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Abstract

Theory of random fields or random processes is presented with an empha-
sis on the possible choices of correlation functions. Then two methods for
generating Gaussian random fields in R? are presented. The first method
is a direct one but does not work for a too large number of locations. The
second one is called the circular embedding method, works with large num-
ber of locations and had been introduced independently by Wood and Chan
[1994] and Dietrich and Newsam [1993]. It is exact in principle for correlation
functions with compact support and an approximation method is given oth-
erwise. Those methods have been implemented in R and validated by means
of variogram comparisons. Finally Max-stable processes are introduced, the
simulation procedure from Schlather’s model is presented and max-stable
process is simulated with help of the circular embedding method.
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CHAPTER 1

Introduction

In geostatistics, the data consist on finite samples of measured values at
different locations in the space. It is wished to find a model that is valid in
the space. Thus, we aim to have method to simulate random fields. In this
report, we will focus on Gaussian random fields, that have nice properties
and are often used in practice. In a second time, we will focus on max-
stable processes, which are limiting processes and are used in the modelling
of extremes.

We will present in Chapter 2 the mathematical definitions of random
fields or random processes. We will give some nice properties of random
fields which are stationarity and isotropy. Since random fields and especially
Gaussian random fields are mainly determined by their correlation functions,
that have to be positive semidefinite functions, we will discuss some condi-
tions for a function to be positive semidefinite. Then we will expose some
examples of valid correlation functions for isotropic and stationary Gaussian
random fields.

In Chapter 3, we will present two methods for generating stationary and
isotropic Gaussian random fields with known correlation functions, at given
locations in R. The first methods we will propose are direct methods. They
are simple and exact, but have the drawback that they are strongly depen-
dent of the number of locations and even not defined when this number is too
large. Indeed they are based on the Cholesky factorization and the Singular
value decomposition respectively, the computational time of which increases
sensibly as the number of locations increases. Thus we will propose a sec-
ond method which is less sensible to the number of locations. This second
method is called the circular embedding method. It had been introduced
independently by Wood and Chan [1994] and Dietrich and Newsam [1993].
It is exact in principle for correlation functions with compact support and
Wood and Chan [1994] give an approximation procedure for the other cor-
relation functions. The only restriction of this method is that the locations



have to be on a regular grid. This method is based on the idea that the cor-
relation matrix is Toepliz and that we can embed this matrix in a bigger one
which is circulant. Then nice properties of the circulant matrices are used
to generate a Gaussian random field, as for example that the eigenvalues of
a circulant matrix can be obtainned by a fast Fourier transform on the first
row of the matrix. For both methods we will give the algorithm that were
implemented in R. We will also describe the approximation procedure for
the circular embedding method.

We will use those methods to simulate Gaussian random fields at given
locations with different correlation functions. We will validate our simulation
by means of variogram comparisons. We will conclude our third chapter on
Gaussian random fields simulation by a comparison of the computation time
needed by the methods depending on the number of locations.

Finally, in Chapter 4, we will introduce max-stable processes. We will
first present a short review of Poisson point processes and the way one can
simulate such processes. Then we will present the basic ideas behind max-
stable processes and come to a simulation procedure. The procedure we will
present will be the simulation procedure for a max-stable process according
to the Schlather model, which is based on a simulation of a Gaussian random
field and a Poisson process. Finally, we will simulate a max-stable process
with help of the circular embedding method and validate our results by means
of the FF—madogram. This is a generalisation of the variogram, that applies
also when we have infinite means and variances. We will finally present a
max-stable process simulated by the procedure we suggested and comment
on this procedure.



CHAPTER 2

(General definitions

2.1 Random Fields

In geostatistics one of the basic tools to model a problem is a random field.

Definition 2.1 (Random field).

Given a parameter set 7' and a probability space (2, F,P), we define a
random field Y (t,w) as a real valued function which is measurable on 2 for
every fixed t € T.

We will assume for the following that 7' = R¢ with d > 1, that is we con-
sider the d-dimensional Euclidean space. We will use the abuse of notation
Y (t) instead of writing Y (t,w). In this context, a random field Y(-) on R?
is seen as a function whose values are random variables for any t in R

A particular case of random fields, which will be considered all along this
report are Gaussian random fields. They are interesting since many natural
phenomena can be modelled by a Gaussian field. For example soil data or
surface elevations may be modelled by a Gaussian random fields, e.g. see
[Diggle and Ribeiro Jr., 2007, pages 1 to 15].

Definition 2.2 (Gaussian random field).

A random field V() in R? is called a Gaussian random field if the joint dis-
tributions of Y = {Y(x1),...,Y (xx)} are multivariate normal distributions
for any choice of k and xq,...,xx € R

Analogously to the multivariate normal distributions, a Gaussian random
field is completely specified by its expectations p(x), see Definition (2.3),
its variances 02(x) = Var{Y(x)}, see Definition (2.5) and its correlation
function p(u) = Corr{Y (x),Y (y)} with v = |[|x — y||, see Definition (2.6),
which has to be positive semidefinite to ensure the existence of all finite-
dimensional distributions.



2.2 Expectation and Covariances

We now will recall briefly the definitions of expectation and correlation since
they are of crucial importance for Gaussian random fields.

Definition 2.3 (Expectation).

The ezxpectation of a random field is defined as

H60 =BV (0] = | yhro»)iy.

We will often assume the expectation being equal to 0, since for any
random field it only means a translation, in the sense that

Y*(x) = Y(x) - p(x), xeRY,

where Y*(-) is a Gaussian random field with null expectation and Y (-) has
expectation pu.

Definition 2.4 (Covariance).
In R?, the covariance is defined as follows

Cov{Y(x),Y(y)} =E[Y(x)Y (y)] — pn(x)u(y)
/ / XY [y (x),y (y) (X, y)dxdy — p(x)u(y).
RrR2 JR2

The diagonal elements of the covariance matrix are called the variances.

Definition 2.5 (Variance).
The variance is defined as the number

0?(x) = Var {Y'(x)} = Cov {Y(x),Y (x)}.

Finally we need to introduce the correlation which is a ratio of the covari-
ance and the standard deviations which are the square root of the variances.

Definition 2.6 (Correlation).
We denote the correlation by p and it is defined as

Cov{Y (%), Y (y)}
o(x)o(y)

When we say that a random field Y'(-) on R? is of second order, we mean
that it has finite expectation and variance. In that case, when Y(-) is of
second order, we can write the covariance as follows

Cov{Y(x),Y(y)} = E{Y (%) - E[Y (x)]JHY (y) - E[Y ()]}

p(x,y) = Corr {Y(x),Y(y)} =




2.3 Stationarity

Let us now look at two invariance properties of random fields that can ease
the computations. The first one that we will consider is the stationarity,
which concerns the invariance on translations.

Definition 2.7 (Stationarity in the wide sense).

Let Y(-) be a random field of second order on RY, thus E[Y(x)] < oo and
Var {Y'(x)} < oo for any x € RY. We call Y (-) stationary (in the wide sense)
if its expectation is constant on R? and its correlation function is translation
invariant, that is

px)=p and p(x,y) =p(x+h,y+h), foralxyheR%.

It follows from the definition that on a stationary random field, we have
that p(x,y) = p(x —y,0) and therefore we can define, for any x,y € R?
such that h = x — y, the correlation function as

p(h) = p(x,y).
When Y () is stationary the variance is constant, indeed

Var {Y (x)} = Cov{Y(x),Y (y)}
=Cov{Y(x+h),Y(x+h)} =Var{Y(x+h)}.

Therefore the following relation holds

Cov{Y(x),Y(y)} =0? p(h), whereh=x—y.

2.4 Isotropy

We will now consider the second invariance property of random fields, isotropy.
In the same sense as stationarity is invariance to translations, isotropy is in-
variance to rotations.

Definition 2.8 (Isotropic in the wide sense).
We say that a random field Y'(-) is isotropic (in the wide sense) if

E[Y(Ax)] =E[Y(x)] and p(Ax, Ay) = p(x,y),

for all x,y € R? and all rotation (orthogonal) matrices A. We say that both
the expectation and the covariance function are rotation invariant.

When Y'(+) is stationary this rotation invariance condition reduces to the
condition that the correlation function only depends on the distance, that is

p(x,y) = p(h) where h =[x —y||.



Note that we gave here for stability and isotropy only the wide sense defi-
nitions, but there also exist strict sense definitions of both those properties.
Since we will consider Gaussian random fields, it is sufficient to know the
wide sense definitions. Indeed, in the case of Gaussian random fields, the
strong sense and the wide sense definitions coincide, see [Vanmarcke, 1983,
Chapter 2| for details.

2.5 Positive semi-definiteness of functions

Let us introduce the notion of positive semidefiniteness which has a relation
with the covariance functions on stationary random fields as Theorem (2.1)
says.

Definition 2.9 (Positive semidefiniteness).
A function ¢ on R? is said to be positive semidefinite if

n n
0< Y > ara; oty —t;),

k=1 j=1

for any choice of (ty,...,t,) and (ay,...,a,) with t; € R? and a, € R and
for all n € N.

