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Abstract

Image registration is the concept of mapping homologous points in a pair
of images. In other words, one is looking for an underlying deformation field
that matches one image to a target image. The spectrum of applications of
image registration is extremely large: It ranges from bio-medical imaging and
computer vision, to remote sensing or geographic information systems, and
even involves consumer electronics.

Mathematically, image registration is an inverse problem that is ill-posed,
which means that the exact solution might not exist or not be unique. In
order to render the problem tractable, it is usual to write the problem as
an energy minimization, and to introduce additional regularity constraints on
the unknown data. In the case of image registration, one often minimizes an
image mismatch energy, and adds an additive penalty on the deformation field
regularity as smoothness prior.

Here, we focus on the registration of the human cerebral cortex. Precise
cortical registration is required, for example, in statistical group studies in
functional MR imaging, or in the analysis of brain connectivity. In particular,
we work with spherical inflations of the extracted hemispherical surface and
associated features, such as cortical mean curvature. Spatial mapping between
cortical surfaces can then be achieved by registering the respective spherical
feature maps. Despite the simplified spherical geometry, inter-subject registra-
tion remains a challenging task, mainly due to the complexity and inter-subject
variability of the involved brain structures.

In this thesis, we therefore present a registration scheme, which takes the
peculiarities of the spherical feature maps into particular consideration. First,
we realize that we need an appropriate hierarchical representation, so as to
coarsely align based on the important structures with greater inter-subject
stability, before taking smaller and more variable details into account. Based
on arguments from brain morphogenesis, we propose an anisotropic scale-space
of mean-curvature maps, built around the Beltrami framework.

Second, inspired by concepts from vision-related elements of psycho-physical
Gestalt theory, we hypothesize that anisotropic Beltrami regularization better
suits the requirements of image registration regularization, compared to tra-
ditional Gaussian filtering. Different objects in an image should be allowed
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ii Abstract

to move separately, and regularization should be limited to within the indi-
vidual Gestalts. We render the regularization feature-preserving by limiting
diffusion across edges in the deformation field, which is in clear contrast to
the indifferent linear smoothing. We do so by embedding the deformation
field as a manifold in higher-dimensional space, and minimize the associated
Beltrami energy which represents the hyperarea of this embedded manifold as
measure of deformation field regularity. Further, instead of simply adding this
regularity penalty to the image mismatch in lieu of the standard penalty, we
propose to incorporate the local image mismatch as weighting function into
the Beltrami energy. The image registration problem is thus reformulated as
a weighted minimal surface problem. This approach has several appealing as-
pects, including (1) invariance to re-parametrization and ability to work with
images defined on non-flat, Riemannian domains (e.g., curved surfaces, scale-
spaces), and (2) intrinsic modulation of the local regularization strength as a
function of the local image mismatch and/or noise level. On a side note, we
show that the proposed scheme can easily keep up with recent trends in image
registration towards using diffeomorphic and inverse consistent deformation
models.

The proposed registration scheme, called Geodesic Active Fields (GAF),
is non-linear and non-convex. Therefore we propose an efficient optimization
scheme, based on splitting. Data-mismatch and deformation field regularity
are optimized over two different deformation fields, which are constrained to
be equal. The constraint is addressed using an augmented Lagrangian scheme,
and the resulting optimization problem is solved efficiently using alternate min-
imization of simpler sub-problems. In particular, we show that the proposed
method can easily compete with state-of-the-art registration methods, such as
Demons.

Finally, we provide an implementation of the fast GAF method on the
sphere, so as to register the triangulated cortical feature maps. We build an
automatic parcellation algorithm for the human cerebral cortex, which com-
bines the delineations available on a set of atlas brains in a Bayesian approach,
so as to automatically delineate the corresponding regions on a subject brain
given its feature map. In a leave-one-out cross-validation study on 39 brain
surfaces with 35 manually delineated gyral regions, we show that the pairwise
subject-atlas registration with the proposed spherical registration scheme sig-
nificantly improves the individual alignment of cortical labels between subject
and atlas brains, and, consequently, that the estimated automatic parcellations
after label fusion are of better quality.

Keywords: Image Registration, Computer Vision, Inverse Problem, Regu-
larization, Human Cortex, Gestalt Theory, Scale-Space, Beltrami Framework,
Polyakov Energy, Minimal Surface, Differential Geometry, Computational Ge-
ometry, Sphere, Optimization, Splitting, Augmented Lagrangian, Diffeomor-
phism, Classification.



Résumé

Le recalage d’images est le concept de mettre en relation les points homo-
logues dans une paire d’images. En d’autres termes, on est à la recherche d’un
champ de déformation sous-jacent qui fait correspondre une image à une autre
image cible. Le spectre d’applications du recalage d’images est extrêmement
important : il s’étend de l’imagerie bio-médicale et vision par ordinateur jus-
qu’à la télédétection ou les systèmes d’information géographique, et implique
même l’électronique grand public.

Mathématiquement, le recalage d’images est un problème inverse qui est
mal posé, ce qui signifie que la solution exacte peut ne pas exister ou ne
pas être unique. Afin de rendre le problème docile, il est habituel de le récrire
comme une minimisation d’énergie, et d’introduire des contraintes de régularité
supplémentaire sur les données inconnues. Ainsi on minimise souvent la diffé-
rence entre les images après déformation, et ajoute une pénalité additive sur
la régularité du champ de déformation.

Ici, nous nous intéressons au recalage du cortex cérébral humain. Un reca-
lage cortical précis est nécessaire, par exemple, dans les études statistiques de
groupes en IRM fonctionnelle, ou dans l’analyse de la connectivité cérébrale.
En particulier, nous travaillons avec des gonflements sphériques de la surface
hémisphérique extraite, et de caractéristiques associées, telles que la courbure
moyenne corticale. La relation spatiale entre les surfaces corticales peut alors
être établie en recalant les cartes sphérique respectives. Malgré la géométrie
sphérique simplifiée, le recalage reste une tâche difficile, principalement en rai-
son de la complexité des structures cérébrales impliquées et de leur variabilité
d’une personne à l’autre.

Dans cette thèse, nous présentons donc un système de recalage, qui prend
les particularités des cartes sphériques en considération. Tout d’abord, nous
avons besoin d’une représentation hiérarchique appropriée, afin de pouvoir
aligner grossièrement sur la base des structures importantes, ayant une plus
grande stabilité entre sujets, avant de prendre en compte des plus petits détails.
A partir d’arguments basés sur la morphogenèse du cerveau, nous proposons
un espace-échelle anisotrope de la carte de courbure moyenne.

Deuxièmement, inspiré par les concepts de vision liés aux éléments psycho-
physique de la théorie de la Gestalt, nous faisons l’hypothèse que le filtrage
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iv Résumé

anisotrope Beltrami répond mieux aux exigences de régularisation du recalage
d’images, que le traditionnel filtrage gaussien. Différents objets dans une image
sont autorisés à se déplacer séparément, et la régularisation est confinée dans
l’intérieur de la Gestalt individuelle. Nous rendons la régularisation préservatrice
aux caractéristiques en limitant la diffusion à travers des bords du champ
de déformation. Nous obtenons ceci en interprétant le champ de déformation
comme une variété dans un espace de dimension supérieure, et en minimisant
l’énergie de Beltrami associée. Cette dernière représente l’hyper-superficie de
cette variété en tant que mesure de la régularité du champ de déformation.
De plus, au lieu de simplement ajouter cette pénalité de régularité à la place
du terme Gaussien standard, nous proposons d’intégrer le décalage local des
images comme fonction de pondération dans l’énergie Beltrami. Le recalage
est ainsi reformulé comme un problème de surface pondérée minimale. Cette
approche a plusieurs aspects attrayants, y compris (1) l’invariance à la re-
paramétrisation et la capacité de travailler avec des images définies sur de
variétés riemanniennes non-planes (par exemple, des surfaces courbées, des
espaces-echelle), et (2) la modulation intrinsèque et locale de la force de régula-
risation en fonction du décalage image local et / ou du niveau de bruit local.

Le système de recalage proposé, appelé champs actifs géodésiques, est non
linéaire et non-convexe. C’est pourquoi nous proposons un schéma d’optimisa-
tion efficace, basé sur le fractionnement. Le terme de décalage et la régularité
du champ de déformation sont optimisés sur deux champs de déformation
différents, qui sont contraints à être égaux. La contrainte est adressée en uti-
lisant un schéma Lagrangien augmenté, et le problème d’optimisation résultant
est résolu efficacement en utilisant la minimisation alternante de sous-problèmes
simples. En particulier, nous montrons que la méthode proposée peut faci-
lement rivaliser avec les méthodes de recalage de l’état de l’art, comme les
démons.

Enfin, nous fournissons une implémentation de la méthode rapide sur la
sphère, afin de recaler les cartes corticales triangulées. En outre, nous construi-
sons un algorithme pour la parcellisation automatique du cortex cérébral hu-
main, qui combine les étiquettes disponibles sur un ensemble de cerveaux atlas
dans une approche bayésienne, afin de délimiter automatiquement les régions
correspondantes sur un sujet, dont seule la carte sphérique est donnée. Dans
une étude de validation croisée sur 39 hémisphères, chacune avec 35 régions
gyrales délimitées manuellement, nous montrons que le recalage sphérique
améliore significativement l’alignement individuel des étiquettes corticale entre
le sujet et les cerveaux de référence. Par conséquent, les parcellations automa-
tiques après la fusion d’étiquettes sont de meilleure qualité, elles aussi.

Mots-clés: Recalage d’images, vision par ordinateur, problem inverse, régula-
risation, cortex humain, théorie de la Gestalt, espace-échelle, méthode Bel-
trami, énergie Polyakov, surface minimale, géometrie différentielle, géometrie
par ordinateur, sphére, optimisation, fractionnement, Lagrangien augmentée,
difféomorphisme, classification.



Zusammenfassung

Bildregistrierung ist das Konzept der gegenseitigen Zuordnung homologer
Punkte in einem Paar von Bildern. In anderen Worten, es wird ein zugrunde lie-
gendes Deformationsfeld gesucht, welches ein Bild bestmöglich auf ein Zielbild
abbildet. Das Anwendungsspektrum von Bildregistrierung ist extrem gross: Es
reicht von der biomedizinischen Bildverarbeitung und Computervision bis zu
Fernerkundung und geografischen Informationssystemen.

Mathematisch ist Bildregistrierung ein schlecht gestelltes inverses Problem,
d.h. die exakte Lösung ist möglicherweise nicht vorhanden oder nicht eindeutig.
Um ein solches Problem lösbar zu machen, formuliert man es üblicher-weise
als eine Energieminimierung und führt weitere Einschränkungen bezüglich Re-
gularität der unbekannten Daten ein. Im Fall von Bildregistrierung, minimiert
man oft die nach Abbildung verbleibende Bilddifferenz und wählt eine additive
Strafe für Unregelmässigkeit der Verformung.

Hier konzentrieren wir uns auf die Registrierung der menschlichen Gross-
hirnrinde. Präzise kortikale Registrierung ist z.B. in statistischen Gruppen-
Studien der funktionellen MR-Bildgebung erforderlich, oder ebenso in der
Analyse der Gehirn-Konnektivität. Insbesondere arbeiten wir mit sphärischen
Aufblähungen der extrahierten hemisphärischen Kortex-Oberfläche und damit
verbundenen Features. Räumliche Zuordnung zwischen kortikalen Flächen ver-
schiedener Gehirne kann demnach mittels Registrierung der jeweiligen sphä-
rischen Karten erreicht werden. Trotz der vereinfachten sphärischen Geometrie
bleibt dies eine anspruchsvolle Aufgabe, vor allem aufgrund der Komplexität
und interindividuellen Variabilität der beteiligten Hirnstrukturen.

In dieser Arbeit haben wir ein Registrierungssystem entwickelt, das die Be-
sonderheiten der sphärischen Karten speziell berücksichtigt. Erstens erkennen
wir, dass wir eine entsprechende hierarchische Darstellung benötigen, um die
Karten zuerst grob anhand der wichtigen Strukturen mit grösserer interindivi-
dueller Stabilität ausrichten zu können, bevor kleinere und variablere Details
miteinbezogen werden. Basierend auf Argumenten der Gehirn-Morphogenese
schlagen wir einen anisotropen Skalen-Raum der mittleren Krümmungen vor.

Zweitens vermuten wir, inspiriert durch Konzepte aus Elementen der Ge-
stalt-Theorie, dass anisotrope Beltrami-Regularisierung verglichen mit der her-
kömmlichen Gauss-Glättung besser den Anforderungen der Bildregistrierung
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vi Zusammenfassung

entspricht. Verschiedene Objekte in einem Bild sollten sich unabhängig von-
einander bewegen können, und Regularisierung auf das Innere der jeweiligen
Gestalten beschränkt sein. Wir machen die Regularisierung kantenerhaltend,
indem die Diffusion über Kanten des Deformationsfeldes eingeschränkt wird,
was in deutlichem Kontrast zur gleichgültigen linearen Glättung steht. Wir
tun dies mittels Einbettung des Deformationsfeldes als eine Mannigfaltigkeit
in einen höherdi-mensionalen Raum, und minimieren die damit verbundene
Beltrami-Energie, welche die Oberfläche dieser eingebetteten Mannigfaltigkeit
als Regularitäts-mass des Deformationsfeldes darstellt. Weiter, anstatt einfach
nur den standard-mässigen Gauss-Term durch diese Beltrami-Energie zu erset-
zen, schlagen wir vor, den lokalen Abbildungsfehler als Gewichtungsfunktion in
die Beltrami-Energie zu integrieren. Das Bildregistrierungs-Problem wird so-
mit zu einem Problem minimaler gewichteter Oberfläche umformuliert. Dieser
Ansatz hat mehrere attraktive Eigenschaften, einschliesslich (1.) der Invarianz
bezüglich Parametrisierung und der Fähigkeit, mit Bildern in nicht-ebenen,
Riemannschen Räumen arbeiten zu können (z.B. gekrümmte Oberflächen und
Skalen-Räume), und (2.) der intrinsischen Modulation der lokalen Regularisie-
rungsstärke als Funktion des lokalen Ausrichtungsfehlers und Rausch-Pegels.
Wir zeigen, dass die vorgeschlagene Methode mit jüngsten Trends in Richtung
diffeomorpher und invers-konsistenter Deformationsmodelle mithalten kann.

Das vorgeschlagene Registrierungssystem, genannt Aktive Geodätische Fel-
der, ist nicht-linear und nicht-konvex. Daher schlagen wir eine effiziente Op-
timierung vor, die auf Variablen-Duplikation basiert. Ausrichtungsfehler und
Deformationsfeld-Regularität werden über zwei verschiedene Deformationsfel-
der optimiert, die aber gleich sein müssen. Diese Einschränkung wird unter
Verwendung eines erweiterten Lagrange-Schemas angepackt und das sich dar-
aus ergebende Optimierungs-Problem kann effizient mit alternierender Mini-
mierung der einfacheren Teilprobleme gelöst werden. Insbesondere erreichen
wir so, dass das vorgeschlagene Verfahren den Stand der Technik übertrifft.

Schliesslich erarbeiten wir eine Implementierung auf der Kugel um so die
triangulierten kortikalen Karten zu registrieren. Wir entwickeln einen auto-
matischen Parzellierungs-Algorithmus, der die manuellen Kartierungen auf
einer Reihe von Atlas-Gehirnen in einem bayesianischen Ansatz kombiniert,
um so aufgrund der sphärischen Karte eines spezifischen Gehirnes seine au-
tomatische Beschriftung der entsprechenden Regionen zu erzielen. In einer
Kreuzvalidierungs-Studie mit 39 Gehirn-Oberflächen zeigen wir, dass die paar-
weise Registrierung die individuelle Ausrichtung der kortikalen Regionen deut-
lich verbessert, und folglich, dass die darauf beruhende automatische Parzel-
lierung an Qualität gewinnt.

Stichwörter: Bildregistrierung, Computervision, Inverses Problem, Regula-
risierung, Menschliche Grosshirnrinde, Gestalt Theorie, Skalen-Raum, Bel-
trami Ansatz, Polyakov Energie, Minimale Oberfläche, Differentialgeometrie,
Computergeometrie, Kugeloberfläche, Optimisierung, Variablen-Duplikation,
erweiteres Lagrange Schema, Diffeomorphismus, Klassifizierung.
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Introduction 1
“The whole is different from the sum of its parts.”

Aristotle, Metaphysics.

Images and Imaging are ubiquitous and many related research questions
have not been answered to full satisfaction, yet. In contrast to visual arts
that may be the result of pure imagination, interpretation and perceptive

distortion, medical images always are a depiction of a precise physical reality.
Even though represented in most cases as a discrete array of quantified digital
values, they reflect a real body part of given dimensions and in a continuous
space.

As such, an image is just a projection of the infinitely dimensional reality
(in terms of both space and features), and it is often useful to jointly work on
different images at the same time to get a maximum of information. As an
example, one can easily imagine to work on images of a same body part but
coming from different subjects. It is obvious, that images will most probably
not be identical and that information contained at given image or physical
coordinates will not correspond. In such a case, it is intuitive to previously
match homologous points of the two images. Even if images are issue of an
identical physical reality they might still be different. They can have a different
spatial resolution, another field of view, modified orientations or been acquired
using different imaging techniques. The direct link between corresponding
points in both images can be derived when the exact relation between image
and physical space is known. As most of the time the latter information is not
available, the spatial relation has to be established a posteriori, and by other

1



2 Introduction

(a) ~x (b) ~x+ ~u1(~x) (c) ~x+ ~u2(~x)

Figure 1.1: Image registration is the concept of mapping homologous points in
different images. (a) The skull of a human is registered to chimpanzee and baboon
by finding the deformation fields ~u1(~x) and ~u2(~x), such that human features, e.g.,
the mandible (red), at ~x match those of (b) chimpanzee at ~x + ~u1(~x) and (c)
baboon at ~x+ ~u2(~x). Skull sketches reproduced from (Thompson, 1917).

means.
In all those cases, one is interested in the spatial transform that links the

two images, as illustrated in figure 1.1. The process that establishes this spatial
transform is called image registration.

The goal of this thesis is to develop a new solution for high-precision
registration of spherical representations of the human cerebral cortex. In
the process, we propose a novel geometric framework for image registration,
based on the very versatile Beltrami framework, and called Geodesic Active
Fields (GAF). In the following paragraphs we give a short introduction on the
biomedical context and motivation, and provide a brief review of im-
age registration in general and brain registration in particular. We then
contextualize the image registration problem in the more general scope of in-
verse problems encountered in computer vision, and briefly discuss the
related standard solution schemes, in particular with respect to regularization.
We pay more detailed attention to the role of regularization in the context
of motion estimation, and provide a small excursus on psycho-physical
Gestalt theory in visual perception. Having these ideas in mind, we will then
formulate the central idea behind the research presented in this thesis, i.e., the
development of a parametrization-invariant image registration framework
with anisotropic Beltrami-regularization of the estimated deformation
field. Finally, the contributions of this thesis will be highlighted, and the
structure of the following chapters will be outlined.

1.1 Biomedical Context and Motivation

The brain and the spinal cord form the central nervous system. The latter
consists of several structures, as detailed in table 1.1 and illustrated in fig-
ure 1.2. The telencephalon (cerebrum, endbrain) is the topmost and biggest



1.1. Biomedical Context and Motivation 3

Table 1.1: Structures of the central nervous system, adapted from (Nieuwenhuys
et al., 2008). The endbrain and the optic nuclei form the forebrain. The dien-
cephalon (interbrain) includes the thalamic structures, followed by the brainstem,
consisting of the mid- and hindbrain. The latter includes the pons, the cerebellum
and the medulla oblangata, which finally leads into the spinal cord.

Central nervous system

Encephalon (brain)

Prosencephalon (forebrain) Truncus cerebri (brainstem)

Rhombenc. (hindbrain)

Metencephalon

T
el

en
ce

ph
al

on
(e

n
d
b
ra

in
)

T
el

en
ce

ph
al

on
im

pa
r

D
ie

n
ce

ph
al

on
(i

n
te

rb
ra

in
)

M
es

en
ce

ph
al

on
(m

id
b
ra

in
)

P
on

s

C
er

eb
el

lu
m

(l
it

tl
e

b
ra

in
)

M
ed

u
ll

a
ob

lo
n

ga
ta

M
ed

u
ll

a
sp

in
al

is
(s

p
in

al
co

rd
)

(a) (b)

Figure 1.2: The human cerebral cortex: location and structure. (a) Medial
view and section of the human encephalon. The cortex is the topmost convoluted
structure. (b) Coronal frontal section through the human brain. The outer surface
of the cortical gray-matter shell is the pial surface (since it is wrapped in the
pia mater), whereas its inner surface is referred to as white-matter-gray-matter
interface. (Figures reproduced from (Gray, 1918).)
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(a) (b)

Figure 1.3: Human cerebral cortex: nomenclature and areas of localization. (a)
“Areas of localization on lateral surface of hemisphere. Motor area in red. Area
of general sensations in blue. Auditory area in green. Visual area in yellow. The
psychic portions are in lighter tints.” (b) “Areas of localization on medial surface
of hemisphere. Motor area in red. Area of general sensations in blue. Visual area
in yellow. Olfactory area in purple. The psychic portions are in lighter tints.”
(Figures and caption reproduced from (Gray, 1918).)

of these structures. The endbrain contains the cerebral cortex and subcortical
structures such as the basal ganglia and the limbic system. Together with
the hypothalamus, the endbrain is responsible for all voluntary control of the
human body. The cortex is split into two hemispheres, linked by the corpus
callosum, as well as the anterior and posterior/fornix commissure. It consists
of white and gray matter. While white matter essentially contains the con-
necting fibers, the gray matter builds the outer shell of the cortex, contains
most of the “computing neurons”, and is itself organized in different layers.
The cortical surface, i.e., the gray matter sheet, is highly convoluted. The
folding pattern consists of gyri (singular: gyrus, the visible ridges) and sulci
(singular: sulcus, the buried valleys).

1.1.1 Functional mapping

Ever since the phrenologists’ era, elucidating the actual organization of the
cortex, and in particular the functional regions of the gray matter, are an
active area of research. Coarse sketches of functional localization are shown in
figure 1.3. For example, the mapping of the sensori-motor regions on the pre-
and post-central gyrus are today very well understood. Other regions are still
more uncertain and current research relentlessly strives for even more precise
localization of specific functional areas.

To this end, today, statistical group studies are a recognized methodology
in brain imaging, in particular in functional imaging. Functional Magnetic
Resonance (fMRI) is one of the most important tools in this domain, gener-
ating an impressive amount of research as attested by the hundreds of papers
published every year. One of the key steps in the statistical analysis of fMRI
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data is the registration of the images of the different subjects into a common
reference, aiming at compensating the inter-individual anatomical variability.
Standard methods in this domain largely involve global voxel-based registra-
tion, i.e. registration methods aiming at deforming the whole image volume
to make it similar to a reference brain, e.g., (Lancaster et al., 1995; Ashburner
and Friston, 1999; Zosso et al., 2006). Unfortunately, those volume registra-
tion techniques are not able to cope with the large complexity of the cortical
surface, so that there is no guarantee that specific gyri or sulci will be prop-
erly registered by these methods. Though, such a very precise cortical surface
registration is needed for precise brain functional mapping by fMRI group
studies.

As an example, in a recent work, it has been shown that precise cortical reg-
istration can reveal very important activation zones that were never described
by fMRI studies using global state-of-the-art registration methods. Indeed the
presence of several non-primary auditory areas specialized for sound recog-
nition and sound localization around the primary auditory cortex has been
demonstrated in humans (Viceic, 2007; Viceic et al., 2006). The registration
algorithm used in this work involved the manual placing of landmarks to guide
the registration. Achieving the same level of registration precision but fully
automatically will obviously open new perspectives in brain functional map-
ping. This is one of the motivations of this thesis.

1.1.2 Brain connectivity

Moreover, recently there has been an increasing interest for brain connectiv-
ity analysis thanks to the development of effective diffusion MRI sequences,
such as Diffusion Tensor MRI (DTI) or Diffusion Spectrum MRI (DSI), and
associated image analysis algorithms, namely tractography. These new tools
allow inferring information about the brain architecture (at least in the white
matter) (Hagmann et al., 2003, 2006b; Honey et al., 2009). The research in
this domain is now moving from individual subject analysis to group studies
(Hagmann et al., 2006a, 2008). In this context, a methodology was proposed
to study the global brain circuitry by a labeled connectivity matrix (Hagmann
et al., 2010). The entries of this matrix correspond to small regions of interest
covering the whole cortical surface and its cells contain connectivity measures
between the corresponding regions of interest, obtained with diffusion MR
tractography. By statistical analysis of the connectivity matrix of patients
and control subjects, this approach has an important potential in revealing
for instance connectivity abnormalities in the early stages of some important
pathologies such as schizophrenia (Cammoun et al., 2009; Lynall et al., 2010),
multiple sclerosis, epilepsy, etc. But to be effective, this approach needs a pre-
cise matching between the regions of interest defined on the cortical surface of
each subject in the study. Here again, a precise cortical surface registration is
thus the key challenge, that we will try to tackle in this thesis.

To cut a long story short: “Registration algorithms also enable the pooling
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and comparison of experimental findings across laboratories, the construction
of population-based brain atlases, and the creation of systems to detect group
patterns in structural and functional imaging data” (Toga and Thompson,
2001).

1.2 A Quick Review on Image Registration

Image registration is the concept of mapping homologous points of different
images, representing a same object, see figure 1.1. Homology, in turn, is defined
as the relation between “organs deriving from the same embryonic blanks”1. In
practice, however, it is highly difficult to establish homology in images strictly
based on this definition, and a broad variety of registration methods exist, see
(Brown, 1992; Maintz and Viergever, 1998; Audette et al., 2000; Zitová et al.,
2003) and references therein.

1.2.1 Image dissimilarity metric

In expert-based registration, the necessary homology cues can be provided by
the expert, but this approach becomes unfeasible if a higher number of images
is to be registered. On the other hand, for automatic image registration, it is
commonplace to substitute homology by a measurable criterion of image dis-
similarity, which is to be minimized. Depending on the nature of the images to
be registered, different metrics are used to assess image distances. If the images
have been acquired using similar sensors, one can generally assume that the
same entities are pictured at the same feature intensity in both images, sub-
ject to noise. An intuitive and simple choice for monomodal image registration
subject to additive Gaussian noise is the squared error metric (sum of squared
intensity differences) (Toga, 1999). In different settings, in particular in pres-
ence of impulse noise, the non-differentiable absolute error metric may be more
suitable (Lucas and Kanade, 1981; Pock et al., 2007; Feigin and Sochen, 2009).
In the multimodal case, other metrics, such as the Kullback-Leibler distance
or Mutual Information are more appropriate (Wells III et al., 1996; Viola and
Wells III, 1997; Maes et al., 1997; Rueckert et al., 1999; Thévenaz and Unser,
2000; Mattes, 2001; Pluim et al., 2003).

1.2.2 Deformation model and regularization

Registration methods also differ in the deformation model and constraints that
are applied on the resulting deformation field. Simple parametric deformation
models, including rigid and affine transformations, which are defined globally
for the whole image space, restrict the degrees of freedom to a small number of

1Homologue:“sont homologues les organes dérivant des mêmes ébauches embryonnaires”.
Le trésor de la langue française informatisé.
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parameters. Semi-local models are parametrized by a coarse grid of deforma-
tion vectors, which are then interpolated using appropriate basis functions to
obtain the dense deformation field, e.g. (Ashburner and Friston, 1999; Rueck-
ert et al., 1999; Kybic and Unser, 2003; Rueckert et al., 2006). Registration
becomes more flexible the finer those grid-points are seeded. Ultimately, each
pixel/voxel is allowed to move individually, which is then called model-free or
free-form deformation, as e.g., with the Demons framework (Thirion, 1998).

1.3 Registration of the Cerebral Cortex

Inter-subject anatomical registration is a difficult task due to the complexity
and variability of brain structures, such as the brain cortex: sulci and gyri,
vary a lot between subjects. There are, among all the non-rigid registration
techniques, several matching criteria and several types of transformation, that
have been applied in the context of brain registration (Lester and Arridge,
1999; Toga, 1999; Hellier et al., 2003; Ardekani et al., 2005; Gholipour et al.,
2007).

1.3.1 Voxel-based versus landmark-based

Two main approaches can be distinguished for non-rigid registration: voxel-
based and feature-based approaches. In voxel-based approaches the objective
of the transformation is to optimize some global intensity-based correspon-
dence measure like gray-level correlation or mutual information, see (Lancaster
et al., 1995; Ashburner and Friston, 1999; Zosso et al., 2006) to name just a
few. Several such registration methods have been compared in (West et al.,
1997). The main limitation of these methods is usually that they lead to a
compromise between the accuracy of the registration and the smoothness of
the deformation. Such approaches work well for sub-cortical structure regis-
tration, such as (Christensen et al., 1997), but they are usually not appropriate
for aligning the highly convoluted pattern of sulci and gyri (Collins et al., 1998;
Hellier et al., 2003).

