then A is diagonal and a matrix
which commutes with xρ has equal values on the diagonal. In order to see
that, let A = (aij) be such a matrix. So we havea11 a12 a13

a21 a22 a23

a31 a32 a33

ω 0 0
0 ω2 0
0 0 1

 =

ωa11 ω2a12 a13

ωa21 ω2a22 a23

ωa31 ω2a32 a33

 ,

and ω 0 0
0 ω2 0
0 0 1

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

 ωa11 ωa12 ωa13

ω2a21 ω2a22 ω2a23

a31 a32 a33

 .

Thus we only have equality if A is diagonal. The second condition is the
equality betweena11

a22

a33

0 0 1
1 0 0
0 1 0

 =

 0 0 a11

a22 0 0
0 a33 0

 ,

and 0 0 1
1 0 0
0 1 0

a11

a22

a33

 =

 0 0 a33

a11 0 0
0 a22 0

 .

Therefore, A is a scalar multiple of the identity. Now recall that AutC(E)/ Inn(E) ∼=
Sp
(
E/Z(E)

)
which shows that

N ↪→ Z
(

GL3(C)
)
(Eρ) Sp

(
E/Z(E)

)
,
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CHAPTER 3. CONSTRUCTION OF WEIL MODULES

and since clearly Z
(

GL3(C)
)
(Eρ) ≤ N we just have to identify Sp

(
E/Z(E)

)
in GL3(C) and show that it's contained in N to prove the claim.

Denote by x, y the class in E/Z(E) of the generators x, y of E. In our
case we have

Sp
(
E/Z(E)

)
= SL2(3) =

〈(
1 1
0 1

)
,

(
1 0
1 1

)〉
.

Denote by t the �rst generator of SL2(3) and s the second one. In additive
notation we have (x, y)t = (x+y, y), so in multiplicative notation this means
that t sends x to yx and stabilizes y. In order to preserve the action we
are looking for a matrix T ∈ GL3(C) such that T−1(xρ)T = (yρ)(xρ) and
T−1(yρ)T = (yρ). In the same manner for s we are looking for a matrix
S ∈ GL3(C) such that S−1(xρ)S = (xρ) and S−1(yρ)S = (yρ)(xρ). From
the previous calculation, we know that T has to be diagonal. So we solve the
equation (xρ)T = T (yρ)(xρ). If T = (λij) we get the following equality 0 0 λ33

λ11 0 0
0 λ22 0

 =

 0 0 ωλ11

ω2λ22 0 0
0 λ33 0

 .

So we �nd, because T has to have order 3, that

T =

1 0 0
0 ω 0
0 0 ω

 .

The �rst condition on S implies that

S =

a b c
c a b
b c a

 for a, b, c ∈ C.

So after working out (yρ)S = S(yρ)(xρ) we obtainωa ωb ωc
ω2c ω2a ω2b
b c a

 =

ω2b c ωa
ω2a b ωc
ω2c a ωb

 .

So we �nd that

S = a

 1 ω2 1
1 1 ω2

ω2 1 1

 ,
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3.2 THE CASE P = 3

and in order to have S3 = id we see that we need to choose a to be a solution
of a3 =

√
3

9
i.

Finally, let C := 〈S, T 〉 then C ≤ N by construction and so by sending t to
T and s to S we see that C ∼= Sp

(
E/Z(E)

)
, which concludes our proof.

Remark 3.4. So, this proposition shows us what we have not proved in the
general case, that is to say that we can extend an irreducible C[E]-module
to an irreducible C[E n Sp2(3)]-module. Now we restrict it to Sp2(3) to
have our �rst Weil Modules. Indeed, we have obtained a representation
τ : Sp2(3)→ GL3(C) with

τ(− id) = τ([s, t]2) = [τ(s), τ(t)]2 =

−1 0 0
0 0 −ω
0 −ω2 0

 .

According to the general construction we have to look at the eigenspaces of
this matrix. We �nd V−1 = span{(1, 0, 0), (0, ω, 1)} and V1 = span{(0,−ω, 1)},
which are the Weil modules for Sp2(3). A careful reader will now remember
we have to prove the �rst part of proposition 3.2 for the case Sp2(3), which
says that V1 and V−1 are irreducible. Let U := span{λ1(1, 0, 0) + λ2(0, ω, 1)}
be a submodule of V−1, which means that Ug ⊂ U for all g ∈ Sp2(3), in
particular applying T we �nd that λ2 = 0 and applying S we see that λ1 = 0
and thus V−1 is irreducible as claimed.

Let's go back to the construction of Weil modules for Sp2n(3). In order
to do this, let Q be an extraspecial group of order 35 and exponent 3. By,
proposition 2.14, we know that Q = E1 ◦ E2 where E1, E2 are extraspecial
groups of order 27 and exponent 3. For i = 1, 2, let ρi := ρ be the irreducible
representation of Ei de�ned above. Consider the irreducible representation

ρ1 ⊗ ρ2 : Q → GL9(C)

q 7→ (q1)ρ1 ⊗ (q2)ρ2,

where q = q1q2 is the decomposition of an element q in E1 ◦ E2, i.e. q1 ∈ E1

and q2 ∈ E2. We want to see Sp4(3) acting on this nine-dimensional space.
To do this let A := Sp2(3)× Sp2(3). With the help of proposition 3.3 we see
that A can be viewed as a subgroup of NGL9(C)

(
Q(ρ1 ⊗ ρ2)

)
. Indeed, using

that the tensor product gives us a homomorphism between GL3(C)×GL3(C)
and GL9(C) and the fact that we have seen Sp2(3) in GL3(C), we just have
to take some tensor products of our matrices S, T to see A in GL9(C).
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On the other hand, since NSp4(3)(A) is maximal in Sp4(3), we are looking
for an element g ∈ GL9(C) ∩ Sp4(3), which is not in NSp4(3)(A), and thus
〈A, g〉 = Sp4(3), because NSp4(3)(A) is the unique maximal subgroup con-
taining A. Since A is the subgroup of Sp4(3) which preserves a symplectic
decomposition 〈e1, f1, 〉 ⊕ 〈e2, f2, 〉, and NSp4(3)(A) is generated by A and the
matrix that sends the �rst hyperbolic pair to the second one, our element
g has to send the �rst hyperbolic pair to a combination of the �rst and the
second one. For example we can look at this change of basis

e1 7→ e1 + e2 f1 7→
f1 + f2

2
e2 7→ e1 − e2 f2 7→

f1 − f2

2
.