Let us now present a theorem that links positive semidefinite functions
and stationary random fields.

Theorem 2.1. [Abrahamsen, 1997]
The class of positive semidefinite functions on R? coincidence with the class
of correlation functions of stationary random fields on R<.

Indeed, we know that the correlation function of a stationary random
field (in the wide sense) must be positive semidefinite and that for any posi-
tive semidefinite correlation function, we can generate a stationary Gaussian
random field with this correlation function.

Checking the positive semi-definiteness of a function by means of Defini-
tion (2.9) is often not easy to achieve and therefore it is simpler to use some
necessary and sufficient criterion. We will present some of them, namely
Bochner’s theorem (2.2), Riesz’s theorem (2.3) and Schonberg’s theorem
(2.4). Let us first introduce the characteristic function.

Definition 2.10 (Characteristic function).
We define the characteristic function x of a random variable X on R with
probability distribution Fx, as

x(x) =E [eitX] = /emtdFX(t),
where i = v/—1.



We will now present Bochner’s theorem.

Theorem 2.2 (Bochner’s theorem).

A function p: R — C is continuous and positive semidefinite if and only if
there exists a non-negative bounded measure F such that we can write ¢ as
a characteristic function

o(z) = /RemtdF(t) =x(x) forallxz eR.

A characteristic function is positive semidefinite, so ¢(x) is positive
semidefinite. The converse is less easy to prove but for instance S. Bochner
gives the proof in Bochner [1933].

This theorem can be extended to R?, that is, a function ¢ on R? is
continuous and positive semidefinite if and only if there exists a non-negative
bounded measure F' such that we can write

p(x) = / (Tt dF(t) = y(x), for all x € RY, (2.5.1)

This integral (2.5.1) is the d-dimensional Fourier Transform of F and is
sometimes called Fourier-Stieltjes integral.

We now present Riesz’s theorem which does not require the continuity
of the function, so that together Riesz and Bochner’s theorems will give a
complete characterisation of the positive semidefinite measurable functions.

Theorem 2.3 (Riesz’s theorem).
Any positive semidefinite and measurable function @ on R¢ can be written as

Y = Yct Po,

where . and @y are positive semidefinite functions on R and . is contin-
uous whereas pg equals zero Lebesgue almost everywhere.

For the proof see the article written by Riesz [1933] or a version in english
by Bruzual and Dominguez [2001].

Notice that in practice we mostly use for g the nugget effect function
stated as

a, x=10
#olx) = al{o} () = {0, otherwise
where « is a non-negative constant. It has even been shown by Gneiting and
Sasvéri [1999] that when ¢ is a function on R? with d > 2, g can only be
the nugget effect.

In random fields of higher dimensions, we often require both stationarity
and isotropy in the wide sense. So it is quite normal to use these properties
when checking for positiveness. The following theorem requires the function
to be isotropic in the wide sense.



Theorem 2.4 (Schonberg’s theorem).

The function @ is a continuous, rotation invariant and positive semidefinite
function on R if and only if o(x) = ¢(||x||) where ¢ is the Hankel transform
of F'. Thus ¢ has the following form

d [/ 2\ (@2)/2
om=[ TE(5) Fawphare),  por e,

with J representing the first Bessel function.

A proof can be found in Schoénberg [1938, pages 815-816].
We can summarize Bochner (2.2), Riesz (2.3) and Schonberg’s (2.4) the-
orems in the following way.

Theorem 2.5.
A measurable positive semidefinite function ¢ on R? can be written as

o(x) = @o(x) +/eiz?1xjtde(t), (2.5.2)

where @q equals zero Lebesque almost everywhere and is positive semidefinite,
F' is a non-negative bounded measure. In particular, when ¢ 1is rotation
inwariant and d > 2, it has the special form

d 9 (d—2)/2
ﬂ@zahm@HAmﬂW§<ﬂﬂ> Ty tIXINAE(), (253

with a being a non-negative constant and F' a non-negative bounded measure.

The converse holds in the sense that a function on the form (2.5.2) or
(2.5.3) is up to a constant a correlation function on suitable stationary and
isotropic, random field.

A detailed proof for d = 2,3 and the general case with any d is given by
Yaglom [1987, pages 349 to 353|. From Equation (2.5.3), we can derive some
special cases of correlation functions listed by Abrahamsen [1997, page 32].
We here just specify the correlation function of an isotropic random field in
R, that is

plz) = /0 " cos(at) f(1)dt. (2.5.4)

2.6 The variogram

In application, it often appears that handling the correlation function is
inconvenient and a related function is used instead, namely the variogram.
We will use the term variogram meaning in fact centred semi-variogram.



Definition 2.11 (centred semi-variogram).
The Centred semi-variogram is a function

(% — y) = %Var (Y(x) -Y(y), xyeR

defined for an intrinsically stationary random field Y (-) on R. By intrinsi-
cally stationary, we intend that Y*(x) = Y (x + h) — Y (x) is stationary in
the wide sense for any h € RY. Thus Var {Y(x) — Y(y)} < oo, because we
can write x = y + h for some h € R?.

We are interested in simulating Gaussian random fields that are station-
ary or isotropic, thus we will restrict to the case of weakly stationary random
fields Y'(+) and therefore we will assume that

Var {Y (x)} < oc.

The variogram and the correlation function are related in the following
way.

Proposition 2.6.
Assume 7. denotes a centred semi-variogram on a stationary random field
Y (+) in the wide sense and that p is a correlation function on Y (-), then

Ye(h) = 0*{p(0) — p(h)}  for all heR"
Proof. By weak stationarity of Y'(-), we have that
Var {Y(x)} < oo, for any x € R?
and
1e(h) = 7e(x —y) = 3 Var {Y (x) = ¥ (5)}
= £ [Var {Y (x)} + Var {¥ (y)} —2Cov {Y (x), Y (y)}]

= {20%0(0) — 20%p(x — ¥)} = 0*{p(0) — plx ~ ¥}
= o> {p(0) — p(h)}.

2.7 Examples of valid correlation functions

We will here list some interesting correlation functions p of isotropic and
stationary random fields such that p(h) = p(||x — y||). We will give the
expression of the function p rescaled such that p(0) = 1, but we omit the
scale parameter.

10



Example 2.1 (Cosine).
p(h) = cos(h).

The cosine model is valid only on R and has a big importance in a theoretical
point of view since it is suggested by the real part of Bochner’s theorem (2.2).
It corresponds to the special case listed as Equation (2.5.4). But this model
1s not really helpful in practice partly because it is valid only in R.

Another model which has an importance in a theoretical point of view is
the following.

Example 2.2 (Nugget effect).
1, h=0

0, otherwise.

p(h) = 1oy(h) = {

The nugget effect model is valid for R with d € N. This model plays an
important role since it can be added to a more compler model to form a
correlation function as seen in Riesz’s theorem (2.3).

We have now seen some models that have theoretical importance, but
we are more interested in the models that are used in practice. One of those
models is the Gaussian model.

Example 2.3 (Gaussian model).
p(h) = e .

The Gaussian model is frequently used in practice and o Gaussian random
field with this model can be simulated by the spectral method according to
Schlather [1999, section 4.6.3]. But this model has some drawbacks, e.g. the
numerical instability of the covariance matrices involved in the simulations
due to their almost singularity. An other example of drawback is that this
correlation function has the theoretical property that the realisation on the
whole real line is determined by the realisation on an arbitrary small, contin-
uous interval as explained by Diggle and Ribeiro Jr. [2007, chapter 3], which
1s unrealistic for most applications.

The Gaussian model is a special case of a wider family called symmetric
stable family, namely the case with parameter v = 2.

Example 2.4 (Symmetric stable family).
p(h) = e, v €]0,2].

The symmetric stable is called so, since for any parameter v, the value at
1 is the same. As said by Diggle and Ribeiro Jr. [2007, chapter 3], this
family is comparable to another family called the Whittle-Matérn family, but
15 less flexible. It has as special cases the Gaussian model and the Exponential
famaly.

11



Let us now introduce the second special case of stable family, namely the
Exponential model, which corresponds to v = 1.

Example 2.5 (Exponential family).
p(h) = e,

The Ezponential model is also a special case of another family of correlation
functions called the Whittle-Matérn family. The interest of the Ezponential
model is that it gives fast and simple simulations on the real axis due to its
nice Markov property, see [Schlather, 1999, section 4.4].

Let us define the Whittle-Matérn family, which with v = 1/2 becomes
the Exponential model and when v — oo is the Gaussian model.

Example 2.6 (Whittle-Matérn family).

1—v
p(h) = i(y) WK, (h), w0,

where K, stands for the modified Bessel function of order v of the second
kind. The Whittle-Matérn family is also called in different literatures the
Basset model or the Modified Bessel family. This family is much used in
practice, since the degree of differentiability of the underlying random field is
to be specified by the choice of v. For instance, p is 2d times differentiable
when v = @. Since it 1s not very realistic to have a surface that is more
than twice differentiable, one will prefer to choose v < % For more details
about this family see [Matérn, 1960, page 17].