On the other hand, feature-based approaches rely on landmarks or seg-
mentation: identifiable anatomical elements (point landmarks, lines or sur-
faces) have to be extracted in both reference and moving image and their
correspondence determines the registration transformation. They use high-
level anatomical information (sulcal lines, functional surfaces, important land-
marks), which explicitly guarantees the physical validity required in the brain
registration process. As an example of model based registration, point-based
sulcus extraction allows refining cortical alignments with respect to volumetric
methods (Chui et al., 1999). Vaillant and Davatzikos extracted representations
of cortical sulci with active contours as landmarks for non-rigid brain image
registration (Vaillant and Davatzikos, 1997). Thompson and Toga base their
deformation field on embryologist-motivated brain structure surfaces (Thomp-
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son and Toga, 1996). Miga et al. used iterated closest point registration (ICP)
in conjunction with mutual information of colored surface point clouds to align
MRI images to intra-operative laser range-scan images (Miga et al., 2003).

1.3.2 Surface-based

Several approaches have been developed that focus on the reconstructed corti-
cal surface, as postulated by Van Essen and colleagues (Van Essen et al., 2000).
It is, however, extremely challenging to directly align cortical surfaces due to
the highly convoluted and irregular structure of reconstructed cortical sheet
meshes. Projection of the cortical surface on a spherical manifold is there-
fore commonplace, preserving both topology and connectivity (Hebert et al.,
1995). Mesh inflation allows coarse registration after partial cortical flattening
(PCF) (Tosun et al., 2004), and gives rise to spherical feature maps, either
after further inflation (Fischl et al., 1999a,b) or conformal mapping (Angenent
et al., 1999). Landmark-based large deformation diffeomorphic registration on
the sphere was then proposed in (Bakircioglu, 1999). Further, these spheri-
cal maps contain features of either the complete cortical surface or only one
hemisphere, and lend themselves to registration by powerful intensity-based
tools on a simplified shape. The features used include information about mesh
geometry such as surface normals (Gu et al., 2004) or curvature (MacDonald
et al., 2000), node convexity (Fischl et al., 1999b) or clamp histograms (Liu
et al., 2004), geodesic distances to gyral crown vertices (Robbins et al., 2004)
or stereotaxic coordinates (Toga, 1999), as well as anatomical features such
as cortical thickness or sulcal depth. Flattening of local sections of spheri-
cal parametrizations into a 2D representation allows using classical 2D image
registration methods in a first approximation, as done by several authors.
However, this introduces major irregular dilations and contractions, for which
partial solutions have been proposed (Thompson and Toga, 1999). The most
recent achievement, based on the spherical feature maps provided by (Fischl
et al., 1999a,b), is the Spherical Demons framework (Yeo et al., 2010), which
extends the Diffeomorphic Demons (Thirion, 1998; Vercauteren et al., 2009)
to the sphere.

1.3.3 What next?

In summary, it is today commonly accepted that purely volumetric voxel-
based approaches are not suitable to address the problem of high-precision
cortical surface registration. Whereas, in the present context, point-based
registration methods are also unlikely to yield the necessary precision, surface-
based techniques are today most promising (Van Essen, 1998). In this thesis,
we will therefore focus our efforts on the registration of spherical feature maps,
much along the lines of (Fischl et al., 1999a,b; Yeo et al., 2010).
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1.4 Inverse Problems in Computer Vision

The discovery of X-rays, commonly attributed to Wilhelm Conrad Röntgen in
1895, marks the beginning of the extension of imaging beyond the boundaries
of normal human visual perception. From then on, it became possible to “see”
information from objects that was otherwise hidden and inaccessible. The
spectrum of imaging modalities has not stopped broadening ever since, each
modality picturing a different physical property of the underlying object.

Modern day imaging is mainly challenged by the inverse problem that
consists of gaining insight on the physical reality of an object, given one or
several derived images. Think of clinical healthcare without the assistance of
non-invasive imaging techniques s.a. computed tomography or magnetic res-
onance imaging, or modern live science research without appropriate imaging
instrumentation. Thanks to the exploding number of image acquisition de-
vices and the availability of cheap (electronic) computing power, not only the
process of imaging itself, but increasingly also the interpretation of acquired
images is to a large extent left to non-human automata. The computational
problems related to this task are generally referred to as image processing
and computer vision. Typical tasks include, but are not limited to: Image
restoration, segmentation, registration and classification, stereo and multiview
scene reconstruction, and many others. The range of applications is enormous:
medical imaging, biological imaging, non-destructive testing, remote sensing,
surveillance and monitoring, robotics, consumer electronics, and many others.

1.4.1 Ill-posedness

Most of these problems, in particular the image registration problem, are ill-
posed (Bertero et al., 1988), which means that not all of the following criteria
apply (Hadamard, 1902; Morozov, 1975):

1. A solution exists

2. The solution is unique

3. The solution depends smoothly on the data

The classical resolution scheme is the following (Poggio et al., 1985):

• Formulate the inverse problem in terms of the corresponding
forward problem: we look for an unknown signal u, that under the
action of an operator Φ and possibly affected by some noise n yields the
observed signal f .

find u s.t. f = Φu+ n (1.1)

• Rewrite as an energy minimization problem: Typically choose
p = 2 (least squares error), corresponding to a Gaussian additive noise
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Table 1.2: Inverse problems. Some examples of inverse problems in image pro-
cessing and computer vision. Note that in this list, the registration problem is
the most complicated one, since its operator Φ (warping the moving image) is
non-linear.

Task u Φ f

Scale-space
Produce coarse-scale image given a
fine-grained version.

Coarse-scale image 0 n/a

Denoising
Retrieve original image given a
noisy acquisition.

Noise-free original I Degraded image

Super-resolution
Retrieve high-resolution image
given low-resolution samples.

High-res image Subsampling ↓ 2 Low-res image

Inpainting
Retrieve full image given a version
with missing patches.

Full image Sampling/masking Holey image

Deconvolution
Reconstruct original (sharp) image
given a degraded version affected
by spatial blur h and noise.

Sharp image Blur H Blurred image

Registration
Find the deformation field match-
ing homologous points in a pair of
images

Deformation field Warp image M Fixed image F

model.

min
u

{
E = ‖Φu− f‖pp

}
(1.2)

• Add regularity penalty to render problem well-posed (Morozov,
1975; Tichonov, 1963):. Here, q = 2 is generally preferred because of its
convexity and differentiability.

min
u

{
E = ‖Φu− f‖pp + α‖Γu‖qq

}
(1.3)

where typically in image processing, one chooses Γ := D, the first order
differential operator, in order to impose smoothness of the solution.

An incomprehensive list of some inverse problems that fit into this scheme
is given in table 1.2.

1.4.2 Wiener Filtering

The classical Wiener filtering result can be derived from (1.3) when p = q = 2.
Take for example an image deconvolution problem: Φ = H represents some
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spatial blur corresponding to the convolution with a kernel h. The minimiza-
tion problem writes (Feigin and Sochen, 2009):

min
u
‖u ∗ h− f‖2

2 + α‖∇u‖2
2, (1.4)

of which the Euler-Lagrange equations are (Feigin and Sochen, 2009; Bar et al.,
2006)

(u ∗ h− f) ∗ hS + α∆u = 0, (1.5)

where hS(x) = h(−x) and ∆ denotes the Laplacian. In Fourier domain, and
after reordering, this yields the classical Wiener filter result (Gonzalez and
Woods, 1992; Pratt, 2001):

û =
ĥ∗

|ĥ|2 + α|ω|2
f̂ , (1.6)

where û is the Fourier transform of u, ĥ∗ is the complex conjugate of ĥ, |ĥ|2 =
ĥ∗ĥ, and ω is the frequency vector.

1.4.3 Non-linear Regularization

Although widely used today thanks to its simplicity and optimality, this reso-
lution scheme has some important shortcomings. Despite their popularity due
to computational tractability, it is well-known, that these Gaussian regular-
izers are not feature-preserving and that the obtained solutions are typically
overly smooth. Different anisotropic, feature-preserving regularization schemes
have therefore been researched, e.g., (Nordström, 1990; Alvarez et al., 1992;
You and Kaveh, 1999; Forsberg et al., 2010; Hong and Park, 2010). Beyond,
the Rudin-Osher-Fatemi (ROF) or Total Variation (TV) model (Rudin et al.,
1992), corresponding to q = 1 has particularly gained in importance. TV pe-
nalizes the norm of the gradient directly, instead of its square. This model
addresses the fact that natural images are typically composed of different, ho-
mogeneous regions, separated by more or less steep transitions, i.e., the image
gradient is sparse in the L1 rather than the L2-sense. Most recently, in the
context of compressed sensing, this model has been employed to recover signals
sampled well beyond the Nyquist criterion, thanks to strong sparsity assump-
tions. The TV norm is not differentiable, however, and sophisticated methods
need to be employed in order to optimize it efficiently.

1.5 Regularization in Motion Estimation

In image registration and motion estimation, the determination of the underly-
ing deformation field between two images is an instance of an ill-posed inverse
problem (Bertero et al., 1988), requiring additional prior knowledge to make
it well-posed. Ergo, to restrict such deformation fields to what is believed to
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?

(a) (b)

Figure 1.4: The aperture problem. (a) The motion of a single contour is not
sufficient to determine the global motion of the entire object. At three different
positions, only portions of the motion can be detected: only components normal to
the contour are perceivable. (b) In this example, three different motions produce
the same physical stimulus (Movshon et al., 1985). Conversely, each stimulus spans
a subspace of admissible underlying motion, and true motion is at the intersection
of the subspaces of all edges of an object. This intersection is to be found by
regularization.

be “physically meaningful” deformations, constraints on the field regularity
are introduced. Typical regularization constraints reduce the variations of the
deformation field by defining an additional penalty, based on some norm on
the gradients of the deformation field.

1.5.1 Aperture Problem

In addition to the mathematical aspects of ill-posedness, motion regulariza-
tion also addresses a more intrinsic shortcoming of the perception of motion,
namely the well-known aperture problem (Stumpf, 1911; Marr, 1982; Adelson
and Movshon, 1982; Hildreth, 1984; Hildreth and Koch, 1987), illustrated in
figure 1.4. Indeed, due to the localization of the individual motion detector,
motion can only be perceived at image contours, i.e., object boundaries. Even
worse, only its components normal to that contour can be directly estimated.
In contrast, in homogeneous regions or tangential to contours, motion cannot
be perceived. Indeed, every local motion detector spans an entire subspace of
underlying motions that are compatible with the perceived motion cue. This
not only affects (first-order) detectors in computer vision, but has equally
been shown experimentally for visual and tactile perception in living beings,
e.g. (Gizzi et al., 1990; Pei et al., 2008). While in the living case, the indi-
vidual motion cues are supposedly combined in subsequent neuron layers, in
computer vision it is the role of regularization to intersect the different admis-
sible motion subspaces, and thus to propagate motion information from object
boundaries into their homogeneous inner regions, and to complete tangential
components at boundaries from nearby data.
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1.5.2 Variational Model

Typically, image distance metric and regularization penalty are incorporated
into a single energy minimization model, a.k.a. variational model, e.g., (Her-
mosillo et al., 2002). The energy functionals are commonly of the form

E = Edata + r · Eregularization, r > 0, (1.7)

which generalizes the Tikhonov-regularization approach (1.3) to arbitrary data
and regularity measures.

In 1981, Horn and Schunck defined the term optical flow as “the distribu-
tion of apparent velocities of movement of brightness patterns in an image,”
which “can arise from relative motion of objects and the viewer” (Horn and
Schunck, 1981). In particular, one is interested in retrieving the underlying
motion, given two subsequent image frames, I1 and I2. This inverse problem
is a special case of the concept of image registration, where we require the two
images to be subsequent (monomodal) frames of the same scene.

Horn and Schunck introduced a fundamental method to determine optical
flow, based on a first order brightness constancy assumption and a Gaussian
smoothness constraint:

min
~u

{∫ 〈
~∇I1, ~u

〉
+ (I2(~x)− I1(~x− ~u)) d~x+ α

∫ (
‖~∇u1‖2 + ‖~∇u2‖2

)
d~x

}
,

(1.8)
where ~u(~x) = (u1 (~x) , u2 (~x)) denote the two components of the flow-field.
Because of its simple quadratic structure, this regularization penalty is differ-
entiable and easy to optimize, which made it so popular.

1.5.3 Anisotropic Regularization

It was quickly realized, again, that this Gaussian regularization overly smoothens
the flow field across object boundaries, such as occluding edges. Nagel and
Enkelmann replaced the data-term by the squared intensity difference, thus
accounting for higher-order terms, and simply wrote the same regularization
term differently (Nagel and Enkelmann, 1986):

min
~u

{∫
(I2(~x)− I1(~x− ~u))2 d~x+ α

∫
tr{(∇~uT )T (∇~uT )}d~x

}
. (1.9)

Note, that this model now corresponds to the standard resolution scheme (1.3),
and can also be found in the Demons framework (Thirion, 1998).

Driven by the realization that individual objects move independently and
that regularization should be limited at their respective boundaries, Nagel
and Enkelmann now tuned the regularization term by intercalating an edge-
detecting matrix C:

min
~u

{∫
(I2(~x)− I1(~x− ~u))2 d~x+ α

∫
tr{(∇~uT )TC−1(∇~uT )}d~x

}
, (1.10)
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where the eigenvectors of C are oriented along and normal to the local image
gradient, respectively, and the eigenvalues indicate gradient strength in that
direction. Several similar results have been developed since, a summary and
generalization of which can be found in (Weickert and Schnörr, 2001).

In a completely different, less fundamental and more ad-hoc approach, reg-
ularization was delimited by explicitly modeled boundaries (Pitiot and Gui-
mond, 2008). Clearly, this second approach is unsuitable for a general formu-
lation of an automatic registration framework.

1.6 Elements of Gestalt Theory and Motion
Perception

Nature has a long-standing experience in vision and developed very sophisti-
cated mechanisms for the efficient processing of visual and motion information.
It might be helpful in the course of improving our current computational mod-
els for vision, to revisit this archetype and consider it as some sort of “natural
state-of-the-art”. In this section, therefore, we want to shed some light on a few
fundamental concepts derived from studies of psycho-physical vision and mo-
tion perception, without considering anatomical and implementational details,
however. In particular, we briefly present selected elements of Gestalt-Theorie
that deal with vision. For a more complete theory of vision, see for example
(Metzger, 1975; Marr, 1982).

1.6.1 Gestalt Theory

The term Gestalt (german: shape, form, figure), is defined here as the “essence
or shape of an entity’s complete form”. The Gestalt concept goes back to
the work of von Ehrenfels (von Ehrenfels, 1890), in the late 19th century.
Gestalt theory2 was later extended, amongst others, by Max Wertheimer, Kurt
Koffka and Wolfgang Köhler between 1912 and 1920 (Ash, 1985). One of its
important elements is the holistic realization, that “a whole is not simply the
sum of its parts, but a synergistic ‘whole effect,’ or [precisely] gestalt” (Behrens,
2004; von Ehrenfels, 1890). In particular, related to motion perception, the
theory notes that “the effect of apparent movement is generated not so much
by its individual elements as by their dynamic interrelation” (Behrens, 2004;
Wertheimer, 1912). Consequently, an entity’s properties cannot be derived
directly from the properties of its constituent parts, since the whole is “more
than just the sum of its parts”. The last, Aristotelic theorem was termed
Übersummativität (over-summativity) by von Ehrenfels (von Ehrenfels, 1890).

2While the Gestalt theory actually involves a much wider field of psychology and beyond,
it is important to note, that here we only refer to its psycho-physical elements of visual
perception.
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1.6.2 Gestalt principles

The (visual) Gestalt theory involves a short list of fundamental Gestalt princi-
ples: emergence, reification, multistability and invariance. These four princi-
ples are illustrated in figure 1.5. Note that Gestalt theory only describes these
principles, but does not provide a complete physical explanation for them.

Emergence is the key phenomenon attributed to over-summativity. In-
deed, the terms are sometimes used as synonyms. Emergence describes the
– sometimes sudden and surprising – perception of objects in an image, that
could not be spotted by independent very local analysis alone. In other words,
“Emergence [...] refers to the arising of novel and coherent structures, patterns,
and properties during the process of self-organization in complex systems” –
in this case the gain of information on objects from low-level visual patterns
(Goldstein, 1999). At first sight, the image shown in figure 1.5(a) is composed
of an arbitrary random pattern of black spots. Only after global study, the
picture of a Dalmatian dog emerges. The dog cannot be spotted based on
individual analysis of its spots, i.e., we cannot identify the dog’s ear, nose or
legs prior to the visual emergence of the whole dog. A similar observation
holds for the horses pictured in the Pintos painting, in figure 1.5(b).

Reification refers to the constructive perceptive phenomenon, where the
mind introduces objects into a scene in order to provide a plausible explanation
for what is actually perceived. This is illustrated in figure 1.5(c).

Multistability is the tendency to switch back and forth, in ambiguous
visual situations, between different plausible interpretations. Probably the
most famous example is the Necker cube, illustrated in figure 1.5(d).

Invariance, finally, is the capacity of the mind to recognize and discern
objects independently of (simple) transformations such as rotations, scale and
perspective, as shown in figure 1.5(e).

1.6.3 Prägnanz and the Gestalt Laws

Another fundamental ingredient of Gestalt theory is the concept of Prägnanz
(german: pithiness). This concept describes the fact, that the human mind au-
tomatically perceives objects and patterns as grouped according to a few basic
rules. These rules are commonly referred to as “Gestalt laws” or “Principles
of grouping”. The five core laws are in order: proximity, similarity, closure,
good continuation, and common fate. A few other, contemporary grouping
laws – such as symmetry, convexity, connectedness, and good form – are less
commonly agreed upon.

The five core Gestalt laws are illustrated in figure 1.6. The law of prox-
imity obviously predicts, that items located close to each other will likely be
considered as a whole and will be grouped together. In the shown example
1.6(b), the spacing between circles is slightly smaller vertically than horizon-
tally, and consequently the dots clearly appear arranged in columns. If the
circles are shaded as in 1.6(c), then the law of similarity can overrule this im-
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(a) (b)

(c) (d) (e)

Figure 1.5: Gestalt principles. (a)-(b) Emergence. After some time, an intel-
ligible object suddenly emerges out of the “unorganized, random” pattern. (a)
Dalmatian dog. (b) Pintos, by Bev Doolittle, 1978. (c) Reification. The mind
adds items to the scene in order to make the perceived visual information more
plausible. Here: Kanizsa triangle and ‘E’. (d) Multistability. In ambiguous situa-
tions, one flips between different plausible interpretations of the visual experience.
Here: the Necker cube. (e) Invariance. Objects are easily identified and discerned
even under simple spatial transformations.

pression, and despite the column arrangement, the objects now appear grouped
in rows. The law of closure, shown in 1.6(d), closes holes and bridges gaps be-
tween fragments of objects in order to build a whole, such as the circle and the
well-known IBM-logo, also based on strong prior knowledge. The law of good
continuation is the Occam’s Razor equivalent to Gestalt theory. It states,
that we group and organize crossing line fragments in a way that lets each
individual line be as smooth and regular as possible. Also, line fragments with
similar properties (thickness, zigzag, straight or curved etc.) naturally group
together. In our example in 1.6(e), one automatically perceives a straight diag-
onal crossing a curved line – while the lines could as well have 90-degree angles,
by joining the two upper parts versus the two lower fragments, for example.
The law of common fate, finally, lets us group items that are perceived to
share the same fate, for example based on common movement, as sketched in
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(a) (b) (c)

(d) (e) (f)

Figure 1.6: Gestalt laws. (a) Baseline: regularly spaced, identical circles evoke
no particular grouping. (b) Law of proximity: due to reduced vertical spacing,
the dots arrange in columns. (c) Law of similarity: horizontally common shadings
groups the dots in rows. (d) Law of closure: the dots form a circle, and despite
the horizontal interlacing the letters are clearly intelligible. (e) Law of good con-
tinuation: one tends to see a straight diagonal cutting a curved line. (f) Law of
common fate: the two upward moving circles clearly separate from the interleaved
downward moving ones.

1.6(f).

1.6.4 Motion coherence

A well-known study by Newsome and Paré in 1988 determined the lower limit
of motion coherence required to evoke perception of global net motion (New-
some and Paré, 1988). In this study, monkeys were exposed to successions of
random dot patterns on CRT screens, where each dot lives for 20− 30 µs, be-
fore it is replaced by a new dot, of which a controllable portion is replaced at a
fixed displacement. This setup is illustrated in figure 1.7. If all successors are
random, as in the ‘no correlation’ or 0%-coherent state, then no net motion can
be perceived. The more dots, however, are replaced by correlated partners, the
more the net motion becomes perceivable on a global level. It is to note that
for low correlation levels, say around 10%, no long living streaks are apparent
(only 1% of dots will have 2 correlated successors), so that motion can not be
deduced from local cues alone. Monkeys had to decide whether the global net
motion was upward or downward. The lower threshold of motion perception
was around 1.8% motion coherence, below which the monkeys guessed entirely
randomly, whereas motion detection performance was almost perfect around
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(a) (b) (c)

Figure 1.7: Motion perception experiment according to Newsome (Newsome
and Paré, 1988). (a) All dots are replaced by entirely randomly placed partners.
The resulting apparent motion pattern involves no motion coherence. (b) 50%
motion coherence. Half of the points are replaced by correlated partners, i.e.,
they apparently move coherently. (c) Full motion coherence: all dots are replaced
by correlated successors. What is the minimal amount of coherence required for
perception of a global motion pattern?

12% coherence (Newsome et al., 1989).
In order to better assess this amazing capability of the visual system to

detect the relevant, coherent parts of motion at such high levels of noise, we
revisited the Newsome study and performed a few tests in a self-experiment.
We were able to reproduce parts of the study in humans and determined similar
thresholds and characteristic curves. A few exemplary results are shown in
figure 1.8.

1.7 A New Registration Framework

In this thesis we develop a new registration framework that tries to generalize
existing approaches beyond current limitations and in particular addresses
some shortcomings. Indeed, the additive variational framework, including
Gaussian regularization in particular, comes with a few important drawbacks.

1.7.1 Gaussian Regularization Shortcomings

Firstly, it is well-known, that these Gaussian regularizers are not feature-
preserving and that the obtained solutions are typically overly smooth. This
is mainly due to the fact that with Gaussian regularizers, the only criterion
defining the amount of information exchange, i.e., smoothing, is distance in
image space. Indeed, one could say that Gaussian regularization ignores all
Gestalt laws save the law of proximity.

It would be very reasonable, though, to restrain regularization to within
distinct objects only. If objects are recognizable by boundaries in the recon-
structed unknown data, then replacing the linear regularization by anisotropic
regularization might help to do the job. Amongst other non-linear, anisotropic
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(a) (b)

Figure 1.8: Motion perception self-experiment. (a) Determination of the hu-
man motion perception correlation threshold according to (Newsome and Paré,
1988): “The correlation value was well above threshold on the initial trial, and the
probability of a decrease in correlation was 37% for each correct response. The
correlation value increased following each incorrect response. [...] The threshold
was calculated as the mean of the correlation values at each turning point (max-
ima and minima) during the last 60 trials.” The monkey-data of the original study
is shown in gray. (b) Determination of the human motion perception correlation
characteristic according to (Newsome et al., 1989). For different correlation val-
ues, direction detection was repeatedly tested (n = 20). Below around 1% motion
coherence, the study subject guesses fully randomly, whereas above 10% correla-
tion, the net motion is always perceived correctly.
DISCLAIMER: In this study, no PhD students were harmed and all experiments were conducted

in accordance to all state and federal regulations. As liquid rewards were employed, coffee intake

was controlled so as to maintain the student in a healthy but motivated state. Correct choices

were rewarded with a drop of coffee.

diffusion schemes, the Rudin-Osher-Fatemi (ROF) or Total Variation (TV)
model (Rudin et al., 1992), has therefore gained in importance.

Other approaches that are currently “en vogue” are bilateral filtering (Tomasi
and Manduchi, 1998) and non-local regularization (Gilboa and Osher, 2008;
Buades et al., 2008; Lou et al., 2009; Elmoataz et al., 2008; Peyré et al., 2008;
Bougleux et al., 2011).

1.7.2 Drawbacks of Additive Regularization

Secondly, the additive energy model is not re-parametrization invariant. In
image processing, the property of parametrization invariance is a very rare,
but actually highly desirable property, so as in human vision. Indeed, there
is no reason why the chosen parametrization of the image domain should in-
fluence the outcome of the process. And yet, many currently used image
processing methods lack this important invariance property. While this is
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absolutely acceptable in the current majority of cases, where images are clas-
sically parametrized by Cartesian coordinates, with the advent of wide-angle
and catadioptric imaging, for example, non-Cartesian images are today gain-
ing in importance. Such images are widely used in omnidirectional vision and
robot navigation, for example, where ego-motion and position can be derived
from a sequence of images, e.g. (Yagi et al., 1994; Gaspar et al., 2000; Bun-
schoten and Krose, 2003). The spherical feature maps of the cerebral cortex
employed in this thesis obviously are non-Cartesian images as well.

1.7.3 Gestalt and the Beltrami Framework

In their seminal work (Sochen et al., 1998), Sochen, Kimmel and Malladi intro-
duced the powerful Beltrami framework for image denoising and enhancement.
This model is based on the Polyakov model (Polyakov, 1981) introduced in
string theory for physics. The Polyakov model represents strings as harmonic
maps in high-dimensional and curved spaces defined by Riemannian manifolds.
Adopting this pure geometric point of view amounts to seeing objects such as
images, shapes, or vector fields as geodesics or harmonic maps, much like a 2D
topographic map corresponds to a three-dimensional surface in the real world.

The potential of this geometric framework lies in the general definition of
the space-feature manifold and the choice of its metric. In particular, the
metric can be chosen such that the Polyakov energy corresponds to an arbi-
trary interpolation between quadratic or total variation gradient penalty. The
features are not restricted to scalar values but include vector features encoun-
tered in color, texture or multispectral image analysis (Kimmel et al., 2000).
Similarly, the embedding is not limited to 2-dimensional image surfaces and
generalizes naturally to n-dimensional manifolds associated to volumetric or
time varying images or videos. Moreover, the choice of the metric enables the
study of complex geometries inherent to scale-space methods (Bresson et al.,
2006) and non-flat images generated e.g., by catadioptric or omnidirectional
cameras (Bogdanova et al., 2007).

Depending on the exact embedding, the Beltrami framework can be imple-
mented to incorporate several grouping principles from Gestalt theory. The
laws of proximity and similarity are the most obvious ones. Embedding, e.g.,
the deformation field of the registration problem, allows mimicking the law of
common fate. Closure and good continuation are closely related to TV-like
regularization. It seems that the Beltrami framework is thus a very versatile
and elegant way to reproduce in computer vision certain concepts known from
human vision.

1.7.4 Weighted Beltrami

The second issue, absence of re-parametrization invariance, is more related
to the additive structure of the variational model. Here, we note that the
Beltrami framework can be equipped with a weighting function that allows
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multiplicative coupling of the data term with the regularization term of the
specific inverse problem. Indeed, the resulting energy functional has very inter-
esting fundamental properties, such as geometric regularization interpolating
between Gaussian and TV regularization, re-parametrization invariance, appli-
cability to any Riemannian manifold and intrinsic automatic data-dependent
modulation of the local regularization strength. The weighted Beltrami energy
thus promises to be an interesting approach for the image registration problem
at hand.

Moreover, research in related fields, such as compressed sensing (Donoho,
2006) and optimization theory (Glowinski and Le Tallec, 1989), has yielded
very efficient optimization algorithms for the TV/L1 case, which can partially
be applied to the weighted Beltrami framework as well.

1.8 Organization of this thesis

We postulate that the weighted Beltrami framework represents an important
step towards a unifying variational framework for geometric image processing,
with a high degree of generality and a multitude of beneficial properties. Based
on intuitions from Gestalt theory and given the particular role of regularization
in motion estimation and image registration, we believe that this framework is
an ideal fit for the cortical registration problem at hand. The central idea is (1)
to use the Beltrami energy of the embedded unknown data as regularization
term, and (2) to link data and regularization term through multiplication
instead of addition.

1.8.1 Contributions

In this thesis, we develop a novel image registration framework, called Geodesic
Active Fields, which is based on the weighted Beltrami energy, and we apply
it to perform registration of cortical feature maps of the human brain.

The contributions of this thesis include:

• The formulation of an appropriate anisotropic scale-space of cerebro-
cortical feature maps on the triangulated sphere, which allows later
for hierarchical coarse-to-fine registration of the feature maps based on
morphogenic concepts. The scale space is built upon the Beltrami frame-
work.

• The formulation of image registration as a weighted minimal sur-
face problem, within the weighted Beltrami framework. We provide
the general setup and more detailed instantiations for different image
geometries and modalities. The proposed Geodesic Active Fields (GAF)
registration framework is able to deal with images defined in traditional
Euclidean domains, but seamlessly extends to images in Riemannian
spaces, such as curved manifolds or scale-spaces. The framework is
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parametrization invariant, and the multiplicative coupling adaptively
modulates the regularization strength based on the local alignment qual-
ity and noise level. We provide weighting functions for the common
monomodal-Gaussian-noise case, as well as absolute error measure for
monomodal-impulse-noise, and joint entropy for multimodal registration.

• An efficient minimization scheme for the GAF framework, called
FastGAF, which allows optimizing the registration energy in time com-
parable to state-of-the-art registration schemes. We use splitting of the
underlying deformation field into two constrained copies, and use an aug-
mented Lagrangian approach to reformulate the constrained minimiza-
tion as an unconstrained saddle point problem, efficiently solved using
alternate minimization.