Which corresponds to the transformation g ∈ GL9(C) such that

(xρ1 ⊗ id)g = xρ1 ⊗ xρ2, (yρ1 ⊗ id)g = y−1ρ1 ⊗ y−1ρ2,

(id⊗xρ2)
g = xρ1 ⊗ x−1ρ2, (id⊗yρ2)

g = y−1ρ1 ⊗ yρ2,

where x and y are given at the beginning of this section. So let

g :=

A11 A12 A13

A21 A22 A23

A31 A32 A33

 , where Aij ∈ GL3(C).

The �rst condition implies that

A11 = A22(xρ2) = A33(xρ2)
2,

A21 = A32(xρ2) = A13(xρ2)
2,

A31 = A12(xρ2) = A23(xρ2)
2.

The second condition implies that

ωA11 = A11

ω 1
ω2


ωA12 = A12

1
ω2

ω


ωA13 = A13

ω2

ω
1

 .
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3.2 THE CASE P = 3

So the matrices A11, A12, A13 have to be of the following form

A11 =

α1 0 0
α2 0 0
α3 0 0

 , A12 =

0 0 α4

0 0 α5

0 0 α6

 , A13 =

0 α7 0
0 α8 0
0 α9 0

 for some αi.

The third condition gives us

(xρ2)A11 = A12(xρ2)
2 and (xρ2)A12 = A13(xρ2)

2,

which implies that α1 = α5 = α9, α2 = α6 = α7 and α3 = α4 = α8. Finally
the last condition leads us to (xρ2)A11 = ω2A11(xρ2) which implies that
α1 = α2 = 0 and α3 is arbitrary. So g has the form

α3



0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1


.

Since the transformation has order 4 (it su�ces to iterate the action of g on
the basis elements) and the matrix (α3)

−1g has already order 4, the only con-
dition on α3 is that (α3)

4 = 1. So g is not in NGL9(C)(A) but not necessarily
in Sp4(3) viewed as subgroup of GL9(C). For example, we see that g doesn't
commute with the three central involutions, namely i1, i2 and i3 = i1i2, of A,
where i1 and i2 are the generators of, respectively, the center of the �rst and
second copy of Sp2(3) in A. We know that the central involution of Sp4(3)
is one of them. It turns out that it's the element i3 because i1 and i2 are
conjugate, they have same eigenvalues with same multiplicity, so they are
both in Z

(
Sp4(3)

)
or not, but Z

(
Sp4(3)

)
has order two. One can check that

g2 and i3 are conjugate in 〈g, i3〉 by an element h. De�ne g̃ := gh so that
g̃2 = i3 and thus g̃i3 = i3g̃. After a few calculations we �nd that

27



CHAPTER 3. CONSTRUCTION OF WEIL MODULES

g̃ =



1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0.


.

So g̃, as g, is not in NGL9(C)(A). Actually, using GAP, we can see that this
is the element sought.

To summarize, we have obtained a faithful representation of Sp4(3) in
GL9(C) given by the matrices S ⊗ id, T ⊗ id, id⊗T, id⊗S and g̃.

Proposition 3.5. For n ≥ 2 we have 〈Sp4(3), Sn〉 = Sp2n(3).

Proof. First of all recall that Sp2(3) × Sp2n−2(3) is maximal in Sp2n(3), see
[9] page 72. Let {e1, f1, e2, f2, . . . , en, fn} be a symplectic basis. Now we
see Sp4(3) in Sp2n(3) as Sp4(3) × id and Sn as the group generated by the
matrices A(ij), 1 ≤ i, j ≤ n where A(ij) is the matrix that send 〈ei, fi〉 to
〈ej, fj〉 and acts trivially on 〈ek, fk〉 if k is di�erent from i or j. So, in Sp6(3),
we have

A−1
(13)

(
Sp4(3)× id

)
A(13) = id× Sp4(3) := H1.

Besides we can see H2 := Sp2(3) × id× id in Sp4(3) × id. Thus 〈Sp4(3), S3〉
contains Sp4(3) × id and the maximal subgroup H1H2 = Sp2(3) × Sp4(3)
of Sp6(3) and so we have generated Sp6(3). Repeating this argument with
Sp6(3) instead of Sp4(3) and A(14) instead of A(13) we are going to generate
Sp8(3). Therefore we can conclude with a recursive argument.

So our next purpose is to �nd the matrices A(ij). We start with n = 2
and we want to �nd A(12) ∈ GL9(C). Since A(12) permutes the hyperbolic
pairs e1 ↔ e2 and f1 ↔ f2, this correspond to

(xρ1 ⊗ id)A(12) = id⊗xρ2, (yρ1 ⊗ id)A(12) = id⊗yρ2,

(id⊗xρ2)
A(12) = xρ1 ⊗ id, (id⊗yρ2)

A(12) = id⊗yρ2.
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Write P instead of A(12) and P = (Aij) with Aij ∈ GL3(C). In the same
manner as before, we �nd that

A11 = A21(xρ2) = A31(xρ2)
2,

A32 = A12(xρ2) = A22(xρ2)
2,

A33 = A13(xρ2) = A23(xρ2)
2.

With the second condition we �nd that

A11 =

α1 0 0
α2 0 0
α3 0 0

 , A31 =

0 0 α4

0 0 α5

0 0 α6

 , A21 =

0 α7 0
0 α8 0
0 α9 0

 for some αi.

The fourth condition implies that αi = 0 except if i = 1, 4, 7 and the third
one shows that α1 = α4 = α7 and thus P is of the form

α1



1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1


.