We will now give a family of models that is related to the Whittle-Matérn
in the sense that it also uses some Bessel functions.

Example 2.7 (Bessel family).

po(h) = 2T+ D I (h), v > %,
where J, denotes o first kind Bessel function of order v and d is the di-
mension of RY. The Bessel family is an example of oscillating correlation
functions. These oscillating correlation functions are parametrized by their
period v = 27 /w, where w is the angular frequency. The particular case ps3
is called the Hole effect that is

pa(h) = %sm(h).

Let us now define a family which is said to behave poorly for the circular
embedding method when the dimension d is high.

12



Example 2.8 (Cauchy family).
p(h)y=(1+hr*)"", v>0.

The Cauchy family is positive semidefinite by construction as explained in
Schlather [1999]. We note that the special case v = 1 is called rational
quadratic model.

Finally we give a model that is behaving well in the simulation of Gaus-
sian random field by circular embedding method since it has compact sup-
port.

Example 2.9 (Spherical family).

plh) = A /R Linsry Lyegerydta -~ dtn

In this family p(h) is the volume of the intersection of two d-dimensional
spheres of radius v separated by a distance h, whose particular case in di-
mension d = 3 1s given by

3 1
p3(h) = (1 —ght §h3> Lio<n<yy-

This case with d = 3 is practically the most used case. Often it is implicitly
meant d = 3, when we say spherical family. The spherical family is inter-
esting for simulation of Gaussian random fields since the have finite range,
that is p(h) = 0 sufficiently large h.

For more example we refer to Schlather [1999], Abrahamsen [1997] or
Gneiting [1997], but we consider the previous list sufficient for this report.

Finally we notice that we can change the range of a correlation function
by redefining p*(h) = p(g) where we have that the range ¢ > 0. A linear
combination of two correlation function with non-negative scalars is also a
correlation function. Indeed if Y7 (-) and Y3(-) are independent random fields
with correlation function p; and py respectively and if ay, as > 0, then
Va1Yi(:) + y/a2Ya(+) has the correlation function p = ajp; + azpa. We can
also introduce a nugget effect, which corresponds to a discontinuity at A = 0.
Finally Theorem (2.5) suggests to generalize in the sense that any covariance
function can be written as

Cov*(h) = 721 gy (h) + Cov (g) [1—103(h)] .

Thus in terms of correlation function, normalized to 1 at h = 0, it gives

o2
p*(h) = Loy (n) + prnpTy (%) [1- 103 (R)],

where the scale or range parameter ¢ is a positive constant, the nugget
parameter 72 is a constant, o2 is a constant corresponding to a variance and
p is a correlation function.

13



CHAPTER 3

The circular embedding method

We aim to simulate a Gaussian random field Y'(-) in R? at a set of n locations
x; € R%, with mean vector u and correlation function p. With n not too large
we can use direct methods such as Cholesky factorization or singular value
decomposition, but as n gets too large, their computation time increases too
much. Therefore we need to find other methods when n is large. The one
we will present in this chapter is called circular embedding method.

We will first consider the simulation of a Gaussian random field by direct
methods. We will consider random fields in R since it is easier to compute
and less sensitive to the size of n.

3.1 Simulation by direct approach

As said before, we aim to simulate a Gaussian random field Y () in R at a
set of n locations x; € R, with mean vector p and correlation function p. We
assume without loss of generality that p = 0; else Y*(-) = Y (-) — p, where
Y*(-) is a Gaussian Random Field with mean 0 and correlation function p.

In order to simulate Y'(-), we use the fact that Y = {Y (z1),...,Y(zx)}
has a multivariate Gaussian distribution with mean 0 and covariance matrix
> and thus

y L2y

where N is vector of n independent N (0,1) and ¥ = $/2(2/2)T, Indeed
Y has a multivariate Gaussian distribution and we have that

E [21/21\[] —E[Y]
and
Cov (21/2N, 21/2N) —E [(21/2N)(21/2N)T] - [21/2NNT(21/2)T]
_ yl/2g [NNT] (22T = $1/2, (5127
=222VHT =5 = Cov (V,Y).

14



Thus Y £ $1/2N.

There are two direct ways of getting the matrix $1/2 which are a Cholesky
factorisation or a singular value decomposition. Both of these methods have
the drawback that they need a long computation time, so they should not
be applied to large n.

The Cholesky factorization works only for positive semidefinite matrices and
returns a lower triangular matrix Q such that ¥ = QQ7. Since the co-
variance matrix is by definition positive semidefinite, this method can be
applied. Therefore, we can use X1/2 = Q for simulating Y.

The singular value decomposition (SVD) works for any matrix and returns
two unitary matrices U and V and a vector A such that ¥ = UAV™* with A
being the diagonal matrix formed with the elements in A and V* being the
conjugate transpose of V. The elements in A are the singular values of 3,
given in a decreasing order. This decomposition method ensures that A > 0
and when the covariance matrix ¥ is positive semidefinite, it strengthens this
to A > 0. As we work with real numbers we have that the conjugate trans-
pose is equal to the transpose, thus we have that /2 = UAY2VT. Moreover
symmetry of ¥ implies that U = V. So we can use /2 = UAY2UT for the
simulation of Y. Indeed we have that

v 21/2(21/2)T _ UA1/2VT(UA1/2VT)T — UAV2y Ty A2y T
= UANAV2UT = UAUT = UAVT
_ (21/2)T21/2 _ (UAl/QVT)TUAl/QVT — VAT A2y T
=VAPAPYT = VAVT =UAVT.
We want to generate Y (-) a Gaussian random field given n locations, the
mean j, the variance o2 and the correlation function p. We assume the
Gaussian random field being stationary, that is ¢ and o2 are constant. Since
we are given the correlation function p, we can first compute the covariance

matrix >, corresponding to the multivariate Gaussian distribution of the
random field at locations x;. We know that with h;; = ||z; — ]|,

Cov {Y(;),Y (2)} = o?p(hi;); thus ¥ = %D,
where D is the correlation matrix. We define the correlation matrix as
D = (dij)ij=1,..n = p(|zi = zj|)ij=1,..n. = P(hij)ij=1,..n;

where x1,...,x, are the given locations. We finally derived the following
method to generate Y(-) at locations x;.

The algorithm for direct methods in R

1. Define the vector x = (z1,...,x,) of given location of size n.

15



2. Compute the covariance matrix ¥ at the locations x; by calculating

3. Generate a vector N of n independent N(0, 1) random variables.

4. If the selected method is SVD,
Apply the SVD method to get U and A.
Define $1/2 = UAY2UT.
Else,
Apply the Cholesky factorization to get Q.
Define /2 = Q.

5. Return Y = pu + X1/2N.

3.1.1 Validation of the method

Theoretically our code should work, but we should find a way to attest that
in practice it also does.

We will validate our code by means of the variogram, that is by comparing
the empirical variogram and the theoretical variogram. Let us first define
the empirical variogram.

Definition 3.1 (Empirical variogram).
For a random field Y (-), we call empirical variogram the quantity

5 (R) = <) — Vix) 12

where x; are the location parameters at which the Gaussian random field
Y (-) will be evaluated and N(h) = {(4,7) | ||xi — x;|| = h}.

The empirical variogram, given by 4.(h) = m 2onm | Y (%) =Y (x;) 2,
is the estimated variogram of Y(-). It is an unbiased estimate for the true
variogram 7., (h), where h = ||x; — x;]|.

We have seen that the variogram, see Definition (2.11), is defined as

Ye(h) = *{p(0) — p(h)}.

So to compute the theoretical variogram, we only need to specify the co-
variance function, that is the type of correlation function and the chosen
parameters, then the variogram is known.
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Table 3.1: Correlation families and parameters used for the simulations.

Parameter » Scale ¢ Nugget 7°

Exponential 1 0
Whittle-Matérn 3/2 1 0
Cauchy 1/2 1 0
Stable 3/2 1 0

3.1.2 Presentation of the results

We will now present the results obtainned by simulating Gaussian random
fields with the correlation families and parameters presented in Table 3.1.