• The instantiation of the FastGAF scheme on spherical meshes, thus
allowing for efficient registration of pairs of triangulated spherical fea-
tures maps. This involves particular definitions, e.g., of the deformation
field, its embedding and parallel transport, on the sphere.

• A validation of the spherical registration scheme in a leave-one-
out cross-validation scheme, based on 39 cortical feature maps and their
manual parcellations.

• A sketch of a possible inclusion of diffeomorphic and inverse consis-
tent deformation models, with positive preliminary results.

1.8.2 Structure

The structure of this thesis is closely fit to the aforementioned contributions.
First, in chapter 2, we review the Beltrami framework in detail. We recall

the general definitions, provide a few insightful examples, and give an extensive
list of current applications. We complete with a quick overview of numerical
schemes employed in Beltrami energy optimization so far.

For starters, chapter 3 then develops a scale space of cortical feature maps
based on the Beltrami framework. This chapter also exposes the type of spher-
ical maps and their structure, which are to be registered later on.

We introduce the Geodesic Active Fields (GAF) framework in chapter 4.
This framework is a general, geometric framework for image registration, and
here we present it in several show-case applications, e.g., for stereo vision, 2D
Euclidean and multiscale registration, as well as registration on a spherical
patch.

In order to overcome some numerical issues of the prototype implementa-
tion, and to make the optimization more efficient, a fast numerical scheme is
presented in chapter 5. This scheme uses splitting and augmented Lagrangians
so as to alternately minimize the data-term weighting function and the regu-
larization term, respectively. We show, that the scheme compares favorably
to state-of-the-art methods, both in terms of speed and registration quality.
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In chapter 6 we formulate the spherical version of the Fast GAF scheme.
Due to the specificities of the triangulated spherical surface, this involves a
few particular (re-)definitions.

A validation study based on the pairwise registration of 39 subject brains is
presented in chapter 7. We implement a Bayesian atlas fusion scheme which,
from a set of pairwise registered parcellations, predicts the cortical parcel-
lation of a subject hemisphere. This allows investigation of the registration
performance in a leave-one-out cross-validation approach.

In the main body of the thesis, we only provide a very simple additive
deformation model. Today, medical image registration tends to the use of
diffeomorphisms, which restricts the space to physically more meaningful de-
formations. In chapter 8 we sketch, how a state-of-the-art diffeomorphic de-
formation model can be integrated into the GAF framework.

We conclude this thesis in chapter 9. We also provide potential follow-up
work to further improve the proposed cortical registration scheme presented
in this thesis. Moreover, it is shown how we believe that the insights and
achievements of this thesis can be applied to a broader set of inverse problems
in computer vision and image processing.

Finally, a few tools that we implemented to work with spherical images are
detailed in the appendix A.





The Beltrami Framework 2
“If one does not plow, there will be no harvest.”

Chinese proverb.

The Beltrami framework was introduced in (Sochen et al., 1998) for
low level vision, in particular image denoising and enhancement. This
model is based on the Polyakov model (Polyakov, 1981) introduced in

string theory for physics. While the Polyakov model represents strings as
harmonic maps in high-dimensional and curved spaces defined by Riemannian
manifolds, the Beltrami framework does similarly with images. In its simplest
setting, this framework is not more complicated than an exercise known to
every hiker in the mountains: understand a flat image as a topographical map
of an actual 3D terrain, such as illustrated in figure 2.1.

Indeed, the Beltrami framework associates the spatial coordinates along
with the features by defining an embedding, say X : (x, y) 7→ (x, y, I) for a
2D gray-scale image, as illustrated in figure 2.2. One now considers the image
to be a 2D manifold embedded in 3D space. The Beltrami energy then mea-
sures the area of this non-flat manifold, which is a measure of image regularity.
Minimizing the Beltrami energy amounts to regularizing (smoothing) the im-
age, but in a very particular way. Namely, the Beltrami flow is proportional
to the projection of the embedded manifold’s mean curvature vector on the
feature component. Therefore, the diffusion flow is significantly less important
at feature edges, and the smoothing is actually feature preserving.

25
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Figure 2.1: The Swiss view of the Beltrami framework. A flat map corresponds
to a higher-dimensional reality. Here: the intensity information (false-color) of the
rectangular topographic map of the Matterhorn region translates directly into a
three-dimensional terrain model. Real-world distances can be measured on the 2D
map, by using an appropriate metric pulled-back from real-space. This is an easy
exercise for every (non-GPS-based) hiker, and the Beltrami framework proposes a
similar approach for image processing. (geodata c©swisstopo)

The Beltrami framework has a number of other interesting properties, such
as parametrization invariance and the ability to work on any Riemannian do-
main (such as non-flat or multiscale images). Also, more than just gray-scale
intensity can be embedded, and the range of possible applications is long, but
we shall come to this in a moment.

The rest of this thesis will largely rely on the theory and concepts pre-
sented in this chapter. In the next paragraphs, we will first recall a few basic
definitions from differential geometry, as well as review some scale-space the-
ory and history. We will then present the Beltrami framework in more detail
and provide an overview of a variety of its current applications. We will end
this chapter with a short summary of numerical approaches that are used to
optimize the Beltrami energy.

2.1 Preliminaries (1) – Definitions from
Differential Geometry

In differential geometry, the first and second fundamental forms are quadratic
forms on the tangent plane of a smooth n-dimensional hypersurface embedded
in a (n + 1)-dimensional Riemannian manifold, and are usually denoted by I
and II, respectively. They were originally introduced by Gauss, who dealt with
2D parametric surfaces embedded in R3.

2.1.1 First fundamental form I

First, define the surface as ~r = ~r(u1, u2) = (x(u1, u2), y(u1, u2), z(u1, u2))T in
R3. Let ~r,α = ∂~r

∂uα
, α = 1, 2 be the intrinsic tangent vectors. The second degree
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(a) (b)

Figure 2.2: Beltrami framework in a nutshell. A gray-level image is embedded
in 3D according to X : (x, y) → (x, y, I). (a) Pixels across contours (red) are
considered more distant than neighbors in flat regions or along contours (blue). In
3D, the shaded patches have area

√
g-times bigger than what they cover in 2D.

The Polyakov energy computes the total hypersurface of the embedded manifold,
which is a measure of the image regularity. (b) The minimizing flow is oriented
along the normal-vector of the manifold and proportional to the mean curvature.
Since only the features are allowed to move, the mean curvature vector ~H is
projected onto the respective feature dimension ~eI . The resulting flow is therefore
significantly less important at feature contours, and Beltrami diffusion becomes
feature-preserving.

polynomial

I(du1, du2) = E(du1)2 + 2Fdu1du2 +G(du2)2

= [du1du2]

[
E F
F G

] [
du1

du2

]
, (2.1)

with E = ~r,1 · ~r,1, F = ~r,1 · ~r,2, G = ~r,2 · ~r,2 is called the first fundamental form,

and the matrix

[
E F
F G

]
is called the metric tensor of the parametrization.

2.1.2 Second fundamental form II

Now, without loss of generality, suppose the surface be the graph of a twice
continuously differentiable function z = f(x, y). Let further the plane z = 0
be tangent to the surface at the origin. As a consequence, f and its first order
partial derivatives with respect to x and y vanish at the origin. The Maclaurin
expansion of f starts with quadratic terms, i.e.:

z = L
x2

2
+Mxy +N

y2

2
+O3. (2.2)
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Accordingly, the second fundamental form at the origin is written

II(dx, dy) = Ldx2 + 2Mdxdy +Ndy2

= [dxdy]

[
L M
M N

] [
dx
dy

]
, (2.3)

with L = fxx,M = fxy, N = fyy the second partial derivatives of f at the
origin.

More generally, let again ~r = ~r(u1, u2) be a parametrization of a surface in
R3. The normalized cross product of the partial derivatives ~r,α defines a field
of unit normal vectors ~n. If the coefficients bαβ are given by the projections of

the second partial derivatives ~r,αβ = ∂2~r
∂uα∂uβ

on to the normal line ~n, i.e.

bαβ = ~n · ~r,αβ, (2.4)

then the second fundamental form is usually written as

II(du1, du2) = bαβdu
αduβ, (2.5)

where Einstein summation convention has been used.

2.1.3 On curvature

The mean curvature H of a surface is an extrinsic measure of curvature, derived
from differential geometry, that locally describes the curvature of an embedded
surface in its ambient space.

Let p be a point on the surface S and consider all curves formed by the
intersection of S and any normal plane passing through the point p. Every such
curve has an associated curvature, and of all curves at least one is characterized
maximal (κ1), and one as minimal (κ2). These two curvatures are known as
the principal curvatures of S, and they are given by the eigenvalues of the
shape operator S:

−S =

[
L M
M N

] [
E F
F G

]−1

. (2.6)

The associated eigenvectors of this shape operator are the corresponding prin-
cipal directions. While the product of the two principal curvatures, i.e. the
determinant of S, is called the Gaussian curvature, the mean curvature is
defined as the average of the principal curvatures:

H =
1

2
(κ1 + κ2). (2.7)

The mean curvature vector at p is then defined as

~H = H~n, (2.8)

where ~n is the unit normal to the surface S in p.
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2.1.4 Higher dimensions and co-dimensions

In higher dimensions n > 2, the second fundamental form is linked with the
shape operator S of a hypersurface:

II(~v, ~w) = S(~v) · ~w = −∇~v~n · ~w = ~n · ∇~v ~w, (2.9)

where ∇~v ~w is the covariant derivative of the ambient manifold.
The last description of the second fundamental form also generalizes to

any arbitrary co-dimension, which means that the dimension of the ambient
manifold might exceed the embedded surface by more than one, e.g. for a 2D
surface embedded in R4. In this case, II is a quadratic form on the tangent
space with values in the normal bundle, and it can be defined by

II(~v, ~w) = (∇~v ~w)⊥, (2.10)

where (∇~v ~w)⊥ denotes the orthogonal projection of the covariant derivative
onto the normal bundle.

2.1.5 First variation of area

The first variation of area formula relates the mean curvature of a hypersurface
to the rate of change of its area, as it evolves in the outward normal direction.
If Σ(t) is a smooth family of oriented hypersurfaces in M , such that the velocity
of each point is given by the outward unit normal at that point, then the first
variation of area is given by

d

dt
dA = H · dA, (2.11)

where dA is the area element on Σ(t). This equation also reflects the fact, that
a surface with zero mean curvature everywhere has minimal area. These are
called minimal surfaces, and mean curvature flow minimizes the surface area.

2.2 Preliminaries (2) – On Scale and Space

The way we perceive the world depends on the scale of the aperture we use
to measure it (Morse, 1994). This principle is trivially known as “missing
the forest for the trees”, and has also particular validity in image processing:
images are naturally composed of objects which are meaningful only at a given
scale of observation (Marr and Hildreth, 1980; Koenderink, 1984).

As a consequence of the above, the scale at which one measures a certain
property becomes an additional dimension of the imaging space, giving rise to
Witkin’s patented notion of a scale-space (Witkin, 1983). He introduced the
concept of artificially generating larger (coarser) scales of an image through
low-pass filtering.
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2.2.1 Linear Scale Space

The initial requirements for a scale space, i.e. the scale space axioms, were re-
strictive. These fundamental axioms for a scale-space obtained by convolution
L(x, y, t) = L(x, y) ∗ g(x, y, t) with the smoothing kernel g(x, y, t) include:

• linearity,

• shift invariance,

• semi-group structure, g(x, y, t1)∗g(x, y, t2) = g(x, y, t1 + t2), and cascade
smoothing, L(x, y, t2) = g(x, y, t2 − t1) ∗ L(x, y, t1),

• existence of an infinitesimal generatorA, i.e. ∃A : ∂tL(x, y, t) = (AL)(x, y, t),

• non-creation and non-enhancement of local extrema, i.e. ∂tL(x, y, t) ≤ 0
at spatial maxima and ∂tL(x, y, t) ≥ 0 at spatial minima,

• rotational symmetry, i.e. g(x, y, t) = h(x2 + y2, t) for some h,

• scale invariance, i.e. ĝ(ωx, ωy, t) = ĥ( ωx
ϕ(t)

, ωy
ϕ(t)

), for some ϕ(t),

• positivity, g(x, y, t) ≥ 0,

• normalization,
∫
g(x, y, t)dxdy = 1.

It was shown that the unique solution to these requirements is the normal-
ized Gaussian kernel (Babaud et al., 1986)

g(x, y, t) =
1

2πt
e−(x2+y2)/(2t), (2.12)

where the variance σ2 of the Gaussian is given by the scale parameter t. This
kernel also has the nice property of being separable, i.e. g(x, y, t) = g(x, t) ·
g(y, t).

2.2.2 Relation to regularization

Now, consider an image restoration problem in the form of a Tikhonov regu-
larized inverse problem (1.3). The observed image f is a noise-corrupted copy
(Φ = I) of the unknown underlying image u, which we want to recover:

f = u+ n (2.13)

Assuming the noise is Gaussian and zero-mean, one would usually solve this
using a variational approach:

u∗ = argminu ‖f − u‖2
2 (2.14)
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Since this problem is ill-posed, Tikhonov-like regularization is employed in
order to render it well-posed:

min
u

{
‖u− f‖2

2 + α‖Γu‖2
2

}
, (2.15)

where we choose Γ := D the first order differential operator, in order to enforce
smoothness of the solution.

The Euler-Lagrange equation of this problem reads

α∆u = u− f, (2.16)

and with u(0) = f as initial condition, the minimizer satisfies

u(α)− u(0)

α
= ∆u(α), (2.17)

which equates to an Euler-implicit time step of the heat flow:

∂u(t)

∂t
= ∆u(t). (2.18)

The Green’s function of this heat-flow problem is, again, uniquely given by the
Gaussian kernel g(x, t):

u(t) = (g ∗ f)(x, t) (2.19)

Thus, regularization, diffusion and scale-spaces are intimately related con-
cepts (Florack et al., 2004; Scherzer and Weickert, 2000). Interestingly, the
solution to a very local (heat) diffusion process is given by a global convolu-
tion with a kernel of infinite support.

2.2.3 Anisotropy

It is well-known, that the linear scale space is not feature preserving, and that
solutions obtained using Gaussian regularizers are overly smooth at object
boundaries. Therefore, one may define a more general energy functional that
can be minimized through a diffusion process. Let

E =
1

2

∫
C(‖∇u‖2)dx (2.20)

be an energy. Then the corresponding gradient descent equation is described
by a diffusion PDE of the form:

∂u

∂t
= −∂E

∂u
= ∇ · (c(‖∇u‖2)∇u) (2.21)

where c(·) = C ′(·) models the varying heat conductivity. In the above case
of Tikhonov regularization, one has C(‖∇u‖2) = ‖∇u‖2 and therefore c = 1
yields linear, isotropic diffusion.



32 The Beltrami Framework

Perona and Malik used anisotropic diffusion to build a scale space for edge-
detection (Perona and Malik, 1990). They considered the following anisotropic
(actually just inhomogeneous) conductivities:

cpm1(‖∇u‖2) = e−( ‖∇u‖K )
2

, and (2.22)

cpm1(‖∇u‖2) =
1

1 +
(
‖∇u‖
K

)2 . (2.23)

To render the edge detector ‖∇u‖2 more robust against noise, Perona and Ma-
lik had to pre-filter the image with a pre-determined, non-adaptive Gaussian
smoothing kernel.

Catté et al. integrated this ad-hoc filtering into the non-linear diffusion
framework in a more elegant and strict way (Catte et al., 1992). They evaluate
the conductivity on a continuously smoothed version of the image. To obtain
a robust edge detector for the conductivity function, at any time t the image
u is filtered with the derivative of a Gaussian kernel Gt of growing scale:

∂u

∂t
= ∇ · (c(‖DGt ∗ u‖2)∇u) (2.24)

On another note, choosing C(‖∇u‖2) = 2
√
‖∇u‖2 corresponds to the total

variation energy or ROF model (Rudin et al., 1992; Rudin and Osher, 1994):

E =

∫
‖∇u‖dx (2.25)

and conductivity c(‖∇u‖2) = 1√
‖∇u‖2

:

∂u

∂t
= −∂E

∂u
= ∇ · ∇u

‖∇u‖
. (2.26)

Alvarez tuned the TV flow equation, in order to obtain yet another anisotropic
diffusion scale-space (Alvarez et al., 1992):

∂u

∂t
= g (‖G ∗ ∇u‖) ‖∇u‖∇ · ∇u

‖∇u‖
, (2.27)

where G is a smoothing kernel, e.g., a Gaussian, and G ∗ ∇u is a smoothed
local estimate of the image gradient in presence of noise; g(·) is a non-increasing
real function that vanishes at infinity. The tuning of the TV-flow by an edge-
detecting function limits smoothing across edges and acts feature-preserving.

In an attempt to unify several nonlinear scale-spaces in a common formal-
ism, and basing them on the well-understood linear scale-space, Florack et al.
introduced a more strict definition of nonlinear scale-spaces through partic-
ular types of metric transforms (Florack et al., 1995). Florack’s transforms
are required to be diffeomorphisms in the plane, i.e., the underlying metrics
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may well depend on the actual image but are constrained to be flat. It is,
however, not necessary to explicitly compute the actual transform correspond-
ing to the chosen metric. Unfortunately, however, with the restriction to flat
metrics, this framework is not able to reproduce all of the previous anisotropic
diffusion scale-spaces, s.a. the Perona-Malik model.

Beyond, other “ad-hoc” examples of anisotropic smoothing and regulariza-
tion exist that are edge preserving or even edge enhancing, see e.g. (Weickert,
1997, 1999).

2.3 Beltrami Embedding, Geodesic Distance and
Edge Detection

Related to Florack’s approach for non-linear scale-spaces, Sochen, Kimmel and
Malladi introduced the Beltrami framework (Kimmel et al., 1997; Sochen et al.,
1998). In the Beltrami framework, now, transforms are explicitly non-flat and
existing non-linear scale-spaces are shown to be reproducible by this approach.

Let us consider a function φ(x) ∈ W 1,2 : Rn 7→ Rp, where W 1,2 denotes
a Sobolev space, i.e. the L2 norm of both the function and its first order
derivative are finite:

‖φ(x)‖2 + ‖∇φ(x)‖2 <∞. (2.28)

In simple terms, the function φ is required to be finite and differentiable. Note
that here, the spatial parameter of φ is written x rather than ~x, since it may
as well refer to non-Euclidean coordinates.

In this general form, x ∈ Rn denotes the coordinates in n-dimensional
space, and φ(x) ∈ Rp are the associated p-dimensional features. We thus have
a mapping from space to features:

φ : (space) 7→ (features). (2.29)

2.3.1 Embedding

Now, the Beltrami embedding associates the spatial coordinates along with
the features. It defines a mapping X : Rn 7→ Rn+p as follows:

X : (space) 7→ (space, features). (2.30)

This amounts to seeing the function φ as a non-flat surface embedded in a
higher dimensional space, much like a topographic map has a three-dimensional
counterpart in the real world.

More generally, we have an n-dimensional image manifold Σ with coordi-
nates σ1...n, with associated p-dimensional features φ1...p(σ1...n). This manifold
can be embedded in an m-dimensional manifold M with coordinates X1...m,
with m = n + p. The embedding map X : Σ 7→ M is given by m functions of
n variables:

X : (σ1, . . . , σn) 7→ (X1(σ1, . . . , σn), . . . , Xm(σ1, . . . , σn)), (2.31)
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where the Jacobian needs to be of rank n and the map must be an injection
to be an embedding.

To take the geometry of the manifolds into account, Σ and M are equipped
with the metric tensors gµν and hij, and we get the Riemannian manifolds
(Σ, gµν) and (M,hij), respectively.

Therefore, on M the line element is defined as

ds2 = hijdX
idXj i, j ∈ {1, . . . ,m}, (2.32)

where Einstein summation convention is used, i.e. identical indices that appear
one up and one down are summed over.

Similarly, the metric gµν on Σ measures locally the distances at a point as
follows:

ds2 = gµνdσ
µdσν µ, ν ∈ {1, . . . , n}. (2.33)

2.3.2 Induced Metric and Edge Detection

Naturally, the metric gµν is chosen as the induced metric, obtained by the
pullback -relation: gµν = hij∂µX

i∂νX
j.

Given gµν , the (hyper-)area element on Σ is computed as

dA =
√
g

n∏
µ=1

dσµ =
√
g dnσ (2.34)

where g is the determinant of the metric tensor gµν . The determinant g is
clearly an edge detector function with respect to the embedded features. As
such, it has been applied in several image segmentation applications based on
active contours, e.g. (Sagiv et al., 2006; Derraz et al., 2009; Houhou et al.,
2009).

2.3.3 Polyakov Energy

To measure the “weight” of the embedding X : Σ 7→M , Sochen et al. use the
Polyakov action (Polyakov, 1981; Kimmel et al., 1997; Sochen et al., 1998):

S[X i, gµν , hij] =

∫
√
ggµν∂µX

i∂νX
jhij(X)dnσ, (2.35)

where, again, g is the determinant of the image metric, and gµν is the inverse,
such that gµνgνγ = δµγ (δµγ is the Kronecker delta).

Through calculation of the Euler-Lagrange equations, Sochen et al. suggest
the following minimizing flow with respect to the embedding X i (gradient
descent):

∂tX
i = − 1

2
√
g
hil

δS

δX l
=

1
√
g
∂µ(
√
ggµν∂νX

i)+Γijk∂µX
j∂νX

kgµν = ∆gX
i = H i,

(2.36)
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where ∆g corresponds to the Laplace-Beltrami operator, the natural general-
ization of the Laplacian to Riemannian manifolds, equal to the i-th component
of the mean curvature vector ~H as defined in (2.8). The prefactor − 1

2
√
g
hil was

introduced in order to make the resulting flow geometric (parametrization
invariant), without changing the solutions of the Euler-Lagrange-equation,
though. Further, Γijk are the Levi-Civita connection coefficients, i.e. the
Christoffel symbols, with respect to the metric hij:

Γijk =
1

2
hil (∂jhkl + ∂khjl − ∂lhjk) . (2.37)

If the metric hij is constant over the whole space, these coefficients are zero.
The corresponding gradient descent equation then shortens to:

∂tX
i = − 1

2
√
g
hil

δS

δX l
=

1
√
g
∂µ(
√
ggµν∂νX

i). (2.38)

If, more specifically, the induced metric is used for gµν , then the Polyakov
energy reduces to the Euler functional:

S[X i, gµν , hij] =

∫
√
gdnσ, (2.39)

which simply measures the hyperarea of the embedded manifold M . In the
context of image processing, this energy is also often referred to as the Beltrami
energy. The particular choice of the induced metric is well-understood in the
2D case, where the induced metric optimizes the Polyakov energy. In higher
dimensions, however, a similar optimality has not been shown, yet.

2.3.4 Area Minimization, Anisotropic Diffusion and
Feature Preservation

The PDE describing the area minimizing flow in (2.38) differs from the linear
heat-flow PDE (2.18) only in the generalization of the Laplacian from ∆ to
∆g. This difference, however, is essential. Since the Beltrami-flow describes the
isotropic heat-flow diffusion on the embedded space-feature manifold, diffusion
becomes anisotropic in the original domain. As a consequence, the Beltrami
flow is feature-preserving. Smoothing within almost homogeneous regions (in
terms of embedded features) is faster than diffusion across feature contours.

Intuitively, we want to show this property from two different perspectives.
First, the general heat equation reads

∂u

∂t
=

1

ρ
∇ · (C∇φ) , (2.40)

where for Beltrami diffusion the density can be identified as ρ =
√
g and

the conductivity tensor C =
√
ggµν , respectively. We see that based on this
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density and conductivity, the heat flow is favored in homogeneous regions or
along contours of φ.

From another perspective, the geometric embedding introduces the fea-
ture dimensions and therefore points which are close neighbors in the original
space, but having different features, are considered farther apart than iden-
tical neighbors. Since diffusion is calculated based on the resulting geodesic
distance between such neighbors, again we realize that diffusion is favored
between pixels that are close and similar.

2.3.5 Examples

1D scalar (n = p = 1)

First, we consider the simplest case of a scalar function φ(x) ∈ R. The geo-
metric embedding can be defined as

X : (x) 7→ (x, φ(x))

{hij} = diag(1, β2) =

[
1 0
0 β2

]
{gµν} = [1 + β2φ2

x]
g = 1 + β2φ2

x

, (2.41)

where β is the aspect ratio between space x and feature φ(x). Considering
the standard Beltrami energy S =

∫ √
g dx, we can compute the minimizing

flow analytically (Sochen et al., 2001):

∆gφ =
φxx

(1 + β2φ2
x)

2 . (2.42)

For β → 0 we find classical Gaussian diffusion, otherwise the diffusion is limited
at strong signal gradients.

2D scalar (n = 2, p = 1)

Let us now consider a more interesting 2D gray-scale image φ(x, y) ∈ R:
X : (x, y) 7→ (x, y, φ(x, y))
{hij} = diag(1, 1, β2)

{gµν} =

[
1 + β2φ2

x β2φxφy
β2φxφy 1 + β2φ2

y

]
g = 1 + β2‖∇φ‖2

. (2.43)

Here again, the analytic minimizing flow can be calculated easily:

∆gφ =

(
1 + β2φ2

y

)
φxx − 2β2φxφyφxy + (1 + β2φ2

x)φyy(
1 + β2φ2

x + β2φ2
y

)2 . (2.44)
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For β → 0 this 2D Beltrami operator clearly converges to the standard
Laplacian. Indeed, for small x we can linearize the square root as follows:

√
1 + x ≈ 1 +

x

2
(2.45)

and therefore: ∫ √
1 + β2‖∇φ‖2dx ≈

∫
1 +

β2

2
‖∇φ‖2dx. (2.46)

In contrast, for β � 1 we obtain:

lim
β→∞

1

β

∫ √
1 + β2‖∇φ‖2dx =

∫
‖∇φ‖dx, (2.47)

i.e. the Beltrami energy approximates the total variation norm (Rudin et al.,
1992; Rudin and Osher, 1994).

2D vectorial (n = 2, p > 1)

The Beltrami framework can not only cope with scalar features to be embedded
along with the space coordinates. Let us consider the case of a multispectral
feature (φ1(x, y), . . . , φp(x, y)) to be embedded:

X : (x, y) 7→ (x, y, φ1(x, y), . . . , φp(x, y))
{hij} = diag(1, 1, β2

1 , . . . , β
2
p)

{gµν} =

[
1 +

∑p
i=1 β

2
i (φ

i
x)

2
∑p

i=1 β
2
i φ

i
xφ

i
y∑p

i=1 β
2
i φ

i
xφ

i
y 1 +

∑p
i=1 β

2
i (φ

i
y)

2

]
g = 1 +

∑p
i=1 β

2
i ‖∇φi‖2 + 1

2

∑p
i,j=1 β

2
i β

2
j ‖∇φi ×∇φj‖2

. (2.48)

The metric determinant g now includes a term containing the magnitude of the
cross product between the respective feature gradient vectors, which represents
an effective coupling between different channels of the embedded image. In the
context of color image denoising, where the multispectral features are given
by the different color channels, e.g. (x, y) 7→ (x, y, Ir(x, y), Ig(x, y), Ib(x, y)),
it was shown that this gradient alignment coupling corresponds well to the
fundamental Lambertian image model (Kimmel et al., 2000).

2.3.6 Weighted Beltrami Energy

Weighted minimal surface problems have been known in image processing at
least since the development of Geodesic Active Contours (GAC) (Caselles
et al., 1997). Faugeras formulated 3D surface reconstruction from multiple
views as a weighted minimal surface problem as well (Faugeras and Keriven,
1998). Without actually mentioning the Beltrami framework, Kimmel adapted
this problem into a weighted Beltrami energy model for shape from stereo and
auto-stereograms (Kimmel, 2002).



38 The Beltrami Framework

Sagiv used a Beltrami energy weighted by inverse data-fidelity to smooth
orientation data of Gabor image descriptors (Sagiv et al., 2001), and Sarti et
al. minimize the area of an embedded subject surface weighted by an edge
detector of an underlying image (Sarti et al., 2002). In (Bresson et al., 2006),
the Euler-Lagrange equations for the weighted Beltrami energy of arbitrarily
dimensional manifold and features have been derived:

Sf =

∫
f
√
gdnσ, (2.49)

where f = f(X i, gµν , hij). This energy now describes the weighted hyperarea
of the embedded manifold. The corresponding gradient descent equation is

∂tX
i = fH i + ∂kfg

µν∂µX
k∂νX

i − m · n
2

∂kfh
ki, (2.50)

where H i corresponds to the original Beltrami-flow given in (2.38).

2.3.7 Parametrization invariance

As pointed out in the introduction of this thesis, images in computer vision
and biomedical imaging are always a projection of an underlying physical re-
ality. Any such projection can be parametrized in many different ways, de-
pending upon the needs and particularities of a specific imaging technique or
application. However, most of the state-of-the-art methods in the domain are
designed to work with Cartesian parametrizations, and many have difficulties
in generalizing to different image geometries, accruing e.g., from omnidirec-
tional or wide-angle cameras. The Beltrami framework, however, thanks to its
geometric foundation, is intrinsically parametrization invariant, viz., the Bel-
trami energy of an embedded image does not change with the parametrization
of the image. Here, we provide a quick demonstration from a calculus point of
view.