As clearly P has to be of order 2 and (α1)
−1P has already order 2 we see that

α1 = ±1. Now if n ≥ 3, it's enough to �nd the matrices A(i i+1) to generate
Sn. But we have that A(i i+1) = id⊗P ⊗ id and so it's su�cient to know P .

Thus by proposition 3.5, we can see Sp6(3) in GL27(C) by

Sp6(3) = 〈g̃ ⊗ id3, S ⊗ id3⊗ id3, T ⊗ id3⊗ id3, id3⊗T ⊗ id3, id3⊗S ⊗ id3, id3⊗P 〉
= 〈g̃ ⊗ id3, S ⊗ id9, T ⊗ id9, id3⊗T ⊗ id3, id3⊗S ⊗ id3, id3⊗P 〉

since id3⊗P = A(23).
Therefore we can explicitly give a representation of Sp2n(3) of dimension

3n, by taking the tensor product of the generators of Sp2n−2(3) with id3 and
adding id3n−2 ⊗P . This representation corresponds to the one discussed in
the general case. Thus we know that this representation is reducible and it's
irreducible components are the Weil modules of dimension 3n±1

2
.
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Since our construction is now explicit in term of matrices we can use GAP
or Magma to decompose our representations and take some tensor products
of Weil modules and then decompose them again.
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Chapter 4
Young Diagrams and Schur

functors

Since one of our purposes is to understand the decomposition of V⊗· · ·⊗V
where V is a Sp2n(3)-module, it's a good start to know how V ⊗ · · · ⊗ V
decomposes as GL(V )-module. As this is not the main part of this work, we
will omit the proofs. We refer to [2] for a more detailed presentation.

4.1 Young Diagrams

De�nitions 4.1.

(i) Let d be a positive integer. A partition λ of d is a nonincreasing sequence
of positive integers λ1 ≥ · · · ≥ λk such that

d = λ1 + · · ·+ λk.

We note λ = (λ1, . . . , λk).

(ii) To a partition λ = (λ1, . . . , λk) we associate a Young diagram with λi
boxes in the ith row, the rows of the boxes lined up on the left.

(iii) The conjugate partition λ′ to the partition λ is de�ned by interchanging
rows and columns in the Young diagram.

31



CHAPTER 4. YOUNG DIAGRAMS AND SCHUR FUNCTORS

Example 4.2. Let d = 9 then λ = (3, 3, 2, 1) is a partition of d. Its Young
diagram is the following

Its conjugate is λ′ = (4, 3, 2).

De�nition 4.3. For a given Young diagram, de�ne a tableau to be a num-
bering of the boxes by the integers 1, . . . , d, where the numbering is done as
shown

1 2 3
4 5 6
7 8
9

De�nitions 4.4. Given a tableau we de�ne two subgroups of the symmetric
group

Pλ = {g ∈ Sd | g preserves each row}
and

Qλ = {g ∈ Sd | g preserves each column}.
In the group algebra C[Sd] we introduce two elements corresponding to these
subgroups,

aλ =
∑
g∈Pλ

g and bλ =
∑
g∈Qλ

sgn(g)g.

Finally we de�ne the Young symmetrizer

cλ := aλbλ.

Theorem 4.5. The image of cλ by right multiplication on C[Sd] is an irre-
ducible representation Vλ of Sd. Every irreducible representation of Sd can
be obtained in this way for a unique partition.

Examples 4.6.

• If λ = (d) we have c(d) = a(d) =
∑

g∈Sd g and so

V(d) = C[Sd]
∑
g∈Sd

g =
{
γ
∑
g∈Sd

g | γ ∈ C
}
.
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Therefore V(d) is the trivial representation since the action of an ele-
ment h ∈ Sd is trivial(

γ
∑
g∈Sd

g
)
h = γ

∑
g∈Sd

(gh) = γ
∑
g∈Sd

g.

• If λ = (1, . . . , 1) we have c(1,...,1) = b(1,...,1) =
∑

g∈Sd sgn(g)g and so

V(1,...,1) = C[Sd]
∑
g∈Sd

sgn(g)g =
{
γ
∑
g∈Sd

sgn(g)g | γ ∈ C
}
.

Thus V(1,...,1) is the alternating representation. Indeed, let h ∈ Sd then
one has(

γ
∑
g∈Sd

sgn(g)g
)
h = γ

∑
g∈Sd

sgn(g)(gh)
k=gh
= sgn(h)

(
γ
∑
k∈Sd

sgn(k)k
)
.

• We want to check the theorem for the group S3. First, recall its
character table

1 (12) (123)
χ

1 1 1 1
χ

2 1 1 −1
χ

3 2 −1 0

According to the �rst two points we know that λ = (3) and λ =
(1, 1, 1) correspond to the trivial and alternating representation. Now
we investigate the last case λ = (2, 1), which has the following Young
diagram

1 2
3

Therefore we �nd that a(2,1) = id +(1 2) and b(2,1) = id−(1 3) and so

c(2,1) = id +(1 2)− (1 3)− (1 3 2).

By de�nition, we know that

V(2,1) =
{∑
g∈S3

λggc(2,1)

}
.
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Computing gc(2,1) for g ∈ S3 one can see that V(2,1) is spanned by c(2,1)

and (1 3)c(2,1). Indeed, we have (1 2)c(2,1) = c(2,1) and

(2 3)c(2,1) = (1 3 2)c(2,1) = (1 2 3)c(2,1) = −
(
c(2,1) + (1 3)c(2,1)

)
.

Let ρ be the representation associated to the C[S3]-module V(12). Using
these previous relations we can �nd (1 2)ρ and (1 2 3)ρ. We �nd

(1 2)ρ =

(
1 0
−1 −1

)
,

because (1 2)
(
(1 3)c(2,1)

)
= (1 3 2)c(2,1) = −

(
c(2,1) + (1 3)c(2,1)

)
and

(1 2 3)ρ =

(
−1 −1
1 0

)
,

because (1 2 3)
(
(1 3)c(2,1)

)
= (1 2)c(2,1) = c(2,1). Finally one can see

that χV(2,1)
= χ

3 and thus V(2,1) is, as expected, an irreducible repre-
sentation of S3.

