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AbstractTheory of random �elds or random processes is presented with an empha-sis on the possible choices of correlation functions. Then two methods forgenerating Gaussian random �elds in R
d are presented. The �rst methodis a direct one but does not work for a too large number of locations. Thesecond one is called the circular embedding method, works with large num-ber of locations and had been introduced independently by Wood and Chan[1994] and Dietrich and Newsam [1993]. It is exact in principle for correlationfunctions with compact support and an approximation method is given oth-erwise. Those methods have been implemented in R and validated by meansof variogram comparisons. Finally Max-stable processes are introduced, thesimulation procedure from Schlather's model is presented and max-stableprocess is simulated with help of the circular embedding method.
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Chapter 1Introduction
In geostatistics, the data consist on �nite samples of measured values atdi�erent locations in the space. It is wished to �nd a model that is valid inthe space. Thus, we aim to have method to simulate random �elds. In thisreport, we will focus on Gaussian random �elds, that have nice propertiesand are often used in practice. In a second time, we will focus on max-stable processes, which are limiting processes and are used in the modellingof extremes.We will present in Chapter 2 the mathematical de�nitions of random�elds or random processes. We will give some nice properties of random�elds which are stationarity and isotropy. Since random �elds and especiallyGaussian random �elds are mainly determined by their correlation functions,that have to be positive semide�nite functions, we will discuss some condi-tions for a function to be positive semide�nite. Then we will expose someexamples of valid correlation functions for isotropic and stationary Gaussianrandom �elds.In Chapter 3, we will present two methods for generating stationary andisotropic Gaussian random �elds with known correlation functions, at givenlocations in R. The �rst methods we will propose are direct methods. Theyare simple and exact, but have the drawback that they are strongly depen-dent of the number of locations and even not de�ned when this number is toolarge. Indeed they are based on the Cholesky factorization and the Singularvalue decomposition respectively, the computational time of which increasessensibly as the number of locations increases. Thus we will propose a sec-ond method which is less sensible to the number of locations. This secondmethod is called the circular embedding method. It had been introducedindependently by Wood and Chan [1994] and Dietrich and Newsam [1993].It is exact in principle for correlation functions with compact support andWood and Chan [1994] give an approximation procedure for the other cor-relation functions. The only restriction of this method is that the locations2



have to be on a regular grid. This method is based on the idea that the cor-relation matrix is Toepliz and that we can embed this matrix in a bigger onewhich is circulant. Then nice properties of the circulant matrices are usedto generate a Gaussian random �eld, as for example that the eigenvalues ofa circulant matrix can be obtainned by a fast Fourier transform on the �rstrow of the matrix. For both methods we will give the algorithm that wereimplemented in R. We will also describe the approximation procedure forthe circular embedding method.We will use those methods to simulate Gaussian random �elds at givenlocations with di�erent correlation functions. We will validate our simulationby means of variogram comparisons. We will conclude our third chapter onGaussian random �elds simulation by a comparison of the computation timeneeded by the methods depending on the number of locations.Finally, in Chapter 4, we will introduce max-stable processes. We will�rst present a short review of Poisson point processes and the way one cansimulate such processes. Then we will present the basic ideas behind max-stable processes and come to a simulation procedure. The procedure we willpresent will be the simulation procedure for a max-stable process accordingto the Schlather model, which is based on a simulation of a Gaussian random�eld and a Poisson process. Finally, we will simulate a max-stable processwith help of the circular embedding method and validate our results by meansof the F−madogram. This is a generalisation of the variogram, that appliesalso when we have in�nite means and variances. We will �nally present amax-stable process simulated by the procedure we suggested and commenton this procedure.
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Chapter 2General de�nitions
2.1 Random FieldsIn geostatistics one of the basic tools to model a problem is a random �eld.De�nition 2.1 (Random �eld).Given a parameter set T and a probability space (Ω,F , P ), we de�ne arandom �eld Y (t, ω) as a real valued function which is measurable on Ω forevery �xed t ∈ T .We will assume for the following that T = R

d with d ≥ 1, that is we con-sider the d�dimensional Euclidean space. We will use the abuse of notation
Y (t) instead of writing Y (t, ω). In this context, a random �eld Y (·) on R

dis seen as a function whose values are random variables for any t in R
d.A particular case of random �elds, which will be considered all along thisreport are Gaussian random �elds. They are interesting since many naturalphenomena can be modelled by a Gaussian �eld. For example soil data orsurface elevations may be modelled by a Gaussian random �elds, e.g. see[Diggle and Ribeiro Jr., 2007, pages 1 to 15].De�nition 2.2 (Gaussian random �eld).A random �eld Y (·) in R

d is called a Gaussian random �eld if the joint dis-tributions of Y = {Y (x1), . . . , Y (xk)} are multivariate normal distributionsfor any choice of k and x1, . . . ,xk ∈ R
d.Analogously to the multivariate normal distributions, a Gaussian random�eld is completely speci�ed by its expectations µ(x), see De�nition (2.3),its variances σ2(x) = Var {Y (x)}, see De�nition (2.5) and its correlationfunction ρ(u) = Corr {Y (x), Y (y)} with u = ‖x − y‖, see De�nition (2.6),which has to be positive semide�nite to ensure the existence of all �nite-dimensional distributions. 4



2.2 Expectation and CovariancesWe now will recall brie�y the de�nitions of expectation and correlation sincethey are of crucial importance for Gaussian random �elds.De�nition 2.3 (Expectation).The expectation of a random �eld is de�ned as
µ(x) = E [Y (x)] =

∫

Rd

yfY (x)(y)dy.We will often assume the expectation being equal to 0, since for anyrandom �eld it only means a translation, in the sense that
Y ∗(x) = Y (x) − µ(x), x ∈ R

d,where Y ∗(·) is a Gaussian random �eld with null expectation and Y (·) hasexpectation µ.De�nition 2.4 (Covariance).In R
2, the covariance is de�ned as followsCov {Y (x), Y (y)} = E [Y (x)Y (y)] − µ(x)µ(y)

=

∫

R2

∫

R2

xyfY (x),Y (y)(x,y)dxdy − µ(x)µ(y).The diagonal elements of the covariance matrix are called the variances.De�nition 2.5 (Variance).The variance is de�ned as the number
σ2(x) = Var {Y (x)} = Cov {Y (x), Y (x)} .Finally we need to introduce the correlation which is a ratio of the covari-ance and the standard deviations which are the square root of the variances.De�nition 2.6 (Correlation).We denote the correlation by ρ and it is de�ned as

ρ(x,y) = Corr {Y (x), Y (y)} =
Cov {Y (x), Y (y)}

σ(x)σ(y)
.When we say that a random �eld Y (·) on R

d is of second order, we meanthat it has �nite expectation and variance. In that case, when Y (·) is ofsecond order, we can write the covariance as followsCov {Y (x), Y (y)} = E [{Y (x)− E [Y (x)]}{Y (y)− E [Y (y)]}] .5



2.3 StationarityLet us now look at two invariance properties of random �elds that can easethe computations. The �rst one that we will consider is the stationarity,which concerns the invariance on translations.De�nition 2.7 (Stationarity in the wide sense).Let Y (·) be a random �eld of second order on R
d, thus E [Y (x)] < ∞ andVar {Y (x)} <∞ for any x ∈ R

d. We call Y (·) stationary (in the wide sense)if its expectation is constant on R
d and its correlation function is translationinvariant, that is

µ(x) = µ and ρ(x,y) = ρ(x + h,y + h), for all x,y,h ∈ R
d.It follows from the de�nition that on a stationary random �eld, we havethat ρ(x,y) = ρ(x − y, 0) and therefore we can de�ne, for any x,y ∈ R

dsuch that h = x− y, the correlation function as
ρ(h) = ρ(x,y).When Y (·) is stationary the variance is constant, indeedVar {Y (x)} = Cov {Y (x), Y (y)}

= Cov {Y (x + h), Y (x + h)} = Var {Y (x + h)} .Therefore the following relation holdsCov {Y (x), Y (y)} = σ2 ρ(h), where h = x− y.2.4 IsotropyWe will now consider the second invariance property of random �elds, isotropy.In the same sense as stationarity is invariance to translations, isotropy is in-variance to rotations.De�nition 2.8 (Isotropic in the wide sense).We say that a random �eld Y (·) is isotropic (in the wide sense) ifE [Y (Ax)] = E [Y (x)] and ρ(Ax, Ay) = ρ(x,y),for all x,y ∈ R
d and all rotation (orthogonal) matrices A. We say that boththe expectation and the covariance function are rotation invariant.When Y (·) is stationary this rotation invariance condition reduces to thecondition that the correlation function only depends on the distance, that is

ρ(x,y) = ρ(h) where h = ‖x− y‖.6



Note that we gave here for stability and isotropy only the wide sense de�-nitions, but there also exist strict sense de�nitions of both those properties.Since we will consider Gaussian random �elds, it is su�cient to know thewide sense de�nitions. Indeed, in the case of Gaussian random �elds, thestrong sense and the wide sense de�nitions coincide, see [Vanmarcke, 1983,Chapter 2] for details.2.5 Positive semi-de�niteness of functionsLet us introduce the notion of positive semide�niteness which has a relationwith the covariance functions on stationary random �elds as Theorem (2.1)says.De�nition 2.9 (Positive semide�niteness).A function ϕ on R
d is said to be positive semide�nite if