Parametrization invariance of the original and the weighted Beltrami en-
ergy can best be illustrated by actually performing a change of variables.
Therefore, let x = (x1, . . . , xn) be a first parametrization of the image do-
main. Without loss of generality, we may obtain a re-parametrization into
a second set of parameters y = (y1, . . . , yn) using a one-to-one, continously
differentiable mapping:

y = (y1(x1, . . . , xn), . . . , yn(x1, . . . , xn)) = y(x). (2.51)

Now, both metric tensors xgµν and ygαβ of the two embeddings are obtained as
the respective induced metrics, through the pullback relation, from the same
common metric hij of the same embedded manifold X i:{

xgµν = hij∂µX
i∂νX

j

ygαβ = hij∂αX
i∂βX

j (2.52)
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It is known from calculus, that a change of variables introduces the determinant
of the Jacobian Dy(x) of the mapping:∫

f(y)
√

yg(y)dy =

∫
f(x)

√
yg(x)| det(Dy(x))|dx. (2.53)

If the energy term is parametrization invariant, this last expression needs to
be equal to the weighted Polyakov energy parametrized by x = (x1, . . . , xn),
i.e., we need to show that, for any f , we have:∫

f(x)
√

yg(x)| det(Dy(x))|dx =

∫
f(x)

√
xg(x)dx. (2.54)

Therefore, one has to show that√
yg(x)| det(Dy(x))| =

√
xg(x). (2.55)

Using the chain rule, we have ∂Xi

∂xµ
= ∂Xi

∂yα
· ∂yα
∂xµ

, where ∂yα
∂xµ

stands for the

Jacobian of the mapping. Thus

xgµν = hij∂αX
i∂βX

j · ∂yα
∂xµ
· ∂yβ
∂xν

= ygαβ ·
∂yα
∂xµ
· ∂yβ
∂xν

, (2.56)

and the determinant xg is effectively given by

xg = yg · det(Dy(x))2. (2.57)

This amounts to equality (2.55) and therefore we have shown that the (weighted)
Beltrami energy is indeed re-parametrization invariant.

2.4 Some Applications

In the next few paragraphs, we recall a few elementary applications of the
Beltrami framework in approximately increasing order of complexity. Running
the Polyakov energy minimization without any other constraints produces a
scale-space. In lieu of the Gaussian gradient penalty, the framework can as well
be employed as regularizer, by adding the Polyakov energy as regularization
penalty to the original energy of the inverse problem. Other models can be
built by tuning the original Polyakov energy in a more unexpected way, some
examples of which will be presented below as well.

Note, that the Beltrami embedding was initially introduced to deal with
gray-level and color images, volumes and movies (Kimmel et al., 2000, 1997;
Sochen et al., 1998). Beyond, it is straightforward to embed textural features
e.g., Gabor wavelets, the local structure tensor or patches (Sagiv et al., 2001,
2006; Houhou et al., 2009). Moreover, the Beltrami framework even applies
to images whose features (pixel values) are tensors, useful for example in the
context of Diffusion tensor image (DTI) regularization (Gur et al., 2009).
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2.4.1 Image Denoising, Wiener Filtering, and Blind
Deconvolution

First, let us consider again the image denoising problem, as stated in (2.13),
and use its variational form (2.14). Instead of the linear, Gaussian regular-
izer, add the Polyakov energy of the embedded image u(x, y) for anisotropic
regularization:

X : (x, y) 7→ (x, y, u) (2.58)

such that the restoration is formulated as the following minimization problem:

min
u

{∫
(u− u0)2dxdy + α

∫
√
gdxdy

}
(2.59)

This is the most basic application of Beltrami regularization.
If an image is not only degraded by noise, but also affected by some spatial

filter (motion blur, out-of-focus blur, sampling psf, etc.), one is faced with a
deconvolution problem, as introduced in (1.4).

Beltrami-regularized anisotropic Wiener filtering was shown to outperform
the standard Wiener filtering approach, thanks to its feature-preserving prop-
erties (Feigin and Sochen, 2009):

min
u

{∫
(u ∗ h− u0)2dxdy + α

∫
√
gdxdy

}
(2.60)

If, in addition, the blurring kernel is unknown, it has to be estimated as
well, a problem which is called blind deconvolution. Kaftory et al. proposed to
solve for both the underlying image and the blurring kernel using two Polyakov
regularizers (Kaftory et al., 2005). The joint minimization problem

min
u,h

{∫
(u ∗ h− u0)2dxdy + αu

∫
√
gudxdy + αh

∫
√
ghdxdy

}
, (2.61)

where gu and gh refer to the metric determinants corresponding to the em-
beddings of the image (x, y) 7→ (x, y, u) and the kernel (x, y) 7→ (x, y, h),
respectively, is solved using alternate minimization of the following two sub-
problems:

min
u

{∫
(u ∗ h− u0)2dxdy + αu

∫
√
gudxdy

}
(2.62)

min
h

{∫
(u ∗ h− u0)2dxdy + αh

∫
√
ghdxdy

}
. (2.63)

2.4.2 Image Segmentation

In 2002, Sarti, Malladi and Sethian introduced a “A Geometric Model for
Boundary Completion”, called “Subjective Surfaces”, based on the Beltrami
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embedding and the weighted Polyakov energy (Sarti et al., 2002). They use
an edge-detector function g(x, y)

g(x, y) =
1

(|∇Gσ ∗ I|/β)2 (2.64)

as weighting function in the Polyakov energy of an embedded (subjective)
surface φ: {

X : (x, y) 7→ (x, y, φ(x, y))

S =
∫
g(x, y)

√
1 + ‖∇φ‖2 dx dy

. (2.65)

Given appropriate initialization, this model evolves towards a quasi-piecewise
constant surface, representing the different Gestalts (subjective surfaces) in
the underlying image.

A more general approach for image segmentation was presented in (Bresson
et al., 2006), where the minimizing flow was computed for arbitrary weighting
functions, and used for multiscale active contours. The formalism is essen-
tially the same as in (Sarti et al., 2002), except that the embedded surface is
now considered to be the level-set-function (LSF) representation (Osher and
Sethian, 1988) of a gradient-based active contour (Kass et al., 1988; Caselles
et al., 1997). The multiscale embedding reads:

X : (x1, . . . , xn, σ) 7→ (x1, . . . , xn, σ, φ) (2.66)

and the Multi-scale Active Contour (MAC) energy is obtained as

EMAC =

∫
f(x1, . . . , xn, σ, φ)

√
1 + |∇φ|2 + ρ2φ2

σ

1

cn+1ρ
dσ

n∏
i=1

dxi, (2.67)

where c and ρ refer to the conductivity and mass density of the diffusion model
generating the employed scale-space (Bresson et al., 2006). The weighting
function is again chosen as an edge-detector function. Here, the weighting
function acts as “data-term”, while the Polyakov energy itself only establishes
regularity, within and across scale. Periodic reinitialization (Adalsteinsson
and Sethian, 1995) is used to maintain the Level-set-function (LSF) close to a
signed distance function (SDF).

A completely different approach was proposed by Estellers et al., where
segmentation is obtained without actual edge detector (Estellers et al., 2011).
Instead, features f 1, . . . , fk of the image to be segmented are embedded along
with the segmenting LSF φ, and the segmentation is driven by the gradient
coupling property observed with non-scalar embeddings. The embedding map
is defined as

X :
(
x1, . . . , xn

)
7→
(
x1, . . . , xn, f 1, . . . , fk, φ

)
(2.68)

and the metric on M is considered [hi,j] = diag(1, . . . , 1, α2
1, . . . , α

2
k, β

2). The
induced metric on Σ is then

gµν = δµν +
∑
i

α2
i f

i
µf

i
ν + β2φµφν , (2.69)
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where δµν is the Kronecker delta. The determinant of the metric tensor is
then computed as g = g11g22 − (g12)2 and the squared hyper-surface element
corresponds to

g = 1+
∑
i

α2
i |∇f i|2+β2|∇φ|2+

1

2

∑
i 6=j

α2
iα

2
j

∥∥∇f i ×∇f j∥∥2
+
∑
i

α2
iβ

2
∥∥∇f i ×∇φ∥∥2

.

(2.70)
We clearly see that the last term ‖∇f i ×∇φ‖ measures the coupling of the
features f 1, . . . , fk with the segmentation function φ. Minimizing the Polyakov
energy results in an alignment of the level-set-function gradients with the
feature-gradients. The trade-off between gradient fidelity and levelset regu-
larity is governed by the ratio β2 versus α2

i , as can be seen in (2.70). Note
that the embedded features can both be local features (e.g. intensity, patch,
textural descriptors), or region-based features. In particular, the well-known
Chan-Vese model (Chan and Vese, 2001) has successfully been integrated (Es-
tellers et al., 2011).

2.4.3 Motion Estimation Regularization

As an extension of the pioneering work of Nagel and Enkelmann (Nagel and
Enkelmann, 1986) and others, who had realized that isotropic Gaussian motion
regularization is suboptimal, Ben-Ari et al. proposed to use the Beltrami
framework as geometric regularizer, capable of generalizing several precedent
models, for the stereo-vision case (Ben-Ari and Sochen, 2004, 2008), and for
optical flow estimation (Ben-Ari and Sochen, 2009).

Their framework would embed the deformation vectors along with the im-
age intensity:

X : (x, y) 7→ (x, y, I, u, v) (2.71)

The metric on the embedding manifold is chosen as [hij] = diag(1, 1, β2, ε2, ε2),
where β2 and ε2 allow scaling the intensity and deformation components in-
dependently from the spatial features. The pulled-back metric tensor deter-
minant, g, can now be derived in the usual way, and the optical flow (or
registration) problem is formulated using the Polyakov energy as additive reg-
ularization term:

min
u,v

{∫
(I(x, y)− I(x+ u, y + v))2dxdy + α

∫
√
gdxdy

}
(2.72)

Based on different choices for β2 and ε2, this model allows reducing defor-
mation field regularization across edges in the image and/or the deformation
field. Geometric regularization in presence of independent objects moving in
an image (Gestalts) is clearly an advantage, since there are cases where bound-
aries in images – in terms of intensities or even texture – are good predictors
of deformation field boundaries (Nagel and Enkelmann, 1986). Note that the
extension to image features other than simple gray-value, such as parametric
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texture descriptors or non-parametric patches or histograms, is straightforward
in this framework.

2.4.4 Registration with Topological Defects

There are cases in medical image registration, where the constant brightness
assumption does not hold. This typically occurs when lesions or tumors are
present in one of the images only. One way to handle this issue, is to explicitly
model these topological changes e.g., by masking, inpainting (Sdika and Pel-
letier, 2009) or explicit modeling (Bach Cuadra et al., 2002). Another way is to
explicitly allow for intensity changes by introducing an additional deformation
vector, in the feature direction (Barber et al., 2007).

Inspired by the work of Vemuri (Vemuri et al., 2003), Wyatt proposed to
embed an image to be registered as X : (x, y) 7→ (x, y, I), and to use the

normal vector ~U of the resulting manifold as directional cue for deformation
field evolution, i.e. along both spatial and intensity axes (Wyatt and Laurienti,
2006):

∂X

∂t
= φ~U, (2.73)

where the speed is governed by the current image mismatch between the target
image IT and the evolving image I(t), φ = IT − I(t). Substituting φ and the
definition of the normal vector

~U =
1√

1 + β2‖∇I‖2

−β2Ix
−β2Iy

1

 , (2.74)

into (2.73) yields the following deformation field evolution d~V :

d~V = − IT − I(t)√
1 + β2‖∇I‖2

−β2Ix
−β2Iy

1

 (2.75)

Note that repeated Gaussian filtering is required to smooth and regularize the
evolution of the deformation field.

Later, this framework was refined, replacing the Vemuri-like evolution
equation with a weighted Beltrami energy minimization (Wyatt et al., 2009;
Li et al., 2011). The embedding under consideration remains unchanged,
X : (x, y) 7→ (x, y, I), but the intensity mismatch is now introduced as a
weighting function φ = (IT − I(t))2, and one minimizes the weighted Beltrami
energy

S =

∫
φ
√
gdxdy (2.76)

In this framework, the intensity scale β2 is related to the permissiveness with
respect to intensity modulations, and can locally be adapted based on the like-
lihood of topological change. Again, Gaussian smoothing is tacitly employed
for regularization.
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2.4.5 Non-standard Image Geometries

We close the section on Beltrami applications with a short list of more un-
common image geometries. Indeed, the Riemannian manifold theory, upon
which the Beltrami framework is built, particularly lends itself to image ge-
ometries other than standard Euclidean space. It is not surprising, therefore,
that various non-Cartesian applications have been proposed.

First, the framework has been formulated to work on implicitly defined
manifolds (Sochen et al., 2003b,a,c). Shortly later, examples of the Beltrami
flow on triangulated surfaces were presented (Lopez-Perez et al., 2004).

Equally based on triangulated surfaces, Spira et al. introduced a short-
time kernel for Beltrami diffusion (Spira et al., 2007), and compared it against
bilateral filtering (Tomasi and Manduchi, 1998), see also (Barash, 2002).

A first extension to more general graphs has been presented by Harrison,
in order to smooth the parameters of a field of Gaussian processes (Harrison
et al., 2007, 2008).

2.5 Numerical Schemes

In this section, we provide a brief overview of different numerical schemes and
techniques that have been employed in order to minimize the (weighted) Bel-
trami energy in different contexts. We first introduce the fundamental imple-
mentations as explicit, semi-implicit or fully implicit schemes, before spending
some time on different techniques employed to speed up the computations.

2.5.1 Explicit, semi-implicit and implicit

The direct way of implementing the Beltrami flow ∂tX
i = 1√

g
∂µ(
√
ggµν∂νX

i)

is obtained by using an Euler explicit forward scheme:

X i
k+1 = X i

k + ∂tX
i
k · τ, (2.77)

where τ is the time-step of the PDE integration. After discretization in time,
one obviously needs to discretize in space, which is most simply achieved by
employing central differences, twice, as e.g., in (Ben-Ari and Sochen, 2009).

One may then rewrite the flow as the product of a matrix Lk = L(X i
k),

whose coefficients are precisely given by the central differences scheme, and
the current feature vector X i

k:

∂tX
i
k = LkX

i
k, (2.78)

and therefore the Euler explicit forward scheme becomes:

X i
k+1 = X i

k + τLkX
i
k = (I + τLk)X

i
k. (2.79)

This scheme, however, is heavily limited by the CFL condition (Courant et al.,
1928), and the time step τ has to be chosen carefully. An upper bound that
ensures stability of such a scheme is provided in (Dascal and Sochen, 2005).
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In order to make the integration scheme more robust, it was proposed to
use a semi-implicit approach instead, e.g., (Weickert et al., 1998). Such a
scheme is not identical, but shares the same first-order Taylor expansion. The
fundamental idea is to make the flow component semi-implicit:

X i
k+1 = X i

k + τLkX
i
k+1 = (I − τLk)−1X i

k. (2.80)

Such a semi-implicit scheme for the Beltrami flow is unconditionally stable,
and the choice of τ is only limited by the tradeoff between efficiency and
accuracy (Weickert et al., 1998). In particular thanks to the very sparse and
regular structure of L, this problem can be solved relatively efficiently, as will
be shown in the next section.

It is to note, that the fully implicit scheme, where the matrix Lk+1 =
L(X i

k+1) is employed instead, becomes non-linear and difficult to solve.

2.5.2 Operator splitting techniques

Indeed, the matrix L is very sparse, but due to the multiple dimensions of
the diffusion, it is not nicely banded. In the one-dimensional case, however,
the diffusion matrix L is simply tri-diagonal and the system can be solved
efficiently (Thomas algorithm). In practice, many authors therefore reduce
the multidimensional diffusion problem into a series (LOD) or average (AOS)
of several independent 1D diffusion processes, that can be solved more easily
(Weickert et al., 1998; Malladi and Ravve, 2002; Barash et al., 2003; Dascal
et al., 2009).

A “locally one-dimensional” (LOD) scheme (Janenko, 1971), approximates
the right-hand-term matrix by a product over all such matrices corresponding
to one-dimensional diffusion. The corresponding semi-implicit scheme for a
m-dimensional Beltrami diffusion problem then looks like

X i
k+1 =

{
m∏
d=1

(
I − τLdk

)−1

}
X i
k, (2.81)

where Ldk is the 1D diffusion matrix along the d-th dimension. This problem
can now be solved by subsequently applying the Thomas algorithm m-times.
Note that the order of the different 1D problems influences the solution of the
overall problem.

In a more parallel and independent approach, the additive operator split-
ting scheme (AOS) was proposed (Lu et al., 1992). There, the different 1D
diffusion processes are solved independently, e.g., using the Thomas algorithm,
and then averaged over:

X i
k+1 =

1

m

m∑
d=1

(
I −mτLdk

)−1
X i
k, (2.82)

This semi-implicit AOS scheme is first order accurate in time. Note that
compared to LOD, here the time step of each individual diffusion is m-times
larger.
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2.5.3 Vector extrapolation

Vector extrapolation is a method to accelerate convergence of vector sequences
(Jbilou and Sadok, 2000). The basic idea is to guess the limit of a vector
sequence by looking at a series of samples. In the context of Beltrami-filtering
the vector sequence samples correspond to subsequent states in the variational
iteration of the (explicit) scheme, intended to converge in the limit to the
solution of the problem (Dascal et al., 2007; Rosman et al., 2009).

Formally, let xn, . . . ,xn+k be a given sequence of N -dimensional column
vector samples. Now we define the first and second forward difference vectors

uj = xj+1 − xj

wj = uj+1 − uj (2.83)

and build the N × (j + 1) matrices

U
(n)
j = [un; un+1; . . . ; un+j]

W
(n)
j = [wn; wn+1; . . . ; wn+j] (2.84)

Mainly, two different schemes are used to derive an estimation of the limit
of the sequence: Minimal polynomial extrapolation (MPE) and reduced rank
extrapolation (RRE).

Minimal polynomial extrapolation

In MPE, the limit of the vector sequence is estimated as

sn,k =
k∑
j=0

γjxn+j, (2.85)

where the coefficients γj are estimated as follows:

1. Obtain a least square solution of

U
(n)
k−1c = −un+k (2.86)

e.g. using Gram-Schmidt.

2. Denote (c0, c1, . . . , ck−1)T := c and set ck = 1. Now compute

γj =
cj
k∑
i=0

ci

, 0 ≤ j ≤ k, (2.87)

assuming that
k∑
i=0

ci 6= 0, otherwise an estimate of the limit does not

exist.
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Reduced rank extrapolation

With RRE, the approximation sn,k of the limit is estimated differently:

sn,k = xn +
k−1∑
j=0

ξjxn+j, (2.88)

where, this time, the coefficients ξj are determined by solving the overdeter-
mined linear system

W
(n)
k−1ξ = −un, (2.89)

with ξ = (ξ0, ξ1, . . . , ξk−1).

Vector extrapolation for Beltrami

For the Beltrami filtering application, the vector sequence is generated by
repeated application of the explicit scheme. After a few such iterations from
an initial guess, an extrapolation step is interleaved. The estimated limit sn,k
then serves as starting point for the next round of explicit iterations, and so
on until convergence. Such a scheme has been called cycling (Sidi, 1991).

2.5.4 Decoupling schemes

An entirely different approach is proposed in (Rosman et al., 2010), based on
a decoupling-scheme known in computer vision for quite some time (Cohen,
1996). A similar scheme has successfully been employed for efficient minimiza-
tion in TV-regularized image denoising (Tai and Wu, 2009).

Note that, in contrast to the aforementioned numerical improvements, here
the optimization of the Polyakov energy is directly modified, instead of just a
speed up of its minimizing PDE flow.

The deconvolution problem using Beltrami regularization is originally de-
fined similarly to (2.60), except that one includes multiple color channels, IR,
IG and IB:

min
Ii


∫ 

α
2

∑
R,G,B(HI i − I i0)2 +√

1 + β2
∑

R,G,B ‖∇I i‖2 + β4

2

∑
R,G,B

∑
j 6=i ‖∇I i ×∇Ij‖2


 ,

(2.90)
where H is the blurring kernel and I i0 refers to the observed, deteriorated
image channels. Similar to (Tai and Wu, 2009), the gradient is decoupled by
introducing a new variable qi. The problem is now rewritten as a constrained
minimization:

min
Ii,qi


∫ 

α
2

∑
R,G,B(HI i − I i0)2 +√

1 + β2
∑

R,G,B ‖qi‖2 + β4

2

∑
R,G,B

∑
j 6=i ‖qi × qj‖2


 (2.91)
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s.t. qi = ∇I i.

Then, the constrained problem is rephrased as the following augmented
Lagrangian:

L(I i,qi,λi) =

∫


α
2

∑
R,G,B(HI i − I i0)2 +√

1 + β2
∑

R,G,B ‖qi‖2 + β4

2

∑
R,G,B

∑
j 6=i ‖qi × qj‖2

+
∑

R,G,B〈λ
i,qi −∇I i〉+ r

2

∑
R,G,B ‖qi −∇I i‖2


(2.92)

where λi is the Lagrangian multiplier. This problem can be optimized effi-
ciently using alternate minimization of the data-term and regularity-term.



Cortical Scale space 3
“Jade must be chiseled before it can be considered a gem.”

Chinese proverb.

Much like a tree, the human brain exhibits a highly convoluted and
irregular structure, with lots of complexity and variability: sulci and
gyri vary a lot between subjects. On the other hand, high level

structures of the brain – the “big picture” – are highly conserved, such as the
two hemispheres, the lobes and main folds. A hierarchical representation of
these structures is important for example in the context of intersubject regis-
tration: Considering the complexity of the cortical surface, directly involving
local small-scale features would mislead the registration to be trapped in local
minima. A robust method needs to rely on large-scale features, describing the
main landmarks of the cortex, such as the main gyri or sulci. Subsequently,
features are to be iteratively refined to drive the registration more locally and
reach the desired precision.

Further, it is commonplace to represent the cortical surface as a spherical
map, obtained through inflation of the original surface (Hebert et al., 1995;
Fischl et al., 1999a). Available features of the mesh geometry are e.g. sur-
face normals (Gu et al., 2004) or curvature (MacDonald et al., 2000), geodesic
distances to gyral crown vertices (Robbins et al., 2004) or stereotaxic coordi-
nates (Toga, 1999). The concept of spherical attribute images is illustrated in
Fig. 3.1 using the example of mean curvature as feature.

49
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Figure 3.1: Creation of spherical attribute image. (a) The cortical surface of
a hemisphere is extracted and attributes mapped to its vertices. (b) Partially
unfolded cortical sheet, textured with mean curvature of the original sheet. (c)
Complete inflation yields the spherical feature map. Map data was equalized for
improved visualization. (d) Nomenclature of vertices, neighbors and angles in a
one-ring patch of the spherical mesh.

Here, we are interested in defining a scale-space that lends itself for a
meaningful hierarchical representation of structures on cortical feature maps
on the sphere1. The scale-space is expected to produce “generic” brain images
at coarse scale, adding more and more individual details at finer scales.

3.1 Introduction

The convolutions of the cortical sheet are very complex but by no means en-
tirely random. There seems to exist a common “base-model” for the human
cortex, which is then modulated on an individual basis. Here, we have neither
the intention nor the qualification to provide a complete description of human
cerebro-cortical morphogenesis. Nevertheless, we want to highlight a few re-
sults from corresponding research, since they motivate the particular choice of
scale-space proposed in this chapter.

3.1.1 From gyrification to scale-space

The process of increased folding and fissuring of the cerbral cortex during
gestation and, for a certain time, post-partem, is referred to as gyrification.
The degree of gyrification can be assessed by an index either globally (Zilles

1Parts of this chapter have been published in (Zosso and Thiran, 2009).
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et al., 1988), or locally (Schaer et al., 2008). The exact and complete causality
of the cortical folding is still largely unclear, but a few elements are commonly
agreed upon. One central hypothesis behind cortical folding pathways is the
influence of fiber tension within the white matter (Van Essen, 1997). This
has also been underlined in a more recent study (Toro and Burnod, 2005).
In parallel, it was realized that sulci exhibit different degrees of inter-subject
stability or variability. In a monozygotic twin study, it was shown that (1)
inter-subject variability is generally lower among monozygotic twins compared
to between unrelated subjects, and (2) that among monozygotic twins the
variability was particularly low for deep sulci, which embryologically develop
first (Lohmann et al., 1999). This immediately suggests the existence of some
underlying, stable sulcal ground-pattern, which is genetically coded at least to
some extent, while the smaller structures are rather the result of subsequent
emergence. Corresponding results were shown in (Lohmann et al., 2008).

It is self-evident, that in a cortical registration framework, the feature-
map scale-space should respect this hierarchical pattern of variability to a
great extent. Indeed, it was hypothesized that a geodesic diffusion scale-space
of mean curvature of the cortical surface amounts to reversing the cortical
folding process Cachia et al. (2003). In that work, the authors relate coarse-
scale features with elementary cortical folds, called the sulcal roots, that seem
to be particularly stable across individuals. Solely designed to yield landmarks
for a primal sketch of folding patterns, however, their scale-space does not use
a global spatial parametrization of the cortical surface and works with local
planar parametrizations instead.

In our context, however, we are interested in a scale-space defined on the
spherical mesh of the inflated cortical feature maps. To this end, we want to
combine the advantages of a mean curvature scale-space, supposed to reveal
stable sulcal roots at larger scales, with the benefits of a simple spherical
parametrization. Further, we propose to generalize the linear diffusion by
using the Beltrami framework that allows an additional degree of freedom with
respect to the diffusion properties, and that opens the possibility of including
multi-spectral features.

3.1.2 Beltrami flow on triangulated manifolds

Manifolds and embeddings need not necessarily be analytically defined through
parametrizations and metrics. Instead, the image manifold can be sampled as
discrete values at triangulated vertices, see figure 3.1. The Beltrami embedding
is then simply obtained by enhancing the coordinates of each vertex by the
corresponding feature components, optionally scaled by a scaling factor β to
obtain the desired aspect ratio. The topology of the triangulation, however,
remains unchanged.

In this context, different schemes for triangulated manifolds have been
presented: Bajaj et al. base their approach on Loop’s subdivision scheme to
smooth both the surface and functions on that surface (Bajaj and Xu, 2003).
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Lopez et al. estimate the Laplace-Beltrami operator on a triangulated manifold
by discretizing the surface divergence of the gradient field of the function on
that surface Σ (Lopez-Perez et al., 2004). This approach has the advantage of
keeping the geometry of the mesh fix (i.e. only the geometry of Σ matters),
but requires re-evaluation of the function gradient over that geometry at each
iteration.

In the case of a triangulated manifold, however, it is not necessary to cal-
culate the Beltrami flow through evaluation of the intrinsic Beltrami operator
formulation. Instead, we propose to take advantage of the equivalence with
the mean curvature vector as shown in (2.38), which can directly be estimated
from the enhanced triangulated mesh M . The problem then reduces to finding
a good and efficient curvature estimator.

Let us recall, that the first variation of area formula (2.11) relates the mean
curvature of a hypersurface to the rate of change of its area, as it evolves in
the outward normal direction.

3.1.3 Discretizations on 2D triangulations in 3D

Most of the mean curvature discretizations found in the literature deal with
2D manifolds embedded in a 3D space. An intuitive approach to estimate cur-
vatures of a triangulated manifold consists in estimating the first and second
fundamental forms presented in the previous chapter. Hamann fitted a bivari-
ate polynomial locally to the vertex of interest and its first-order neighbors,
from which the relevant coefficients can be derived (Hamann, 1993). This
approach yields both principal curvatures κ1 and κ2 separately, so both the
intrinsic Gaussian and the extrinsic mean curvature can be computed.

On the other hand, a major family of mean curvature-only estimators are
of the following general form:

~H(~xi) =
∑

j∈N1(i)

wij(~xi − ~xj), (3.1)

where N1(i) denotes the 1-ring neighbors of vertex i, i.e., vertices that are
directly connected to i through a single edge, and where wij are some weights
assigned to this edge. Several estimators of this class have been discussed in
(Xu, 2004, 2006).

In a very simple approach, Taubin proposed the inverse of the number
of 1-ring neighbors as a possible choice for the edge weight (Taubin, 1995):
wij = 1/|N1(i)|, where | · | denotes the cardinality of a set. The resulting
estimator is also called the umbrella operator. A more complex proposition by
the same author makes use of a positive function φ:

w
(1)
ij =

φ(~xi, ~xj)∑
k∈N1(i) φ(~xi, ~xk)

, (3.2)

where φ(~xi, ~xj) can for example be the surface area of the two faces sharing
the edge (~xi, ~xj), or some power of the edge-length.
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Desbrun et al. proposed a more sophisticated weighting (Desbrun et al.,
1999), derived using the first variation of area formula given in (2.11):

w
(2)
ij =

cotαj + cot βj
4A

, (3.3)

where αj and βj are the two angles opposite to the edge (~xi, ~xj) in the two
triangles sharing this edge, and A is the sum of the areas of the triangles having
~xi as a common vertex, i.e. the area of the 1-ring patch. The complete mean
curvature vector estimator writes as follows:

~H(~xi) =
1

4A

∑
j∈N1(i)

(cotαj + cot βj)(~xi − ~xj). (3.4)

Meyer et al’s discretization differs only in the area term (Meyer et al.,
2002): they choose the area of the Voronoi region around vertex xi, so that
adjacent patches do not overlap 2. This difference is of minor importance in
the present context and we will focus on (3.4).

3.1.4 Generalization to arbitrary co-dimension

The mean curvature estimator described above has been designed for 2D man-
ifolds embedded in 3D. Interestingly, and Meyer et al. have mentioned it in
(Meyer et al., 2002), it generalizes to surface embeddings in arbitrary dimen-
sional space.