Remark 4.7. Actually, the dimensions of the irreducible modules Vλ are
well-known, it relies upon the Hook length of a box. The formula can be
found in [2] page 50.

4.2 Schur functors

De�nition 4.8. Let V be a �nite-dimensional complex vector space. The
symmetric group Sd acts on V ⊗d by permuting the factors. This action
commutes with the action of GL(V ). We denote the image of cλ on V ⊗d by
SλV

SλV := Im(cλ|V⊗d ).

We call SλV the Schur functor corresponding to λ. It's again a representation
of GL(V ).

Examples 4.9. As before, we want to understand S(d)V , S(1,...1)V and S(2,1)V .
First, we have to consider the image of the elements aλ and bλ, being seen as
elements of End(V ⊗d) for a partition λ = (λ1, . . . , λk) of d. One can check
that

Im(aλ) = Symλ1 V ⊗ · · · ⊗ Symλk V ⊂ V ⊗d.
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Similarly, the image of bλ on this tensor product is

Im(bλ) = Altλ
′
1 V ⊗ · · · ⊗ Altλ

′
l V ⊂ V ⊗d,

where λ′ = (λ′1, . . . , λ
′
l) is the conjugate partition to λ. Therefore, one has

S(d)V = Symd V and S(1,...1)V = Altd(V ).

Finally, since c(2,1) = id +(1 2)− (1 3)− (1 3 2), one can easly see that S(2,1)V
is the subspace of V ⊗3 spanned by all vectors

v1 ⊗ v2 ⊗ v3 + v2 ⊗ v1 ⊗ v3 − v3 ⊗ v2 ⊗ v1 − v3 ⊗ v1 ⊗ v2.

Theorem 4.10.

(i) Let k = dimV . Then SλV is zero if λk+1 6= 0. If λ = (λ1, . . . , λk) then

dim SλV =
∏

1≤i<j≤k

λi − λj + j − i
j − i

.

(ii) Let mλ be the dimension of the irreducible representation Vλ of Sd cor-
responding to λ. Then

V ⊗d ∼=
⊕
λ

Sλ(V ⊗mλ).

(iii) Each SλV is an irreducible representation of GL(V ).

Example 4.11. Using theorem 4.10, one can check that

V ⊗ V ⊗ V = Sym3 V ⊕ Alt3 V ⊕ 2S(2,1)V.

Using the decomposition V ⊗ V = Sym2 V ⊕ Alt2 V , one has

V ⊗ Sym2 V = Sym3 V ⊕ S(2,1)V and V ⊗ Alt2 V = Alt3 V ⊕ S(2,1)V.
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Chapter 5
Tensor Products of Weil Modules

In this chapter we discuss the decomposition of tensor products of Weil
modules for Sp2n(3). Our calculations have been carried out with GAP or
Magma, for the groups Sp4(3), Sp6(3) and Sp8(3). We have followed the
construction given in chapter 3. First, we show our results for these three
cases and then we state some general conclusions about the decomposition
of tensor products of Weil modules for Sp2n(3). We de�ne

Wm
2n :=

{
W1 ⊗ · · · ⊗Wm |Wi or W

∗
i is a Weil module of Sp2n(3)

}
,

to be the set of m-fold tensor products of Weil modules.

5.1 The case Sp4(3)

Throughout this section, W− will denote the Weil module of dimension
(32−1)

2
= 4 andW+ the one of dimension (32+1)

2
= 5. To begin with we present

a tableau for W2
4 .

χ
2

χ
5

χ
3

χ
4

χ
2

χ
6 + χ

8
χ

11
χ

1 + χ
9

χ
13

χ
5

χ
7 + χ

10
χ

14
χ

1 + χ
17

χ
3

χ
6 + χ

7
χ

11

χ
4

χ
8 + χ

10

We use the same notation as GAP, i.e. χW− = χ
2, χW+ = χ

5 and χ
3, χ4

are the duals of, respectively χ2 and χ5. The entries of the tableau are the
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decompositions of the tensor product of the characters in the corresponding
row and column, for example χ2

χ
2 = χ

6 + χ
8, where χ6, χ8 are irreducible

characters. The characters χi are those irreducible characters found with our
codes, see [13], for the group Sp4(3). Following section 1.3, one can note
that χ6 = χ

Alt2(W−) and χ
8 = χ

Sym2(W−). In the same manner, one has
χ

7 = χ
Alt2(W+) and χ10 = χ

Sym2(W+). Now we present the tableau for W3
4

χ2 χ5 χ3 χ4

χ2χ2 χ3 + χ14 + 2χ16 χ4 + χ19 + χ25 2χ2 + χ15 + χ21 χ7 + χ20 + χ24
χ2χ5 χ3 + χ22 + χ29 χ5 + χ20 + χ26 χ2 + χ21 + χ30
χ2χ3 2χ3 + χ16 + χ22 χ4 + χ19 + χ25
χ2χ4 χ14 + χ16 + χ29
χ5χ5 χ4 + χ8 + χ18 + 2χ23 χ13 + χ15 + χ30 2χ5 + χ18 + χ24 + χ26
χ5χ3 χ8 + χ19 + χ23 χ3 + χ22 + χ29
χ5χ4 2χ4 + χ18 + χ23 + χ25
χ3χ3 χ2 + χ13 + 2χ15 χ5 + χ20 + χ26
χ3χ4 χ2 + χ21 + χ30
χ4χ4 χ5 + χ7 + χ18 + 2χ24

To be able to understand W3
4 in a better way, we take each irreducible char-

acter of W2
4 and we tensor it with elements of W1

4 . We obtain the following
tableau

χ2 χ5 χ3 χ4

χ6 χ3 + χ16 χ19 χ2 + χ15 χ20
χ7 χ3 + χ22 χ8 + χ28 χ13 + χ15 χ5 + χ26
χ8 χ14 + χ16 χ4 + χ25 χ2 + χ21 χ7 + χ24
χ9 χ2 + χ15 + χ21 χ20 + χ26 χ3 + χ16 + χ22 χ19 + χ25