On each graphic, we have plotted the true variogram (solid lines) and the
box plot of the empirical variograms for the Gaussian random field generated
by Cholesky factorization or singular value decomposition. The left figure
(red) corresponds to the Gaussian random field simulated with a Cholesky
factorization method and the other one (blue) corresponds to the singular
value decomposition method. We plotted the boxplots in ten equidistant
intervals. In order to obtain the boxplots, we used a Monte Carlo experience
with 500 repetitions of the simulation of a Gaussian random fields, where
one simulation includes 50 replications of the Gaussian random field with
the same parameters, correlation function and the same 100 locations. On
each boxplot we added a cross (purple) representing the mean value.
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Figure 3.1: Variogram comparison for a Gaussian random field with cor-
relation following an exponential family and simulated by Cholesky factor-
ization on the left and singular value decomposition on the right. We used
a Monte Carlo experience with 500 repetitions of the simulation, where one
simulation includes 50 replications of the Gaussian random field at 100 Io-
cations. Crosses represent the mean values.
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In Figure 3.1, we see that the average empirical variograms for the direct
methods are really close to the true variogram for both direct simulation
methods, especially when the distances are small, i.e. h < 3. Moreover
the true variogram goes through the mean on the boxplot of the empirical
variogram for any h < 9 for the Singular value decomposition method except
for h = 1. For the Cholesky factorization method, we see that the true
variogram is slightly to the right of the mean at h = 1, is again good for h > 5.
We globally see that the empirical variogram overestimates the theoretical
variogram, but the theoretical curve still remains in the confidence intervals
of the boxplots.
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Figure 3.2: Variogram comparison for a Gaussian random field with a
Whittle-Matérn family function with v = 1.5 as correlation simulated by
direct methods, Cholesky factorization on the left and singular value decom-
position on the right. We used a Monte Carlo experience with 500 repetitions
of the simulation, where one simulation includes 50 replications of the Gaus-
sian random field at 100 locations. The crosses represent the mean values.

In Figure 3.2, we see that, as for the exponential family, the two empir-
ical variograms are extremely close to the true variogram. Indeed for the
Cholesky factorization method the theoretical variogram goes quite always
through the mean values of the empirical variograms. For the singular value
decomposition method, the variograms are also close to each other, especially
for small distances, i.e. h < 8. We again see that for both methods the the-
oretical value at h = 1 is overestimated by the empirical variogram. We see
that this time with larger distances the theoretical variogram is underesti-
mated by the empirical variogram, but remains in the confidence intervals
of the boxplots.

In Figure 3.3, we see again that empirical variograms are pretty good
estimates of the theoretical variogram. We remark that both the Cholesky
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Figure 3.3: Variogram comparison for a Gaussian random field having a
Cauchy family with parameter v = 0.5 as correlation function, simulated
by direct methods. The left figure corresponds to Cholesky factorization
method and the right one to singular value decomposition method. We
used a Monte Carlo experience with 500 repetitions of the simulation, where
one simulation includes 50 replications of the Gaussian random field at 100
locations. The crosses represent the mean values.

factorization method and the Singular value decomposition method seem
to slightly underestimate the theoretical variogram for high values h > 8
and h > 6 respectively. They also overestimate the theoretical variogram at
h = 1. We see that the Cholesky factorization method seems to lead to a
closer estimate of the true variogram than the singular value decomposition
method. Indeed there are more mean value points crossed by the theoretical
variogram when we use Cholesky factorisation method than with the singular
value decomposition method. We have that the empirical variograms remain
in the confidence intervals of the boxplots.

In Figure 3.4, we see that both empirical variograms are really close to the
theoretical variogram. Indeed we remark that the true variogram (in blue)
passes through all mean values of the boxplots of the empirical variogram
for both the Cholesky factorization and the Singular value decomposition
method except at h = 1. At that point h = 1 we have that the empirical
variogram is overestimating the theoretical one.
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Figure 3.4: Variogram comparison for a Gaussian random field with corre-
lation function following a stable family with parameter v = 1.5 simulated
by direct methods, left figure by Cholesky factorization and right figure by
singular value decomposition. We used a Monte Carlo experience with 500
repetitions of the simulation, where one simulation includes 50 replications
of the Gaussian random field at 100 locations. The crosses represent the
mean values.

To conclude we have seen firstly that both methods globally give average
empirical variograms that are well estimating the theoretical variogram for
all those choices of correlation functions, but we have difficulties to get the
right slope at the origin. Indeed we notice that the true variogram is not
passing through the mean values of the boxplots at h = 1, point at which the
empirical variogram tends to overestimate slightly the theoretical variogram.
We remark that the best estimate of the theoretical variogram is achieved
when the correlation function is a stable family with parameter v = 1.5 and
that the Cauchy model with v = 0.5 leads to worse estimations than the
other correlation function families.

3.2 Presentation of the circular embedding method

Now that we have seen how to simulate a Gaussian random field by direct
methods at n locations, where n is not too large, we want to present another
method that can deal with larger n, namely the circular embedding method.
We will first describe this method theoretically and then explain how we
can implement it in R. We saw that we had really good convergence with
direct method and would like to keep this property. We will in fact, with
the circular embedding method, have a similar property called exactness in
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principle. Let us though introduce it.

Definition 3.2 (Exact in principle).
A realization that would have exactly the required distribution if

e the computer arithmetic had no inaccurencies;

e genuinely independent and random numbers could be used instead of
creating pseudo-random numbers,

is said to be exact in principle.

The circular embedding method is exact in principle for correlation func-
tions that have compact support. This method was developed independently
by Dietrich and Newsam [1993] and Wood and Chan [1994] and published
quite simultaneously. This method is fast and the idea behind it is to embed
the covariance matrix in a circulant matrix and use fast Fourier transforms
to treat it. The major restriction of this method is that the location points
have to be points on a regular grid. Wood and Chan [1994] showed that the
algorithm of the circular embedding method is always exact in principle for
the correlation functions that have compact support. Wood and Chan [1994]
also propose an approximation procedure otherwise.

3.2.1 The circular embedding method

First, we suggest to have a look at Chan [1999] for an overview of the circular
embedding method and for more details on the results we give in this section,
we refer to Wood and Chan [1994].

As previously with the direct methods, we aim to simulate a Gaussian
Random Field Y (-) in R? at a set of n locations x;, this time restricted on
a regular grid in R%, with mean vector p and correlation function p. We
will restrict ourself to d = 1 that is to a Gaussian random field in R to
get simpler calculations. We will choose the locations x; such that they are
equidistant in [0,1], that is x; = 0, %, ol "T_l We recall that u and p define
Y () uniquely, see Definition (2.2). We assume without loss of generality that
u = 0. We will finally assume that the Gaussian random field is stationary
and isotropic. Therefore we have that

p(0)  p(5) - o p(2h)
p()  p0) e p(%2)
2. : : : : :

p(B2) p(2) - p(3)  p
where o2 is the variance, which is constant by isotropy assumption, and p

is the correlation function. We notice that the matrix 3 is Toeplitz, see
Definition (3.3).



Definition 3.3 (Toeplitz).
We say that a matrix T is Toeplitz or diagonal-constant if each descending
diagonal of T" from left to right is constant.

We will now define a special case of Toeplitz matrix, namely a circulant
matrix.

Definition 3.4 (Circulant matrix).

We say that a matrix C' is circulant if C is Toeplitz and each row vector
(¢jk)}—; is a permutation from one element to the right of the preceding row
vector, that is

Cik=Ci—1k—1 and ¢ =c¢j_1n, 2<k<n, 2<j<n.

We remark that a circulant matrix C' is fully specified by one vector c,
for example the first column of C'. Indeed, the remainning columns of C' are
each cyclic permutation of the vector c. These matrices have the following
nice property.

Proposition 3.1. [Golub and Van Loan, 1996, §4.7.7|

A circulant matriz C is such that its eigenvalues are given by applying a fast
Fourier transform (FFT) on its first column ¢ and the eigenvectors of C' do
not depend on C.

Let us now recall the fact that
Y ()L sl/2N,

where N is vector of n independent N (0, 1) and n the number of locations.
The key of the circulant embedding method is that instead of using a direct
method to find X'/2, we embed ¥ in a bigger matrix C' of size m x m which
is circulant, with m defined as

m=2>2(n—-1), geN.

We choose m in such a way since the radix-2 Cooley-Tukey FFT algorithm,
that deals with matrices of size m x m with m being a power of 2, is known to
compute the FFT with only O {m loga(m)} operations. This is faster than
classical FFT algorithms, which run in O {m log(m)}. For more details, see
[Cooley and Tukey, 1965]. The value of m must also be chosen such that
(' is positive semidefinite. If the correlation function has compact support,
then the existence of a m such that C' is positive definite is ensured. This
is a consequence of the Theorem (3.2), which as been proved by Wood and
Chan [1994]. Indeed if p has a compact support it follows that

Y lp(h) =0? Y |Cov(h)| < oo,
h h
which is a requirement in the following theorem.
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Theorem 3.2. Wood and Chan [1994]
Suppose that

) | Cov(h)| < oo

h
and the spectral density

= (2m)™¢ 1) xp (—2mijT
g(t) = (27) JgZ:d Cov <n exp (—2mij't)
is strictly positive for all t € [0, 1]d. Then C' in positive definite.
In practice, we search for the smallest integer g such that
29=m>2(n-1)

and check for the positive semi-definiteness of C. If C is not positive semidef-
inite, we increase g by one and repeat until C' is positive semidefinite. This
matrix C' is defined as

c 1 ot Gt
Cm—-1 C0 " Cm—2
C =
cl C2 .. CO
with ‘
S Kot Oy 0<j<m,
! o?p(m=L) ZF<j<m-—1

Note that since C' is circulant, it is uniquely defined by its first column ¢ and
since C is symmetric we have that c¢ is also the first row of C. Proposition
(3.1) implies that the eigenvalues of C' are obtainned by applying a fast
Fourier transform on ¢. We remark that the top left corner of C' is equal to
3} by the definition of C. We will now state another property of circulant
matrices, namely.