In their original derivation, Desbrun et al. used the cross product of two
triangle edges to calculate the triangle area (Desbrun et al., 1999):

An =
1

2
‖(~xi − ~xj)× (~xi − ~xj+1)‖, (3.5)

A2
n =

1

4
εabc(~xi − ~xj)b(~xi − ~xj+1)cεade(~xi − ~xj)d(~xi − ~xj+1)e, (3.6)

where Einstein summation notation was used, and where εabc is the permuta-
tion symbol. Fortunately, the tensor notation is exactly the same for the wedge
product (~xi−~xj)∧ (~xi−~xj+1), which is the generalization of the cross product
to vector spaces different from R3. Accordingly, the cotangent between two
vectors ~u and ~v is simply generalized as

cot(~u,~v) =
cos(~u,~v)

sin(~u,~v)
=

~u · ~v
‖~u ∧ ~v‖

, (3.7)

and (3.4) becomes perfectly valid for a 2D surface embedded in any higher
dimensional space3.

2The Voronoi area is chosen for non-obtuse triangles only, and some specific care needs
to be taken for obtuse triangles.

3(Meyer et al., 2002) generalize differently, without exploiting the general form of the
original derivation. They avoid the cross product term in the triangle area formulation by
replacing it with vector norm and inner-product terms, only, which is also interesting from
an implementation point of view.
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3.2 Proposed Beltrami scale space

In the system we propose, the curvature of M is estimated in each vertex
according to (3.4), and only the feature components of this vector are used
to update the mesh’s (feature-) coordinates. The feature component of the
curvature vector at vertex i writes:

[ ~Hi]c =
1

4A

∑
j∈N1(i)

(cotαj + cot βj)(ci − cj), (3.8)

viz. ci the mean-curvature feature at node i, and where the patch area A and
the cotangents cotαj and cot βj are computed within the enhanced mesh M .

3.2.1 Comparison with Lopez’ discretization

As a comparison, the discretization of the Beltrami operator of Lopez et al.
(Lopez-Perez et al., 2004) reads as follows:

[ ~Hi]c =
1

A′
√

1 + β|∇Sc|2
∑

j∈N1(i)

(cotα′j + cot β′j)√
1 + β|∇Sc|2

(ci − cj), (3.9)

where A′ and the cotangents cotα′j and cot β′j are computed within the original
mesh Σ. The norm of the wedge product, and therefore the area term and the
denominator of the cotangent, are simply scaled by

√
1 + β|∇Sc|2 between

original and enhanced mesh, which is reflected by the double appearance of this
factor in (3.9) with respect to (3.8). The inner product however behaves a bit
more complex, and its scaling is not accounted for. Let u′ and v′ be two edge-
vectors in the original manifold (i.e. vectors with zero feature component), and
be u and v the corresponding vectors in the enhanced mesh. These vectors
are related as

~u = ~u′ + ~n 〈∇Sc, ~u
′〉 ,

~v = ~v′ + ~n 〈∇Sc, ~v
′〉 , (3.10)

where ∇Sc is the direction of steepest feature ascent within the manifold, and
~n is the unit normal, i.e. the feature basis vector. The inner product in the
enhanced mesh now writes

〈~u,~v〉 = 〈~u′ + ~n 〈∇Sc, ~u
′〉 , ~v′ + ~n 〈∇Sc, ~v

′〉〉
= 〈~u′, ~v′〉+ 〈∇Sc, ~u

′〉 〈∇Sc, ~v
′〉 . (3.11)

The term 〈∇Sc, ~u
′〉 〈∇Sc, ~v

′〉 vanishes only if at least one of the two vectors ~u′

and ~v′ is orthogonal to the gradient. In the general case, however, this term
represents an error in the estimation, and we expect (3.8) to perform more
faithfully.
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3.2.2 Numerical PDE solution

In matrix notation, the Beltrami flow of the feature c, using the weights of
(3.3) is written as

∂tc = Wc, (W )ij =

{
−wij, i 6= j∑

k 6=iwik, i = j
, (3.12)

where c = (c1, . . . , cN) denotes the feature vector over all vertices.
The resulting explicit, progressive Euler scheme for numerical solution

reads

ck+1 = (I − τW k)ck, (3.13)

where I is the identity matrix and τ is a small time step. However, this scheme
is only conditionally stable, viz. provided that τ is sufficiently small.

On the other hand, the corresponding semi-implicit scheme is

(I + τW k)ck+1 = ck, (3.14)

where the weights W are estimated in the current mesh. To find out if this
scheme really creates a discrete scale-space, we check it against the criteria
provided in (Weickert et al., 1998). It can be shown, that the inverse of the
matrix term (I − τW ) in the above scheme satisfies both continuity, unit
row sum, non-negativity, positive diagonal and irreducibility; but it is not
symmetric. Therefore, the scheme is unconditionally stable and exhibits the
desired smoothing effects. In the semi-implicit scheme, the time-step τ is only
limited by the desired accuracy of the PDE solution. However, due to lack of
symmetry, it does not guarantee average gray-level invariance, and the system
does not necessarily converge to a constant steady state.

3.2.3 Histogram equalization

In the case of cortical mean-curvature maps, the identical sensors assumption
does not necessarily hold. The maps are based on surfaces extracted from MR
images, and one has to expect some variations at all levels of the pipeline.
Also, the mean curvature map is biased by the size of the underlying brain.
Nevertheless, one has strong priors on the correspondence of features between
the maps: Sulci and gyri will always be represented by opposite local extrema
of the mean curvature map.

The scale affects the intensity distributions of the cortical maps: The “non-
creation and non-enhancement of local extrema”-property of the governing
PDE causes a reduction of the image intensity dynamics over time. Luck-
ily, normalization of the cortical maps easily corrects this bleaching and bias
over scales. Equalization even allows for an improved contrast in the relevant
domain, thanks to compression of the distribution tails.
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Normalization of the mean curvature allows largely removing the bias be-
tween different maps and corrects bleaching over time:

c′ =
c− µ(c)

σ(c)
, (3.15)

where c denotes the original mean curvature, c′ its normalized version, µ and σ
are the sample mean and standard deviation respectively. However, this nor-
malization is a shift-and-scale operation only, and does not affect the structure
of the intensity distribution. In particular, the outliers keep their extreme po-
sition.

One way to act against both bleaching, bias and outliers is histogram equal-
ization. Be p(c) the probability density function (PDF) associated with a map,
called its histogram. Then, the cumulative distribution function (CDF) is cal-
culated as:

F (c) =

∫ c

cmin

p(u)du, (3.16)

where cmin denotes the lower bound of the value range. For histogram equal-
ization, one is looking for the transfer function c′′ = T (c), that renders the
intensity distribution uniform. For any given transfer function, the following
equation holds:

p(c′′)dc′′ = p(c)dc, (3.17)

i.e. the number of points mapped from c to c′′ remains unchanged. A uniform
distribution has constant PDF, which means one wants p(c′′) = 1

S
constant,

where S represents the size of the output range. Rearranging yields

dc′′

dc
= S · p(c), (3.18)

and after integration on both sides we get

c′′ = S ·
∫ c

cmin

p(u)du = S · F (c), (3.19)

which means that to obtain an equalized histogram, the feature is replaced by
its cumulative distribution function, and eventually scaled to fit the desired
output range. By default, we choose S = 1 and the output range is equal to
[0, 1].

To simplify the computation of the CDF, we take advantage of the quasi-
normality of the mean curvature distribution. Maximum likelihood estimation
yields the parameters of the closest Gaussian distribution, of which the CDF
can efficiently be determined.

3.2.4 Scale space

The collection of all maps along the PDE integration forms the scale space,
whose samples now have coordinates c

(k)
i , where i is the vertex index, denoting
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its spatial location ~xi, and where k is the index along the time sampling,
representing the scale. Notice, that two pairs of samples (ck1i , c

k2
i ) and (ck3i , c

k4
i )

are equidistant in scales, if their time sample indices share the same ratio, i.e.
k1
k2

= k3
k4

. This is equivalent to the statement, that uniform scale sampling

requires exponential sampling of the time axis, i.e. σk = σ0 · qk, where σ0 is
the initial (finest) scale, and q is a multiplicative scale change factor (Morse,
1994).

3.3 Results

In the next few paragraphs, we briefly present and discuss the main results
obtained with the proposed Beltrami scale-space on spherical triangulations,
applied to cortical mean-curvature maps.

3.3.1 Equalization

First, in figure 3.2, we show the effect of histogram equalization on the cortical
mean-curvature maps, projected on to the inflated cortical surface for more
intuitive localization. The original feature maps are governed by long-tail
outliers, which minimize the relative contrast for most of the map. This is
greatly alleviated after equalization, where the tails are compressed and overall
contrast is improved. The stratification of the intensity range into a normalized
interval also reduces bleaching and fading-out of structures through scales. It
therefore theoretically becomes possible, to even register cortical feature maps
of different scales. This is potentially interesting when the original feature
maps are extracted from subjects at different stages of gyrification, where
less developed brains allegedly require less smoothing compared to a mature
cortical convolution.

3.3.2 Scale-space

Fig. 3.3 illustrates the scale-space obtained for the right hemisphere of one
subject. The equalized feature maps exhibit the desired simplification of cor-
tical structures at coarser scales. The mean magnitude of the surface feature
gradient is significantly reduced, and the gradient orientation gains in coher-
ence. Both observations reflect the minimization of the gradient divergence by
the Beltrami flow. The ragged outline of structures in the fine-scale map is
reduced to abstract sketches at coarser scales, as is exemplarily illustrated by
the evolution of the central sulcus in the thresholded image series (marked in
red).
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3.3.3 Choice of β

A comparison of two choices for the parameter β is provided in Fig. 3.4(a).
While small β minimizes the L2 norm and corresponds to Gaussian-like dif-
fusion, high values approximate TV-norm minimization. The former provides
smoother maps, but has tendency to overly merge nearby sulcal structures,
whereas the latter results in more jagged, piecewise smooth maps, but keeps
structures longer apart.

3.3.4 Morphogenic signification

By the two subject hemispheres in Fig. 3.4(b)&(c) we show, that the sim-
plified large-scale maps of the proposed scale-space do not evolve arbitrarily,
but remain anatomically meaningful. In deed, the sulcal regions identified by
thresholding of the curvature map correspond well to the anatomical labels of
the original map. This comes with the property, that topological differences
between subjects, e.g. different interruption or fusion patterns of sulci are
generally conserved in the simplified cortical maps, and will only disappear
at extremely large scales. Therefore, if two brains with different topology are
to be registered, for example, these differences are still to be coped with by
the registration algorithm. Nevertheless, this difficult task is greatly alleviated
by the important simplification of the structures thanks to the scale-space we
present.

3.4 Conclusions

Based on the well-established Beltrami framework, we embedded a spherical
feature map of the cortical surface in a higher-dimensional space. The embed-
ded triangulated mesh evolved under Beltrami-flow, and the collection of all
generated maps eventually forms a scale-space. Already at fine scales some
smoothing is beneficial, as it reduces noise due to surface extraction artifacts
and numerical error in the creation of the feature map. Our results further
showed the desired simplification of highly convoluted structures into more
conceptual sketches at coarser scales. Thus, this scale-space allows a hierar-
chical representation of structures on the surface of the cerebral cortex.

Computing the scale-space on a spherical inflation of the cortical feature
map is beneficial for further processing of the images. The sphere is a well-
defined surface and it is easy to define mappings between different subjects,
which greatly facilitates the implementation of an image registration pipeline,
for example, as will be seen in later chapters of this thesis. The Beltrami
framework is capable of dealing with non-scalar features and thus gives direct
access to multi-spectral feature maps. Moreover, in contrast to plain diffusion,
the Beltrami framework provides an additional degree of freedom that controls
the anisotropicity. Indeed, some anisotropy is required to favor simplification
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(a) (b)

(c) (d)

Figure 3.2: Histogram equalization of cortical mean curvature maps. (a) Original
mean curvature map of the right hemisphere, histogram (bars) and cumulative
density function (shaded area) of the right hemisphere. A few outliers create
long tails and decrease contrast. The distribution is close to normal, as indicated
by the superimposed PDF/CDF. (b) Map and histogram after equalization. For
simplicity, the equalization is based on the cumulative density function estimated
using the fitted normal, creating slight deviations from perfect uniformity. The
extreme values are compressed and contrast is increased. The output range is
automatically mapped to [0, 1]. Almost 5% of the original values clot at exactly
zero, due to the artificial severing of the interhemispheric junction, thereby creating
an important peak after equalization around 0.6. (c)&(d) Idem for a different
subject.
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Figure 3.3: Scale space of cortical feature maps. (a) & (b) The equalized
spherical map and projection on the partially inflated surface, at scales k. (c)
Median thresholding illustrates the simplification of structures. Main structures,
e.g. the central sulcus (red), are well preserved in coarser scales. (d) & (e)
Magnitude and orientation of the gradient of the equalized map. The map is
smoothed, and gradient orientation coherence increased.

Figure 3.4: Anisotropy parameter β2 and label coherence. (a) β � 1 leads
to Gaussian-like diffusion, creating smooth maps, while the TV-norm-like β � 1
yields more jagged maps, but better isolates sulci. (b) Thresholded maps for two
subjects at β = 1, k = 32. The smoothed maps remain anatomically meaningful
through scales. (c) As comparison: the labels of main sulci at finest scale.
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versus fusion. The outline of structures is smoothed “early” in the scale-space
while fusion of nearby structures is delayed due to steep feature transitions.

Therefore, the simplified sketches well reflect the underlying cortical struc-
tures, and the main anatomical content of the maps is conserved. The “generic”
brain images can be used in a cortical registration framework, where large-scale
features are required to drive the registration process globally, before finer fea-
tures can be aligned locally. The actual goodness of the proposed scale-space,
however, will only be quantifiable after its integration into such an image pro-
cessing application.

Recently, a similar diffusion scheme for cortical feature maps was proposed
by (Joshi et al., 2009). The essential differences with respect to our method
are, that (1) they work on p-harmonic parametrizations of the cortical surface
(Joshi et al., 2004), instead of our triangulated spherical meshes. (2) They
propose an isotropic and a Perona-Malik anisotropic diffusion scheme, instead
of our Beltrami scale-space. Finally, (3) they employ a Crank-Nicolson sec-
ond order numerical scheme in time, compared to the first-order semi-implicit
scheme proposed in our approach. This choice offers improved accuracy at the
cost of reduced robustness with respect to oscillations.





Geodesic Active Fields 4
“To get through the hardest journey we need take only one step at
a time, but we must keep on stepping.”

Chinese proverb.

In image registration, one looks for the underlying deformation field
that best maps one image onto another. This is a classic ill-posed inverse
problem, which is usually solved by adding a regularization term.

Here, we propose a multiplicative coupling between the registration and the
regularization term, which turns out to be equivalent to embedding the defor-
mation field in a weighted minimal surface problem1. Then, the deformation
field is driven by a minimization flow toward a harmonic map corresponding
to the solution of the registration problem. This proposed approach for regis-
tration shares close similarities with the well-known geodesic active contours
model in image segmentation, where the segmentation term (the edge detector
function) is coupled with the regularization term (the length functional) via
multiplication as well. As a matter of fact, our proposed geometric model is
actually the exact mathematical generalization to vector fields of the weighted
length problem for curves and surfaces introduced by Caselles-Kimmel-Sapiro
(Caselles et al., 1997).

The energy of the deformation field is measured with the Polyakov energy
weighted by a suitable image distance, borrowed from standard registration
models. We investigate three different weighting functions, the squared error
and the approximated absolute error for monomodal images, and the local

1Parts of this chapter have been published in (Zosso et al., 2011b).
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joint entropy for multimodal images.
As compared to specialized state-of-the-art methods tailored for specific ap-

plications, our geometric framework involves important contributions. Firstly,
our general formulation for registration works on any parametrizable, smooth
and differentiable surface, including non-flat and multiscale images. In the lat-
ter case, multiscale images are registered at all scales simultaneously, and the
relations between space and scale are intrinsically being accounted for. Sec-
ondly, this method is, to the best of our knowledge, the first re-parametrization
invariant registration method introduced in the literature. Thirdly, the multi-
plicative coupling between the registration term, i.e. local image discrepancy,
and the regularization term naturally results in a data-dependent tuning of the
regularization strength. Finally, by choosing the metric on the deformation
field one can freely interpolate between classic Gaussian and more interesting
anisotropic, TV-like regularization.

4.1 Motivation

In many registration problems, separate objects (Gestalts) in the images are
displaced and deformed independently. This is illustrated by a study on the
individual movements of separate parts between slices of histological sam-
ples, where regularization has been delimited by explicitly modeled bound-
aries (Pitiot and Guimond, 2008). Other examples can be found in computer
vision, where the optical flow often exhibits piece-wise constant or piece-wise
smooth regions, with distinct boundaries (Sabatini et al., 2003). Geometric
regularization based on the Beltrami embedding of the flow- or deformation
field offers some nice advantages in this respect. Flow-driven regularization
intrinsically allows for sharper transitions and isolated regions. Further, there
are cases where boundaries in images – in terms of intensities or even texture
– are good predictors of deformation field boundaries (Nagel and Enkelmann,
1986). In (Ben-Ari and Sochen, 2009) were proposed both, a purely flow-
driven and a second, combined flow-intensity driven regularizer, based on the
Beltrami framework. This additional intensity cue in the deformation field
embedding increases the geodesic distance between independent homogeneous
Gestalts and helps defining sharp deformation field boundaries between them.

On another note, we realize that data-dependent regularization has also
become important when dealing with outlier pixels. In rigid registration, the
influence of mismatching regions can be drastically reduced by cropping the
image distance function, e.g., by using Tukey’s biweight instead of squared
error as an instance of robust statistics (Reuter et al., 2010). In non-rigid
registration, on the other hand, image distance metric and a regularization
penalty are commonly incorporated into a single energy minimization model,
a.k.a. variational model, e.g., (Hermosillo et al., 2002). The energy functionals
are typically of the general form

E = Edata + r · Eregularization, r > 0. (4.1)
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where the balancing parameter r can have a severe impact on the registration
result. Its choice is arbitrary and the optimal depends on several conditions.
Beyond the simple choice of a constant, one can estimate a local measure of
image data reliability to spatially adapt the strength of regularization (Tang
et al., 2010), while in atlas-based registration this information can equally be
derived from atlas statistics.

The goal of this work is to define a novel image registration scheme using
a geometric approach. We couple the registration term and the regularization
term locally, by multiplication. Hence, we embed the deformation field in a
higher dimensional space and define a variational model using the weighted
Polyakov energy. While the Polyakov energy itself only provides a regularity
constraint – harmonic map –, the weighting allows driving the deformation
field toward low image dissimilarity. This is in close analogy to geodesic active
contours in image segmentation (Caselles et al., 1997), where the segmentation
term, i.e. the edge detector function, is coupled with the regularizing length
function through multiplication as well. Because our model actually represents
a mathematical generalization to vector fields of the weighted length problem
for curves and surfaces, we call this model geodesic active fields (GAF) for
image registration.

As will become clearer in the next sections, the GAF framework has several
appealing properties. One of these properties is that the multiplicative link
between data and regularization term represents an automatic data-dependent
modulation of the local regularization strength by the current alignment qual-
ity. The weighting function increases regularization in regions where low
matching quality indicates missing confidence, e.g., due to a higher level of
noise, whereas lower regularity is required in regions where a good fit can be
provided.

The structure of remainder of this chapter is as follows. In section 4.2 we
show how the weighted Polyakov framework can be used to define an abstract
geometric image registration model. We then derive from this general image
registration model several instances for stereo vision as well as flat and non-flat
2D image registration in section 4.3. Then, in section 4.4, we instantiate an
extension of the framework to multiscale image registration. Section 4.5 studies
different weighting functions. Finally, we show some illustrative, preliminary
results obtained with our geodesic active fields framework in section 4.6 and
we discuss our model in section 4.7.

4.2 Geodesic Active Fields

In this section we define the general evolution equation for the geodesic active
fields for image registration. In contrast to the Beltrami framework for image
denoising, we do not embed images, but the deformation field that relates the
image pair to be registered. The deformation field is embedded as a mapping
between the n-dimensional image domain and a m-dimensional space, where
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m > n. This is achieved by letting the components of the deformation field
become additional dimensions of the embedding space. We will then define
metric tensors on the deformation field and the corresponding GAF energy
to be minimized. The embedded deformation field manifold then evolves to-
ward a weighted minimal surface, where the weighting function attracts it to
a deformation field that brings the two images into registration.

In the most general form, we register a pair of n-dimensional images de-
fined on a Riemannian domain Ω with coordinates x = (x1, . . . , xn). The
deformation field acts along p ≤ n dimensions, i.e., u : Ω 7→ Rp,u(x) =
(u1(x), . . . , up(x)).

The embedding X and the metric tensors hij and gµν on the deformation
field are chosen as follows:

X : (x1, . . . , xn)→ (x1, . . . , xn, u1, . . . , up)
hij is arbitrary
gµν = ∂µX

i∂νX
jhij,

(4.2)

where x1, . . . , xn denote the spatial components of the image and u1, . . . , up
are the components of the dense deformation field. These equations are in-
troduced in the weighted Polyakov functional (2.49) and its minimization flow
(2.50), leading to the following general registration energy functional and the
minimizing evolution flow of the geodesic active fields (GAF): EGAF =

∫
f
√
g

n∏
i=1

dxi

∂tui = fHn+i + ∂kfg
µν∂µX

k∂νui − m·n
2
∂kfh

k(n+i), 1 ≤ i ≤ p,
(4.3)

where the weighting function f = f(x,u) is arbitrary for now, and will be
defined in more detail in section 4.5.

The main contributions of this framework are:

1. The freedom to register images on any Riemannian manifold, i.e., on
any smooth and parametrized surface. This will be developed further in
sections 4.3 and 4.4.

2. The invariance under re-parametrization of the proposed energy, like the
GAC energy (Caselles et al., 1997) for the segmentation problem.

3. The freedom to choose the metric hij in the embedding space to ob-
tain different regularizing behavior, as known from the versatility of the
Beltrami framework.

4. The intrinsic data-dependent modulation of the local regularization strength
thanks to the multiplicative coupling.

In image registration, the property of parametrization invariance is a very
rare, but actually highly desirable property. Indeed, there is no reason why
the chosen parametrization of the image domain should influence the outcome
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(a) (x, y) (b) (φ, r) (c) P 2

Figure 4.1: Omnidirectional bunny image obtained from a catadioptric system
(Bogdanova et al., 2007). (a) Flat 2D raw image obtained from the camera,
in Cartesian parametrization. (b) Panoramic representation, obtained by polar
re-parametrization of the raw disc. (c) Mapping of the bunny on the parabolic
manifold, P 2 = (r cosφ, r sinφ, r2), corresponding to the focal projection of the
catadioptric system. Classical registration of images of this type with standard
methods will produce different results for the disc and panorama parametrizations.
The GAF energy uses a metric corresponding to the actual image geometry and is
therefore invariant to the chosen parametrization.

of the registration process. And yet, many currently used image registration
methods lack this important invariance property.

The relevance of the contributions one and two can be clarified with the
example of catadioptric images illustrated in Fig. 4.1. Such images are widely
used in omnidirectional vision and robot navigation, for example, where ego-
motion and position can be derived from a sequence of images, e.g. (Yagi
et al., 1994; Gaspar et al., 2000; Bunschoten and Krose, 2003). Because stan-
dard image registration methods ignore the paraboloid geometry of the actual
image, they agnostically work on either one of the flat parametrized image
versions. As can be clearly seen, there are important distortions between the
raw, disc representation on the one hand, and the polar panorama view on the
other hand, in Fig. 4.1(a) and (b), respectively. Obviously, a simple energy like
mean squared error, employed in many standard methods, such as the popular
Demons algorithm (Thirion, 1998), fails to be re-parametrization invariant on
those images, ∫

(M−F)2dxdy 6=
∫

(M−F)2dφdr, (4.4)

and the registration result depends on the selected parametrization. In con-
trast, with the GAF energy, a metric tensor hij is derived from the actual
image geometry, like the paraboloid in Fig. 4.1(c), and the registration result
becomes independent of the chosen image representation.
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4.3 Stereo Vision and Image Registration

In the previous section, we have defined the general, abstract energy of GAF
and its corresponding gradient descent flow. In the following paragraphs, we
instantiate this general concept for specific applications, namely stereo vision
and 2D image registration in the Euclidean case, as well as image registration
on non-flat manifolds. In other words, we will define specific image geometries
and deformation field embeddings, derive the corresponding metric tensors,
and thus concretize the GAF energy and its flow. The weighting function
f , however, remains unspecified and will be described in detail only later, in
section 4.5.

4.3.1 The general Euclidean case

Let us first consider the case of n-dimensional images defined on well-known
Euclidean domains Ω with Cartesian coordinates ~x = (x1, . . . , xn). We look
for a deformation field acting along p ≤ n dimensions.

The embedding X of the deformation field, and the corresponding metric
tensors hij and gµν are chosen as follows:

X : (x1, . . . , xn)→ (x1, . . . , xn, u1, . . . , up)
hij = diag(1, . . . , 1︸ ︷︷ ︸

n

, β2, . . . , β2︸ ︷︷ ︸
p

)

gµν = ∂µX
i∂νX

jhij = δµν + β2
p∑
i=1

∂µui∂νui,

(4.5)

where β is the scaling factor applied to the deformation field components
to get the desired aspect ratio. In analogy to the Beltrami framework, this
parameter interpolates between isotropic Gaussian, and anisotropic TV-like
smoothing of the deformation field. Now, the general Euclidean registration
energy functional and the minimizing evolution flow, obtained by plugging the
above choice into (4.3), take the following form: EGAF =

∫
f
√
g

n∏
i=1

dxi

∂tui = fHn+i + ∂kfg
µν∂µX

k∂νui − m·n
2β2 fui , 1 ≤ i ≤ p.

(4.6)

4.3.2 Stereo vision

Simply put, in stereo vision the depth information corresponding to a location
is encoded as the lateral shift between its representation in two adjacent image
acquisitions (Scharstein and Szeliski, 2002). The recovered depth information
is used in e.g. satellite imaging or robot vision to reconstruct the observed
scene. The lateral shift can be determined by registration of the two images,
where only lateral deformation is allowed. That is, the deformation field ~u(~x),
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with ~x = (x, y), has only one component, u along the x-dimension. We choose
the following embedding and metric tensors:

X : (x, y)→ (x, y, u)
hij = diag(1, 1, β2)

gµν =

[
1 + β2u2

x β2uxuy
β2uxuy 1 + β2u2

y

]
, g = 1 + β2|∇u|2.

(4.7)

Introducing those equations into (4.3), we get the following energy functional
and evolution equation:{

EGAF =
∫
f
√

1 + β2|∇u|2dxdy
∂tu = fHu + ∂kfg

µν∂µX
k∂νu− 3

β2fu,
(4.8)

where Hu is simply the 3rd component of the mean curvature vector:

Hu =
g11uyy − 2 · g12uxy + g22uxx

g2
. (4.9)

4.3.3 2-D image registration

In the case of registration, involving deformations along all image dimensions,
one has p = n and m = 2n. Here, as an example without loss of generality, we
consider the registration of 2D images. The deformation field is described by
~u = (u, v), respectively along x and y of ~x = (x, y):

(u, v) : (x, y) ∈ Ω 7→ (u, v) = (u(x, y), v(x, y)) ∈ R2. (4.10)

We choose the following embedding and metric tensors:
X : (x, y)→ (x, y, u, v)
hij = diag(1, 1, β2, β2)

gµν =

[
1 + β2(u2

x + v2
x) β2(uxuy + vxvy)

β2(uxuy + vxvy) 1 + β2(u2
y + v2

y)

]
g = 1 + β2(|∇u|2 + |∇v|2) + β4‖∇u×∇v‖2,

(4.11)

The expression of the determinant g has become quite cumbersome. The term
β4‖∇u×∇v‖2 measures the misalignment of the gradients between different
deformation field components (Kimmel et al., 2000). All these settings put into
the general equations produce the following energy functional and minimizing
flow:

EGAF =
∫
f
√

1 + β2(|∇u|2 + |∇v|2) + β4‖∇u×∇v‖2dxdy

∂tu = fHu + ∂kfg
µν∂µX

k∂νu− 4
β2fu

∂tv = fHv + ∂kfg
µν∂µX

k∂νv − 4
β2fv.

(4.12)
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4.3.4 Registration on non-flat manifolds

One of the main contributions of the proposed framework is that the image
domain does not necessarily have to be Euclidean. Indeed, images to be reg-
istered can be defined on any Riemannian manifold, i.e., on any smooth and
parametrized surface. In the Euclidean case, the spatial coordinates were di-
rectly given by the image domain parameters. In the non-Euclidean case, the
spatial coordinates of the image are more complicated functions of the domain
parameters instead.