χ10 χ29 χ4 + χ18 + χ23 χ30 χ5 + χ18 + χ24
χ11 χ4 + χ19 + χ25 χ3 + χ22 + χ29 χ5 + χ20 + χ26 χ2 + χ21 + χ30
χ13 χ7 + χ20 + χ24 χ2 + χ21 + χ30 χ4 + χ19 + χ25 χ14 + χ16 + χ29
χ14 χ5 + χ20 + χ26 χ13 + χ15 + χ30 χ8 + χ19 + χ23 χ3 + χ22 + χ29
χ17 χ21 + χ30 χ5 + χ18 + χ24 + χ26 χ22 + χ29 χ4 + χ18 + χ23 + χ25

5.2 The case Sp6(3)

Throughout this section, W− will denote the Weil module of dimension
(33−1)

2
= 13 and W+ the one of dimension (33+1)

2
= 14. To begin with, we

present a tableau for W2
6 .
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χ
2

χ
4

χ
3

χ
5

χ
2

χ
6 + χ

7
χ

11
χ

1 + χ
10

χ
13

χ
4

χ
8 + χ

9
χ

12
χ

1 + χ
14

χ
3

χ
6 + χ

8
χ

11

χ
5

χ
7 + χ

9

We use the same notation as GAP, i.e. χ
W− = χ

2, χW+ = χ
4 and χ

3,
χ

5 are the duals of, respectively χ
2 and χ

4. Again, following section 1.3,
one can note that χ6 = χ

Alt2(W−) and χ7 = χ
Sym2(W−), χ8 = χ

Alt2(W+) and
χ

9 = χ
Sym2(W+). Now we present the tableau for W3

6

χ2 χ4 χ3 χ5

χ2χ2 χ3 + χ15 + χ19 + 2χ26 χ5 + χ34 + χ39 2χ2 + χ16 + χ27 + χ36 χ18 + χ30 + χ35
χ2χ4 χ3 + χ37 + χ44 χ4 + χ35 + χ38 χ2 + χ36 + χ45
χ2χ3 2χ3 + χ15 + χ26 + χ37 χ5 + χ34 + χ39
χ2χ5 χ19 + χ26 + χ44
χ4χ4 χ5 + χ17 + χ24 + 2χ29 χ20 + χ27 + χ45 2χ4 + χ25 + χ30 + χ38
χ4χ3 χ17 + χ29 + χ34 χ3 + χ37 + χ44
χ4χ5 2χ5 + χ24 + χ29 + χ39
χ3χ3 χ2 + χ16 + χ20 + 2χ27 χ4 + χ35 + χ38
χ3χ5 χ2 + χ36 + χ45
χ5χ5 χ4 + χ18 + χ25 + 2χ30

To be able to understand W3
6 in a better way, we take each irreducible char-

acter of W2
6 and we tensor it with elements of W1

6 . We obtain the following
tableau

χ2 χ4 χ3 χ5

χ6 χ3 + χ15 + χ26 χ34 χ2 + χ16 + χ27 χ35
χ7 χ19 + χ26 χ5 + χ39 χ2 + χ36 χ18 + χ30
χ8 χ3 + χ37 χ17 + χ29 χ20 + χ27 χ4 + χ38
χ9 χ44 χ5 + χ24 + χ29 χ45 χ4 + χ25 + χ30

χ10 χ2 + χ16 + χ27 + χ36 χ35 + χ38 χ3 + χ15 + χ26 + χ37 χ34 + χ39
χ11 χ5 + χ34 + χ39 χ3 + χ37 + χ44 χ4 + χ35 + χ38 χ2 + χ36 + χ45
χ12 χ4 + χ35 + χ38 χ20 + χ27 + χ45 χ17 + χ29 + χ34 χ3 + χ37 + χ44
χ13 χ18 + χ30 + χ35 χ2 + χ36 + χ45 χ5 + χ34 + χ39 χ19 + χ26 + χ44
χ14 χ36 + χ45 χ4 + χ25 + χ30 + χ38 χ37 + χ44 χ5 + χ24 + χ29 + χ39

5.3 The case Sp8(3)

Throughout this section, W− will denote the Weil module of dimension
(34−1)

2
= 40 and W+ the one of dimension (34+1)

2
= 41. To begin with, we
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present a tableau for W2
8

χ
2

χ
4

χ
3

χ
5

χ
2

χ
6 + χ

7
χ

11
χ

1 + χ
10

χ
12

χ
4

χ
8 + χ

9
χ

13
χ

1 + χ
14

χ
3

χ
6 + χ

8
χ

11

χ
5

χ
7 + χ

9

We use the same notation as Magma, i.e. χW− = χ
2, χW+ = χ

4 and χ3, χ5 are
the duals of, respectively χ2 and χ4. Again, one can note that χ6 = χ

Alt2(W−)

and χ7 = χ
Sym2(W−), χ8 = χ

Alt2(W+) and χ9 = χ
Sym2(W+). Now we present

the tableau for W3
8

χ2 χ4 χ3 χ5
χ2χ2 χ3 + χ16 + χ19 + 2χ24 χ5 + χ32 + χ36 2χ2 + χ15 + χ25 + χ34 χ18 + χ26 + χ31
χ2χ4 χ3 + χ33 + χ38 χ4 + χ31 + χ35 χ2 + χ34 + χ37
χ2χ3 2χ3 + χ16 + χ24 + χ33 χ5 + χ32 + χ36
χ2χ5 χ19 + χ24 + χ38
χ4χ4 χ5 + χ17 + χ22 + 2χ27 χ20 + χ25 + χ37 2χ4 + χ21 + χ26 + χ35
χ4χ3 χ17 + χ27 + χ32 χ3 + χ33 + χ38
χ4χ5 2χ5 + χ22 + χ27 + χ36
χ3χ3 χ2 + χ15 + χ20 + 2χ25 χ4 + χ31 + χ35
χ3χ5 χ2 + χ34 + χ37
χ5χ5 χ4 + χ18 + χ21 + 2χ26