Proposition 3.3. [Brockwell and Davis, 1991, §4.5]

For any circulant and symmetric matriz C, there exists an unitary matric
Q such that C = QAQ* and CY/2 = QAY2Q*, where A is a diagonal ma-
trixz with the eigenvalues of C' down the diagonal and where Q* stands for
the transpose conjugate of Q). Moreover Q) is such that its columns are the
eigenvector of C.

Let us finally state a property of the symmetric circulant matrices that
is a consequence of Proposition (3.3).

Proposition 3.4. [Wood and Chan, 1994]
For any circulant and symmetric matriz C, written as C = QAQ*, we can
compute Qu by applying a Fast Fourier Transform to u, for any vector u.
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In particular, this is true for u = AY/2Q*N, where N is a vector of m
independent N(0,1). Thus we can generate the Gaussian random field Y(-)

such that Y(-) < C'2N, given by
d *
Y () = QAY2Q*N,

where N is a vector of m independent N(0,1). Finally, if we consider only
the n first elements of Y'(+) 4 QAY2Q* N, we get

Y() £ 2N,

where N is this time a vector of n independent N(0,1). Thus we have that
Y () is a Gaussian random field with mean p = 0 and correlation function p
evaluated at the n locations z; as aimed.

So in order to simulate a Gaussian random field Y(-) in R, it remains
to compute QAY2Q*N, where N is a vector of m independent N(0,1), as
efficiently as possible. By Proposition (3.4), we know that only AY2Q*N
needs to be computed ingeniously. We also have that A2 can easily be
calculated, since it is given by taking the square root of the elements in A,
which is obtainned by a FFT of the first row of C' by Proposition (3.1). Thus,
it remains to simulate Q*N. In order to have the best efficiency, we want to
simulate Q* N directly.

Proposition 3.5. [Wood and Chan, 1994]
We can write Q*N as
QN =8 +iT,

where S and T are vectors of m independent N(0,1). Moreover S and T are
independent and their covariances are known at the location points x;.

We finally derived the following method to generate Y(-) when the cor-
relation function has compact support.
The algorithm for the circular embedding method in R

1. Find the smallest integer g such that m =29 > 2(n —1).

2. Compute ¢, the first row of C, the symmetric circulant matrix ob-
tainned by embedding ¥, which is given by

L Lot 0sj<E,
! o?p(T=L) F<j<m-—1

3. Compute X the vector of eigenvalues of C' by a fast Fourier transform
on c.



4. If X is negative,
Set g «— g+ 1 and m « 29,
Go back to 2.
Else,
Calculate \/2.

5. Generate S and T' two independent N(0,1).

6. Generate S = (51,...,8,,/2) and T = (T1,...,T,,/3) two independent
random vectors of m/2 independent N(0,1).

7. Generate u = AY/2Q*N by calculating

u(0) = \/%S, u(m/2) = MT,

u<j>=\/;—;<sj +iV;) and u(m —j) =u(j), 1 <j <m/2.

8. Apply a fast Fourier transform on u = AY2Q*N to get Qu, which is
equal in distribution to Y'(-) and redefine Y(-) as the n first elements
of Y().

9. Return Y(+).

3.2.2 Approximate version

Suppose we have to simulate a Gaussian random field with a correlation
function that does not have compact support. Thus the algorithm may not
work since the existence of a m such that the circulant matrix C' is positive
definite is not ensured. We want to find a way to adapt the method for those
cases even if we will loose the exactness in principle property. First we need
to detect those "failure" cases. A simple way to do this is to put a higher
bound on m as well. If the higher bound is reached and C'is still not positive
definite we say that we have a "failure" case.

The approximate circulant embedding approach suggests to consider only
the part of C that corresponds to its positive eigenvalue values, with given
m. Let us fix m to the smallest value such that m = 29 > 2(n — 1) with ¢
being an integer, that is

i — 9l logy(n—1)]

Then the corresponding matrix C' is circulant, so it can be decomposed as

C=QAQ =Q(A, —A)Q =0y —C_,
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where

Ay = diag { max(0, A;),Vj} and
A_ = diag { —min(0, \;),V5},

with \; being the 4 eigenvalue of C. Then we use instead of C' the sym-
metric, positive semi-definite approximate embedding matrix 0?C., with
suitable choice of p # 0. Wood and Chan [1994] suggest two choices of p,

which are 12
~tr(A) [ tr(A)
T 92‘{tr<A+> |

They justify those choices by the fact that go leads to the correct one-
dimensional marginal distribution and g; is the minimizer to the lower bound
of the random error incurred by setting the negative eigenvalues of C' to zero.
Thus we derive an approximate method with the following changes

1. Find the smallest integer g such that m = 29 > 2(n — 1) and initialize
k=1.
4. If X is negative and k < 6,
Set g — g+ 1 and m «— 29,
Set k— k+1 and
Go back to 2.
Else if A is non-negative,
Calculate \/2.
Else
Set m = 21+ logz2(n=1)T,
Run Step 2.
tr(A)

Compute X by a fast Fourier transform on A€ with A being

the eigenvalues of C' obtainned by a fast Fourier transform on c,
A = diag{);,Vj} and A} = diag { max(0, \;),Vj}.
Set A/Z — (\)1/2.

3.2.3 Validation of the algorithm and presentation of the re-
sults

Theoretically our code should work, but we should find a way to attest that
in practice it also does. As we did for the direct methods, we will validate
our code by means of the variograms, that is by comparing the empirical
variogram, see Definition (3.1), and the theoretical variogram, see Definition
(2.11).
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We will now present the results we obtainned by simulating Gaussian
random fields with different correlation functions. We will first consider
the spherical correlation family, which has a compact support and should
behave pretty well with the circulant embedding method in the sense that
the method is ensured to be exact in principle. We will then consider some
examples we saw by direct simulation to compare both methods.

On each graphic, we have plotted the true variogram (solid line) and the
boxplot of the empirical variograms for the Gaussian random field generated
by the circulant embedding method. The boxplots are taken in ten equidis-
tant intervals of the empirical variogram for 500 simulations of the Gaussian
random field with the circular embedding method, where one simulation in-
cludes 50 replications of the random field on a regular grid at 500 locations.
On each boxplot we added a cross representing the mean value.

In Figure 3.5, we see that the convergence of the circular embedding
method for spherical correlation family is pretty good. Indeed the true var-
iogram, that is the red curve, remains in the confidence intervals of the
boxplots. We see that the empirical variogram is in average slightly overes-
timating the true variogram for h > 3. For small distances, that is h < 2 we
have a perfect estimation.

¥(h)

Distance (h)

Figure 3.5: Variogram comparison for a Gaussian random field having a
spherical family as correlation function, simulated by circular embedding
methods on 500 locations on the regular grid [0,1]. We used a Monte Carlo
experience with 500 repetitions of the simulation, where one simulation in-
cludes 50 replications of the Gaussian random field for the boxplots of the
empirical variogram. Crosses represent the mean values.

We will now present the variogram comparisons for the same correlation

function families as with direct methods whose parameters can be seen in
Table 3.2.
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Table 3.2: Correlation families and parameters used for the simulations.

p o Parameter v Scale ¢ Nugget 72
Stable 3 2 3/2 1 0
Exponential 3 2 1 0
Whittle-Matérn 3 2 3/2 1 0
Cauchy 3 2 1/2 1 0

But now the Gaussian random field will be generated by the circulant
embedding method and we will consider 500 locations on a regular grid on
[0,1]. The boxplots of the empirical variograms are done over 500 simulations
of the same Gaussian random field replicated 50 times.

In Figure 3.6, we see that the average empirical variogram of the Gaussian
random field is overestimating the true variogram. We see that the shape
of the true variogram is quite similar to the one of the empirical variogram,
which suggests a shifting of the true variogram from around 0.1 to the top.
Indeed we think there is some bias. However we see that the method is
not bad since the theoretical variogram globally remains in the confidence
intervals of the boxplots, except for low values of h.
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Figure 3.6: Variogram comparison for a Gaussian random field having a
stable family with parameter v = 1.5 as correlation function, simulated by
circulant embedding methods on 500 locations on the regular grid [0,1]. We
used a Monte Carlo experience with 500 repetitions of the simulation, where
one simulation includes 50 replications of the Gaussian random field for the
boxplots of the empirical variogram. Crosses represent the mean values.

We saw in Figure 3.6 that we had a slight bias, so we were interested to

know if this happens only for the choice of parameter v = 1.5 or not. We
see in Figure 3.7 that this does not only happen with a choice of parameter
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v = 1.5, but that v = 1.5 is in a sense a limiting case. Indeed we see in
Figure 3.7 on the left that with v = 1.4 we get no bias and a pretty good
estimation of the theoretical variogram by the empirical one. In Figure 3.7
on the right, we also plotted the variogram comparison when v = 2, which
corresponds to the limiting case (Gaussian model). As we mentionned in
Example 2.3, this model is known to be numerically unstable. Therefore we
can suggest an idea to explain the bias with v = 1.5. The intuition would
say that with a parameter too close to the limiting case with v = 2, we
get some numerical instability. Another explanation for this bad estimation
could be that the spherical family has not the same shape for small values,
h < 1. This could be a reason why the shape of the theoretical variogram at
the origin seems to be wrong with v = 2. This also reflects this difficulty of
our methods to have a good estimation even for small distances.