To give a basic example, that will be illustrated in section 4.6, consider a
spherical patch S described by two angles, θ and φ, on which the images are
defined: 

S : (θ, φ) ∈ Ω ⊂ R2 → (x, y, z) ∈ R3

Ω = [θmin, θmax]× [φmin, φmax]
0 < θmin < θmax < π, 0 ≤ φmin < φmax < 2π
x(θ, φ) = sin θ cosφ
y(θ, φ) = sin θ sinφ
z(θ, φ) = cos θ

(4.13)

The induced metric on S is naturally given by gS = diag(1, sin2 θ). Further,
let the deformation field (ϑ(θ, φ), ϕ(θ, φ)) act on the two angles describing the
patch. This suggests the following embedding:{

X : (θ, φ) ∈ Ω ⊂ R2 → (θ, φ, ϑ, ϕ) ∈ R4

hij = diag(gS, β
2gS) = diag(1, sin2 θ, β2, β2 sin2 θ)

(4.14)

where the metric tensor hij has been set by taking the induced metric gS of the
patch parametrization into account. The pullback relation yields the following
metric tensor gµν in parameter space:

gµν =

[
1 0
0 sin2 θ

]
+ β2

[
ϑ2
θ + sin2 θϕ2

θ ϑθϑφ + sin2 θϕθϕφ
ϑθϑφ + sin2 θϕθϕφ ϑ2

φ + sin2 θϕ2
φ

]
. (4.15)

Given this metric tensor hij, the embedding space is not Euclidean anymore,
and the computation of the mean curvature vector involves the Levi-Civita
connection as in (2.36), to account for the Riemannian part.

For the spherical patch, only two relevant Christoffel symbols computed by
(2.37) differ from zero:

Γϕjk =


cot θ j =̂ ϕ, k =̂ θ,

cot θ j =̂ θ, k =̂ ϕ,

0 otherwise,

(4.16)

and Γϑjk = 0 ∀j, k, where, with some abuse of notation, j =̂ ϕ denotes the one
j corresponding to the parameter ϕ, and consequently Γϕjk = Γijk|ib=ϕ. This
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gives the following evolution equations for the deformation field:
∂tϑ = fHϑ + ∂kfg

µν∂µX
k∂νϑ− 4

β2fϑ,

∂tϕ = fHϕ + ∂kfg
µν∂µX

k∂νϕ− 4
β2 sin2 θ

fϕ,

Hϑ = 1√
g
∂µ
(√

ggµν∂νϑ
)
,

Hϕ = 1√
g
∂µ
(√

ggµν∂νϕ
)

+ 2 cot θ(gθθϕθ + gθφϕφ),

(4.17)

where gθθ = gµν |µb=θ,ν b=θ, and gθφ = gµν |µb=θ,ν b=φ.

4.4 Multiscale Image Registration

4.4.1 Motivation

The concept of scale spaces and multi-scale images has been defined already
in section 2.2. In summary, it states that the scale at which one measures a
certain property becomes an additional dimension of the imaging space. A
scale-space is built by artificially generating larger (coarser) scales of an image
through low-pass filtering (Witkin, 1983).

Scale-spaces have particular importance in the context of image registra-
tion. As an example, let us consider the human brain. It exhibits a highly con-
voluted and irregular structure, with high complexity and variability. Consid-
ering the complexity of the cortical surface, directly involving local small-scale
features would mislead the registration to be trapped in bad local minima. A
robust method needs to rely on large-scale features, describing the main land-
marks of the cortex, such as the main gyri or sulci, while small-scale features
drive the registration more locally to reach the desired precision.

The most intuitive and commonly used approach to multi-scale image reg-
istration consists of repeated, hierarchical registration at single scales – from
coarse to fine. The result of one stage is used as initialization for the next
finer scale. This pyramidal approach has reasonable computational load, but
the link between scales is relatively weak, however, and unidirectional: in-
formation is only relayed from coarse to fine. Here, we propose a method of
registering pairs of entire scale-spaces. All scales are registered simultaneously,
thus allowing for bidirectional communication between scales.

The geometry of a large class of scale-spaces can be defined by a general
metric tensor (Eberly, 1994; Bresson et al., 2006):

hij = diag

 1

c2
, . . . ,

1

c2︸ ︷︷ ︸
n times

,
1

c2ρ2

 , (4.18)

where the first n elements of the diagonal correspond to the spatial dimensions
x1, . . . , xn, and the last element refers to the scale σ. c and ρ are two functions
that represent the conductance and the density in the general model of heat



72 Geodesic Active Fields

(a) (b) (c) (d)

Figure 4.2: Linear and Beltrami scale space. (a)–(b) Linear and Beltrami scale-
spaces of the Von Koch snowflake. The scale σ increases linearly from bottom to
top of the image stack, thus constituting an additional image dimension. (c)–(d)
Multiscale representation of a T1-weighted magnetic resonance image of a human
brain, in a linear and Beltrami scale-space.

transfer. The spatial derivative within such a scale-space is now obtained as
c∇, whereas the scale derivative is given by ρc∂σ. The natural heat equation,
that defines the scale-space, is:

∂σI =
1

ρ
∇ · (c∇I). (4.19)

Different choices for c and ρ yield different well-known scale-spaces. The linear
scale-space, e.g., corresponds to c = σ and ρ = 1: ∂σI = σ∆I. The Perona-
Malik scale-space is reproduced with ρ = 1 and c = exp(−α|∇I|2), α > 0
(Perona and Malik, 1990). The Beltrami flow of Sochen-Kimmel-Malladi re-
quires c = ρ = 1√

1+β2|∇I|2
(Kimmel et al., 1997; Sochen et al., 1998). The

linear and the Beltrami scale-space are illustrated at the example of the frac-
tal image of a Von Koch snowflake, and a single slice of a T1-weighted brain
MR image in Fig. 4.2.

4.4.2 Multiscale active deformation fields

Multiscale images have an additional image dimension: the scale σ. Along this
scale-dimension, no deformation takes place. The multiscale deformation field
is embedded as follows:

X : (x1, . . . , xn, σ)→ (x1, . . . , xn, σ, u1, . . . , un)

hij = diag( 1
c2
, . . . , 1

c2
, 1
c2ρ2

, β
2

c2
, . . . , β

2

c2
)

gµν = ∂µX
i∂νX

jhij,

(4.20)
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where the structure of the metric tensor hij is arbitrary, and inspired by (4.18).
Considering a linear scale-space, i.e., c = σ and ρ = 1, the embedding thus

looks like: 
X : (x1, . . . , xn, σ)→ (x1, . . . , xn, σ, u1, . . . , un)
hij = 1

σ2 diag(1, . . . , 1, 1, β2, . . . , β2)

gµν = ∂µX
i∂νX

jhij = 1
σ2

(
δµν + β2

n∑
i=1

∂µui∂νui

)
.

(4.21)

Again, as for non-flat image domains, the multiscale embedding is not
Euclidean, and the Levi-Civita connection (2.37) is required to compute the
complete mean curvature vector according to (2.36).

Note, that the deformation field ~u = ~u(~x, σ) evolves at all scales simulta-
neously. At each scale, the deformation field is attracted by the corresponding
data term, while coherence between scales is obtained thanks to the regular-
izing power of harmonic maps.

4.4.3 Multiscale 2-D image registration

In the case of 2D images to be registered, the only relevant non-zero Christoffel
symbols computed as (2.37) are Γuuσ = Γuσu = Γvvσ = Γvσv = − 1

σ
. The evolution

equations for both components (u, v) of the deformation field along (x, y) are
∂tu = fHu + ∂kfg

µν∂µX
k∂νu− 15σ2

2β2 fu

∂tv = fHv + ∂kfg
µν∂µX

k∂νv − 15σ2

2β2 fv
Hu = 1√

g
∂µ
(√

ggµν∂νu
)
− 2

σ
∂µug

µσ

Hv = 1√
g
∂µ
(√

ggµν∂νv
)
− 2

σ
∂µvg

µσ

, (4.22)

where, with some abuse of notation, gµσ denotes the column ν of the inverse
of the metric tensor gµν corresponding to the scale σ.

4.5 Weighting Function for the Registration
Problem

The purpose of the weighting function f is to drive the deformation field
toward minimal surfaces that bring the two images into registration. As such,
the flow should stop when the deformed image perfectly matches the target
image. Hence, the weighting function is naturally chosen to be an image
distance metric, which approaches zero when the two images match.

4.5.1 Deformation model

The weighting function is the place, where the deformation field actually gets to
act on the images. Therefore, it is crucial to define the particular deformation
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model we want to use. First, we work with Euler coordinates. That is, for any
pixel in the fixed imaged, the corresponding pixel is looked up in the moving
image using a coordinate mapping. The corresponding location in the moving
image will almost never fall on an exact pixel location and interpolation will
be required.

Here, we use a very simple scheme, where the look-up is based on a shift
by addition. The transform operator T is thus defined as:

T0 : T0~x = ~x+ ~u(~x), (4.23)

where addition is implicitly understood only along the p ≤ n dimensions of the
image that are deformed. Also, for simplicity we shall ignore any boundary
issues and finite support.

This very basic deformation model embodies only a restricted set of prop-
erties. By definition, the displacement needs to be at least twice differentiable,
otherwise the Riemannian manifold cannot be constructed and mean curvature
cannot be computed. Other than that, no further guarantees exist: the defor-
mation is not necessarily invertible as nothing explicitly prevents the Jacobian
to become negative. Further, it is not enforced to be surjective (onto), and
homeomorphism or even diffeomorphism are not guaranteed properties. It is
important to realize, however, that this is a restriction of the employed defor-
mation model and not of the GAF framework as a whole. More sophisticated
deformation models can be used to obtain these properties2.

Once the deformation model has been defined, corresponding fixed an mov-
ing image locations can be mapped, and the matching quality can be quantified
using one of several distance metrics, of which we present some in the following
paragraphs.

4.5.2 Squared error

If the images have been acquired using similar sensors, one can generally as-
sume that the same entities are pictured at the same feature intensity in both
images. An intuitive and simple choice for monomodal image registration sub-
ject to additive Gaussian noise is the squared error metric (Toga, 1999):

f (1)T0(~x, ~u) = (M(T0~x)−F(~x))2 = (M(~x+ ~u(~x))−F(~x))2 , (4.24)

where F andM refer to the fix and moving images respectively. The evolution
equation (4.3) includes the partial derivatives of the weighting function with

2Very recently, Vercauteren et al. introduced exponential map diffeomorphisms in the
Demons framework (Vercauteren et al., 2009). There, at each iteration one looks for an
infinitesimally small update d~s to ~s = 0, that is applied through composition of its expo-
nential map with the existing diffeomorphic deformation. We have integrated this more
complicated deformation field model into our GAF framework as well. See chapter 8 on
diffeomorphisms.



4.5. Weighting Function for the Registration Problem 75

respect to all components of the embedding. For the function given in (4.24),
these are obtained as follows:{

f
(1)T0

~x = 2 · (M(T0~x)−F(~x)) ·
(
JT∇M(T0~x)−∇F(~x)

)
f

(1)T0

~u = 2 · (M(T0~x)−F(~x)) · ∇M(T0~x)
(4.25)

where ∇F and ∇M refer to the gradients of the fix and moving images, re-
spectively, and where JT denotes the transpose of the Jacobian of the deformed
field:

Jij = δij +
∂ui
∂xj

. (4.26)

4.5.3 Local joint entropy

If images of different modality are to be registered, the above squared error
metric is not a suitable distance metric anymore. Instead, mutual information
is a commonly accepted similarity criterion in this case (Wells III et al., 1996;
Viola and Wells III, 1997; Maes et al., 1997).

Mutual information is a global measure on the joint (pfm) and marginal
(pf and pm) histograms of the fixed and moving images:

MI =
∑
i1,i2

pfm ln(pfm)−
∑
i1

pf ln(pf )−
∑
i2

pm ln(pm), (4.27)

where pfm = pfm(i1, i2) etc. Let us assume, that the marginal entropies remain
constant throughout the whole registration process, as they only depend on
the fix and moving image separately. Maximizing mutual information is thus
equal to minimizing the joint entropy.

The same joint entropy, i.e., the expectation of the negative logarithm of
the joint probability, can also be computed in the image domain, instead of
using the above histograms (Rogelj et al., 2003):

Hfm = −
∑
i1,i2

pfm ln(pfm) =
1

|Ω|
∑
~x

− ln(pfm), (4.28)

where pfm = pfm(F(~x),M(~x+ ~u)). The negative logarithm denotes the local
joint entropy. This local joint entropy has a minimum value of 0 (if the joint
probability matches 1), and is unbound positive. This provides us with a local
measure that corresponds well to the weighting function criteria stated above.

Consequently, we define the following information theory based weighting
function for multi-modal image registration:

f (2)T0(~x, ~u) = − ln(pfm(F(~x),M(T0~x))). (4.29)

Using this weighting function, the goodness of a local alignment is measured
by the frequency of similar intensity pairs in the rest of the image.
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The partial derivatives along spatial components f
(2)
~x are easily estimated

numerically. The partial derivatives along deformation field components are
obtained using the chain rule:

f
(2)T0

~u = −p
fm
m (F(~x),M(T0~x))

pfm(F(~x),M(T0~x))
· ∇M(T0~x), (4.30)

where pfmm (i1, i2) is the partial derivative of the histogram along the dimension
corresponding to the moving image.

4.5.4 Absolute error

For non-smooth deformation fields, e.g., observed in optical flow-based image
registration, the L1-norm may perform better as data term (Zach et al., 2007).
The L1-norm measures the absolute error between the two images,

f (3)T0(~x, ~u) = |M(T0~x)−F(~x)| , (4.31)

and it can be approximated by a differentiable function:

f (3)T0(~x, ~u) =

√
(M(T0~x)−F(~x))2 + ε2, (4.32)

where 1 � ε > 0. The partial derivatives of the approximated function are
obtained easily:{

f
(3)T0

~x = (M(T0~x)−F(~x))

f (3)T0 (~x,~u)
·
(
JT∇M(T0~x)−∇F(~x)

)
,

f
(3)T0

~u = (M(T0~x)−F(~x))

f (3)T0 (~x,~u)
· ∇M(T0~x).

(4.33)

4.5.5 Data term and regularization balancing

In practice, we found useful to extend the weighting function by a positive
constant, to convey a minimal weight to regularization. This is required in
two cases: first, a pixel pair might accidentally fit well and locally produce
zero discrepancy. As a consequence without a minimal weight, regularization
would not be able to release the trapped pixels from their local minima. On the
other hand, minimal regularization weight is required by the aperture problem,
otherwise displacement would not get propagated into matched, homogeneous
regions (Stumpf, 1911; Todorovic, 1996). The general form of the weighting
function is thus

f = 1 + αf (i), (4.34)

where f (i) is one of the image distance metrics specified above, and α is the
balancing parameter, that scales the image discrepancy w.r.t. the constant
minimal weight. This form represents a Polyakov energy functional, where
the image distance metric corresponds to an additional penalty weighting. A
big α will favor high data-fidelity, whereas a small value limits the modulating
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impact of the image discrepancy and increases overall regularization. Note that
choosing 1 as the minimum weight renders the weighting function in some way
symmetric to the square root of the metric tensor determinant, which shares
the same lower bound.

4.6 Results

We have implemented the geodesic active fields and ran it on several test
problems. Here, the results are presented in order of task complexity. As for
all forward schemes, the step length, and thus the speed of the registration,
is heavily limited by the stability of the integration. The implementation
was done using Matlab R©(R2009a) on a standard 2.4GHz Intel R©CoreTM2 Duo
desktop machine, running a 64bit Fedora Core 11.

4.6.1 Mean curvature estimation

In (2.38), mean curvature is expressed as the anisotropic divergence of the
coordinate gradient. Except for the simple stereo case, where an analytical
expression of mean curvature was given, explicit expressions are cumbersome.
Instead, we propose to estimate the mean curvature vector numerically, by
using central differences twice.

In the 2D case of flat and non-flat images, this amounts to the same scheme
as was already proposed by (Ben-Ari and Sochen, 2009) and of which numerical
properties have been studied and discussed in (Dascal and Sochen, 2005). The
numeric scheme for the mean curvature vector in the multiscale case is obtained
in the same manner.

4.6.2 A few words on β and regularization

It might be useful to illustrate the influence of the scaling factor β on the
deformation field smoothness. The analysis is easiest in the stereo case. For
higher co-dimensions the analysis becomes more tedious and is beyond the
scope of the present paper. We refer the reader to similar studies in the field
of color and vector image denoising (Kimmel et al., 2000), and optical flow
regularization (Ben-Ari and Sochen, 2009). To begin with, a pair of images
is registered, where the one-directional deformation field u is initialized with
a single local impulse. To study the impulse response of the regularization
only, we wish f = 1 being constant, and set α = 0. The so clutched GAF
energy now corresponds exactly to the Beltrami framework for image denoising.
Without surprise, after a few iterations, the deformation field has diffused, as
illustrated in Fig. 4.3(a). Next, the deformation field is initialized with a unit
step, disturbed by uniformly distributed, additive random noise, as shown in
Fig. 4.3(b). In Fig. 4.3(c)–(e), the role of the parameter β becomes clear: The
regularizer changes from Gaussian filtering for low β, to highly anisotropic,
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(a) (b) (c) β = 20

(d) β = 25 (e) β = 30 (f) β = 100

Figure 4.3: Regularization for different embedding scales β2. (a) Mid-time re-
sponse, i.e. after some 100 iterations, to a single impulse in the deformation
field under constant data term f = 1. (b) initial unit-step deformation field with
uniform additive noise, and (c)–(f) its smoothing by the regularizer at different
β.

feature preserving TV-norm-like filtering at higher values. The actual choice
of the parameter value depends on the available a priori knowledge on the
deformation field regularity for a specific registration task. For computer vision
applications such as motion detection and stereo vision, where entire image
regions move as individual blocks (Gestalts), a higher β is preferable to allow
for sharp deformation boundaries. Also think of the skulls in Fig. 1.1, where
the rigid skull and mandible may be in a different relative pose in the image
pair, whereas other applications would require more smooth transitions, thus
motivating small β.

4.6.3 Application to stereo vision

An example of stereo vision depth recovery was performed as shown in Fig. 4.4.
The image pair tsukuba is a well known test image, taken from the middlebury
benchmark set for stereo vision. The registration was set up according to the
embedding and evolution equation described in section 4.3.2 and using the
absolute error weighting function (4.32). In our current implementation of
which the goal is to illustrate the concept, the depth recovery result is fair,
but does not yet achieve the quality of specifically tailored state-of-the-art
stereo vision tools.
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(a) F (b) M−F

(c) (d)

Figure 4.4: Stereo vision depth recovery. (a)–(b) The tsukuba test image for
stereo vision and the image pair difference. (c) The recovered disparity map, (d)
Ground truth.

4.6.4 Application to medical imaging

The third case deals with registration of a highly misaligned monomodal
medical image pair. Two roughly corresponding axial slices through the T1-
weighted MRI volume of different subjects are to be registered. The images
have a resolution of 256× 256 pixels. Registration is set up with the squared
error weighting function. The slices are well aligned by registration, as illus-
trated in Fig. 4.5. Note, that the subtle differences in the folding pattern
cannot effectively be compensated by the dense deformation field, i.e., the
global outline of the skull and brain structures are aligned, but gyri and sulci
remain largely individual.

Another case aims at registering a pair of multimodal medical images at
resolution 317 × 317. The first image is the same T1 brain slice as above.
The second image now is a deformed slice in T2 weighting. For multimodal
registration, we use the information theory based joint local entropy as weight-
ing function (4.29), again in the diffeomorphic setting using exponential map
compositions. At the fine resolution, the resampling of an entire image takes
considerable time, as well as the computation of the joint histogram. Accord-
ingly, the whole registration process takes around 3 minutes. Registration is
widely successful, as is indicated by the before and after checkerboard and
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(a) F (b) M

(c) M◦ T0 (d) T0

(e) M−F (f) M◦ T0 −F

Figure 4.5: 2D registration of brain monomodal MRI slices. (a)–(b) Fix and
moving image. (c) The moving image warped by the recovered deformation field.
(d) The estimated deformation field. (e)–(f) Intensity differences before and after
registration.
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overlay images provided in Fig. 4.6. Compared to the robust squared error
weighting function, the local joint entropy is much more delicate with respect
to the initial condition, but allows to register images of different modalities.

4.6.5 Registration on non-flat manifolds

To illustrate the model on a non-flat manifold, we have implemented the spher-
ical patch described in (4.17). First, the purpose of the pullback relation is
nicely illustrated in Fig. 4.7. We picture the impulse response that corresponds
to the diffusion of a local non-zero spot in the deformation field without data
term, i.e., α is simply set to 0, thus f = 1. On the spherical patch, the im-
pulse response is isotropic and equal both close to the North pole and close
to the equator. Isotropy on the spherical manifold requires a high degree of
anisotropy in the rectangular parameter domain, as low-θ regions map denser
on the sphere. This required anisotropy is directly obtained thanks to the pull-
back relation between the metrics hij on the patch and gµν in the parameter
space. Further, the registration has been tested on an artificially deformed
pair of topological maps of the Earth, see Fig. 4.8. The patch spans a good
part of the northern hemisphere and some of the southern hemisphere of a
globe, hence covering parts of both Americas, entire Europe, Africa, the At-
lantic Ocean and of western Asia. Thus, the registration framework is shown
to work on non-flat manifolds, such as the sphere.

4.6.6 Multiscale image registration

Finally, the multiscale registration case is tested on a pair of artificially de-
formed T1 brain images. Images are repeatedly lowpass filtered with a Gaus-
sian to generate a linear diffusion scale-space. The multiscale image stacks
prior to and after registration are shown in Fig. 4.9, as well as the correspond-
ing intensity residues. Registration succeeds quite well, as illustrated by the
almost entirely removed intensity errors.

4.7 Discussion and Conclusion

In this paper, we have presented a novel, purely geometric method, called
geodesic active fields, to register images. The fundamental idea is to embed
deformation fields in a weighted minimal surface energy and evolve the defor-
mation field toward minimal surfaces, while being attracted by configurations
that bring the images into registration. The process amounts to looking for
an optimal hyper-contour in the space of all possible deformations in terms of
image mismatch and deformation field regularity. This point of view reveals
the close analogy to geodesic active contours in image segmentation (Caselles
et al., 1997), that can be derived from a weighted Polyakov energy as well
(Bresson et al., 2006), hence the name geodesic active fields (GAF).
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(a) F (b) M

(c) F|M (d) F|M ◦ T0

(e) pfm (f) pf{m◦T0}

Figure 4.6: Multimodal 2D registration of brain MRI slices. (a) The fix T1 image.
(b) The artificially deformed T2 weighted image. (c)–(d) Red-green overlay of
T1 and T2 images prior to and after registration. (e)–(f) The joint intensity
histograms prior to and after registration. While initially, the histogram is widely
spread, registration results in important histogram focalization.
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(a) (b)

Figure 4.7: Diffusion on non-flat image domain. (a) Diffusion takes place in
parameter domain (θ, φ), governed by the metric tensor gµν . At low θ, diffusion is
highly anisotropic. (b) Diffusion as seen on the embedded spherical patch. Both
impulse responses look the same and are isotropic. This is obtained through the
pullback relation that links the respective metrics hij on the patch and gµν in the
parameter space.

(a) F (b) M (c) M◦ T0

(d) F (e) M−F (f) M◦ T0 −F

Figure 4.8: Registration of a spherical patch of the earth’s topographical map.
(a) The fixed map with its approximate coastlines highlighted as white contours.
(b) The moving image, with the coastlines of the fixed image superimposed.
(c) The warped moving image after registration. The map fits well with the
superimposed fixed coastlines, except at a few locations where small misregistration
is observed (e.g. Red Sea). The colormap indicates height in meters above (below)
sea level. (d) The fixed image in rectangular, flat parameter domain. (e)–(f) The
intensity difference before and after registration.
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(a) F (b) M (c) M−F (d) M′ (e) M′ −F

Figure 4.9: Multiscale registration of a brain MRI slice. (a) The multiscale stack
of the fixed image of a T1 brain slice. (b) The moving image of a T1 brain slice,
obtained by synthetic deformation of the fixed image. (c) The intensity difference
illustrates the misalignment at all scales. (d) The registered moving image. (e)
The residue after registration is significantly reduced. Some misregistration is
observed at the frontal parts of the skull.

4.7.1 Contributions

In contrast to classic approaches in variational methods, which make use of
purely additive competition between data and regularization term, our method
combines the two energy contributions in a multiplicative way. In fact, the data
term is represented by a local image distance function, that acts as multiplica-
tive weighting on the geometric regularization term, resulting in a weighted
surface energy. We recall the main contributions of the proposed framework:

Registration of non-flat and multiscale images

We have derived the minimizing flow of this weighted minimal surface for differ-
ent image registration configurations. First, the framework applies to standard
Euclidean images, defined on Cartesian planes and volumes. Further, our pro-
posed method also directly generalizes to images on Riemannian manifolds,
such as non-flat image domains and various scale-spaces, and ultimately the
combination of both. In true multiscale registration and in contrast to hierar-
chic multiresolution approaches, image pairs are registered at all scales simul-
taneously. Communication between different scales is bidirectionally achieved
by the regularization term, smoothing the deformation field across scales. In
this context, we contribute a framework which has the advantage over classi-
cal approaches of automatically taking the relation between space and scale
into account. Useful applications of non-flat image registration can easily be
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found in computer vision, e.g. motion detection or scene reconstruction from
omnidirectional images.

Parametrization invariance

The second contribution of the proposed framework is the invariance of the
registration result with respect to the parametrization chosen to describe the
image domain. This result is also very intuitive, as by construction the em-
ployed energy measures the weighted hyperarea of the embedded deformation
field, which is inherently independent of the parametrization that is used to
describe this manifold.

Data-dependent, spatially-adaptive regularization

The multiplicative coupling of data-term and regularization intrinsically pro-
duces a data-dependent local modulation of the regularization strength. Nat-
urally, one selects the one image discrepancy measure to be minimized that
is the best estimate of alignment quality one can get. It is thus intuitive to
let this same reliability estimate tune the local amount of regularization re-
quired. In practice, this might be particularly useful in medical image pairs
that violate the premier assumption of actual existence of a one-to-one map-
ping between them, like a pair of images with and without lesions. In these
instances, the adaptive regularization might help filling-in “the blanks” with a
more regular deformation field than in the surrounding tissues that can be well
aligned. It is also useful in images with regions of different noise levels. We
thus require a smaller amount of global regularization, compared to classical
additive schemes, where the non-adaptive regularization force always causes
a bias off the optimal data position in the end result. Also, thanks to the
multiplicative coupling, data-term and regularity compete very locally, in con-
trast to additive methods, where image distance metric and deformation field
regularity compete as global measures on the whole image domain. Note, that
the data-dependency of the regularization in GAF, based on the current local
alignment of images, is different from (Tang et al., 2010), where regularization
strength depends on individual image (gradient) intensities.

Geometric regularization.

In a similar context, the geometric nature of the regularization, in particular
its freedom to choose the amount of anisotropy through the parameter β, can
allow for sharper deformation field transitions than classical Gaussian regu-
larization. This is needed in cases, where individual objects move or deform
independently, and where deformation cues from separate objects should not
overly interact. Also, TV-like regularization reduces the impact of deforma-
tion field outliers, as diffusion of the error is limited. Such outliers can occur
at locations of actual image dissent, which can be observed for example with
occlusions in stereo vision.
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4.7.2 Conclusions

We would like to end this chapter with some concluding remarks:

Weighting functions

We have provided three instances of weighting function, namely squared error
(4.24), absolute error (4.32) and local joint entropy (4.29). On the one hand,
the absolute and squared error weighting functions minimize the global L2

and L1-norm between the two images, and are suitable for monomodal image
registration. The local joint entropy, on the other hand, maximizes the mutual
information between images, and lends itself to multimodal image registration.

The parameters α and β

It is important to emphasize the role of the parameters α and β. First, β tunes
the aspect ratio between the deformation field dimensions and the spatial di-
mensions in the embedding. In the simplest case of stereo matching, it has
been shown that this allows interpolating between L2 and L1-norm minimiza-
tion of the deformation field gradient magnitudes, whereas interpretation is
more difficult in the general case. Second, note that β only changes the nature
of the regularization, but not its relative weight with respect to the data term,
which is precisely the role of the balancing parameter α.

Preliminary results and limitations

In this chapter, we have only shown preliminary results, based on very simple
discretized forward Euler schemes. These are results for illustrative purposes
only, that cannot compete with tightly tailored, and specifically tuned state-
of-the-art solutions to practical applications. As we focus on the theoretical
and methodological aspects of our image registration framework, we did not
develop efficient and accurate numerical schemes to challenge established state-
of-the-art methods. Consequently we do not compare quantitatively with other
registration methods.

The most stringent limitations of the current GAF implementations are
numerical stability (mean curvature estimation) and computational complexity
(small time steps). Consequently, the following chapter will, therefore, focus
on bringing the GAF energy in a suitable form for more efficient numerical
implementations, both in terms of speed, accuracy, and stability.

As mentioned, the embedding we propose for GAF corresponds to the flow-
driven geometric regularizer proposed in (Ben-Ari and Sochen, 2009). The sec-
ond, combined flow-intensity driven regularizer of that article is not exploited
in the proposed GAF formulation, but inclusion is straightforward. We pro-
pose to go even one step further by embedding textural features rather than
intensities, to address cases where Gestalts are defined by regions of homoge-
neous texture rather than flat intensity.
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“Denn Zeit ist Leben. Und das Leben wohnt im Herzen.”

Michael Ende, Momo.

In the previous chapter, we have introduced the concept of GAF along
with some prototype results for purely illustrative purposes. There, we
focused explicitly on the theoretical aspects of GAF and its conceptual

strengths, e.g. re-parametrization invariance and applications on non-Euclidean
images. The prototype implementations served as a proof of concept, while
their main drawback was the relatively poor computational performance, com-
pared to state-of-the-art methods, including Demons.