To be able to understand W3
8 in a better way, we take each irreducible char-

acter of W2
8 and we tensor it with elements of W1

8 . We obtain the following
tableau

χ2 χ4 χ3 χ5

χ6 χ3 + χ16 + χ24 χ32 χ2 + χ15 + χ25 χ31
χ7 χ19 + χ24 χ5 + χ36 χ2 + χ34 χ18 + χ26
χ8 χ3 + χ33 χ17 + χ27 χ20 + χ25 χ4 + χ35
χ9 χ38 χ5 + χ22 + χ27 χ37 χ4 + χ21 + χ26

χ10 χ2 + χ15 + χ25 + χ34 χ31 + χ35 χ3 + χ16 + χ24 + χ33 χ32 + χ36
χ11 χ5 + χ32 + χ36 χ3 + χ33 + χ38 χ4 + χ31 + χ35 χ2 + χ34 + χ37
χ12 χ18 + χ26 + χ31 χ2 + χ34 + χ37 χ5 + χ32 + χ36 χ19 + χ24 + χ38
χ13 χ4 + χ31 + χ35 χ20 + χ25 + χ37 χ17 + χ27 + χ32 χ3 + χ33 + χ38
χ14 χ34 + χ37 χ4 + χ21 + χ26 + χ35 χ33 + χ38 χ5 + χ22 + χ27 + χ36

5.4 The general case

Using the results of the calculations made for the groups Sp4(3), Sp6(3)
and Sp8(3) we want to deduce some general results for Sp2n(3), especially for
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W3
2n. The understanding of W2

2n was treated in [12]. We begin by recalling
this in proposition 5.3.

Throughout this section, W−
2n will denote the Weil module of dimension

(3n−1)
2

and W+
2n the one of dimension (3n+1)

2
. We start with a general lemma.

Lemma 5.1. Let χ be an irreducible character for a �nite group G. Then
χχ∗ contains the trivial representation with multiplicity one.

Proof. Let χ1 be the trivial representation for G. Then

〈χ1, χχ
∗〉 = 〈χ1

χ, χ〉 = 〈χ, χ〉 = 1.

De�nition 5.2. Let V be an irreducible not self-dual C[G]-module for a
�nite group G. We note Adj(V ) the submodule of codimension 1 in V ⊗ V ∗.

Proposition 5.3.

(i) The only irreducible modules in W2
2n are

W+
2n ⊗W−∗

2n , W+∗

2n ⊗W−
2n, W+

2n ⊗W−
2n, W+∗

2n ⊗W−∗
2n .

Moreover, W+
2n ⊗W−

2n and W+∗

2n ⊗W−∗
2n are the only isomorphic ones.

(ii) Let W ∈ W1
2n, then the modules Sym2(W ), Alt2(W ) and Adj(W ) are

irreducible. Moreover, Sym2(W+
2n) and Alt2(W−

2n) are self-dual.

Proof. See proposition 5.5 page 17 in [12].

Now we start our investigation of the 3-fold tensor products of Weil mod-
ules for Sp2n(3). First, we improve proposition 5.3.

Proposition 5.4. One has χSym2(W−2n) = χ
Alt2(W+∗

2n ) and the same equality

holds for the duals.

Proof. First, note that〈
χ

Sym2(W−2n), χAlt2(W+∗
2n )

〉
=
〈
χ

Sym2(W−2n) + χ
Alt2(W−2n), χAlt2(W+∗

2n ) + χ
Sym2(W+∗

2n )

〉
,

because all these characters are irreducible, by proposition 5.3, and an argu-
ment of dimension. By de�nition one has〈

χ
Sym2(W−2n) + χ

Alt2(W−2n), χAlt2(W+∗
2n ) + χ

Sym2(W+∗
2n )

〉
=

〈
χ2
W−2n

, χ2

W+∗
2n

〉
.
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So we obtain〈
χ

Sym2(W−2n), χAlt2(W+∗
2n )

〉
=

〈
χ2
W−2n

, χ2

W+∗
2n

〉
=
〈
χ
W−2n

χ
W+

2n
, χW+∗

2n

χ
W−

∗
2n

〉
= 1,

where the last equality holds because of the �rst part of proposition 5.3.

In order to prove our main result, theorem 5.7, which describes when
Weil modules occurs in the decomposition of a 3-fold tensor products of Weil
modules we obtain the following corollary and lemma.

Corollary 5.5. One has〈
χ
W+

2n

χ
Sym2(W−2n), χW+∗

2n

〉
= 1 and

〈
χ
W−2n

χ
Alt2(W+

2n), χW−∗2n

〉
= 1.

Proof. It's just a calculation :〈
χ
W+

2n

χ
Sym2(W−2n), χW+∗

2n

〉
=
〈
χ
W+

2n

χ
Alt2(W+∗

2n ),
χ
W+∗

2n

〉
=
〈
χ

Alt2(W+∗
2n ),

χ2

W+∗
2n

〉
= 1.

In the same manner, we have〈
χ
W−2n

χ
Alt2(W+

2n), χW−∗2n

〉
=
〈
χ
W−2n

χ
Sym2(W−

∗
2n ),

χ
W−

∗
2n

〉
=
〈
χ

Sym2(W−
∗

2n ),
χ2

W−
∗

2n

〉
= 1.

Lemma 5.6. One has〈
χ
W+

2n

χ
Sym2(W+

2n), χW+∗
2n

〉
= 1 and

〈
χ
W−2n

χ
Alt2(W−2n), χW−∗2n

〉
= 1.

Proof. Since Sym2(W+
2n) is self-dual, we have〈

χ
W+

2n

χ
Sym2(W+

2n), χW+∗
2n

〉
=
〈
χ

Sym2(W+
2n), χ

2

W+∗
2n

〉
=
〈
χ

Sym2(W+∗
2n ),

χ2

W+∗
2n

〉
= 1.

Since Alt2(W−
2n) is self-dual, we have〈

χ
W−2n

χ
Alt2(W−2n), χW−∗2n

〉
=
〈
χ

Alt2(W−2n), χ
2

W−
∗

2n

〉
=
〈
χ

Alt2(W−
∗

2n ),
χ2

W−
∗

2n

〉
= 1.
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Theorem 5.7. Let U ∈ W3
2n, then there exists W ∈ W1

2n such that

〈χU , χW 〉 ≥ 1,

except for U = W±
2n ⊗ W±

2n ⊗ W∓∗
2n or U = W±∗

2n ⊗ W±∗
2n ⊗ W∓

2n. In other
words, when we take the tensor product of three Weil modules, at least one
Weil module occurs in the decomposition, except for the cases cited.