¥(h)
¥(h)
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Figure 3.7: Variogram comparison for a Gaussian random field having a
stable family with parameter v = 1 on the left and v = 2 on the right as
correlation function, simulated by circulant embedding methods on 500 loca-
tions on the regular grid [0,1]. We used a Monte Carlo experience with 500
repetitions of the simulation, where one simulation includes 50 replications
of the Gaussian random field for the boxplots of the empirical variogram.
Crosses represent the mean values.

In Figure 3.7, on the left, we see that the empirical variogram globally
is a good estimate for the true variogram. Indeed the theoretical variogram
passes quite through the mean values for large distances, i.e. h > 6. We see
that there is a tendency of the empirical variogram to overestimate the true
variogram. We have a bad estimation at h = 1, as the 95% confidence interval
of the empirical variogram does not contain the value of the theoretical
variogram.

In Figure 3.8, we see that there is a good estimation of the theoretical
variogram by the empirical variogram. Indeed the red curve, which is the
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Figure 3.8: Variogram comparison for a Gaussian random field having its
correlation following an exponential family, simulated by circulant embed-
ding methods on 500 locations on the regular grid [0,1]. We used a Monte
Carlo experience with 500 repetitions of the simulation, where one simulation
includes 50 replications of the Gaussian random field. The crosses represent
the mean values.

theoretical variogram, quite passes through the mean values. When the
theoretical variogram does not pass through the mean values of the boxplots,
the true variogram is slightly overestimated by the empirical variogram.
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Figure 3.9: Variogram comparison for a Gaussian random field with
Whittle-Matérn correlation function with parameter v = 1.5, simulated by
circulant embedding methods on 500 locations on the regular grid [0, 1]. We
used 500 repetitions of the simulation, where one simulation includes 50
replications of the random field. Crosses represent the mean values.
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In Figure 3.9, we see that the empirical variogram is slightly overesti-
mating the true variogram for large distances, i.e. h > 7, but the theoretical
variogram remains in the 95 % confidence interval of the boxplots. We also
remark that for A = 1 we do not have perfect estimation. We can therefore
say that the circular embedding method does really well for simulating a
Gaussian random field with exponential family correlation function.
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Figure 3.10: Variogram comparison for a Gaussian random field having a
Cauchy family with parameter v = 0.5 as correlation function, simulated by
circulant embedding methods on 500 locations on the regular grid [0, 1]. We
used a Monte Carlo experience with 500 repetitions of the simulation, where
one simulation includes 50 replications of the Gaussian random field for the
boxplots of the empirical variogram. The crosses represent the mean values.

In Figure 3.10, we see that the theoretical variogram remains in the
confidence interval of the boxplots, but the empirical variogram is slightly
overestimating the true variogram. For any value of h except for h > 3, we
even have that the true variogram passes through the mean values of the
boxplots of the empirical variograms. We can therefore say that the circular
embedding method does really well for simulating a Gaussian random field
with Cauchy family with parameter v = 0.5 as correlation function.

We briefly mention that similarly to the direct methods the circular em-
bedding method gives average empirical variograms that are well estimating
the theoretical variogram for any choice of correlation functions, but we have
difficulties to get the right slope at the origin, except with the spherical fam-
ily as correlation function.
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3.3 Computation time comparison

Now that we presented two different kind of methods for simulating a Gaus-
sian random field and we are interested in their computation time. Compu-
tation times for each of the methods are reported in Table 3.3.

Table 3.3: Computation time in seconds for the three methods: Cholesky
factorisation(chol), singular value decomposition (svd) and circular embed-
ding (c.e.). The times are the mean over 10 estimations with standard errors
where one observation contains 20 replications of the process.

n=>50 n=100 n=200 n=>500 n=1000
Exponential
chol 0.01(0.01) 0.01(0.01) 0.04(0.01) 0.37(0.02) 1.75(0.10)
svd  0.02(0.01) 0.05(0.00) 0.24(0.01) 2.84(0.03) 19.73(0.23)
c.e.  0.02(0.00) 0.03(0.01) 0.04(0.01) 0.08(0.00) 0.16(0.01)
Whittle-Matérn
chol 0.02(0.01) 0.06(0.01) 0.19(0.01) 1.41(0.08) 5.67(0.19)
svd  0.02(0.01) 0.08(0.01) 0.40(0.01) 3.94(0.12) 22.70(0.35)
ce.  0.01(0.01) 0.03(0.01) 0.03(0.01) 0.10(0.04) 0.17(0.02)
Cauchy
chol 0.01(0.01) 0.02(0.01) 0.06(0.01) 0.55(0.02) 2.32(0.08)
svd  0.01(0.01) 0.02(0.01) 0.06(0.00) 0.50(0.07) 2.25(0.07)
c.e.  0.01(0.01) 0.03(0.00) 0.03(0.01) 0.08(0.01) 0.15(0.01)
Stable
chol  0.00(0.00) 0.02(0.01) 0.05(0.01) 0.48(0.02) 2.02(0.07)
svd  0.00(0.01) 0.01(0.01) 0.05(0.01) 0.41(0.02) 1.98(0.07)
ce  0.01(0.01) 0.03(0.00) 0.04(0.01) 0.26(0.59) 0.16(0.03)

We see in Table 3.3 that the computation time increases when the number
of locations increases, but not every method increases the same. We see
that the increase of computation time is also depending on the correlation
function of the Gaussian random field. We notice that with low number of
locations, that is n < 50, the methods are all equivalent. We see that when
the number of locations starts to become high, the computation time of
the direct methods also become quite high, especially for the singular value
decomposition method.

To confirm this idea we tried to apply our methods for 5000 and 10’000
locations, but we did this only for the correlation function being exponential
as a matter of example. We got the following results. Already with 5000
locations it is impossible to simulate a random field with the singular value
decomposition method and it takes around 2 minutes with the Cholesky
factorisation method whereas the circular embedding method needs around
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38 seconds. With 10’000 locations, both the direct methods fail, that is we
can generate a random field only with the circular embedding method which
takes around 3.5 seconds. And finally with 50’000 it took around 7.5 seconds.
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CHAPTER 4

From Gaussian random fields to
max-stable processes

In the same way random fields are an infinite-dimensional generalisation of
multivariate distribution theory, we can view the max-stable processes as
an infinite-dimensional extension of the multivariate extreme value theory.
Those max-stable random fields are used to model for example the maximal
precipitation level at different sites of a spatial process. Smith [1990] gives
two arguments that advantage the max-stable processes based approach over
the multivariate extreme value approach for the problem of spatial rainfall
collected on a grid of points in space. The general representation of max-
stable processes is due to de Haan [1984]. We will see that max-stable
processes spectral representation and max-stable processes simulation are
highly related to Poisson point processes. Therefore, we start this chapter
by some reminders about Poisson point processes.

4.1 Poisson point processes

Point processes can be used in practice for modelling a wide range of natural
phenomenes such as earthquake epicentres, trees in a forest or population in
settlements.

Definition 4.1 (Random point process).
A random set in R? whose realisations are made up of a finite or countable
number of points is called a random point process in R?.

More simply said a point process P is a collection of points. We can then
define a random point measure P,, as

Pa(A) = 6x,(A)
j=1
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for some random n which is the number of points in a suitable set A, where
0, puts unit mass at * € A and X; represent the positions of the points.

Among the point processes there are two important ones that are locally
finite point processes. Those are the Cox processes and the Poisson point
processes. We will here focus only on Poisson point processes, for the Cox
processes we refer for example to Lantuéjoul [2002].

Definition 4.2 (Poisson point process).

Let A be an intensity function of S in [0,00) which is locally integrable
for all compact sets B C S. A Point process X on S C R? is a Poisson
point process with intensity function A if the following properties are verified,
where A is an intensity measure such that

A(B):/BA(g)dg, BCS.

Moreover A is locally finite, that is A(B) < oo for compact set B C S, and
A is diffuse, that is A(§) =0 for £ € S\ B.

e For any compact set B C S, the number of points IV in B is a Poisson
random variable with mean A(B), that is

P{N(B)=n}= AB)Y" o~ A(B)

with the convention that

P{N(B)=n}=0, if A(B)=-+oo.

e For any finite family of pairwise disjoint compact sets B1,..., By, C .S,
the random variables N(Bj), ..., N(B,,) are mutually independent.

We note that a Poisson point process on S with rate or intensity A is
called an homogeneous Poisson point process on S if A is constant, whereas
it is called an inhomogeneous process when A is not constant. Moreover, an
unit rate or standard Poisson point process is a process with A = 1.