Here, we want to address these numerical and performance shortcomings
and provide a numerical scheme that considerably improves the speed of the
GAF energy minimization1.

The basic idea is to use a splitting and an augmented Lagrangian methods
borrowed from optimization theory, such as (Glowinski and Le Tallec, 1989;
Lions and Mercier, 1979), which aims at solving some optimization problems
efficiently through simpler sub-optimization problems. In our case, it consists
in splitting the data term and the regularization term, which are coupled with
the product operator. The splitting is then processed in an augmented La-
grangian approach to guarantee the equivalence with the original optimization
problem (Nocedal and Wright, 2006). However, we observe that the splitting
method is applied to a non-convex functional (product of the data term and
the regularization term) which is thus not necessarily guaranteed to converge

1Parts of this chapter have been published in (Zosso et al., 2011a).
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to a global solution, even if all our experiments converged to satisfying solu-
tions. The main interest of the proposed method is the splitting of the rather
complex GAF problem into smaller sub-problems, for which fast resolution
schemes exist.

The rest of this chapter is organized as follows. First, we will summarize
a direct implementation. Then, in section 5.2 we provide a short introduction
into the method of augmented Lagrangians (AL) for optimization with con-
straints. In section 5.3 we will make use of a splitting scheme and AL to get a
fast minimization scheme for the GAF energy. We setup both, a stereo vision
and a full 2D registration test case, in section 5.4. Results will be presented
in section 5.5, and we will give a short conclusion and outlook in section 5.6.

5.1 Geodesic Active Fields – Direct
Implementation

5.1.1 Discretization

As we work with sampled images and deformation fields, we adapt the notation
of variables and the energy accordingly. First, let x ∈ RN×n denote the matrix
containing the coordinates of all samples, where N is the number of spatial
samples, and where n is the dimension of the images. Pixel i is located at
xi ∈ Rn. Similarly, ui = u(xi) ∈ Rp is the deformation vector at xi. For
any i ∈ [1, N ] let us write xi,j, j ∈ [1, n] and ui,q, q ∈ [1, p] to denote a
specific component of those vectors. Finally, the weighting function and the
square root of the metric tensor are rewritten as column vectors, F,G ∈ RN ,
respectively:

Fi = f(xi,ui) ∀i ∈ [1, N ] (5.1)

Gi =
√
g(xi,ui) ∀i ∈ [1, N ] (5.2)

This allows rewriting the GAF energy in terms of a standard vectorial inner
product:

EGAF = 〈F,G〉 =
N∑
i=1

FiGi = F TG. (5.3)

In summary, the notation changes as follows:

x ∈ Ω ⊂ Rn → x ∈ RN×n

u(x) ∈ Rp → u(x) ∈ RN×p

f(x,u) ∈ R+ → F (x,u) ∈ RN
+√

g(x,u) ∈ R+ → G(x,u) ∈ RN
+

EGAF (u) =

∫
Ω

f
√
gdx → E ′GAF (u) = F TG
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5.1.2 Direct implementation for Cartesian images

In the previous chapter, a direct implementation of the GAF minimizing flow
(4.12) is given by the following explicit (forward) Euler scheme, for each loca-
tion i ∈ [1, N ] and deformation field component p ∈ [1, p]:

uk+1
i,q = uki,q + ∆t

duki,q
dt

, (5.4)

duki,q
dt

= FiHi,q +

m=n+p∑
j=1

(
DjFi

n∑
µ,ν=1

gµνi DµX
j
iDνu

k
i,p

)
−mn

2β2
Dn+qFi (5.5)

where H ∈ RN×p are the deformation field components of the embedded man-
ifold’s mean curvature vector, and Hi,q = Hi,q(u

k) ∈ R denotes the component
corresponding to ui,q at pixel i. The computation of H will be detailed below.
gµνi ∈ R+ is the component µ, ν of the metric tensor at pixel i. DjFi ∈ R is
the j-th component of the manifold gradient of F at pixel i. The first order
differentials in space, e.g. DjFi or Djui,p, j ∈ [1, n], are estimated using cen-
tral differences, whereas the gradients w.r.t. the deformation field components,
Dn+qFi, q ∈ [1, p], can be calculated analytically as a function of the estimated
image gradients.

5.1.3 Discretized Laplace-Beltrami operator

To estimate the Laplace-Beltrami operator on the deformation field, we use a
second order central differences standard scheme, e.g. (Ben-Ari and Sochen,
2009). To simplify the notation, we shorten the expression of the anisotropy
tensor: (

a b
b c

)
i

=
√
gig

µν
i . (5.6)

The scheme can now be written as a multiplication of a matrix L ∈ RN×N

with the deformation field components u ∈ RN×p :

H = Lu (5.7)

Li,j =
1
√
gi
·



−a(i)− c(i)
−1

2
(a(i+,0) + a(i−,0))

−1
2

(c(i0,+) + c(i0,−)) j = i
1
2

(a(i) + a(j)) j = i±1,0
1
2

(c(i) + c(j)) j = i0,±2

(±11)·(±21)(b(i±1,0)+b(i0,±2 ))
4

j = i±1,±2

(5.8)

where i±,0 7→ (m ± 1, n) denotes the index of the right/left-hand neighbor of
pixel i 7→ (m,n), and i0,± 7→ (m,n ± 1), respectively. Further, ±1 versus ±2

are independent, whilst all ±1 are synchronous.
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Based on the CFL condition (Courant et al., 1928), an upper bound on
the time step that guarantees stability of such a scheme w.r.t. mean curvature
vector flow, i.e. the first component of the complete GAF flow, is provided in
(Dascal and Sochen, 2005). In our context, this bound is given by

∆t ≤ h2

8β ·maxm,n

{a
m± 1

2 ,n√
gm,n

,
c
m,n± 1

2√
gm,n

}
·maxi {Fi}

(5.9)

where am± 1
2
,n = 1

2
(am,n + am±1,n) and cm,n± 1

2
= 1

2
(cm,n + cm,n±1).

5.2 Lagrangian Multiplier

Lagrangian multiplier methods are a powerful and commonly used technique
for constrained optimization. They are known to outperform ordinary penalty
methods – where the constraint is only encouraged but not enforced (Bertsekas,
1976; Nocedal and Wright, 2006). Indeed, a combination of both ordinary
penalty and Lagrangian multiplier terms in the energy functional leads to
the so-called Augmented Lagrangian (AL), that exhibits better convergence
properties (Glowinski and Le Tallec, 1989; Nocedal and Wright, 2006).

To motivate the AL method briefly, let us consider a simple multidimen-
sional, constrained optimization problem. Let J,K ∈ R be real scalar functions
of the vector x. J is the function to be optimized, and K represents a linear
equality constraint to be satisfied:

min
x
J(x) s.t. K(x) = 0. (5.10)

5.2.1 Classical Lagrange multiplier

First, introducing a Lagrange multiplier λ ∈ R allows integrating the con-
straint within the Lagrangian function L:

L(x, λ) = J(x) + λK(x). (5.11)

Now, it is easy to see that the solutions of (5.10) are located at the sta-
tionary points of the Lagrangian, i.e. where ∇x,λL = 0. On the one hand,
∂L/∂λ = 0 ensures the constraints are actually verified – i.e. the inner product
vanishes –, on the other hand then the derivatives of L with respect to x need
to be zero for J to be extremal.

5.2.2 Augmented Lagrangian

The augmented Lagrangian consists in the introduction of both a Lagrange
multiplier to enforce the constraints, and an ordinary quadratic penalty term
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that improves the convergence properties of some primal-dual minimization
algorithms (Glowinski and Le Tallec, 1989):

AL(x, λ, r) = J(x) + λK(x) +
r

2
K(x)2. (5.12)

Given some initial guess for x0 and λ0, the AL can now be minimized
iteratively in three steps:

xk+1 = argminxAL(x, λk, rk),
λk+1 = λk + ρk ·K(xk+1),
rk+1 ≥ rk, rk →∞.

(5.13)

In (Glowinski and Le Tallec, 1989), it was shown under the assumptionK being
a linear constraint then (5.13) converges for rk = r being a positive constant
and 0 < ρk ≤ 2r. Thus we may choose ρk = r. Recent TV-regularized image
processing problems, such as (Goldstein and Osher, 2009; Tai and Wu, 2009),
can be derived from such an AL scheme.

5.2.3 Dealing with multiple constraints

Let Ki : Rn → R, i = 1 . . .m represent m multiple equality constraints.
The augmented Lagrangian method can incorporate them all, by defining m
corresponding Lagrangian multipliers λi:

AL(x,λ, r) = J(x) +
m∑
i=1

λiKi(x) +
r

2

m∑
i=1

Ki(x)2. (5.14)

It is convenient to combine the m different constraint functions into a single,
vector-valued constraint K : Rn → Rm, and to define a vectorial Lagrangian
λ = (λ1, . . . , λm) ∈ Rm. We may now rewrite the augmented Lagrangian
incorporating multiple constraints as

AL(x,λ) = J(x) + λTK(x) +
rk

2
|K(x)|2, (5.15)

where |K(x)|2 = KTK
Assuming K being linear, the optimization scheme changes accordingly:{

xk+1 = argminxAL(x,λk, r),

λk+1 = λk + ρ ·K(xk+1).
(5.16)

5.3 FastGAF Energy Minimization

The results of the previous chapter were based on a direct implementation
of the flow (4.3), using a simple forward Euler scheme. Here, we speed up
the optimization task with a splitting approach, that minimizes the weighting
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function and the metric tensor term of the GAF energy separately, tightly
coupled through an AL method.

Let us recall that u ∈ RN×p is a matrix of size N × p, where p is the co-
dimension of the deformation field, i.e., the number of associated deformation
field components.

5.3.1 Splitting

Firstly, we transform the unconstrained GAF energy minimization problem
over one deformation field u:

min
u

{
EGAF = F (u)TG(u)

}
(5.17)

into an equivalent, constrained minimization problem on two coupled defor-
mation fields u and v:

min
u,v

{
EGAF = F (u)TG(v)

}
s.t. u = v. (5.18)

5.3.2 Augmented Lagrangian

We can obtain an unconstrained minimization problem and guarantee to sat-
isfy the linear constraint u = v using the following AL scheme (Glowinski and
Le Tallec, 1989; Nocedal and Wright, 2006):

min
u,v

{
F (u)TG(v) + 〈λ,u− v〉N,p +

r

2
‖u− v‖2

F

}
, (5.19)

where λ ∈ RN×p is the Lagrangian multiplier matrix, in the same space as u
and v, 〈λ,u−v〉N,p =

∑N
i=1

∑p
d=1 λi,d(ui,d−vi,d) is the scalar product between

two matrices of the same dimension N × p, and where ‖M‖2
F =

∑
i,jm

2
i,j is

the square of the Matrix Frobenius norm. From now on, r > 0 is a positive
constant; how to choose it will be discussed later in section 5.5.2.

Now, we apply algorithm (5.13) to solve the AL problem (5.19):
(uk+1,vk+1) = argminu,v

{
F (u)TG(v)

+〈λk,u− v〉N,p + r
2
‖u− v‖2

F

}
,

λk+1 = λk + ρ(uk+1 − vk+1),
(5.20)

Further, this minimization w.r.t. u and v can be carried out separately,
and we get the following split optimization scheme:

uk+1 = argminu

{
F (u)TG(vk)

+〈λk,u− vk〉N,p + r
2
‖u− vk‖2

F

}
,

vk+1 = argminv

{
F (uk+1)TG(v)

+〈λk,uk+1 − v〉N,p + r
2
‖uk+1 − v‖2

F

}
,

λk+1 = λk + r(uk+1 − vk+1),

(5.21)

In the next paragraphs, we will present how the two respective submini-
mization problems can be tackled efficiently.
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5.3.3 Subminimization w.r.t. u

The first subminimization problem in (5.21) deals with the optimization of the
deformation field through the weighting function F (u), i.e., the image distance
function, while keeping the regularization term G(vk) fix:

E1(u) = F (u)TG(vk) + 〈λk,u− vk〉N,p +
r

2
‖u− vk‖2

F . (5.22)

To simplify things, we linearize F around the current estimate F (uk). The
Euler-Lagrange equation w.r.t. u is then obtained as:

0 = diag(G(vk)) · ∂F
∂u

(uk) + λk + ru− rvk (5.23)

uk+1 = vk − 1

r

(
λk + diag(G(vk)) · ∂F

∂u
(uk)

)
. (5.24)

Stability of this step is limited by the constant r: a small r results in
a wider step away from the current estimate, and consequently the linear
approximation of the image might not be good enough. We present a solution
in the next paragraph.

5.3.4 Balancing the computational complexity

The first order approximation requires small step sizes, i.e. big r. Further, as
we will see below, the exact inverse solution of the second problem is compu-
tationally more challenging, but stable irrespective of the step size r. It would
be interesting, both to balance the computational complexity between the two
tasks, and to alleviate the step size restrictions in the first task. Here we pro-
pose a fixed-point scheme to address these limitations. First, let us introduce
a virtual time t and define a corresponding gradient descent equation:

∂u

∂t
= −∂E1(u)

∂u
(5.25)

We discretize in time using a semi-implicit scheme:

un+1 − un

τ
= − diag(G(vk)) · ∂F

∂u
(un)− λk − run+1 + rvk (5.26)

Using un=0 = uk as initial condition, we iterate the scheme

un+1 =
un − τ diag(G(vk)) · ∂F

∂u
(un)− τλk + τrvk

1 + τr
(5.27)

until convergence towards a fixed point such that uk+1 = un→∞. We choose
τ = 1

Lr
, L ∈ N, where we shorten the step-size of the image disparity gradient

by a factor L with respect to the direct solution (5.24). In practice, roughly
2L iterations are enough to achieve a satisfying convergence.
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5.3.5 Subminimization w.r.t. v

The second subminimization problem in (5.21) deals with the optimization of
the deformation field through the regularization term G(v), while, this time,
keeping the weighting function term F (uk+1) fix:

E2(v) = F (uk+1)TG(v) + 〈λk,uk+1 − v〉N,p +
r

2
‖uk+1 − v‖2

F . (5.28)

The derivative of the first term with respect to the deformation field v can be
discretized in analogy to the Laplace-Beltrami operator:

∂F (uk+1)TG(v)

∂v
= − diag(F (uk+1)) ·Wv (5.29)

where we introduce the Laplacian-like matrix W ∈ RN×N given by

Wi,j = 2β2 ·



−a(i)− c(i)
−1

2
(a(i+,0) + a(i−,0))

−1
2

(c(i0,+) + c(i0,−)) j = i
1
2

(a(i) + a(j)) j = i±1,0
1
2

(c(i) + c(j)) j = i0,±2

(±11)·(±21)(b(i±1,0)+b(i0,±2 ))
4

j = i±1,±2

(5.30)

that differs from the Laplace-Beltrami discretization L only in its prefactor.
The complete Euler-Lagrange equation w.r.t. E2 writes:

0 = − diag(F (uk+1)) ·Wv − λk − r(uk+1 − v) (5.31)

vk+1 =

(
I − 1

r
diag(F (uk+1)) ·W

)−1(
uk+1 +

1

r
λk

)
. (5.32)

Since we are only interested in the solution of this linear system, it is not nec-
essary to explicitly compute the inverse of the right-hand-side matrix. Instead,
more sophisticated solvers can exploit the sparsity of the system. We call this
scheme the exact inverse FastGAF, in contrast to the approximate inverse
FastGAF that will be introduced below. Note that this scheme highly resem-
bles a semi-implicit Euler diffusion scheme, and therefore it can be considered
unconditionally stable w.r.t. r (Weickert et al., 1998).

5.3.6 A Jacobi scheme for approximate inversion

Instead of an exact solution, which is computationally expensive, we propose to
use an iterative Jacobi scheme as an approximated solution, see e.g., (Duncan
and Lynch, 1991). Therefore, let us decompose the system matrix in a diagonal
D and a remainder matrix R:

D +R =

(
I − 1

r
diag(F (uk+1)) ·W

)
, (5.33)
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where D and R can be given explicitly:

Dii = 1 +
2β2Fi
r

(a(i) + c(i))

+
β2Fi
r

(a(i+,0) + a(i−,0))

+
β2Fi
r

(c(i0,+) + c(i0,−)) (5.34)

Rij =


0 j = i

−β2Fi
r

(a(i) + a(j)) j = i±1,0

−β2Fi
r

(c(i) + c(j)) j = i0,±2

− (±11)(±21)β2Fi(b(i±1,0)+b(i0,±2 ))
2r

j = i±1,±2

(5.35)

Let us denote the right hand term b =
(
uk+1 + 1

r
λk
)
. Now, the Jacobi

scheme approximates vk+1 as a fixed point solution, with vk+ 0
J = uk+1 as

possible initialization:

(D +R)v = b (5.36)

vk+ j
J =

b−Rvk+ j−1
J

D
, j = 1, . . . , J (5.37)

where convergence can be guaranteed under two sufficient conditions:

• D +R is strictly diagonally dominant, i.e. ∀i : |Di| >
∑

j |Rij|, or

• D +R is definite positive, i.e. ∀z 6= 0 : zT (D +R)z > 0.

In the present case, the first condition amounts to

∀i : r >
β2Fi

2

∑
±1,±2

(b(i±1,0) + b(i0,±2)) , (5.38)

i.e. convergence of the Jacobi scheme is not unconditionally guaranteed un-
der the first condition. However, there is an easy upper bound on the step
length 1

r
, but the system gets worse conditioned the closer one is to the true

(rough) solution. Meanwhile, the second condition, i.e., definite positivity of
the Laplacian, is provided and the scheme is expected to converge.
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5.3.7 Complete approximate-inverse FastGAF algorithm

The complete FastGAF energy minimization algorithm now summarizes as
follows: 

uk+ l+1
2L =

uk+
l

2L− 1
Lr

diag(G(vk))· ∂F
∂u

(uk+
l

2L )−λk+rvk

1+τr

l = 0 . . . (2L− 1)

vk+ j
J =


uk+1+ 1

r
λk−Ruk+1

D
j = 1

uk+1+ 1
r
λk−Rvk+

j−1
J

D
j = 2 . . . J

λk+1 = λk + r(uk+1 − vk+1)

(5.39)

5.4 Experiments

We test the FastGAF scheme on two example applications: stereo vision dis-
parity recovery, and 2D registration on a brain MRI slice. The results are
compared to the direct implementation of the GAF minimizing flow, and the
popular Demons algorithm, both in terms of registration error and time re-
quirements. To illustrate the geometrical flexibility of the proposed FastGAF
scheme, we show the results of a hemi-spherical toy-registration problem.

5.4.1 Multiresolution optimization and performance
metrics

For all registration algorithms we employ the same coarse-to-fine multiresolu-
tion strategy. The images are low-pass filtered and sub-sampled at different
resolutions and the minimization is executed in multiple stages. We select
corresponding/matching parameters for all methods, in terms so of balancing
α, metric β and step size r. We measure endpoint error EPE (in pixels) and
percentage of wrong pixels w1 i.e., rate of pixels off by more than 1 pixel, as
registration quality indicators. Each level stops after a pre-definite number of
iterations K.

To measure the convergence speed of the different methods, we launch
registration for a whole range of different numbers of iterations K, and plot
the obtained respective quality measures against the wall clock time t required.

5.4.2 Stereo vision

An example of stereo vision depth recovery problem is shown in Fig. 5.1. The
image pair tsukuba is a well known test image, taken from the middlebury
benchmark set for stereo vision (Scharstein and Szeliski, 2002). We are aware
of the existence of a broad variety of high performance algorithms for the stereo
vision depth recovery problem. Neither Demons, nor our proposed method are
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particularly well suited to compete with those state-of-the-art stereo vision
methods. Here, we simply explore the stereo vision problem as an illustrative
example due to its relatively simple embedding. The registration is set up
according to the embedding described in (4.7) and using the absolute error
weighting function (4.32).

Registration takes place at 5 scales and we use the L1 image distance
metric. Parameters are chosen as α = 5, β2 = 10. For the exact-inverse
FastGAF scheme, we use L = 100 to balance the computational load between
the two subminimization steps, whereas with the approximate-inverse scheme
with J = 4 Jacobi iterations only, L = 4 seems more appropriate.

As shown in Fig. 5.1, the proposed FastGAF scheme outperforms the state-
of-the-art Demons method.

5.4.3 2D registration

The second case deals with 2D registration of a highly misaligned monomodal
medical image pair. An axial slice through a T1 MRI volume is heavily de-
formed by a given 2D deformation field. The initial average endpoint error is
7.3 pixels. The images have a resolution of 317 × 317 pixels and are both af-
fected by 5% additive Gaussian noise. Registration is set up with the squared
error weighting function (4.24). The image pair and initial error are illustrated
in Fig. 5.2, along with the respective results of the Demons and FastGAF reg-
istration. We also compare against a very competitive optical-flow method by
Sun et al., that uses a fast non-local regularization approach (Sun et al., 2010).

For the brain registration case we use 5 scales and employ the L2 distance
measure. Further parameters are α = 50, β2 = 3. With the exact inversion
scheme, we use L = 100, whereas with approximate inversion we chose L = 10
for J = 4 Jacobi iterations.

Demons converges to a wrong-pixel rate of w1 = 13.2% within t = 664,
corresponding to a final EPE = 0.515. The optical flow method converges
considerably faster within t = 26 seconds, yielding w1 = 13.3% and EPE =
0.547. The proposed FastGAF scheme requires t = 84 to obtain w1 = 6.8%,
EPE = 0.327.

5.4.4 Hemi-spherical registration

One of the main strengths of the Geodesic Active Fields method for image
registration, is its intrinsic ability to deal with non-Euclidean images. Here
we show an example of a spherical image, parametrized through stereographic
projection. While we use the well-known topography of the Earth as a toy
example, realistic applications can be found in omnidirectional vision e.g.,
(Tosic et al., 2005). Indeed, in (Geyer and Daniilidis, 2000, 2001) it was
shown, that a sensor image of a catadioptric camera – i.e. using spherical,
paraboloid or hyperboloid mirror – is equivalent to a stereographic projection
of the spherical plenoptic function.
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(a) F (b) M−F (c) uGT

(d) uDemons (e) uFastGAF

(f) (g)

Figure 5.1: Depth recovery from stereo: FastGAF versus Demons. (a)&(b) The
tsukuba test image for stereo vision and the image pair difference. (c) Ground
truth disparity map. (d) Demons registration. (e) Approximate-inverse FastGAF.
(f)&(g) The location of wrong pixels (black) in the Demons and FastGAF result.
Both methods primarily “fail” at occlusions.
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(a) F (b) M (c) M−F

(d) M′
Dem. −F (e) M′

Sun −F (f) M′
GAF −F

Figure 5.2: 2D registration of brain MRI slice: FastGAF versus Demons. (a)&(b)
Fix and moving image. (c) Intensity differences before registration. (d) Residue
after registration with state-of-the-art Demons, (e) Sun et al.(Sun et al., 2010),
(f) FastGAF. (All difference images amplified at equal gain.)

The metric of the stereographic projection is conformal to the regular Eu-
clidean metric (Bogdanova et al., 2007). The choice of the metric hij of the
embedding space is immediate:

hij =
4

1 + x2 + y2
diag(1, 1, β2, β2) (5.40)

Three typical stereographic projections, polar, equatorial and oblique, are
sketched in Fig. 5.3(a)–(c). Here we chose an oblique projection of the Earth’s
topographical map for the sake of generality. The map is artificially deformed
and successfully restored through registration, see Fig. 5.3(d)–(f).

5.5 Discussion

Qualitative results of the registration process using the proposed approximate-
inverse FastGAF scheme and the state-of-the-art Demons method were shown
in fig. 5.1 and fig. 5.2, respectively. Here, a more quantitative view of the
respective algorithm performances is given in fig. 5.4 and fig. 5.5. In the
next few paragraphs, we first discuss the performance differences between the
four methods considered and highlight the advantages of the proposed scheme.
Then, we have a closer look at the different roles of the parameters involved



100 A Fast Scheme

(a) polar (b) equatorial (c) oblique

(d) M (e) M−F (f) M′ −F

Figure 5.3: Spherical registration through stereographic projections. (a)–(c) Dif-
ferent stereographic projections of the sphere. (d) Chosen oblique projection and
artificial deformation (original coastlines in black). (e)&(f) Intensity differences
before and after registration.

in the FastGAF scheme. In particular, we highlight the importance of an aug-
mented Lagrangian scheme for constraint internalization, compared to either
pure Lagrangian or penalty deformation field coupling.

5.5.1 Algorithms and performance comparison

The four methods compared, i.e., the direct, baseline GAF implementation, the
state-of-the-art Demons method, and the proposed accurate- and approximate-
inverse FastGAF minimization, share a lot of common features, but have dif-
ferent parameters and stability requirements.

The main commonalities and differences can be resumed as follows:

• With Demons, the step size, i.e. the number of iterations required until
convergence, is essentially determined by the desired smoothness of the
deformation field. While the smoothing kernel g is fixed, preferably
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(a) (b)

Figure 5.4: Performance comparison of registration schemes for stereo depth
recovery. Demons (red, circles), baseline GAF (green, triangles), exact-inverse
FastGAF (cyan, plus), approximate-inverse FastGAF (blue, squares). (a) Percent-
age of wrong pixels (i.e. more than 1 pixel off). (b) Average end-point error
(EPE) on the recovered disparity field.

(a) (b)

Figure 5.5: Performance comparison of registration schemes for 2D image reg-
istration. Demons (red, circles), baseline GAF (green, triangles), exact-inverse
FastGAF (cyan, plus), approximate-inverse FastGAF (blue, squares). (a) Percent-
age of wrong pixels w1 (i.e. more than 1 pixel off). (b) Average end-point error
(EPE) on the recovered disparity field.
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Gaussian, the smoothness is entirely determined by the relative step-size
of the data-term, governed by both r and 1/σ2

i . In this respect, σ2
i and

σ2
T are actually redundant.

• The step size of the direct GAF implementation is heavily limited by the
CFL-like stability criterion of the mean curvature flow component. Note
that the criterion is depending both on the range of the involved metric,
and the gradients of the deformation field. The expected, i.e. non-worst-
case stability criterion is actually observed well less restrictive, and a β2

dependency, rather than β3 can be realistically assumed. Also, the effect
of the central differences approximation of the advective middle term
in the minimizing flow is diffusive. Additionally, in contrast to the two
other schemes, the curvature flow does never act on its own, but always
simultaneously with the advective and data term, which generally acts
in favor of stability.

• The proposed accurate-inverse FastGAF scheme offers unconditional sta-
bility with respect to the curvature flow. The maximum progression rate
is only limited by the stability of the data term, which is greatly en-
hanced thanks to the L-fold subdivision of the data step. The number
of required iterations is therefore reduced importantly, at the expense of
higher cost per iteration due to the sparse matrix inversion.

• The latter cost can be drastically reduced by employing an approximate
inversion scheme, as proposed with the approximate-inverse FastGAF
scheme.

Overall, the approximate-inverse FastGAF scheme can provide the various ben-
efits of the geometric GAF framework for image registration in very attractive
computational times, comparing favorably to state-of-the-art methods.

5.5.2 The roles of the parameters r, L and J

The approximate-inverse FastGAF scheme introduces three new parameters
to the problem. Here we want to illustrate and discuss their respective role in
the optimization framework from a performance-based point of view.

The first novel parameter introduced with the augmented Lagrangian scheme
is the penalty weight r. The penalty term is supposed to stabilize the min-
imization problem. Indeed, it introduces a quadratic energy on the distance
between the separate split deformation fields and acts as a “leash” between the
two, its elasticity being governed by r. The bigger this parameter, the closer
u and v are tied together and the less they can diverge at each iteration. This
reduces the lag between u and v and is the only way to restrict the step size
at each iteration. The step size limitation is critical with respect to the data
term, as due to the complexity of the images under consideration, the linear
approximation of the weighting function only holds within a close vicinity of
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the current configuration. The impact of r on the registration performance is
illustrated in fig. 5.6. It becomes clear, that below a certain level the opti-
mization is unstable with respect to the data term, whereas above a certain
threshold only the speed of the algorithm is affected. In particular, it becomes
obvious that the penalty term itself is vital for stability, and a pure Lagrangian
approach implies severe convergence issues. In contrast, the Lagrangian mul-
tiplier is not an absolute requirement for the split GAF iterations to converge,
as illustrated in fig. 5.6b). However, as can be seen from the charts, it improves
the convergence of the algorithm especially for low penalty weight and thus
confirms to be of true interest, considering its little computational extra effort.

In order to overcome the small-steps requirement of the data-term, we pro-
pose to carry out several data-step optimizations within a fixed-point scheme
before doing a more important smoothing step. The number of data-term op-
timizations per regularity-term optimization is governed by the parameter L.
At r fixed, the image distance term is optimized more precisely, while by re-
placing r ← r/L, the leash length can be extended at the same image distance
precision, thus reducing the number of smoothing steps required. This speed
gain is illustrated in fig. 5.7. In particular with the exact-inverse FastGAF
scheme, this parameter can be seen as a way of balancing the computational
load between both optimization sub-tasks, to gain in efficiency.