0 ≤
n
∑

k=1

n
∑

j=1

akaj ϕ(tk − tj),for any choice of (t1, . . . , tn) and (a1, . . . , an) with tk ∈ R
d and ak ∈ R andfor all n ∈ N.Let us now present a theorem that links positive semide�nite functionsand stationary random �elds.Theorem 2.1. [Abrahamsen, 1997]The class of positive semide�nite functions on R

d coincidence with the classof correlation functions of stationary random �elds on R
d.Indeed, we know that the correlation function of a stationary random�eld (in the wide sense) must be positive semide�nite and that for any posi-tive semide�nite correlation function, we can generate a stationary Gaussianrandom �eld with this correlation function.Checking the positive semi-de�niteness of a function by means of De�ni-tion (2.9) is often not easy to achieve and therefore it is simpler to use somenecessary and su�cient criterion. We will present some of them, namelyBochner's theorem (2.2), Riesz's theorem (2.3) and Schönberg's theorem(2.4). Let us �rst introduce the characteristic function.De�nition 2.10 (Characteristic function).We de�ne the characteristic function χ of a random variable X on R withprobability distribution FX , as

χ(x) = E [eitX
]

=

∫

eixtdFX(t),where i =
√
−1. 7



We will now present Bochner's theorem.Theorem 2.2 (Bochner's theorem).A function ϕ : R → C is continuous and positive semide�nite if and only ifthere exists a non-negative bounded measure F such that we can write ϕ asa characteristic function
ϕ(x) =

∫

R

eixtdF (t) = χ(x) for all x ∈ R.A characteristic function is positive semide�nite, so ϕ(x) is positivesemide�nite. The converse is less easy to prove but for instance S. Bochnergives the proof in Bochner [1933].This theorem can be extended to R
d, that is, a function ϕ on R

d iscontinuous and positive semide�nite if and only if there exists a non-negativebounded measure F such that we can write
ϕ(x) =

∫

Rn

ei
∑d

j=1 xjtjdF (t) = χ(x), for all x ∈ R
d, (2.5.1)This integral (2.5.1) is the d-dimensional Fourier Transform of F and issometimes called Fourier-Stieltjes integral.We now present Riesz's theorem which does not require the continuityof the function, so that together Riesz and Bochner's theorems will give acomplete characterisation of the positive semide�nite measurable functions.Theorem 2.3 (Riesz's theorem).Any positive semide�nite and measurable function ϕ on R

d can be written as
ϕ = ϕc + ϕ0,where ϕc and ϕ0 are positive semide�nite functions on R

d and ϕc is contin-uous whereas ϕ0 equals zero Lebesgue almost everywhere.For the proof see the article written by Riesz [1933] or a version in englishby Bruzual and Dominguez [2001].Notice that in practice we mostly use for ϕ0 the nugget e�ect functionstated as
ϕ0(x) = α1{0}(x) =

{

α, x = 0

0, otherwisewhere α is a non-negative constant. It has even been shown by Gneiting andSasvári [1999] that when ϕ is a function on R
d with d ≥ 2, ϕ0 can only bethe nugget e�ect.In random �elds of higher dimensions, we often require both stationarityand isotropy in the wide sense. So it is quite normal to use these propertieswhen checking for positiveness. The following theorem requires the functionto be isotropic in the wide sense. 8



Theorem 2.4 (Schönberg's theorem).The function ϕ is a continuous, rotation invariant and positive semide�nitefunction on R
d if and only if ϕ(x) = φ(‖x‖) where φ is the Hankel transformof F . Thus φ has the following form

φ(h) =

∫

[0,∞ )
Γ(

d

2
)

(

2

rh

)(d−2)/2

J(d−2)/2(rh)dF (r), for all h ∈ [0,∞ ),with J representing the �rst Bessel function.A proof can be found in Schönberg [1938, pages 815-816].We can summarize Bochner (2.2), Riesz (2.3) and Schönberg's (2.4) the-orems in the following way.Theorem 2.5.A measurable positive semide�nite function ϕ on R
d can be written as

ϕ(x) = ϕ0(x) +

∫

ei
∑d

j=1
xjtjdF (t), (2.5.2)where ϕ0 equals zero Lebesgue almost everywhere and is positive semide�nite,

F is a non-negative bounded measure. In particular, when ϕ is rotationinvariant and d ≥ 2, it has the special form
ϕ(x) = α1{0}(x)+

∫

[0,∞ )
Γ(

d

2
)

(

2

t‖x‖

)(d−2)/2

J(d−2)/2(t‖x‖)dF (t), (2.5.3)with α being a non-negative constant and F a non-negative bounded measure.The converse holds in the sense that a function on the form (2.5.2) or(2.5.3) is up to a constant a correlation function on suitable stationary andisotropic, random �eld.A detailed proof for d = 2, 3 and the general case with any d is given byYaglom [1987, pages 349 to 353]. From Equation (2.5.3), we can derive somespecial cases of correlation functions listed by Abrahamsen [1997, page 32].We here just specify the correlation function of an isotropic random �eld in
R, that is

ρ(x) =

∫ ∞

0
cos(xt)f(t)dt. (2.5.4)2.6 The variogramIn application, it often appears that handling the correlation function isinconvenient and a related function is used instead, namely the variogram.We will use the term variogram meaning in fact centred semi-variogram.9



De�nition 2.11 (centred semi-variogram).The Centred semi-variogram is a function
γc(x− y) =

1

2
Var {Y (x)− Y (y)} , x,y ∈ R

dde�ned for an intrinsically stationary random �eld Y (·) on R
d. By intrinsi-cally stationary, we intend that Y ∗(x) = Y (x + h) − Y (x) is stationary inthe wide sense for any h ∈ R

d. Thus Var {Y (x)− Y (y)} < ∞, because wecan write x = y + h for some h ∈ R
d.We are interested in simulating Gaussian random �elds that are station-ary or isotropic, thus we will restrict to the case of weakly stationary random�elds Y (·) and therefore we will assume thatVar {Y (x)} <∞.The variogram and the correlation function are related in the followingway.Proposition 2.6.Assume γc denotes a centred semi-variogram on a stationary random �eld

Y (·) in the wide sense and that ρ is a correlation function on Y (·), then
γc(h) = σ2{ρ(0) − ρ(h)} for all h ∈ R

d.Proof. By weak stationarity of Y (·), we have thatVar {Y (x)} <∞, for any x ∈ R
dand

γc(h) = γc(x− y) =
1

2
Var {Y (x)− Y (y)}

=
1

2
[Var {Y (x)}+ Var {Y (y)} − 2Cov {Y (x), Y (y)}]

=
1

2
{2σ2ρ(0)− 2σ2ρ(x− y)} = σ2{ρ(0) − ρ(x− y)}

= σ2{ρ(0)− ρ(h)}.2.7 Examples of valid correlation functionsWe will here list some interesting correlation functions ρ of isotropic andstationary random �elds such that ρ(h) = ρ(‖x − y‖). We will give theexpression of the function ρ rescaled such that ρ(0) = 1, but we omit thescale parameter. 10



Example 2.1 (Cosine).
ρ(h) = cos(h).The cosine model is valid only on R and has a big importance in a theoreticalpoint of view since it is suggested by the real part of Bochner's theorem (2.2).It corresponds to the special case listed as Equation (2.5.4). But this modelis not really helpful in practice partly because it is valid only in R.Another model which has an importance in a theoretical point of view isthe following.Example 2.2 (Nugget e�ect).

ρ(h) = 1{0}(h) =

{

1, h = 0

0, otherwise.The nugget e�ect model is valid for R
d with d ∈ N. This model plays animportant role since it can be added to a more complex model to form acorrelation function as seen in Riesz's theorem (2.3).We have now seen some models that have theoretical importance, butwe are more interested in the models that are used in practice. One of thosemodels is the Gaussian model.Example 2.3 (Gaussian model).

ρ(h) = e−h2

.The Gaussian model is frequently used in practice and a Gaussian random�eld with this model can be simulated by the spectral method according toSchlather [1999, section 4.6.3]. But this model has some drawbacks, e.g. thenumerical instability of the covariance matrices involved in the simulationsdue to their almost singularity. An other example of drawback is that thiscorrelation function has the theoretical property that the realisation on thewhole real line is determined by the realisation on an arbitrary small, contin-uous interval as explained by Diggle and Ribeiro Jr. [2007, chapter 3], whichis unrealistic for most applications.The Gaussian model is a special case of a wider family called symmetricstable family, namely the case with parameter ν = 2.Example 2.4 (Symmetric stable family).
ρ(h) = e−hν

, ν ∈ ]0, 2] .The symmetric stable is called so, since for any parameter ν, the value at1 is the same. As said by Diggle and Ribeiro Jr. [2007, chapter 3], thisfamily is comparable to another family called the Whittle-Matérn family, butis less �exible. It has as special cases the Gaussian model and the Exponentialfamily. 11



Let us now introduce the second special case of stable family, namely theExponential model, which corresponds to ν = 1.Example 2.5 (Exponential family).
ρ(h) = e−h.The Exponential model is also a special case of another family of correlationfunctions called the Whittle-Matérn family. The interest of the Exponentialmodel is that it gives fast and simple simulations on the real axis due to itsnice Markov property, see [Schlather, 1999, section 4.4].Let us de�ne the Whittle-Matérn family, which with ν = 1/2 becomesthe Exponential model and when ν →∞ is the Gaussian model.Example 2.6 (Whittle-Matérn family).

ρ(h) =
21−ν

Γ(ν)
hν Kν(h), ν > 0,where Kν stands for the modi�ed Bessel function of order ν of the secondkind. The Whittle-Matérn family is also called in di�erent literatures theBasset model or the Modi�ed Bessel family. This family is much used inpractice, since the degree of di�erentiability of the underlying random �eld isto be speci�ed by the choice of ν. For instance, ρ is 2d times di�erentiablewhen ν = 2d+1

2 . Since it is not very realistic to have a surface that is morethan twice di�erentiable, one will prefer to choose ν ≤ 3
2 . For more detailsabout this family see [Matérn, 1960, page 17].We will now give a family of models that is related to the Whittle-Matérnin the sense that it also uses some Bessel functions.Example 2.7 (Bessel family).