In our simulation of max-stable processes we will be interested in the
points of a Poisson point process, especially to simulate them. Theorem
(4.1) gives way to obtain a standard Poisson point process form exponential
variables.

Theorem 4.1. Let & be i.i.d. standard exponentially distributed random

variables, then
n
= {ng; n = 1,2,...}
k=1

18 a Poisson point process on the positive real axis with rate one.

35



Sketch of the proof.
We first note that since £ are i.i.d. standard exponential random variable

1. & >0 for all i and thus % & < SFtle; for all k;
2. P(§<t)=1—etforteRy;

3. Zle &; is gamma distributed with parameters (k, 1), that is

k—1
(Z&—t) e

Let us denote the number of points in [0,¢] by N(t), then

k+1
P(N() =k P (Z&mt Z&>t>
k+1 k
/ (Z@q Zf»tlZfZ—T) (Z@:T>d7
=1
:/OtP(£k+1>t—T)P<Z§i:T>dT
=1

(2).(3) t*(th). k=1 o t/t k=1
= /Oe 7(]{:_1)!6 dr =e ; (k_l)!dT

k_
A
(k—1)!
So N is Poisson distributed and thus II is a Poisson point process. O

We will now present a theorem that allows the transformation of a point
process to another point process, which with help of Theorem (4.1) will give
us a way to simulate any Poisson point process.

Theorem 4.2.

Let E1, Es be two Hausdorff spaces. Let &1, & be the associated o-fields.
Let T: (Er,&1) — (F2,&) be measurable. If N is a Poisson point process
of intensity A on E1, then

NLNoT !

is a Poisson point process with intensity Ao T~ on Es. Moreover if we have
the representation
) = Z 5Xj ()7
J
then

NOENoT™ ZaT
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A proof of this theorem is given by Resnick [1986].
Let us now consider an example of application of Theorem (4.2), that
will be useful for simulation of a max-stable process.

Example 4.1. Let {x;},~, be defined as x; = 22:1 &, where & are 1.i.d.
standard exponential random variables. Consider the application

1
T: x+— —,
T

then we have that

1
Xi 1 >1

22:1 fk B
is a Poisson point process with intensity 1/£2d€.
Thus if we want to simulate an inhomogeneous Poisson point process, we

first simulate a standard Poisson point process on a subset in R and then
apply the transformation procedure given in Theorem (4.2).

4.2 Max-stable processes

We will now present the basic theory about max-stable random fields.

Definition 4.3 (Max-stable process).

A random field (or random process) Z(-) on R is maa-stable if there exist
continuous functions a,(x) > 0 and by, (x) such that {Z(x)},cga is equal in
distribution to

max Zi(x)} — bn(x)

an(x)

Z*(x) = {

,xeRd,

where Z;(-) are independent and identically distributed copies of Z(-).

We can without loss of generality transform the margins to one particular
extreme value distribution, see [Resnick, 1987]. For convenience, we assume
that the max-stable process Z(-) has unit Fréchet margins, that is,

P(Z(x) <z)=e¢ % xeR,

where v
Z() 2 max l()
1<i<n n

Thus, a,(x) = n and b,(x) = 0. Those processes are interesting. Indeed
de Haan [1984] has shown that, provided that the limit exists,

{11213%}{ Y;(X)} — bp(x)
Z(x) = lm —~——" ,x € R

oo an(x)
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is a max-stable process on R? where Y;(x) are independent copies of a
random field Y'(-).

L. de Hann has brought a big contribution to the theory of max-stable
processes, for example a spectral representation of the max-stable process is
given in [de Haan, 1984].

Theorem 4.3 (Spectral representation). [de Haan, 1984]

Let (&;,7i)i>1 be an enumeration of the points in the Poisson process on
Ry x [0,1] with intensity measure dA(E,7) = (£72d€) x v(dr), where T is a
finite positive measure on [0,1]. Let {f(7;,x),7; € [0,1],x € R?} be a non-

negative function with / f(s,x)v(ds) =1 for any x € R?, Then
[0,1]

)

Z(x) = max {&if(m,x)},x € RY

is a maz-stable process on RY.

Since we assume that we have max-stable processes with unit Fréchet
margins, we will prefer the spectral representation from Schlather [2002].
We present here a variant of his version where the condition

E [max {0,Y(x)}] = i € (0,00)

is changed to Equation (4.2.1) in Theorem (4.4) and the intensity of the
Poisson process accordingly renormalised.

Theorem 4.4.
Let (&;)i>1 be the points of a Poisson process on RY with intensity measure
dA(€) = £72d¢. Let Y(-) be a stationary random field on RY such that

E[max{0,Y(x)}] =1 (4.2.1)
and

< Q.

E [sup (¥ (x))

x€R4

Let {Yi(-)};>1 be independent and identically distributed copies of Y (-). Then

Z(x) = max [€; max {0,Y;(x)}],x € RY

is a stationary mag-stable process on RY with unit Fréchet margins.
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Sketch of the proof.

P{Z(x)<z} =P [no {6,V (%)} € R% x R? with & max {0, Y (x)} > z]

= [ dy¢2d
exp{ /]R / o Do e s}

— exp{—/RmaX(O,y)éfY(x)(y)dy}

= exp {—%/}R ny(x>(y)dy}
+

= exp {—%E [maX{O,Y(X)}]} = exp {—1} ;

z

the superposition of n i.i.d. Poisson point processes form a Poisson point
process with its intensity multiplied by n and

p {Z(xl) <ty ..., Z(xp) < tk}

= ; < . i <
p [112?3}(71 {Zi(x1)} < nty, ’1%1%}%{22(}(]‘3)} < ntk}

n
ind HP {Zi(x1) < nty,...,Zi(xx) < nty}
=1

p (7 (x1) < b, ..., Zi(xp) < nty)"

1 n
=exp{—V(nty,...,ntg)}" = exp {——V(tl, .. ,tk)}
n
=P{Z(x1) <t1,...,Z(xx) < tx}.
O

We see in those two representation theorems (4.3) and (4.4) that the
construction of a max-stable process Z(-) involves the maximum over an
infinite number of copies of a random field Y (), but in practice we can
only simulate finitely many realisations of Y'(-). The next theorem presents
conditions under which we may get nonetheless exact simulations for Z(-)
with a finite number of realisations.

Theorem 4.5.

Let Y () be a stationary random field on RY, let I be a Poisson point process
on R% x R* with intensity measure dA(y, &) = p~tdy&=2d¢ and let Z(-) be
defined as

Z(x) = sup [€max {0, Ye(x— y)}].
(y,§)€ell

Assume that Y () is uniformly bounded by C € R and has support in
the ball b(0,7) for some r € R%. Let B be a compact set in R%. Let
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Yi(:) be i.i.d. replications of Y (-), let U; be i.i.d. uniformly distributed on
B, = Uzepb(x,r) and let & be i.i.d. standard exponential random variables.
Finally assume that 11, Y;(+), U; and &; are all mutually independent. Then,

on B,
B Yi(x—-U;
Z*(X):M sup M , XEB
poagism (Do &k

almost surely equals the maz-stable process Z(-), where m is such that

c Yi(x—U;)
max
Zk e T 1<z<m{ Sk }
A proof of this theorem is given by Ribatet [2009] or by Schlather [2002].
It is also mentionned in Schlather [2002] that, for random fields whose sup-
port is not included in a ball b(0,7) or which are not uniformly bounded by
a constant C, we can nevertheless use approximations for r and C. He con-
siders Y (-) being a Gaussian random field but Y'(-) is not uniformly bounded
by C' < oo. He suggests that C = 3 is large enough to get good approx-

imations. Corollary (4.6) is the adaptation of Theorem (4.5) to Gaussian
random fields.

Corollary 4.6.
Let Y () be a stationary random field on RY, let I be a Poisson point process
on R with intensity measure dA(§) = &~ 2d£ and let Z(-) be defined as

Z(x) = sup [ﬁi max {O, \/%YZ(X)H .

i>1

Assume that Y (-) is a standard Gaussian process in RY. Let Yi(-) be i.i.d.
replications of Y (+) and let & be i.i.d. standard exponential random variables.
Finally assume that I1, /27Y;(-) and &; are all mutually independent. Then

7\/%1@ () } xeDB
22:1 fk: ’

almost surely equals the maz-stable process Z(-), where m is such that

3 { Yi(x) }
Zk lgk 1<z<m Zk 1 &k

Note that we take the maximum between 0 and +/27Y(+), this is because
Y () is a Gaussian random field and thus

Z*(x) = sup {

1<i<m

Emax{0,Y(x)}] =

5 -
ﬁ\.

40



which violates Condition (4.2.1) in Theorem (4.4). By redefining Y'(-) to
V27Y (+), we have that

E [max{o, \/%Y(X)}} = 1.

By means of Corollary (4.6), we are now ready to present M. Schlather’s
method for simulating a max-stable random field Z(-) at a given set of loca-
tions.