Proof. First remark that if W is in the decomposition of U then W ∗ appears
in the decomposition of U∗. Then we can restrict to the following cases

1. U = V1 ⊗ V1 ⊗ V1,

2. U = V1 ⊗ V1 ⊗ V2,

3. U = V1 ⊗ V1 ⊗ V ∗1 ,

4. U = V1 ⊗ V ∗1 ⊗ V2,

5. U = V1 ⊗ V1 ⊗ V ∗2 ,

where V1, V2 are non-isomorphic Weil modules. So we are going to give W
for the �rst four cases and show there is no W in the decomposition of the
last one.

1. In this case we claim that W = V ∗1 . Indeed, we have V1 ⊗ V1 ⊗ V1 =(
Sym2(V1)⊕Alt2(V1)

)
⊗V1 and so by lemma 5.6 we can conclude that

V ∗1 occurs, at least, in the decomposition of either Sym2(V1) ⊗ V1 or
Alt2(V1)⊗ V1.

2. Using a similar method one has V1⊗V1⊗V2 =
(

Sym2(V1)⊕Alt2(V1)
)
⊗

V2 and so by corollary 5.5 we conclude that V ∗2 appears in the decom-
position of V1 ⊗ V1 ⊗ V2.

3. Obviously in this case we can take W = V1 because V1 ⊗ V1 ⊗ V ∗1 =
V1⊗

(
1⊕Adj(V1)

)
= V1⊕V1⊗Adj(V1). Actually we can be more precise.

Using the decomposition V1 ⊗ V1 ⊗ V ∗1 =
(

Sym2(V1)⊕ Alt2(V1)
)
⊗ V ∗1

we see that V1 occurs twice. Indeed, we have
〈
χ

Sym2(V1)
χ
V ∗1
, χV1

〉
=〈

χ
Sym2(V1), χ

2
V1

〉
= 1 and

〈
χ

Alt2(V1)
χ
V ∗1
, χV1

〉
=
〈
χ

Alt2(V1), χ
2
V1

〉
= 1.

4. For the same reason as the last point we can take W = V2.
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5. Like the �rst cases, write V1 ⊗ V1 ⊗ V ∗2 =
(

Sym2(V1)⊕Alt2(V1)
)
⊗ V ∗2

and look at
〈
χ

Sym2(V1)
χ
V ∗2
, χW

〉
and

〈
χ

Alt2(V1)
χ
V ∗2
, χW

〉
. We treat the

di�erent possibilities for W . First we note that W can't be V1 or
V ∗1 because in theses cases

〈
χ

Sym2(V1), χV2
χ
W

〉
= 0 since V2 ⊗ W is

irreducible as well as Sym2(V1), and the same argument works for the
second scalar product. Afterwards, W can't be V ∗2 because V2 ⊗ V ∗2 =
1 ⊕ Adj(V2) and looking at the dimension we see that Adj(V2) is not
isomorphic to Sym2(V1) or Alt2(V1). So the last case to treat is to know
if W = V2 is in the decomposition of V1 ⊗ V1 ⊗ V ∗2 . But since we have
that 〈

χ
V1⊗V1⊗V ∗2 ,

χ
V2

〉
=
〈
χ
V1⊗V ∗2 ,

χ
V ∗1 ⊗V2

〉
= 0,

where the last equality follows by proposition 5.3, we can see that V2

is not in the decomposition of V1 ⊗ V1 ⊗ V ∗2 which ends this case.

Remark 5.8. We can actually prove without di�culty that in each case, the
only Weil module which occurs in the decomposition is the one mentioned
with multiplicity mentioned.

Corollary 5.9. Let W be an element of W1
2n, then W , respectively W ∗,

occurs in the decomposition of Adj(W )⊗W , respectively Adj(W )⊗W ∗.

Proof. It follows from the discussion of the point 3 in the previous proof.

The following propositions partially describe the decomposition of certain
terms of 3-fold tensor products of Weil modules.

Proposition 5.10. The modules Sym3(W+
2n) and Alt3(W−

2n) are reducible.

Proof. We know from the proof of theorem 5.7 thatW+∗

2n occurs in the decom-
position of W+

2n⊗W+
2n⊗W+

2n which is equal to (Sym2W+
2n⊕Alt2W+

2n)⊗W+
2n.

But recall that

Sym2W+
2n ⊗W+

2n = Sym3W+
2n ⊕ S(2,1)W

+
2n

and
Alt2W+

2n ⊗W+
2n = Alt3W+

2n ⊕ S(2,1)W
+
2n.

Therefore if W+∗

2n occurs in the decomposition of Sym2W+
2n⊗W+

2n but not in
the one of Alt2W+

2n ⊗W+
2n, we can conclude, looking at the dimension, that
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W+∗

2n occurs in the decomposition of Sym3(W+
2n). By proposition 5.3 we have

that Sym2W+
2n is self-dual and Alt2W+

2n is not. So one can conclude with the
following calculations〈

χ
Sym2W+

2n⊗W
+
2n
, χW+∗

2n

〉
=
〈
χ

Sym2W+
2n
, χSym2W+∗

2n

〉
= 1

and 〈
χ

Alt2W+
2n⊗W

+
2n
, χW+∗

2n

〉
=
〈
χ

Alt2W+
2n
, χAlt2W+∗

2n

〉
= 0.

The same argument shows that Alt3(W−
2n) is reducible.

Proposition 5.11.

(i) The module S(2,1)(W
+
2n) occurs in the decomposition ofW+

2n⊗W+∗

2n ⊗W+∗

2n

and of W+
2n ⊗W−∗

2n ⊗W−∗
2n .