ρν(h) = 2νΓ(ν + 1)h−νJν(h), ν ≥ d− 2

2
,where Jν denotes a �rst kind Bessel function of order ν and d is the di-mension of R

d. The Bessel family is an example of oscillating correlationfunctions. These oscillating correlation functions are parametrized by theirperiod ν = 2π/ω, where ω is the angular frequency. The particular case ρ3is called the Hole e�ect that is
ρ3(h) =

1

h
sin(h).Let us now de�ne a family which is said to behave poorly for the circularembedding method when the dimension d is high.12



Example 2.8 (Cauchy family).
ρ(h) =

(

1 + h2
)−ν

, ν > 0.The Cauchy family is positive semide�nite by construction as explained inSchlather [1999]. We note that the special case ν = 1 is called rationalquadratic model.Finally we give a model that is behaving well in the simulation of Gaus-sian random �eld by circular embedding method since it has compact sup-port.Example 2.9 (Spherical family).
ρ(h) = λ

∫

Rn

1{h≤r}1{‖t‖<r}dt1 · · · dtnIn this family ρ(h) is the volume of the intersection of two d-dimensionalspheres of radius r separated by a distance h, whose particular case in di-mension d = 3 is given by
ρ3(h) =

(

1− 3

2
h +

1

2
h3

)1{0≤h≤1}.This case with d = 3 is practically the most used case. Often it is implicitlymeant d = 3, when we say spherical family. The spherical family is inter-esting for simulation of Gaussian random �elds since the have �nite range,that is ρ(h) = 0 su�ciently large h.For more example we refer to Schlather [1999], Abrahamsen [1997] orGneiting [1997], but we consider the previous list su�cient for this report.Finally we notice that we can change the range of a correlation functionby rede�ning ρ∗(h) = ρ(h
φ ) where we have that the range φ > 0. A linearcombination of two correlation function with non-negative scalars is also acorrelation function. Indeed if Y1(·) and Y2(·) are independent random �eldswith correlation function ρ1 and ρ2 respectively and if a1, a2 ≥ 0, then√

a1Y1(·) +
√

a2Y2(·) has the correlation function ρ = a1ρ1 + a2ρ2. We canalso introduce a nugget e�ect, which corresponds to a discontinuity at h = 0.Finally Theorem (2.5) suggests to generalize in the sense that any covariancefunction can be written asCov∗(h) = τ21{0}(h) + Cov(h

φ

)

[

1− 1{0}(h)
]

.Thus in terms of correlation function, normalized to 1 at h = 0, it gives
ρ∗(h) = 1{0}(h) +

σ2

σ2 + τ2
ρ

(

h

φ

)

[

1−1{0}(h)
]

,where the scale or range parameter φ is a positive constant, the nuggetparameter τ2 is a constant, σ2 is a constant corresponding to a variance and
ρ is a correlation function. 13



Chapter 3The circular embedding method
We aim to simulate a Gaussian random �eld Y (·) in R

d at a set of n locations
xi ∈ R

d, with mean vector µ and correlation function ρ. With n not too largewe can use direct methods such as Cholesky factorization or singular valuedecomposition, but as n gets too large, their computation time increases toomuch. Therefore we need to �nd other methods when n is large. The onewe will present in this chapter is called circular embedding method.We will �rst consider the simulation of a Gaussian random �eld by directmethods. We will consider random �elds in R since it is easier to computeand less sensitive to the size of n.3.1 Simulation by direct approachAs said before, we aim to simulate a Gaussian random �eld Y (·) in R at aset of n locations xi ∈ R, with mean vector µ and correlation function ρ. Weassume without loss of generality that µ ≡ 0; else Y ∗(·) = Y (·) − µ, where
Y ∗(·) is a Gaussian Random Field with mean 0 and correlation function ρ.In order to simulate Y (·), we use the fact that Y = {Y (x1), . . . , Y (xk)}has a multivariate Gaussian distribution with mean 0 and covariance matrix
Σ and thus

Y
d
= Σ1/2N,where N is vector of n independent N(0, 1) and Σ = Σ1/2(Σ1/2)T . Indeed

Y has a multivariate Gaussian distribution and we have thatE [Σ1/2N
]

= E [Y ]andCov(Σ1/2N,Σ1/2N
)

= E [(Σ1/2N)(Σ1/2N)T
]

= E [Σ1/2NNT (Σ1/2)T
]

= Σ1/2E [NNT
]

(Σ1/2)T = Σ1/2In(Σ1/2)T

= Σ1/2(Σ1/2)T = Σ = Cov (Y, Y ) .14



Thus Y
d
= Σ1/2N .There are two direct ways of getting the matrix Σ1/2, which are a Choleskyfactorisation or a singular value decomposition. Both of these methods havethe drawback that they need a long computation time, so they should notbe applied to large n.The Cholesky factorization works only for positive semide�nite matrices andreturns a lower triangular matrix Q such that Σ = QQT . Since the co-variance matrix is by de�nition positive semide�nite, this method can beapplied. Therefore, we can use Σ1/2 = Q for simulating Y .The singular value decomposition (SVD) works for any matrix and returnstwo unitary matrices U and V and a vector λ such that Σ = UΛV ∗ with Λbeing the diagonal matrix formed with the elements in λ and V ∗ being theconjugate transpose of V . The elements in λ are the singular values of Σ,given in a decreasing order. This decomposition method ensures that λ ≥ 0and when the covariance matrix Σ is positive semide�nite, it strengthens thisto λ > 0. As we work with real numbers we have that the conjugate trans-pose is equal to the transpose, thus we have that Σ1/2 = UΛ1/2V T . Moreoversymmetry of Σ implies that U = V . So we can use Σ1/2 = UΛ1/2UT for thesimulation of Y . Indeed we have that

Σ = Σ1/2(Σ1/2)T = UΛ1/2V T (UΛ1/2V T )T = UΛ1/2V T V Λ1/2UT

= UΛ1/2Λ1/2UT = UΛUT = UΛV T

= (Σ1/2)T Σ1/2 = (UΛ1/2V T )T UΛ1/2V T = V Λ1/2UT UΛ1/2V T

= V Λ1/2Λ1/2V T = V ΛV T = UΛV T .We want to generate Y (·) a Gaussian random �eld given n locations, themean µ, the variance σ2 and the correlation function ρ. We assume theGaussian random �eld being stationary, that is µ and σ2 are constant. Sincewe are given the correlation function ρ, we can �rst compute the covariancematrix Σ, corresponding to the multivariate Gaussian distribution of therandom �eld at locations xi. We know that with hij = ‖xi − xj‖,Cov {Y (xi), Y (xj)} = σ2ρ(hij); thus Σ = σ2D,where D is the correlation matrix. We de�ne the correlation matrix as
D = (dij)i,j=1,...,n = ρ(‖xi − xj‖)i,j=1,...,n = ρ(hij)i,j=1,...,n,where x1, . . . , xn are the given locations. We �nally derived the followingmethod to generate Y (·) at locations xi.The algorithm for direct methods in R1. De�ne the vector x = (x1, . . . , xn) of given location of size n.15



2. Compute the covariance matrix Σ at the locations xi by calculating
Σ = σ2ρ(‖xi − xj‖)i,j=1,...,n.3. Generate a vector N of n independent N(0, 1) random variables.4. If the selected method is SVD,Apply the SVD method to get U and Λ.De�ne Σ1/2 = UΛ1/2UT .Else,Apply the Cholesky factorization to get Q.De�ne Σ1/2 = Q.5. Return Y = µ + Σ1/2N .3.1.1 Validation of the methodTheoretically our code should work, but we should �nd a way to attest thatin practice it also does.We will validate our code by means of the variogram, that is by comparingthe empirical variogram and the theoretical variogram. Let us �rst de�nethe empirical variogram.De�nition 3.1 (Empirical variogram).For a random �eld Y (·), we call empirical variogram the quantity

γ̂c(h) =
1

| N(h) |
∑

(i,j)∈N(h)

| Y (xi)− Y (xj) |2,where xi are the location parameters at which the Gaussian random �eld
Y (·) will be evaluated and N(h) = {(i, j) | ‖xi − xj‖ = h}.The empirical variogram, given by γ̂c(h) = 1

|N(h)|
∑

N(h) | Y (xi)−Y (xj) |2,is the estimated variogram of Y (·). It is an unbiased estimate for the truevariogram γcY
(h), where h = ‖xi − xj‖.We have seen that the variogram, see De�nition (2.11), is de�ned as

γc(h) = σ2{ρ(0) − ρ(h)}.So to compute the theoretical variogram, we only need to specify the co-variance function, that is the type of correlation function and the chosenparameters, then the variogram is known.
16



Table 3.1: Correlation families and parameters used for the simulations.Parameter ν Scale φ Nugget τ2Exponential 1 0Whittle-Matérn 3/2 1 0Cauchy 1/2 1 0Stable 3/2 1 03.1.2 Presentation of the resultsWe will now present the results obtainned by simulating Gaussian random�elds with the correlation families and parameters presented in Table 3.1.On each graphic, we have plotted the true variogram (solid lines) and thebox plot of the empirical variograms for the Gaussian random �eld generatedby Cholesky factorization or singular value decomposition. The left �gure(red) corresponds to the Gaussian random �eld simulated with a Choleskyfactorization method and the other one (blue) corresponds to the singularvalue decomposition method. We plotted the boxplots in ten equidistantintervals. In order to obtain the boxplots, we used a Monte Carlo experiencewith 500 repetitions of the simulation of a Gaussian random �elds, whereone simulation includes 50 replications of the Gaussian random �eld withthe same parameters, correlation function and the same 100 locations. Oneach boxplot we added a cross (purple) representing the mean value.
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Figure 3.1: Variogram comparison for a Gaussian random �eld with cor-relation following an exponential family and simulated by Cholesky factor-ization on the left and singular value decomposition on the right. We useda Monte Carlo experience with 500 repetitions of the simulation, where onesimulation includes 50 replications of the Gaussian random �eld at 100 lo-cations. Crosses represent the mean values.17