Algorithm for simulation of Max-stable processes
1. Initialize the vector Z(x) = {Z(x1),...,Z(2ng,,)} < 0.
Set ¢ «— 0 and C «— 3-+/2m.
2. While k # 0, do
e Initialize a counter K to kK « ngite;

Generate £ ~Exp(1) and set ¢ « ¢ + &;
Set the upper limit v «— C¢™1;

Generate a standard Gaussian process Y at the locations {z;}; =

with correlation function p;

For ¢ =1 to nsjte, do
— Ifu> Z(x;), do
Update Z(z;) < max { Z(z;), V2m( 'Y () };
— Else
Update k «— rk — 1.

3. Return Z(x) = {Z(z1),..., Z(zng,.)}-

4.2.1 Validation of the algorithm

Theoretically our code should work, but we should find a way to attest that
in practice it also does.

By analogy to what we did for the other methods, we would like to
validate our code by means of the variogram, but the variogram is not defined
for max-stable processes with unit Fréchet margins since their expectation
and variance are not finite. We will present a variogram-based approach
that is valid for max-stable processes, namely when the expectations and
variances may not be finite. This estimator based on the variogram concept
is called F-madogram and is highly related to the extremal coefficient.

Definition 4.4 (F-madogram).
Let Z(-) be a stationary max-stable random field with unit Fréchet margins,
that is

F(z) = exp(—)
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Then, the centred semi-F-madogram is defined as follows

v(h) = SB[ |F {Z(0)} — F{Z(a2)}] ],
where h = |z — x2|.

We will use the term F-madogram instead of centred semi-F-madogram.
As we said the F-madogram and the extremal coefficient are related. Let
us recall some basis of extreme value theory and then introduce what the
extremal coefficient function for max-stable processes with unit Fréchet mar-
gins is. Any multivariate extreme value distribution has the form

P{Z(x1) < z,...,Z(zk) < 2z} = exp{—V(21,...,2k)},

where V is an homogeneous function with order depending on the margins.
For example when the margins are unit Fréchet, then V' is homogeneous of
order —1. That is

Ve 2) = —tv(,.. 1)
z

Definition 4.5 (Extremal coefficient).
Let Z(-) be a max-stable process with unit Fréchet margins then the extremal
coefficient function is defined as

O(h) = —zlog[P{Z(x1) < z,Z(x2) < z}],
where h = x; — x9.

The extremal coefficient function #(h), which is such that 1 < 6(h) < 2,
is a measure of the dependence between extremes. Indeed,

P{Z(x1) < 2z, Z(x3) < z} = exp {—@} = F(z)'M),

Thus 6(h) = 1 corresponds to perfect dependence and #(h) = 2 to indepen-
dence.

We note that the bivariate distribution P {Z(x;) < s, Z(x2) < t}, for the
Schlather model, corresponds to

1/1 n 1
exp —= [ =+ —
P 2\t s
where h = ||x; — x2|| and p(h) is the covariance function of the underlying
stationary and isotropic Gaussian random fields. Thus for s = ¢, we get

—%{1+ 1—7”“‘);rl }
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This yields an extremal coefficient of
O(h) = —tlog [P{Z(x1) < t,Z(x2) < t}]
o) + 1 )
— =1 .
2 + 2
Let us now establish the link between the F-madogram and the extremal
coefficient.

=14+14/1-

Theorem 4.7.
The F-madogram v(h) of a stationary maz-stable process with unitary Fréchet
margins is related to the extremal coefficient function in the following way

O(h) —1
2v(h) =
() =g+
and conversely, we have that
1+ 2v(h)
O(h
(h) 1—2v(h)

Proof. We first note that
L |z —yl = 2max(z,y) — (z + ),

2. Pmax{Z(x1),Z(x2)} < z| = exp{—@} by definition of the ex-
tremal coefficient and

3. E[F{Z(x1)}] = E[F{Z(x2)}] = 1, since F {Z(x)} is uniformly dis-
tributed.
Thus we have that
v(h) =3B [F{Z(x)} ~ F{Z(x2)} |}

WE [max (F {Z(x1)}, F {Z(x:)})] - = (2B [F {Z(x)}))

Op max (F{Z(x1)},F{Z(x2)})] —

o) 1 6(h)—1

O +1 2 O(h)+1

N = DN =

since

E [max (F{Z(x1)},F{Z(x2)})]
0

LT
:<9(Z()hj)ul[e { hz+ }> +1

Finally, by solving 2v(h) = ZEZ — for 0(h), we get 0(h) = }Ezgzg [
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In order to make an analysis of our results, we need an unbiased estima-
tor. A natural choice for the empirical F-madogram would be

R 1

$i7xj)€-/\/h

where N}, is the set of sample pairs lagged by the distance h with the corre-
sponding extremal coefficient

o 1420(h)
o) = Ty

4.2.2 Presentation of the results

In Figure 4.1 we plotted boxplots of the empirical F-madograms and the
true F-madogram (solid red line) of a stationary and isotropic max-stable
process with unit Fréchet margins. Simulation is made from Schlather’s
model, where the standard Gaussian random field has a spherical family
as correlation function and has been simulated by the circular embedding
method. We consider a process at 500 locations on the regular grid [0, 1]. We
used a Monte Carlo experience with 500 repetitions of the simulation, where
one simulation includes 50 replications of the max-stable process. Crosses
represent the mean values.

6(h)
18 20 22
|
@

1.4

1.0

T T T T T T T T T T
0.005 0.17 0.29 0.45 0.67 0.94

Distance (h)

Figure 4.1: F-madogram comparison for a max-stable process with unit
Fréchet margins simulated according to Schlather’s model and the standard
Gaussian random field having a spherical family as correlation function, sim-
ulated by circular embedding methods on 500 locations on the regular grid
[0,1]. We used a Monte Carlo experience with 500 repetitions of the simula-
tion, where one simulation includes 50 replications of the max-stable process
for the boxplots of the empirical F-madogram.
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We see in Figure 4.1 that the theoretical F-madogram is fairly well esti-
mated by the empirical F-madogram. The true F-madogram is overestimated
by the empirical F-madogram for A < 0.22 and underestimated for h > 0.45.
Thus we again see this tendency we had when simulating a Gaussian ran-
dom field to have problem to estimate the true value for small distances. We
also see that even if the extremal index is supposed to take values between
1 and 2, but we never reach the value of 2, that is we never get complete
independence. This is a default of Schlather’s model, whose extremal index
is bounded 1+ /1/2 ~ 1.7.

Now that we have seen that our simulation method is reasonably good,
let us look how one max-stable process looks like.

15
|

10
|

z
4
|
32n/y ¢

T T T T T T T T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0 5 10 15 20 25 30

station Number of simulations of Y

Figure 4.2: In the left figure, we plotted in black one max-stable process
and in light gray max {0, Y;(-)v2r/¢}, where Y (-) is a simulation by circular

embedding method of a Gaussian random field with spherical correlation
3v2m
Bvor

function at 500 locations. In the right figure we show the evolution of e
=157

with k from 1 to m = 29.

In Figure 4.2 we represented in the left figure one max-stable process
(black) and plotted max {0, Y;(-)v/2r /¢} (light gray), where Y(-) is a simula-
tion by circular embedding method of a Gaussian random field with spherical
correlation function at 500 locations. The right figure shows the evolution

of ?’kﬁ with k from 1 to m = 29, since 29 simulations of one Gaussian

Yim1&i
random field were needed to obtain this max-stable process. We see on the

right Figure that the lower limit for the max-stable process quickly gets
pretty small and that is why we can be sure that this method works and
stops with relatively few iterations.
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CHAPTER 5

Conclusion

In conclusion we could simulate a max-stable process with help of the circular
embedding mehtod.

In Chapter 2, we defined random fields and the properties of stationarity
and isotropy. Then we discussed conditions for positive semidefinitness. We
ended by giving some examples of valid correlation functions for isotropic
and stationary Gaussian random fields.

In Chapter 3, we presented some methods for simulating stationary and
isotropic Gaussian random fields with known correlation functions, at given
locations in R. We first gave two direct methods based on the Cholesky
factorization and the Singular value decomposition respectively. They were
good, but their computational time was sensibly increasing as the number
of locations increased. Then we proposed another method, the circular em-
bedding method which is exact in principle for correlation functions with
compact support. We also gave an approximation procedure for the other
correlation functions. This method was doing good and its only restriction
was that the locations had to be on a regular grid. All our methods had the
drawback that they had difficulties with too small distances. We ended this
chapter by a comparison of the computation time needed by the methods
depending on the number of locations and could confirm that the circular
embedding method is fast.

Finally, in Chapter 4, we introduced Poisson point processes and the
way one can simulate them. Then we described max-stable processes and
came to a simulation procedure for a max-stable process according to the
Schlather model, which is based on a simulation of a Gaussian random field
and a Poisson process. So we could simulate a max-stable process with help
of the circular embedding method. We saw that the simulation procedure
works well but has the same drawback as the circular embedding method.
We ended by presenting a max-stable process simulated by the procedure we
suggested and comment on why this procedure was working.
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