(ii) The module S(2,1)(W
−
2n) occurs in the decomposition ofW−

2n⊗W−∗
2n ⊗W−∗

2n

and of W−
2n ⊗W+∗

2n ⊗W+∗

2n .

(iii) The module Alt3(W+
2n) occurs in the decomposition ofW+

2n⊗W−∗
2n ⊗W−∗

2n .

(iv) The module Sym3(W−
2n) occurs in the decomposition of W−

2n ⊗W+∗

2n ⊗
W+∗

2n .

Proof.

(i) We trivially have that S(2,1)(W
+
2n) is in the decomposition of Sym2(W+

2n)⊗
(W+

2n), which we note S(2,1)(W
+
2n) ≤ Sym2(W+

2n)⊗ (W+
2n). Therefore, we

have S(2,1)(W
+
2n)∗ ≤ Sym2(W+

2n)∗ ⊗ (W+
2n)∗. But Sym2(W+

2n) is self-dual
and so

S(2,1)(W
+
2n)∗ ≤ Sym2(W+

2n)⊗ (W+
2n)∗ ≤ W+

2n ⊗W+
2n ⊗W+∗

2n .

By taking the dual again one has

S(2,1)(W
+
2n) ≤ W+

2n ⊗W+∗

2n ⊗W+∗

2n .

On the other hand, S(2,1)(W
+
2n) is in the decomposition of Alt2(W+

2n)⊗
(W+

2n). But Alt2(W+
2n) is isomorphic to Sym2(W−∗

2n ), by proposition 5.4.
Therefore, one has

S(2,1)(W
+
2n) ≤ Sym2(W−∗

2n )⊗W+
2n ≤ W−∗

2n ⊗W−∗
2n ⊗W+

2n.
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(ii) Similarly, replacing W+
2n by W−

2n and using that Alt2(W−
2n) is self-dual,

one has

S(2,1)(W
−
2n) ≤ Alt2(W−

2n)∗ ⊗W−
2n ≤ W−∗

2n ⊗W−∗
2n ⊗W−

2n

and

S(2,1)(W
−
2n) ≤ Sym2(W−

2n)⊗W−
2n ≤ W+∗

2n ⊗W+∗

2n ⊗W−
2n.

(iii) Using that Alt2(W+
2n) is isomorphic to Sym2(W−∗

2n ) one has

Alt3(W+
2n) ≤ Alt2(W+

2n)⊗W+
2n ≤ W−∗

2n ⊗W−∗
2n ⊗W+

2n.

(iv) In the same manner, one has

Sym3(W−
2n) ≤ Sym2(W−

2n)⊗W−
2n ≤ W+∗

2n ⊗W+∗

2n ⊗W−
2n.

Remark 5.12. If we show that S(2,1)(W
+
2n), Alt3(W+

2n), S(2,1)(W
−
2n) and Sym3(W−

2n)
are irreducible, then we can actually improve proposition 5.11 saying that
they occur only one time in the decomposition of the above modules.

5.5 Open Questions

This section details some results we tried to prove but without success.
The following statements are motivated by the fact that they are true for the
cases Sp4(3), Sp6(3) and Sp8(3). First, we think that the following modules
are irreducible :

Sym2(W+
2n)⊗W−

2n Alt3(W+
2n) S(2,1)(W

+
2n)

Alt2(W−
2n)⊗W+

2n Sym3(W−
2n) S(2,1)(W

−
2n).

Then, we presume that the norm squared of the characters of the following
modules is equal to 2 :

Sym3(W+
2n) Alt2(W+

2n)⊗W−
2n

Alt3(W−
2n) Sym2(W−

2n)⊗W+
2n.

We proved in the last section that they are all reducible and we gave an
irreducible component of their decomposition. Our hypothesis is that there
is just one other irreducible component in each of their decompositions.
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Remark 5.13. If these hypotheses are right, then we are able to understand
W3

2n.

Now one can notice that Sym2(W+
2n) ⊗W−

2n is irreducible if and only if
Adj(W−

2n) does not occur in the decomposition of Sym2(W+
2n)⊗ Sym2(W+

2n).
Indeed, we have〈
χ

Sym2(W+
2n)⊗W−2n

, χSym2(W+
2n)⊗W−2n

〉
=

〈
χ

Sym2(W+
2n)⊗Sym2(W+

2n), χW−∗2n ⊗W
−
2n

〉
=

〈
χ

Sym2(W+
2n)⊗Sym2(W+

2n), χAdj(W−2n) + χ
1

〉
= 1 +

〈
χ

Sym2(W+
2n)⊗Sym2(W+

2n), χAdj(W−2n)

〉
,

where χ1 denotes the trivial representation and we used that Sym2(W+
2n) is

self-dual. Similarly, one can see that Alt2(W−
2n)⊗W+

2n is irreducible if and only
if Adj(W+

2n) does not occur in the decomposition of Alt2(W−
2n)⊗ Alt2(W−

2n).
Besides, using the same argument, the scalar product of Sym2(W−

2n)⊗W+
2n

with itself is equal to 2 if and only if one of the following equivalent equalities
holds :

•
〈
χ

Sym2(W−2n)⊗Sym2(W−2n)∗ , χAdj(W+
2n)

〉
= 1,

•
〈
χ

Sym2(W−2n)⊗Alt2(W+
2n), χAdj(W+

2n)

〉
= 1,

•
〈
χ

Alt2(W+
2n)⊗Alt2(W+

2n)∗ , χAdj(W+
2n)

〉
= 1.

These equations are equivalent because we have χSym2(W−2n) = χ
Alt2(W+∗

2n ) by

proposition 5.4. Likewise, the scalar product of Alt2(W+
2n)⊗W−

2n with itself
is equal to 2 if and only if one of the following equivalent equalities holds :

•
〈
χ

Alt2(W+
2n)⊗Alt2(W+

2n)∗ , χAdj(W−2n)

〉
= 1,

•
〈
χ

Sym2(W−2n)⊗Alt2(W+
2n), χAdj(W−2n)

〉
= 1,

•
〈
χ

Sym2(W−2n)⊗Sym2(W−2n)∗ , χAdj(W−2n)

〉
= 1.
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