In Figure 3.1, we see that the average empirical variograms for the directmethods are really close to the true variogram for both direct simulationmethods, especially when the distances are small, i.e. h ≤ 3. Moreoverthe true variogram goes through the mean on the boxplot of the empiricalvariogram for any h ≤ 9 for the Singular value decomposition method exceptfor h = 1. For the Cholesky factorization method, we see that the truevariogram is slightly to the right of the mean at h = 1, is again good for h ≥ 5.We globally see that the empirical variogram overestimates the theoreticalvariogram, but the theoretical curve still remains in the con�dence intervalsof the boxplots.
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Figure 3.2: Variogram comparison for a Gaussian random �eld with aWhittle-Matérn family function with ν = 1.5 as correlation simulated bydirect methods, Cholesky factorization on the left and singular value decom-position on the right. We used a Monte Carlo experience with 500 repetitionsof the simulation, where one simulation includes 50 replications of the Gaus-sian random �eld at 100 locations. The crosses represent the mean values.In Figure 3.2, we see that, as for the exponential family, the two empir-ical variograms are extremely close to the true variogram. Indeed for theCholesky factorization method the theoretical variogram goes quite alwaysthrough the mean values of the empirical variograms. For the singular valuedecomposition method, the variograms are also close to each other, especiallyfor small distances, i.e. h ≤ 8. We again see that for both methods the the-oretical value at h = 1 is overestimated by the empirical variogram. We seethat this time with larger distances the theoretical variogram is underesti-mated by the empirical variogram, but remains in the con�dence intervalsof the boxplots.In Figure 3.3, we see again that empirical variograms are pretty goodestimates of the theoretical variogram. We remark that both the Cholesky18
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Figure 3.3: Variogram comparison for a Gaussian random �eld having aCauchy family with parameter ν = 0.5 as correlation function, simulatedby direct methods. The left �gure corresponds to Cholesky factorizationmethod and the right one to singular value decomposition method. Weused a Monte Carlo experience with 500 repetitions of the simulation, whereone simulation includes 50 replications of the Gaussian random �eld at 100locations. The crosses represent the mean values.factorization method and the Singular value decomposition method seemto slightly underestimate the theoretical variogram for high values h ≥ 8and h ≥ 6 respectively. They also overestimate the theoretical variogram at
h = 1. We see that the Cholesky factorization method seems to lead to acloser estimate of the true variogram than the singular value decompositionmethod. Indeed there are more mean value points crossed by the theoreticalvariogram when we use Cholesky factorisation method than with the singularvalue decomposition method. We have that the empirical variograms remainin the con�dence intervals of the boxplots.In Figure 3.4, we see that both empirical variograms are really close to thetheoretical variogram. Indeed we remark that the true variogram (in blue)passes through all mean values of the boxplots of the empirical variogramfor both the Cholesky factorization and the Singular value decompositionmethod except at h = 1. At that point h = 1 we have that the empiricalvariogram is overestimating the theoretical one.
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Figure 3.4: Variogram comparison for a Gaussian random �eld with corre-lation function following a stable family with parameter ν = 1.5 simulatedby direct methods, left �gure by Cholesky factorization and right �gure bysingular value decomposition. We used a Monte Carlo experience with 500repetitions of the simulation, where one simulation includes 50 replicationsof the Gaussian random �eld at 100 locations. The crosses represent themean values.To conclude we have seen �rstly that both methods globally give averageempirical variograms that are well estimating the theoretical variogram forall those choices of correlation functions, but we have di�culties to get theright slope at the origin. Indeed we notice that the true variogram is notpassing through the mean values of the boxplots at h = 1, point at which theempirical variogram tends to overestimate slightly the theoretical variogram.We remark that the best estimate of the theoretical variogram is achievedwhen the correlation function is a stable family with parameter ν = 1.5 andthat the Cauchy model with ν = 0.5 leads to worse estimations than theother correlation function families.3.2 Presentation of the circular embedding methodNow that we have seen how to simulate a Gaussian random �eld by directmethods at n locations, where n is not too large, we want to present anothermethod that can deal with larger n, namely the circular embedding method.We will �rst describe this method theoretically and then explain how wecan implement it in R. We saw that we had really good convergence withdirect method and would like to keep this property. We will in fact, withthe circular embedding method, have a similar property called exactness in20



principle. Let us though introduce it.De�nition 3.2 (Exact in principle).A realization that would have exactly the required distribution if
• the computer arithmetic had no inaccurencies;
• genuinely independent and random numbers could be used instead ofcreating pseudo-random numbers,is said to be exact in principle.The circular embedding method is exact in principle for correlation func-tions that have compact support. This method was developed independentlyby Dietrich and Newsam [1993] and Wood and Chan [1994] and publishedquite simultaneously. This method is fast and the idea behind it is to embedthe covariance matrix in a circulant matrix and use fast Fourier transformsto treat it. The major restriction of this method is that the location pointshave to be points on a regular grid. Wood and Chan [1994] showed that thealgorithm of the circular embedding method is always exact in principle forthe correlation functions that have compact support. Wood and Chan [1994]also propose an approximation procedure otherwise.3.2.1 The circular embedding methodFirst, we suggest to have a look at Chan [1999] for an overview of the circularembedding method and for more details on the results we give in this section,we refer to Wood and Chan [1994].As previously with the direct methods, we aim to simulate a GaussianRandom Field Y (·) in R

d at a set of n locations xj , this time restricted ona regular grid in R
d, with mean vector µ and correlation function ρ. Wewill restrict ourself to d = 1 that is to a Gaussian random �eld in R toget simpler calculations. We will choose the locations xj such that they areequidistant in [0, 1], that is xj = 0, 1

n , . . . , n−1
n . We recall that µ and ρ de�ne

Y (·) uniquely, see De�nition (2.2). We assume without loss of generality that
µ ≡ 0. We will �nally assume that the Gaussian random �eld is stationaryand isotropic. Therefore we have that

Σ = σ2 ·



















ρ(0) ρ( 1
n) · · · · · · ρ(n−1

n )

ρ( 1
n) ρ(0)

. . . · · · ρ(n−2
n )... . . . . . . . . . ...... ... . . . ρ(0) ρ( 1
n)

ρ(n−1
n ) ρ(n−2

n ) · · · ρ( 1
n) ρ(0)



















,where σ2 is the variance, which is constant by isotropy assumption, and ρis the correlation function. We notice that the matrix Σ is Toeplitz, seeDe�nition (3.3). 21



De�nition 3.3 (Toeplitz).We say that a matrix T is Toeplitz or diagonal-constant if each descendingdiagonal of T from left to right is constant.We will now de�ne a special case of Toeplitz matrix, namely a circulantmatrix.De�nition 3.4 (Circulant matrix).We say that a matrix C is circulant if C is Toeplitz and each row vector
(cj,k)

n
k=1 is a permutation from one element to the right of the preceding rowvector, that is

cj,k = cj−1,k−1 and cj,1 = cj−1,n, 2 ≤ k ≤ n, 2 ≤ j ≤ n.We remark that a circulant matrix C is fully speci�ed by one vector c,for example the �rst column of C. Indeed, the remainning columns of C areeach cyclic permutation of the vector c. These matrices have the followingnice property.Proposition 3.1. [Golub and Van Loan, 1996, �4.7.7]A circulant matrix C is such that its eigenvalues are given by applying a fastFourier transform (FFT) on its �rst column c and the eigenvectors of C donot depend on C.Let us now recall the fact that
Y (·) d

= Σ1/2N,where N is vector of n independent N(0, 1) and n the number of locations.The key of the circulant embedding method is that instead of using a directmethod to �nd Σ1/2, we embed Σ in a bigger matrix C of size m×m whichis circulant, with m de�ned as
m = 2g ≥ 2(n− 1), g ∈ N.We choose m in such a way since the radix-2 Cooley-Tukey FFT algorithm,that deals with matrices of size m×m with m being a power of 2, is known tocompute the FFT with only O {m log2(m)} operations. This is faster thanclassical FFT algorithms, which run in O {m log(m)}. For more details, see[Cooley and Tukey, 1965]. The value of m must also be chosen such that

C is positive semide�nite. If the correlation function has compact support,then the existence of a m such that C is positive de�nite is ensured. Thisis a consequence of the Theorem (3.2), which as been proved by Wood andChan [1994]. Indeed if ρ has a compact support it follows that
∑

h

|ρ(h)| = σ2
∑

h

|Cov(h)| <∞,which is a requirement in the following theorem.22



Theorem 3.2. Wood and Chan [1994]Suppose that
∑

h

|Cov(h)| <∞and the spectral density
g(t) = (2π)−d

∑

j∈Zd

Cov( j

n

)

exp
(

−2πijT t
)is strictly positive for all t ∈ [0, 1]d. Then C in positive de�nite.In practice, we search for the smallest integer g such that

2g = m ≥ 2(n− 1)and check for the positive semi-de�niteness of C. If C is not positive semidef-inite, we increase g by one and repeat until C is positive semide�nite. Thismatrix C is de�ned as
C =











c0 c1 · · · cm−1

cm−1 c0 · · · cm−2... ... ...
c1 c2 · · · c0









with
cj =

{

σ2ρ( j
n) 0 ≤ j ≤ m

2 ,

σ2ρ(m−j
n ) m

2 < j ≤ m− 1.Note that since C is circulant, it is uniquely de�ned by its �rst column c andsince C is symmetric we have that c is also the �rst row of C. Proposition(3.1) implies that the eigenvalues of C are obtainned by applying a fastFourier transform on c. We remark that the top left corner of C is equal to
Σ by the de�nition of C. We will now state another property of circulantmatrices, namely.Proposition 3.3. [Brockwell and Davis, 1991, �4.5]For any circulant and symmetric matrix C, there exists an unitary matrix
Q such that C = QΛQ∗ and C1/2 = QΛ1/2Q∗, where Λ is a diagonal ma-trix with the eigenvalues of C down the diagonal and where Q∗ stands forthe transpose conjugate of Q. Moreover Q is such that its columns are theeigenvector of C.Let us �nally state a property of the symmetric circulant matrices thatis a consequence of Proposition (3.3).Proposition 3.4. [Wood and Chan, 1994]For any circulant and symmetric matrix C, written as C = QΛQ∗, we cancompute Qu by applying a Fast Fourier Transform to u, for any vector u.23



In particular, this is true for u = Λ1/2Q∗N , where N is a vector of mindependent N(0, 1). Thus we can generate the Gaussian random �eld Y (·)such that Y (·) d
= C1/2N , given by

Y (·) d
= QΛ1/2Q∗N,where N is a vector of m independent N(0, 1). Finally, if we consider onlythe n �rst elements of Y (·) d

= QΛ1/2Q∗N , we get
Y (·) d

= Σ1/2N,where N is this time a vector of n independent N(0, 1). Thus we have that
Y (·) is a Gaussian random �eld with mean µ = 0 and correlation function ρevaluated at the n locations xj as aimed.So in order to simulate a Gaussian random �eld Y (·) in R, it remainsto compute QΛ1/2Q∗N , where N is a vector of m independent N(0, 1), ase�ciently as possible. By Proposition (3.4), we know that only Λ1/2Q∗Nneeds to be computed ingeniously. We also have that Λ1/2 can easily becalculated, since it is given by taking the square root of the elements in Λ,which is obtainned by a FFT of the �rst row of C by Proposition (3.1). Thus,it remains to simulate Q∗N . In order to have the best e�ciency, we want tosimulate Q∗N directly.Proposition 3.5. [Wood and Chan, 1994]We can write Q∗N as

Q∗N = S + iT,where S and T are vectors of m independent N(0, 1). Moreover S and T areindependent and their covariances are known at the location points xj .We �nally derived the following method to generate Y (·) when the cor-relation function has compact support.The algorithm for the circular embedding method in R1. Find the smallest integer g such that m = 2g ≥ 2(n − 1).2. Compute c, the �rst row of C, the symmetric circulant matrix ob-tainned by embedding Σ, which is given by
cj =

{

σ2ρ( j
n) 0 ≤ j ≤ m

2 ,

σ2ρ(m−j
n ) m

2 < j ≤ m− 1.3. Compute λ the vector of eigenvalues of C by a fast Fourier transformon c. 24



4. If λ is negative,Set g ← g + 1 and m← 2g;Go back to 2.Else,Calculate λ1/2.5. Generate S and T two independent N(0, 1).6. Generate S = (S1, . . . , Sm/2) and T = (T1, . . . , Tm/2) two independentrandom vectors of m/2 independent N(0, 1).7. Generate u = Λ1/2Q∗N by calculating
u(0) =

√

λ0

m
S, u(m/2) =

√

λm/2

m
T,

u(j) =

√

λj

2m
(Sj + iVj) and u(m− j) = u(j), 1 ≤ j < m/2.8. Apply a fast Fourier transform on u = Λ1/2Q∗N to get Qu, which isequal in distribution to Y (·) and rede�ne Y (·) as the n �rst elementsof Y (·).9. Return Y (·).3.2.2 Approximate versionSuppose we have to simulate a Gaussian random �eld with a correlationfunction that does not have compact support. Thus the algorithm may notwork since the existence of a m such that the circulant matrix C is positivede�nite is not ensured. We want to �nd a way to adapt the method for thosecases even if we will loose the exactness in principle property. First we needto detect those "failure" cases. A simple way to do this is to put a higherbound on m as well. If the higher bound is reached and C is still not positivede�nite we say that we have a "failure" case.The approximate circulant embedding approach suggests to consider onlythe part of C that corresponds to its positive eigenvalue values, with given

m. Let us �x m to the smallest value such that m = 2g ≥ 2(n − 1) with gbeing an integer, that is
m = 21+dlog2(n−1)e.Then the corresponding matrix C is circulant, so it can be decomposed as

C = QΛQ∗ = Q(Λ+ − Λ−)Q∗ = C+ − C−,25



where
Λ+ = diag { max(0, λj),∀j} and
Λ− = diag { −min(0, λj),∀j} ,with λj being the jth eigenvalue of C. Then we use instead of C the sym-metric, positive semi-de�nite approximate embedding matrix %2C+, withsuitable choice of % 6= 0. Wood and Chan [1994] suggest two choices of %,which are

%1 =
tr(Λ)tr(Λ+)

and %2 =

{ tr(Λ)tr(Λ+)

}1/2

.They justify those choices by the fact that %2 leads to the correct one-dimensional marginal distribution and %1 is the minimizer to the lower boundof the random error incurred by setting the negative eigenvalues of C to zero.Thus we derive an approximate method with the following changes1. Find the smallest integer g such that m = 2g ≥ 2(n− 1) and initialize
k = 1.4. If λ is negative and k ≤ 6,Set g ← g + 1 and m← 2g,Set k ← k + 1 andGo back to 2.Else if λ is non-negative,Calculate λ1/2.ElseSet m = 21+dlog2(n−1)e.Run Step 2.Compute λ′ by a fast Fourier transform on tr(Λ)tr(Λ+)c with λ beingthe eigenvalues of C obtainned by a fast Fourier transform on c,

Λ = diag {λj,∀j} and Λ+ = diag { max(0, λj),∀j} .Set λ1/2 ← (λ′)1/2.3.2.3 Validation of the algorithm and presentation of the re-sultsTheoretically our code should work, but we should �nd a way to attest thatin practice it also does. As we did for the direct methods, we will validateour code by means of the variograms, that is by comparing the empiricalvariogram, see De�nition (3.1), and the theoretical variogram, see De�nition(2.11). 26



We will now present the results we obtainned by simulating Gaussianrandom �elds with di�erent correlation functions. We will �rst considerthe spherical correlation family, which has a compact support and shouldbehave pretty well with the circulant embedding method in the sense thatthe method is ensured to be exact in principle. We will then consider someexamples we saw by direct simulation to compare both methods.On each graphic, we have plotted the true variogram (solid line) and theboxplot of the empirical variograms for the Gaussian random �eld generatedby the circulant embedding method. The boxplots are taken in ten equidis-tant intervals of the empirical variogram for 500 simulations of the Gaussianrandom �eld with the circular embedding method, where one simulation in-cludes 50 replications of the random �eld on a regular grid at 500 locations.On each boxplot we added a cross representing the mean value.In Figure 3.5, we see that the convergence of the circular embeddingmethod for spherical correlation family is pretty good. Indeed the true var-iogram, that is the red curve, remains in the con�dence intervals of theboxplots. We see that the empirical variogram is in average slightly overes-timating the true variogram for h ≥ 3. For small distances, that is h ≤ 2 wehave a perfect estimation.
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Figure 3.5: Variogram comparison for a Gaussian random �eld having aspherical family as correlation function, simulated by circular embeddingmethods on 500 locations on the regular grid [0, 1]. We used a Monte Carloexperience with 500 repetitions of the simulation, where one simulation in-cludes 50 replications of the Gaussian random �eld for the boxplots of theempirical variogram. Crosses represent the mean values.We will now present the variogram comparisons for the same correlationfunction families as with direct methods whose parameters can be seen inTable 3.2. 27



Table 3.2: Correlation families and parameters used for the simulations.
µ σ2 Parameter ν Scale φ Nugget τ2Stable 3 2 3/2 1 0Exponential 3 2 1 0Whittle-Matérn 3 2 3/2 1 0Cauchy 3 2 1/2 1 0But now the Gaussian random �eld will be generated by the circulantembedding method and we will consider 500 locations on a regular grid on

[0, 1]. The boxplots of the empirical variograms are done over 500 simulationsof the same Gaussian random �eld replicated 50 times.In Figure 3.6, we see that the average empirical variogram of the Gaussianrandom �eld is overestimating the true variogram. We see that the shapeof the true variogram is quite similar to the one of the empirical variogram,which suggests a shifting of the true variogram from around 0.1 to the top.Indeed we think there is some bias. However we see that the method isnot bad since the theoretical variogram globally remains in the con�denceintervals of the boxplots, except for low values of h.
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Figure 3.6: Variogram comparison for a Gaussian random �eld having astable family with parameter ν = 1.5 as correlation function, simulated bycirculant embedding methods on 500 locations on the regular grid [0, 1]. Weused a Monte Carlo experience with 500 repetitions of the simulation, whereone simulation includes 50 replications of the Gaussian random �eld for theboxplots of the empirical variogram. Crosses represent the mean values.We saw in Figure 3.6 that we had a slight bias, so we were interested toknow if this happens only for the choice of parameter ν = 1.5 or not. Wesee in Figure 3.7 that this does not only happen with a choice of parameter28



ν = 1.5, but that ν = 1.5 is in a sense a limiting case. Indeed we see inFigure 3.7 on the left that with ν = 1.4 we get no bias and a pretty goodestimation of the theoretical variogram by the empirical one. In Figure 3.7on the right, we also plotted the variogram comparison when ν = 2, whichcorresponds to the limiting case (Gaussian model). As we mentionned inExample 2.3, this model is known to be numerically unstable. Therefore wecan suggest an idea to explain the bias with ν = 1.5. The intuition wouldsay that with a parameter too close to the limiting case with ν = 2, weget some numerical instability. Another explanation for this bad estimationcould be that the spherical family has not the same shape for small values,
h ≤ 1. This could be a reason why the shape of the theoretical variogram atthe origin seems to be wrong with ν = 2. This also re�ects this di�culty ofour methods to have a good estimation even for small distances.
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Figure 3.7: Variogram comparison for a Gaussian random �eld having astable family with parameter ν = 1 on the left and ν = 2 on the right ascorrelation function, simulated by circulant embedding methods on 500 loca-tions on the regular grid [0, 1]. We used a Monte Carlo experience with 500repetitions of the simulation, where one simulation includes 50 replicationsof the Gaussian random �eld for the boxplots of the empirical variogram.Crosses represent the mean values.In Figure 3.7, on the left, we see that the empirical variogram globallyis a good estimate for the true variogram. Indeed the theoretical variogrampasses quite through the mean values for large distances, i.e. h ≥ 6. We seethat there is a tendency of the empirical variogram to overestimate the truevariogram. We have a bad estimation at h = 1, as the 95% con�dence intervalof the empirical variogram does not contain the value of the theoreticalvariogram.In Figure 3.8, we see that there is a good estimation of the theoreticalvariogram by the empirical variogram. Indeed the red curve, which is the29
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Figure 3.8: Variogram comparison for a Gaussian random �eld having itscorrelation following an exponential family, simulated by circulant embed-ding methods on 500 locations on the regular grid [0, 1]. We used a MonteCarlo experience with 500 repetitions of the simulation, where one simulationincludes 50 replications of the Gaussian random �eld. The crosses representthe mean values.theoretical variogram, quite passes through the mean values. When thetheoretical variogram does not pass through the mean values of the boxplots,the true variogram is slightly overestimated by the empirical variogram.

0 1 2 3 4 5 6 7 8 9

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Distance (h)

γ(
h)

x
x

x

x

x

x
x

x
x

x

Figure 3.9: Variogram comparison for a Gaussian random �eld withWhittle-Matérn correlation function with parameter ν = 1.5, simulated bycirculant embedding methods on 500 locations on the regular grid [0, 1]. Weused 500 repetitions of the simulation, where one simulation includes 50replications of the random �eld. Crosses represent the mean values.30



In Figure 3.9, we see that the empirical variogram is slightly overesti-mating the true variogram for large distances, i.e. h ≥ 7, but the theoreticalvariogram remains in the 95 % con�dence interval of the boxplots. We alsoremark that for h = 1 we do not have perfect estimation. We can thereforesay that the circular embedding method does really well for simulating aGaussian random �eld with exponential family correlation function.
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Figure 3.10: Variogram comparison for a Gaussian random �eld having aCauchy family with parameter ν = 0.5 as correlation function, simulated bycirculant embedding methods on 500 locations on the regular grid [0, 1]. Weused a Monte Carlo experience with 500 repetitions of the simulation, whereone simulation includes 50 replications of the Gaussian random �eld for theboxplots of the empirical variogram. The crosses represent the mean values.In Figure 3.10, we see that the theoretical variogram remains in thecon�dence interval of the boxplots, but the empirical variogram is slightlyoverestimating the true variogram. For any value of h except for h ≥ 3, weeven have that the true variogram passes through the mean values of theboxplots of the empirical variograms. We can therefore say that the circularembedding method does really well for simulating a Gaussian random �eldwith Cauchy family with parameter ν = 0.5 as correlation function.We brie�y mention that similarly to the direct methods the circular em-bedding method gives average empirical variograms that are well estimatingthe theoretical variogram for any choice of correlation functions, but we havedi�culties to get the right slope at the origin, except with the spherical fam-ily as correlation function.
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3.3 Computation time comparisonNow that we presented two di�erent kind of methods for simulating a Gaus-sian random �eld and we are interested in their computation time. Compu-tation times for each of the methods are reported in Table 3.3.Table 3.3: Computation time in seconds for the three methods: Choleskyfactorisation(chol), singular value decomposition (svd) and circular embed-ding (c.e.). The times are the mean over 10 estimations with standard errorswhere one observation contains 20 replications of the process.n=50 n=100 n=200 n=500 n=1000Exponentialchol 0.01(0.01) 0.01(0.01) 0.04(0.01) 0.37(0.02) 1.75(0.10)svd 0.02(0.01) 0.05(0.00) 0.24(0.01) 2.84(0.03) 19.73(0.23)c.e. 0.02(0.00) 0.03(0.01) 0.04(0.01) 0.08(0.00) 0.16(0.01)Whittle-Matérnchol 0.02(0.01) 0.06(0.01) 0.19(0.01) 1.41(0.08) 5.67(0.19)svd 0.02(0.01) 0.08(0.01) 0.40(0.01) 3.94(0.12) 22.70(0.35)c.e. 0.01(0.01) 0.03(0.01) 0.03(0.01) 0.10(0.04) 0.17(0.02)Cauchychol 0.01(0.01) 0.02(0.01) 0.06(0.01) 0.55(0.02) 2.32(0.08)svd 0.01(0.01) 0.02(0.01) 0.06(0.00) 0.50(0.07) 2.25(0.07)c.e. 0.01(0.01) 0.03(0.00) 0.03(0.01) 0.08(0.01) 0.15(0.01)Stablechol 0.00(0.00) 0.02(0.01) 0.05(0.01) 0.48(0.02) 2.02(0.07)svd 0.00(0.01) 0.01(0.01) 0.05(0.01) 0.41(0.02) 1.98(0.07)c.e 0.01(0.01) 0.03(0.00) 0.04(0.01) 0.26(0.59) 0.16(0.03)We see in Table 3.3 that the computation time increases when the numberof locations increases, but not every method increases the same. We seethat the increase of computation time is also depending on the correlationfunction of the Gaussian random �eld. We notice that with low number oflocations, that is n ≤ 50, the methods are all equivalent. We see that whenthe number of locations starts to become high, the computation time ofthe direct methods also become quite high, especially for the singular valuedecomposition method.To con�rm this idea we tried to apply our methods for 5000 and 10′000locations, but we did this only for the correlation function being exponentialas a matter of example. We got the following results. Already with 5000locations it is impossible to simulate a random �eld with the singular valuedecomposition method and it takes around 2 minutes with the Choleskyfactorisation method whereas the circular embedding method needs around32



38 seconds. With 10′000 locations, both the direct methods fail, that is wecan generate a random �eld only with the circular embedding method whichtakes around 3.5 seconds. And �nally with 50′000 it took around 7.5 seconds.
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Chapter 4From Gaussian random �elds tomax-stable processes
In the same way random �elds are an in�nite-dimensional generalisation ofmultivariate distribution theory, we can view the max-stable processes asan in�nite-dimensional extension of the multivariate extreme value theory.Those max-stable random �elds are used to model for example the maximalprecipitation level at di�erent sites of a spatial process. Smith [1990] givestwo arguments that advantage the max-stable processes based approach overthe multivariate extreme value approach for the problem of spatial rainfallcollected on a grid of points in space. The general representation of max-stable processes is due to de Haan [1984]. We will see that max-stableprocesses spectral representation and max-stable processes simulation arehighly related to Poisson point processes. Therefore, we start this chapterby some reminders about Poisson point processes.4.1 Poisson point processesPoint processes can be used in practice for modelling a wide range of naturalphenomenes such as earthquake epicentres, trees in a forest or population insettlements.De�nition 4.1 (Random point process).A random set in R

d whose realisations are made up of a �nite or countablenumber of points is called a random point process in R
d.More simply said a point process P is a collection of points. We can thende�ne a random point measure Pn as

Pn(A) =

n
∑

j=1

δXj
(A)34



for some random n which is the number of points in a suitable set A, where
δx puts unit mass at x ∈ A and Xj represent the positions of the points.Among the point processes there are two important ones that are locally�nite point processes. Those are the Cox processes and the Poisson pointprocesses. We will here focus only on Poisson point processes, for the Coxprocesses we refer for example to Lantuéjoul [2002].De�nition 4.2 (Poisson point process).Let λ be an intensity function of S in [0,∞) which is locally integrablefor all compact sets B ⊆ S. A Point process X on S ⊆ R

d, is a Poissonpoint process with intensity function λ if the following properties are veri�ed,where Λ is an intensity measure such that
Λ(B) =

∫

B
λ(ξ)dξ, B ⊆ S.Moreover Λ is locally �nite, that is Λ(B) < ∞ for compact set B ⊆ S, and

Λ is di�use, that is Λ(ξ) = 0 for ξ ∈ S \B.
• For any compact set B ⊆ S, the number of points N in B is a Poissonrandom variable with mean Λ(B), that isP {N(B) = n} =

{Λ(B)}n
n!

e−Λ(B)with the convention thatP {N(B) = n} = 0, if Λ(B) = +∞.

• For any �nite family of pairwise disjoint compact sets B1, . . . , Bm ⊆ S,the random variables N(B1), . . . , N(Bm) are mutually independent.We note that a Poisson point process on S with rate or intensity λ iscalled an homogeneous Poisson point process on S if λ is constant, whereasit is called an inhomogeneous process when λ is not constant. Moreover, anunit rate or standard Poisson point process is a process with λ ≡ 1.In our simulation of max-stable processes we will be interested in thepoints of a Poisson point process, especially to simulate them. Theorem(4.1) gives way to obtain a standard Poisson point process form exponentialvariables.Theorem 4.1. Let ξi be i.i.d. standard exponentially distributed randomvariables, then
Π =

{

n
∑

k=1

ξk : n = 1, 2, . . .

}is a Poisson point process on the positive real axis with rate one.35



Sketch of the proof .We �rst note that since ξ are i.i.d. standard exponential random variable1. ξi ≥ 0 for all i and thus ∑k
i=1 ξi ≤

∑k+1
i=1 ξi, for all k;2. P(ξi ≤ t) = 1− e−t for t ∈ R+;3. ∑k

i=1 ξi is gamma distributed with parameters (k, 1), that isP( k
∑

i=1

ξi = t

)

=
tk−1

(k − 1)!
e−t.Let us denote the number of points in [0, t] by N(t), thenP (N(t) = k)

(1)
= P( k

∑

i=1

ξi ≤ t,

k+1
∑

i=1

ξi > t

)

=

∫ t

0
P( k

∑

i=1

ξi ≤ t,

k+1
∑

i=1

ξi > t |
k
∑

i=1

ξi = τ

)P( k
∑

i=1

ξi = τ

) dτ
=

∫ t

0
P (ξk+1 > t− τ)P( k

∑

i=1

ξi = τ

) dτ(2),(3)
=

∫ t

0
e−(t−τ) · τk−1

(k − 1)!
e−τdτ = e−t

∫ t

0

τk−1

(k − 1)!
dτ

= e−t tk−1

(k − 1)!
.So N is Poisson distributed and thus Π is a Poisson point process.We will now present a theorem that allows the transformation of a pointprocess to another point process, which with help of Theorem (4.1) will giveus a way to simulate any Poisson point process.Theorem 4.2.Let E1, E2 be two Hausdor� spaces. Let ξ1, ξ2 be the associated σ-�elds.Let T : (E1, ξ1) −→ (E2, ξ2) be measurable. If N is a Poisson point processof intensity λ on E1, then

N̂
d
= N ◦ T−1is a Poisson point process with intensity λ◦T−1 on E2. Moreover if we havethe representation

N(·) =
∑

j

δXj
(·),then

N̂(·) d
= N ◦ T−1(·) =

∑

j

δT (Xj)(·).36



A proof of this theorem is given by Resnick [1986].Let us now consider an example of application of Theorem (4.2), thatwill be useful for simulation of a max-stable process.Example 4.1. Let {χi}i≥1 be de�ned as χi =
∑i

k=1 ξk, where ξk are i.i.d.standard exponential random variables. Consider the application
T : x 7−→ 1

x
,then we have that

χ̂i =
1

∑i
k=1 ξk

, i ≥ 1is a Poisson point process with intensity 1/ξ2dξ.Thus if we want to simulate an inhomogeneous Poisson point process, we�rst simulate a standard Poisson point process on a subset in R and thenapply the transformation procedure given in Theorem (4.2).4.2 Max-stable processesWe will now present the basic theory about max-stable random �elds.De�nition 4.3 (Max-stable process).A random �eld (or random process) Z(·) on R
d is max-stable if there existcontinuous functions an(x) > 0 and bn(x) such that {Z(x)}x∈Rd is equal indistribution to

Z∗(x) =

{

max
1≤i≤n

Zi(x)

}

− bn(x)

an(x)
,x ∈ R

d,where Zi(·) are independent and identically distributed copies of Z(·).We can without loss of generality transform the margins to one particularextreme value distribution, see [Resnick, 1987]. For convenience, we assumethat the max-stable process Z(·) has unit Fréchet margins, that is,P(Z(x) ≤ z) = e−1/z , x ∈ R
d,where

Z(·) d
= max

1≤i≤n

Yi(·)
n

.Thus, an(x) = n and bn(x) = 0. Those processes are interesting. Indeedde Haan [1984] has shown that, provided that the limit exists,
Z(x) = lim

n−→∞

{

max
1≤i≤n

Yi(x)

}

− bn(x)

an(x)
,x ∈ R

d37



is a max-stable process on R
d, where Yi(x) are independent copies of arandom �eld Y (·).L. de Hann has brought a big contribution to the theory of max-stableprocesses, for example a spectral representation of the max-stable process isgiven in [de Haan, 1984].Theorem 4.3 (Spectral representation). [de Haan, 1984]Let (ξi, τi)i≥1 be an enumeration of the points in the Poisson process on

R+ × [0, 1] with intensity measure dΛ(ξ, τ) = (ξ−2dξ)× ν(dτ), where τ is a�nite positive measure on [0, 1]. Let {f(τi,x), τi ∈ [0, 1] ,x ∈ R
d
} be a non-negative function with ∫

[0,1]
f(s,x)ν(ds) = 1 for any x ∈ R

d. Then
Z(x) = max

i
{ξif(τi,x)} ,x ∈ R

dis a max-stable process on R
d.Since we assume that we have max-stable processes with unit Fréchetmargins, we will prefer the spectral representation from Schlather [2002].We present here a variant of his version where the conditionE [max {0, Y (x)}] = µ ∈ (0,∞)is changed to Equation (4.2.1) in Theorem (4.4) and the intensity of thePoisson process accordingly renormalised.Theorem 4.4.Let (ξi)i≥1 be the points of a Poisson process on R

∗
+ with intensity measuredΛ(ξ) = ξ−2dξ. Let Y (·) be a stationary random �eld on R

d such thatE [max {0, Y (x)}] = 1 (4.2.1)and E[ sup
x∈Rd

{Y (x)}
]

<∞.Let {Yi(·)}i≥1 be independent and identically distributed copies of Y (·). Then
Z(x) = max

i≥1
[ξi max {0, Yi(x)}] ,x ∈ R

dis a stationary max-stable process on R
d with unit Fréchet margins.
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Sketch of the proof .P {Z(x) ≤ z} = P [no {ξ, Y (x)} ∈ R
∗
+ ×R

d with ξi max {0, Y (x)} > z
]

= exp

{

−
∫

R

∫ ∞

z/max(0,y)
fY (x)(y)dyξ−2dξ}

= exp

{

−
∫

R

max(0, y)
1

z
fY (x)(y)dy

}

= exp

{

−1

z

∫

R+

yfY (x)(y)dy

}

= exp

{

−1

z
E [max {0, Y (x)}]

}

= exp

{

−1

z

}

,the superposition of n i.i.d. Poisson point processes form a Poisson pointprocess with its intensity multiplied by n andP{Z̃(x1) ≤ t1, . . . , Z̃(xk) ≤ tk

}

= P [max
1≤i≤n

{Zi(x1)} ≤ nt1, . . . , max
1≤i≤n

{Zi(xk)} ≤ ntk

]ind
=

n
∏

i=1

P {Zi(x1) ≤ nt1, . . . , Zi(xk) ≤ ntk}i.d.
= P {Z1(x1) ≤ nt1, . . . , Z1(xk) ≤ ntk}n

= exp {−V (nt1, . . . , ntk)}n = exp

{

− 1

n
V (t1, . . . , tk)

}n

= P {Z(x1) ≤ t1, . . . , Z(xk) ≤ tk} .We see in those two representation theorems (4.3) and (4.4) that theconstruction of a max-stable process Z(·) involves the maximum over anin�nite number of copies of a random �eld Y (·), but in practice we canonly simulate �nitely many realisations of Y (·). The next theorem presentsconditions under which we may get nonetheless exact simulations for Z(·)with a �nite number of realisations.Theorem 4.5.Let Y (·) be a stationary random �eld on R
d, let Π be a Poisson point processon R

d × R
∗
+ with intensity measure dΛ(y, ξ) = µ−1dyξ−2dξ and let Z(·) bede�ned as

Z(x) = sup
(y,ξ)∈Π

[ξ max {0, Yξ(x− y)}] .Assume that Y (·) is uniformly bounded by C ∈ R
∗
+ and has support inthe ball b(0, r) for some r ∈ R

∗
+. Let B be a compact set in R

d. Let39



Yi(·) be i.i.d. replications of Y (·), let Ui be i.i.d. uniformly distributed on
Br = ∪x∈Bb(x, r) and let ξi be i.i.d. standard exponential random variables.Finally assume that Π, Yi(·), Ui and ξi are all mutually independent. Then,on B,

Z∗(x) =
|Br|
µ

sup
1≤i≤m

{

Yi (x− Ui)
∑i

k=1 ξk

}

, x ∈ Balmost surely equals the max-stable process Z(·), where m is such that
C

∑m
k=1 ξk

≤ max
1≤i≤m

{

Yi (x− Ui)
∑i

k=1 ξk

}

.A proof of this theorem is given by Ribatet [2009] or by Schlather [2002].It is also mentionned in Schlather [2002] that, for random �elds whose sup-port is not included in a ball b(0, r) or which are not uniformly bounded bya constant C, we can nevertheless use approximations for r and C. He con-siders Y (·) being a Gaussian random �eld but Y (·) is not uniformly boundedby C < ∞. He suggests that C = 3 is large enough to get good approx-imations. Corollary (4.6) is the adaptation of Theorem (4.5) to Gaussianrandom �elds.Corollary 4.6.Let Y (·) be a stationary random �eld on R
d, let Π be a Poisson point processon R

∗
+ with intensity measure dΛ(ξ) = ξ−2dξ and let Z(·) be de�ned as

Z(x) = sup
i≥1

[

ξi max
{

0,
√

2πYi(x)
}]

.Assume that Y (·) is a standard Gaussian process in R
∗
+. Let Yi(·) be i.i.d.replications of Y (·) and let ξi be i.i.d. standard exponential random variables.Finally assume that Π, √2πYi(·) and ξi are all mutually independent. Then

Z∗(x) = sup
1≤i≤m

{√
2πYi (x)
∑i

k=1 ξk

}

, x ∈ Balmost surely equals the max-stable process Z(·), where m is such that
3

∑m
k=1 ξk

≤ max
1≤i≤m

{

Yi(x)
∑i

k=1 ξk

}

.Note that we take the maximum between 0 and √2πY (·), this is because
Y (·) is a Gaussian random �eld and thusE [max {0, Y (x)}] =

1√
2π

,40



which violates Condition (4.2.1) in Theorem (4.4). By rede�ning Y (·) to√
2πY (·), we have that E [max

{

0,
√

2πY (x)
}]

= 1.By means of Corollary (4.6), we are now ready to present M. Schlather'smethod for simulating a max-stable random �eld Z(·) at a given set of loca-tions.Algorithm for simulation of Max-stable processes1. Initialize the vector Z(x) = {Z(x1), . . . , Z(xnsite)} ← 0.Set ζ ← 0 and C ← 3 ·
√

2π.2. While κ 6= 0, do
• Initialize a counter κ to κ← nsite;
• Generate ξ ∼Exp(1) and set ζ ← ζ + ξ;
• Set the upper limit u← Cζ−1;
• Generate a standard Gaussian process Y at the locations {xi}nsite

i=1with correlation function ρ;
• For i = 1 to nsite, do� If u > Z(xi), doUpdate Z(xi)← max

{

Z(xi),
√

2πζ−1Y (xi)
};� ElseUpdate κ← κ− 1.3. Return Z(x) = {Z(x1), . . . , Z(xnsite)}.4.2.1 Validation of the algorithmTheoretically our code should work, but we should �nd a way to attest thatin practice it also does.By analogy to what we did for the other methods, we would like tovalidate our code by means of the variogram, but the variogram is not de�nedfor max-stable processes with unit Fréchet margins since their expectationand variance are not �nite. We will present a variogram-based approachthat is valid for max-stable processes, namely when the expectations andvariances may not be �nite. This estimator based on the variogram conceptis called F-madogram and is highly related to the extremal coe�cient.De�nition 4.4 (F-madogram).Let Z(·) be a stationary max-stable random �eld with unit Fréchet margins,that is

F (z) = exp(−1

z
).41



Then, the centred semi-F-madogram is de�ned as follows
ν(h) =

1

2
E [ |F {Z(x1)} − F {Z(x2)} | ] ,where h = |x1 − x2|.We will use the term F-madogram instead of centred semi-F-madogram.As we said the F-madogram and the extremal coe�cient are related. Letus recall some basis of extreme value theory and then introduce what theextremal coe�cient function for max-stable processes with unit Fréchet mar-gins is. Any multivariate extreme value distribution has the formP {Z(x1) ≤ z1, . . . , Z(xk) ≤ zk} = exp {−V (z1, . . . , zk)} ,where V is an homogeneous function with order depending on the margins.For example when the margins are unit Fréchet, then V is homogeneous oforder −1. That is

V (z, . . . , z) = −1

z
V (1, . . . , 1).De�nition 4.5 (Extremal coe�cient).Let Z(·) be a max-stable process with unit Fréchet margins then the extremalcoe�cient function is de�ned as

θ(h) = −z log [P {Z(x1) ≤ z, Z(x2) ≤ z}] ,where h = x1 − x2.The extremal coe�cient function θ(h), which is such that 1 ≤ θ(h) ≤ 2,is a measure of the dependence between extremes. Indeed,P {Z(x1) ≤ z, Z(x2) ≤ z} = exp

{

−θ(h)

z

}

= F(z)θ(h).Thus θ(h) = 1 corresponds to perfect dependence and θ(h) = 2 to indepen-dence.We note that the bivariate distribution P {Z(x1) ≤ s, Z(x2) ≤ t}, for theSchlather model, corresponds to
exp

{

−1

2

(

1

t
+

1

s

)

[

1 +

√

1− 2 {ρ(h) + 1} st

(s + t)2

]}

,where h = ‖x1 − x2‖ and ρ(h) is the covariance function of the underlyingstationary and isotropic Gaussian random �elds. Thus for s = t, we get
exp

[

−1

t

{

1 +

√

1− ρ(h) + 1

2

}]

,42



This yields an extremal coe�cient of
θ(h) = −t log [P {Z(x1) ≤ t, Z(x2) ≤ t}]

= 1 +

√

1− ρ(h) + 1

2
= 1 +

√

1− ρ(h)

2
.Let us now establish the link between the F-madogram and the extremalcoe�cient.Theorem 4.7.The F-madogram ν(h) of a stationary max-stable process with unitary Fréchetmargins is related to the extremal coe�cient function in the following way

2ν(h) =
θ(h)− 1

θ(h) + 1and conversely, we have that
θ(h) =

1 + 2ν(h)

1− 2ν(h)
.Proof. We �rst note that1. |x− y| = 2max(x, y)− (x + y),2. P [max {Z(x1), Z(x2)} ≤ z] = exp

{

− θ(h)
z

} by de�nition of the ex-tremal coe�cient and3. E [F {Z(x1)}] = E [F {Z(x2)}] = 1
2 , since F {Z(x)} is uniformly dis-tributed.Thus we have that

ν(h) =
1

2
E [ |F {Z(x1)} − F {Z(x2)} | ](1)

=E [max (F {Z(x1)} ,F {Z(x2)})]−
1

2
(2E [F {Z(x)}])(3)

=E [max (F {Z(x1)} ,F {Z(x2)})]−
1

2

=
θ(h)

θ(h) + 1
− 1

2
=

θ(h)− 1

θ(h) + 1
,sinceE [max (F {Z(x1)} ,F {Z(x2)})](2)

=

∫

R+

e−1/z ddz [exp

{

−θ(h)

z

}]

=

∫

R+

θ(h)

z2

[

exp

{

−θ(h) + 1

z

}]dz
=

(

θ(h)

θ(h) + 1

[

exp

{

−θ(h) + 1

z

}])∞

0

=
θ(h)

θ(h) + 1Finally, by solving 2ν(h) = θ(h)−1
θ(h)+1 for θ(h), we get θ(h) = 1+2ν(h)

1−2ν(h) .43



In order to make an analysis of our results, we need an unbiased estima-tor. A natural choice for the empirical F-madogram would be
ν̂(h) =

1

2|Nh|
∑

(xi,xj)∈Nh

|Z(xj)− Z(xi)|,where Nh is the set of sample pairs lagged by the distance h with the corre-sponding extremal coe�cient
θ̂(h) =

1 + 2ν̂(h)

1− 2ν̂(h)
.4.2.2 Presentation of the resultsIn Figure 4.1 we plotted boxplots of the empirical F-madograms and thetrue F-madogram (solid red line) of a stationary and isotropic max-stableprocess with unit Fréchet margins. Simulation is made from Schlather'smodel, where the standard Gaussian random �eld has a spherical familyas correlation function and has been simulated by the circular embeddingmethod. We consider a process at 500 locations on the regular grid [0, 1]. Weused a Monte Carlo experience with 500 repetitions of the simulation, whereone simulation includes 50 replications of the max-stable process. Crossesrepresent the mean values.
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Figure 4.1: F-madogram comparison for a max-stable process with unitFréchet margins simulated according to Schlather's model and the standardGaussian random �eld having a spherical family as correlation function, sim-ulated by circular embedding methods on 500 locations on the regular grid
[0, 1]. We used a Monte Carlo experience with 500 repetitions of the simula-tion, where one simulation includes 50 replications of the max-stable processfor the boxplots of the empirical F-madogram.44



We see in Figure 4.1 that the theoretical F-madogram is fairly well esti-mated by the empirical F-madogram. The true F-madogram is overestimatedby the empirical F-madogram for h ≤ 0.22 and underestimated for h ≥ 0.45.Thus we again see this tendency we had when simulating a Gaussian ran-dom �eld to have problem to estimate the true value for small distances. Wealso see that even if the extremal index is supposed to take values between1 and 2, but we never reach the value of 2, that is we never get completeindependence. This is a default of Schlather's model, whose extremal indexis bounded 1 +
√

1/2 ≈ 1.7.Now that we have seen that our simulation method is reasonably good,let us look how one max-stable process looks like.
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Figure 4.2: In the left �gure, we plotted in black one max-stable processand in light gray max
{

0, Yi(·)
√

2π/ξ
}, where Y (·) is a simulation by circularembedding method of a Gaussian random �eld with spherical correlationfunction at 500 locations. In the right �gure we show the evolution of 3

√
2π

∑k
i=1 ξiwith k from 1 to m = 29.In Figure 4.2 we represented in the left �gure one max-stable process(black) and plotted max

{

0, Yi(·)
√

2π/ξ
} (light gray), where Y (·) is a simula-tion by circular embedding method of a Gaussian random �eld with sphericalcorrelation function at 500 locations. The right �gure shows the evolutionof 3

√
2π

∑k
i=1

ξi

with k from 1 to m = 29, since 29 simulations of one Gaussianrandom �eld were needed to obtain this max-stable process. We see on theright Figure that the lower limit for the max-stable process quickly getspretty small and that is why we can be sure that this method works andstops with relatively few iterations.
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Chapter 5Conclusion
In conclusion we could simulate a max-stable process with help of the circularembedding mehtod.In Chapter 2, we de�ned random �elds and the properties of stationarityand isotropy. Then we discussed conditions for positive semide�nitness. Weended by giving some examples of valid correlation functions for isotropicand stationary Gaussian random �elds.In Chapter 3, we presented some methods for simulating stationary andisotropic Gaussian random �elds with known correlation functions, at givenlocations in R. We �rst gave two direct methods based on the Choleskyfactorization and the Singular value decomposition respectively. They weregood, but their computational time was sensibly increasing as the numberof locations increased. Then we proposed another method, the circular em-bedding method which is exact in principle for correlation functions withcompact support. We also gave an approximation procedure for the othercorrelation functions. This method was doing good and its only restrictionwas that the locations had to be on a regular grid. All our methods had thedrawback that they had di�culties with too small distances. We ended thischapter by a comparison of the computation time needed by the methodsdepending on the number of locations and could con�rm that the circularembedding method is fast.Finally, in Chapter 4, we introduced Poisson point processes and theway one can simulate them. Then we described max-stable processes andcame to a simulation procedure for a max-stable process according to theSchlather model, which is based on a simulation of a Gaussian random �eldand a Poisson process. So we could simulate a max-stable process with helpof the circular embedding method. We saw that the simulation procedureworks well but has the same drawback as the circular embedding method.We ended by presenting a max-stable process simulated by the procedure wesuggested and comment on why this procedure was working.46
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