In the approximate-inverse FastGAF scheme, finally, we replace the costly
full inversion of the diffusion matrix by an approximating Jacobi scheme.
There, the number of Jacobi iterations is given by J , controlling the desired
precision of the approximate inverse. While the exact inverse has full support
(full matrix), now the support of the smoothing stencil is of size 2J + 1 in
each dimension and the speedup is obviously considerable. The performance
for different J can be seen in fig. 5.8. Close to the critical step-length r, the
algorithm does not properly converge for small, in particular odd, J . Other-
wise, the speedup comes at little loss of precision, which is reasonable since
the smoothing is essentially operating in a closed loop.

5.6 Conclusions

In this chapter, we have presented a splitting scheme for GAF, based on the
method of augmented Lagrangians. The optimization takes place in three
alternating steps. In the first problem, the data-term is optimized using a
fixed-point scheme derived from a semi-implicit gradient-descent discretiza-
tion. The second task optimizes with respect to the smoothing-term, initially
by exactly solving a sparse linear system, a method we call exact-inverse Fast-
GAF. Then, we substitute with an approximate inversion within the semi-
implicit smoothing step, using a few fast Jacobi iterations only, to obtain the
approximate-inverse FastGAF scheme. The third step consists in the update
of the Lagrangian multipliers by integration of the residuals between the split
deformation field copies. This scheme results in a considerable speedup of
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(a) (b)

Figure 5.6: Influence of penalty term and Lagrangian multiplier on registration
performance. (a) Smaller r increases the learning rate, i.e. the step length, at the
cost of stability due to a too big data step (supra-critical step-length). Above a
certain level, once stability achieved, increasing r only scales the computation time
without gaining in precision (sub-critical step-length). (b) Compared to penalty-
term only, the Lagrangian multiplier has a favorable impact. In particular around
the critical step-length, the registration outcome is significantly improved, while
farther away in the sub-critical zone, the impact is less pronounced.

(a) (b)

Figure 5.7: Computational load balancing L. Subdividing the data-step allows
reducing r by L while roughly keeping the same data-stability. This can provide
speedups, as in effect a smoothing step (and Lagrangian update) is only performed
after L data steps. Relatively small load balancing factors, here about L = 10
yields best performance. Beyond, e.g., at L = 100, the speed gain becomes
negligible while the regularization step is performed too seldom and registration
quality is decreased. (a) The speedup is important for computationally heavy
smoothing task J = 20 (or exact inverse). (b) For lightweight smoothing, J = 4,
the speed gains are less pronounced.
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Figure 5.8: Number of iterations J of the Jacobi approximate inversion scheme.
While too coarse approximations for J = 1, 2, 3 are insufficient in the present
case, all even J ≥ 4 yield similar, good registration quality, while scaling the
computational time accordingly.

the registration process with respect to the baseline GAF, and also compares
favorably to the Demons state-of-the-art registration method. While we de-
scribe promising solvers for those sub-problems, note that those can still be
improved, which will be investigated in a future work. The Jacobi scheme
already provides a nice speedup, but more recent and efficient methods e.g.,
additive operator splitting (AOS) may further improve performance (Weickert,
1997; Weickert et al., 1998; Malladi and Ravve, 2002; Dascal et al., 2009).

From a more fundamental perspective, geodesic active fields can be con-
sidered a generalization of the Demons method in several respects. First, the
GAF framework is designed to work on Riemannian manifolds and is thus not
restricted to Euclidean images. Although Demons can be generalized to non-
flat images as well, e.g. (Yeo et al., 2010), on non-Cartesian grids the speed
advantages of Gaussian convolution are lost. While Demons regularization is
explicitly Gaussian – it penalizes the L2-norm of the deformation field gradient
– Beltrami regularization offers a tunable interpolation between Gaussian L2

and more anisotropic, TV-norm like L1 regularization. Also, the GAF frame-
work offers the advantage of being parametrization invariant. Finally, the GAF
registration framework comes with no preferred image discrepancy measure,
whereas Demons has a strong preference for the L2-norm on the image differ-
ences (SSD). With the approximate-inverse FastGAF scheme presented in this
paper, we are able to achieve those relative advantages in very competitive
computation times.





Fast Scheme on the
Sphere 6

“What is mind but motion in the intellectual sphere?”

Oscar Wilde.

Until now, the proposed Geodesic Active Fields registration framework
was defined on general manifolds. The main motivation of this the-
sis, however, is to register cortical feature maps defined on spherical

triangulations. Therefore, now we want to apply this framework, to images
defined on triangulations of the sphere1. First, we establish the necessary tools
to define the local embedding and to calculate the minimizing flow. Then, we
characterize the impulse response and the denoising properties of the regular-
izer, and illustrate the framework on synthetic images.

6.1 GAF on the sphere

Geodesic active fields embed the deformation field in a higher dimensional
space and define a variational model using the weighted Polyakov energy.
While the Polyakov energy itself only provides a regularity constraint, the
weighting f drives the deformation field towards low image dissimilarity. This
approach directly generalizes to non-Euclidean images, and thus automatically
allows to work, e.g., with non-flat or multiscale images, that are smooth and
parametrizable.

1Parts of this chapter have been published in (Zosso and Thiran, 2010).
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(a) (b) (c)

Figure 6.1: Nomenclature and deformation on the sphere. (a) Deformation
model. (b) One-ring patch on a spherical mesh and its local basis vectors. (c)
Local coordinates of the one-ring neighbors within the tangential plane.

Due to the “hairy ball”-theorem, however, it is known that no artifact-
free, global parametrization of the whole sphere exists. Therefore the GAF
framework cannot be applied directly to the whole spherical image. Instead,
we decide to work in local coordinates, by defining a local coordinate chart
for each vertex of the mesh. Using those local coordinate charts, the global
deformation field can be embedded locally. This involves the (re-)definition of
some entities for the spherical case.

6.1.1 Triangulated spherical images

We denote by F(~x),M(~x) ∈ R, ~x ∈ S2, respectively, the fixed and moving
spherical image. The images are sampled at a finite number of points, cor-
responding to the nodes of a triangular mesh of the spherical surface. By
convention, we will mainly work with the mesh of the fixed image, composed
of the N nodes at ~xi ∈ S2, i = 0 . . . (N − 1). The moving image will only be
accessed through interpolation at arbitrary locations on S2.

For each node ~xi, every node ~xj that is directly connected through a com-
mon edge is called “1-ring neighbor”, the set of which is written N1(i).

6.1.2 Local Coordinates and Parallel Transport

Now, we define a local, orthonormal coordinate chart Ei =
[
~ie1 ~ie2 ~ie3

]
,

Ei ∈ SO(3), for each vertex ~xi:

~ie1 =
~xj − ~xi
‖~xj − ~xi‖

∧ ~ni

~ie2 = ~ni ∧ i~e1 (6.1)

~ie3 = ~ni (6.2)

where ~xj is one of the 1-ring neighbors, j ∈ N1(i), as illustrated in figure 6.1(b),
and ~ni denotes the unit outward normal to the sphere at ~xi. The projection of
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the coordinates of the neighbors into the newly defined local coordinate system
of the tangent plane is then given by

i
~θj = ET

i (~xj − ~xi) (6.3)

Note that the node ~xi has coordinates i
~θi =

(
0 0 0

)T
in its own local coor-

dinate chart, see figure 6.1(c).
To work with the tangent vectors of neighboring vertices, we report them

to ~xi using parallel transport. The tangent vector ~tj is parallely transported
along the great circle defined by ~xi and ~xj. Let the axis ~ωij of this great circle
be

~ωij =
~xj ∧ ~xi
‖~xj ∧ ~xi‖

. (6.4)

The great circle is a geodesic, and therefore parallel transport has two main
properties: components perpendicular to the geodesic remain perpendicular,
and components along it remain parallel. Thus we construct for the parallely
transported i

~tj:

i
~tj = 〈~tj, ~ωij〉~ωij + 〈~tj, (~ωij ∧ ~xj)〉(~ωij ∧ ~xi) = Ωij

~tj, (6.5)

where the coefficients of the rotation matrix Ωij ∈ SO(3) can be identified as

[Ωij]ab = [~ωij]a[~ωij]b + [~ωij ∧ ~xj]a[~ωij ∧ ~xi]b. (6.6)

Let (t1j , t
2
j) denote the tangential coefficients of the vector ~tj w.r.t. the basis

Ej:

~tj = Ej

t1jt2j
0

 (6.7)

and analogously (it
1
j , it

2
j) are the respective coefficients after local transport to

~xi and expressed w.r.t. the basis Ei:

i
~tj = Ei

it
1
j

it
2
j

0

 (6.8)

Consequently, those coefficients are related through a 2D rotation matrix Λij ∈
SO(2): (

it
1
j

it
2
j

)
=
[
i~e1 i~e2

]T
Ωij

[
j~e1 j~e2

](t1j
t2j

)
= Λij

(
t1j
t2j

)
, (6.9)

where the transformation is obtained as Λij =
[
i~e1 i~e2

]T
Ωij

[
j~e1 j~e2

]
.
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6.1.3 Deformation Field

Before we can set up the embedding, we need to define the deformation field
model. We encode the individual displacement of each mesh vertex ~xi into
~xi′ as a local tangent vector ~ui, as illustrated in figure 6.1(a). The actual
displacement of the mesh node is on the great circle along this tangent vector,
and the sine of the angle between ~xi and ~xi′ is equal to the length of the
tangent vector ~ui, as shown in figure 6.1(a). This choice, and the fact that
all vertices reside on the unit sphere, provides a simple expression for ~ui using
vector products (Yeo et al., 2008):

~ui = −~xi ∧ (~xi ∧ ~xi′). (6.10)

Conversely, the displaced vertex is given as follows:

~xi′ =
√

1− ‖~ui‖2 · ~xi + ~ui (6.11)

The displacement vector ~ui at node ~xi can be described by its two tangent
coefficients in the respective local basis. To parametrize the whole set of N
deformation field vectors, we write their local coordinate chart coefficients as
a column vector u ∈ R2N , where

~ui = Ei

 u2i

u2i+1

0

 . (6.12)

If we substitute this expression for ~ui into the definition (6.11) of the displaced
vertex ~xi, we get

~xi′(u) =
√

1− u2
2i − u2

2i+1 · ~xi +
[
i~e1 i~e2

]( u2i

u2i+1

)
, (6.13)

since Ei is orthonormal.

6.1.4 Data term

An intuitive primer for monomodal image registration is the squared error
metric (Toga, 1999), leading to:

f(~x, ~x′) = 1 +
α

2
· (M(~x′)−F(~x))2 , (6.14)

where F and M refer to the fix and moving images, respectively. The 1
provides a lower bound of local weight in the Polyakov energy, and α allows to
balance the impact of the data-term with respect to the regularization. The
data-term is evaluated at the nodes of the fixed image, and we write F ∈ RN

+

for the set of observations, where

Fi = f(~xi, ~xi′). (6.15)
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The data-term clearly depends on the deformation field and its local parame-
ters. Substituting these local coordinates coefficients yields:

Fi(u) = 1 +
α

2
·

M
√1− u2

2i − u2
2i+1 · ~xi + Ei

 u2i

u2i+1

0

−F(~xi)

2

.

(6.16)
Now, the derivatives with respect to the local coefficients u2i and u2i+1 are
obtained using the chain rule:

∂Fi
∂u2i

= α · (M(~xi′)−F(~xi)) ·
〈
∂~xi′
∂u2i

, ~∇M(~xi′)
〉
, (6.17)

∂Fi
∂u2i+1

= α · (M(~xi′)−F(~xi)) ·
〈

∂~xi′
∂u2i+1

, ~∇M(~xi′)
〉
, (6.18)

where ~∇M refers to the 3D gradient of the moving image.
The derivatives ∂~xi′

∂u2i
and ∂~xi′

∂u2i+1
in turn are calculated as:

∂~xi′
∂u2i

=
−~xi · u2i√

1− u2
2i − u2

2i+1

+ i~e1 (6.19)

∂~xi′
∂u2i+1

=
−~xi · u2i+1√

1− u2
2i − u2

2i+1

+ i~e2. (6.20)

For later use, we introduce the “forked” vector F ∈ R2N :

F2i(u) = F2i+1(u) = Fi(u) (6.21)

and define its flow F′ ∈ R2N as its relevant partial derivatives with respect to
the deformation field

F′2i(u) =
∂Fi
∂u2i

(6.22)

F′2i+1(u) =
∂Fi
∂u2i+1

(6.23)

6.1.5 Deformation Field Embedding and Energy

In the geodesic active fields framework, the registration problem is solved by
minimizing the Polyakov energy calculated over a single, global embedding.
Since no such artifact-free embedding of the whole sphere exists, and because
the Polyakov energy is parametrization invariant, we may sum up the energy
contributions of a covering set of local embeddings. Here, we propose to parcel
the spherical surface into the set of N Voronoi regions Vi around ~xi of the
triangular mesh that covers it. We can then approximate the Voronoi-patch-
wise Polyakov energy based on the local coordinates defined above.



112 Fast Scheme on the Sphere

Figure 6.2: Neighborhood and Voronoi region on triangular meshes. (a) One-ring
neighbors and angles opposite to an edge. (b) Voronoi region on a non-obtuse
triangle. (reproduced from Meyer et al. (2002))

More formally, since

S2 =
N−1⋃
i=0

Vi, (6.24)

∀i 6= j : Vi ∩ Vj = ∅, (6.25)

the global Polyakov energy can be computed as a sum of those N local con-
tributions:

S =

∫
S2

f
√
gdθ =

∑
i

∫
Vi

f
√
gdθ =

∑
i

Si, (6.26)

where Vi denotes the Voronoi region around ~xi, and where each such patch can
be parametrized differently. Thereby we instantiate N local embeddings Xi,
one for each Voronoi patch.

On the local Voronoi region Vi, the Polyakov energy can be integrated using
different techniques. We propose a quadrature that uses the terminology given
in figure 6.2.

First, let ∂Vij denote the Voronoi boundary between ~xi and ~xj, as well as
its length. On that boundary, we assume the deformation field to be the mean
of its samples at ~xi and ~xj. We further suppose the deformation field to vary
linearly within the Voronoi sub-region Vij, spanned by ~xi and ∂Vij. Therefore,
the deformation field components’ gradients are constant on that same region.
Further, these gradients are both oriented orthogonal to the boundary ∂Vij.
Finally, we consider the data-term to be constant over the whole Voronoi patch.
The determinant of the metric tensor is thus simplified to

gij(u) = 1 + β2 (iu2j − u2i)
2 + (iu2j+1 − u2i+1)2

‖~xj − ~xi‖2
, (6.27)

where (
iu2j

iu2j+1

)
= Λij

(
u2j

u2j+1

)
(6.28)
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are the deformation field coefficients of node ~xj parallely transported to and
expressed in the local basis of node ~xi. Now, the local Polyakov energy can be
approximated by

Si ≈
∑

j∈N1(i)

f(~xi, ~xi′)
√
gijVij. (6.29)

Let us now compute Vij. One has for the angles in the triangle PQR:

a+ b+ c = π/2, (6.30)

and therefore a = π/2− ∠Q and c = π/2− ∠R. Therefore we have

∂Vij =
1

2
(cotαij + cot βij) ‖~xj − ~xi‖ (6.31)

and immediately

Vij =
1

8
(cotαij + cot βij) ‖~xj − ~xi‖2 (6.32)

The complete spherical GAF energy is thus approximated as:

EGAF ≈
1

8

∑
i

f(~xi, ~xi′)
∑

j∈N1(i)

√
gij (cotαij + cot βij) ‖~xj − ~xi‖2 (6.33)

6.2 Minimizing Scheme

In the following paragraphs, we will first define a scheme to efficiently minimize
the spherical GAF energy. We then specify the tools required to estimate image
gradients and to perform point localization and mesh interpolation.

6.2.1 Discretization and Splitting

First, let us rewrite the approximated spherical GAF energy minimization in
terms of an inner product:

min
u

{
F (u)TG(u)

}
(6.34)

where we introduce the vector G ∈ RN as

Gi(u) =
∑

j∈N1(i)

√
gij(u) (cotαij + cot βij) ‖~xj − ~xi‖2 (6.35)

.
Again, we fork the disparity term G to obtain G ∈ R2N :

G2i(u) = G2i+1(u) = Gi(u) (6.36)
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Now, as in the previous chapter, we transform this unconstrained energy
minimization problem over one deformation field u into an equivalent, con-
strained minimization problem on two coupled deformation fields u and v:

min
u,v

{
F (u)TG(v)

}
s.t. u = v. (6.37)

We can obtain an unconstrained minimization problem and guarantee to
satisfy the linear constraint u = v using the following augmented Lagrangian
scheme (Glowinski and Le Tallec, 1989; Nocedal and Wright, 2006):

min
u,v

{
F (u)TG(v) + 〈λ,u− v〉+

r

2
‖u− v‖2

}
, (6.38)

where λ ∈ R2N is the Lagrangian multiplier, and r > 0 is a constant.
This augmented Lagrangian problem (6.38) can now be iteratively solved

in three separate steps:
uk+1 = argminu

{
F (u)TG(vk)

+〈λk,u− vk〉+ r
2
‖u− vk‖2

}
,

vk+1 = argminv

{
F (uk+1)TG(v)

+〈λk,uk+1 − v〉+ r
2
‖uk+1 − v‖2

}
,

λk+1 = λk + r(uk+1 − vk+1),

(6.39)

6.2.2 Data-term optimization

The first sub-problem minimizes with respect to the deformation field u and
hence optimizes the data term F . We denote by E1 the energy associated with
the first sub-problem:

E1 = F (u)TG(vk) + 〈λk,u− vk〉+
r

2
‖u− vk‖2 (6.40)

Let us introduce a virtual time t and define a corresponding gradient descent
equation with respect to u2i:

∂u2i

∂t
= −∂E1(u)

∂u2i

(6.41)

We discretize in time using a semi-implicit scheme with time-step τ :

un2i − un+1
2i

τ
=

∂Fi(u
n)

∂u2i

Gi(v
k) + λk

2i + r
(
un+1

2i − vk2i
)

(6.42)

un2i+1 − un+1
2i+1

τ
=

∂Fi(u
n)

∂u2i+1

Gi(v
k) + λk

2i+1 + r
(
un+1

2i+1 − vk2i+1

)
(6.43)

Using un=0 = uk as initial condition, we iterate the scheme

un+1
2i =

un2i − τ
∂Fi(u

n)
∂u2i

Gi(v
k)− τλk

2i + τrvk2i

1 + τr
(6.44)

un+1
2i+1 =

un2i+1 − τ
∂Fi(u

n)
∂u2i+1

Gi(v
k)− τλk

2i+1 + τrvk2i+1

1 + τr
(6.45)
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until convergence towards a fixed point such that uk+1 = un→∞. Using the
forked vectors F′(u) and G(v) we can rewrite the scheme as

un+1 =
un − τF′(un) ◦G(vk)− τλk + τrvk

1 + τr
(6.46)

where a ◦ b = diag(a)b denotes component-wise multiplication of two vectors
of same size.

In practice, we choose the time-step as τ = 1
Lr

, L ∈ N, and observe that
roughly 2L iterations are enough to achieve a satisfying convergence.

6.2.3 Regularity-term optimization

The second minimization problems optimizes the deformation field v with
respect to the regularity-term G. The associated energy to be minimized is
E2:

E2 = F (uk+1)TG(v) + 〈λk,uk+1 − v〉+
r

2
‖uk+1 − v‖2 (6.47)

The Euler-Lagrange equations for the E2 energy with respect to the deforma-
tion field v are easily deduced:

0 = Fi(u
k+1)

∂Gi(v)

∂v2i

− λk2i − r
(
uk+1

2i − v2i

)
(6.48)

0 = Fi(u
k+1)

∂Gi(v)

∂v2i+1

− λk2i+1 − r
(
uk+1

2i+1 − v2i+1

)
(6.49)

We establish the derivative of the regularity term G:

∂Gi(v)

∂v2i

=
∑

j∈N1(i)

∂gij(v)

∂v2i

· cotαij + cot βij

2
√
gij(v)

‖~xj − ~xi‖2 (6.50)

where further:
∂gij(v)

∂v2i

=
−2β2

‖~xj − ~xi‖2 (iv2j − v2i) (6.51)

Thus:
∂Gi(v)

∂v2i

= −
∑

j∈N1(i)

β2 (cotαij + cot βij)√
gij(v)

(iv2j − v2i) (6.52)

and by analogy:

∂Gi(v)

∂v2i+1

= −
∑

j∈N1(i)

β2 (cotαij + cot βij)√
gij(v)

(iv2j+1 − v2i+1) (6.53)

Let us recall how the neighboring deformation field parameters are parallely
transported to the central node:

iv2j = Λ
(11)
ij v2j + Λ

(12)
ij v2j+1 (6.54)

iv2j+1 = Λ
(21)
ij v2j + Λ

(22)
ij v2j+1 (6.55)
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We rewrite the Euler-Lagrange equations in matrix form:(
I2N +

β2

r
diag(F(uk+1)) ·W (vk+1)

)
vk+1 =

1

r
λk + uk+1 (6.56)

where I2N is the 2N × 2N identity matrix and where the coefficients of the
matrix W (v) ∈ R2N×2N are identified as:

Wab =



−wij(v)Λ
(11)
ij j ∈ N1(i) ∧ a = 2i ∧ b = 2j

−wij(v)Λ
(12)
ij j ∈ N1(i) ∧ a = 2i ∧ b = 2j + 1

−wij(v)Λ
(21)
ij j ∈ N1(i) ∧ a = 2i+ 1 ∧ b = 2j

−wij(v)Λ
(22)
ij j ∈ N1(i) ∧ a = 2i+ 1 ∧ b = 2j + 1∑

j∈N1(i)

wij(v) (a = b = 2i) ∨ (a = b = 2i+ 1)

0 otherwise

, (6.57)

where ∀ j ∈ N1(i) the coefficients wij(v) are given by:

wij(v) =
cotαij + cot βij√

gij(v)
(6.58)

Since the coefficients wij vary with the deformation field v, the fully implicit
system (6.56) is non-linear and difficult to solve. Therefore we approximate
W (vk+1) by W (vk) and rather optimize the linear, semi-implicit scheme:(

I2N +
β2

r
diag(F(uk+1)) ·W (vk)

)
vk+1 =

1

r
λk + uk+1 (6.59)

6.2.4 Spherical tools

A few tools required to process data on spherical meshes, namely gradient
estimation, point location and interpolation, are presented in the appendix.

6.3 Results

We will, in the next chapter, use this spherical registration framework to build
an automatic parcellation scheme of the human cerebral cortex, based on spher-
ical feature maps and associated manual parcellations of gyral regions. Here,
we simply demonstrate the validity of the chosen approach by presenting the
regularizer behavior (impulse response and denoising) of the GAF framework
on the sphere, and provide a simple example of registration based on a syn-
thetic image pair.

6.3.1 Impulse response and denoising

The regularization of the GAF framework is characterized by its impulse re-
sponse and denoising properties. The impulse response is obtained by discon-
necting the data-term, i.e., by setting α = 0 and thus the weighting function to



6.3. Results 117

(a) (b) (c) small β (d) large β

Figure 6.3: Deformation field regularization on the sphere. (a)-(b) Impulse
response on a coarse and fine sphere mesh. (c)-(d) Denoising for small and large
values of β. Small values correspond to Gaussian-like diffusion, whereas large
values approximate TV-diffusion.

f = 1. The diffusion of an initial single peak is illustrated in figure 6.3(a)-(b).
Regularization is largely independent of the sampling density, as the field looks
almost the same after two runs on a fine and a coarse sphere mesh. Denois-
ing for two different β is illustrated in figure 6.3(c)-(d). Smaller β produces
Gaussian-like diffusion, whereas higher β corresponds to feature-preserving
TV-norm minimization.

6.3.2 Synthetic image pair

To illustrate the complete registration framework, a pair of synthetic images
has been registered as shown in figure 6.4. The parameters were chosen as
follows:

• squared error weighting function

• α = 2.5 (weighting function balance)

• β = 0.05 (aspect ratio of deformation field embedding)

• r = 40 (augmented Lagrangian penalty)

• ρ = 0.1r (Lagrangian update step-size)

• L = 2 (data-step length, resulting in 6 fixed-point scheme iterations)

• J = 50 (number of Jacobi iteration in regularization-step)

• linear interpolation

Convergence is achieved in less than 100 iterations. Registration is suc-
cessful, as the resampled moving imageM(~x′) nicely matches the fixed image
F(~x), under reasonable deformation ~x→ ~x′.
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(a) F(~x) (b) M(~x) (c) M(~x′) (d) ~x′

Figure 6.4: Registration of a synthetic image pair on the sphere. (a)-(b) Fix
and moving image. (c) Warped moving image after successful registration. (d)
Deformed mesh.

6.4 Discussion and Conclusions

We have introduced the geodesic active fields framework for image registration
to applications, where images are defined on spherical meshes. We have shown
that the proposed method works as expected under different aspects. The
regularizer has the desired impulse response irrespective of the image sampling
density, the anisotropy of the diffusion is tunable by the parameter β, and the
framework performs correctly on a set of synthetic test images.

There are, finally, a few particularities of the spherical case, that we want
to quickly discuss in the next paragraphs.

6.4.1 Trivial solutions and rigid registration

It is to note that, in the spherical case, the all-zero deformation field is the
only one with trivial unweighted Polyakov energy. This is in contrast to pla-
nar image parametrizations with Neumann boundary conditions, where all
constant-valued deformation fields are equally regular. Thus, the boundary-
free mesh of the sphere allows only the null solution as steady state in absence
of a data-term. While in the plane, the Beltrami regularizer is transparent
to global (translational) deformation fields, this is clearly not the case on the
sphere, where the most global deformation is described by a rotation around
a single axis, which already incurs a cost in terms of Beltrami energy.

If such a global rotation between two spherical images is to be compensated
for, one should consider pre-registering the image pair globally, e.g., using a
method of moments or PCA, or by optimizing a global parametric variational
model.

6.4.2 Matrix inversion

Due to the varying connectivity of the vertices in the mesh, and since their
ordering is entirely arbitrary and irregular, the diffusion matrix W is sparse but
not regularly structured. In particular it does not exhibit a tri-diagonal banded
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structure at all. In MATLAB, it takes almost as much time to construct the
sparse matrix, as is afterwards required to actually solve the linear system of
equations using the Jacobi algorithm described earlier.

6.4.3 Data interpolation

The most important computational load, however, is spent on data interpo-
lation. As is outlined in the appendix, spherical warping and resampling re-
quires to locate the containing triangle on the moving image mesh for each
query point of the fixed mesh. Even if, thanks to good initialization and so-
phisticated guessing, the correct triangle is tested as first guess, determining
the exact position of the query point within the triangle in terms of barycen-
tric coordinates requires resolution of a small linear system. This is less likely
when the mesh resolution increases, since the same displacement of a query
point with respect to the previous look-up covers a greater number of triangles
to be checked.

Based on the calculated barycentric coordinates, both the moving image
feature and its gradient need to be interpolated at that specific location. Al-
though we have implemented cubic Hermitian interpolation, we stick to simple
linear interpolation due to computation time considerations. Even so, since the
moving image needs to be resampled several times (here: 6 times) within the
fixed-point scheme, the data-term optimization takes roughly 4 times longer
than 50 iterations of the Jacobi scheme for approximated matrix inversion.

In conclusion, we realize that an important speed-up could be obtained by
re-implementing the spherical warping in a faster way, e.g., using C and MEX
for use with all other MATLAB routines.





Mapping the Human
Brain 7

“Three men make a tiger.”

Chinese proverb.

In the introduction to this thesis, we mentioned the utility of corti-
cal registration to the establishment of more and more precise functional
localizations and mapping of the human cortex, in particular within sta-

tistical group studies. Before the proposed FastGAF scheme on the sphere can
actually be used in such a context, we should first provide some validation.
We will do so by inverting the data-flow: we use existing cortical label maps
to evaluate the performance of our registration scheme: In this chapter, we
use the previously defined spherical registration scheme to build an automated
parcellation system of the human cortex.

Based on an ensemble of 39 different subject brains, each of which was
manually labeled into 35 gyral regions per hemisphere, we propose to test
the influence of pairwise registration on the performance of parcellation-by-
label-fusion. Therefore, we setup a leave-one-out cross-validation, where the
information of 38 brains is projected onto the remaining query-brain, with-
out and after spherical registration, and the predicted parcellation is then
compared to the available manual “ground-truth”. We can show, that the
proposed registration scheme has a small, but significantly positive influence
on the performance of this simple automatic parcellation scheme.

121
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7.1 Background and Concept

Mainly, two different classes of automatic labeling and parcellation systems
for the human cortex have been developed so far. One class achieves sulcal
basin identification based on learned shape and neighborhood statistics, e.g.
(Lohmann and von Cramon, 2000; Rivière et al., 2002; Tao et al., 2002; Tu
et al., 2007). The other class is characterized by subject-to-template registra-
tion and subsequent local classification, e.g. (Fischl et al., 2004; Desikan et al.,
2006).

7.1.1 Proposed parcellation scheme

Here, we follow the latter parcellation scheme, i.e., we want to assign a label
to each bit of a subject cortex based on fusion of label information available
for a certain number of reference brains. We will then want to illustrate the
improvement of parcellation thanks to the spherical registration. Since the
focus of this thesis is on image registration rather than atlas fusion and classi-
fication schemes, we will largely rely on existing classification and label fusion
schemes. In essence, here we substitute the registration scheme proposed in
(Fischl et al., 2004) with our own Fast Geodesic Active Fields framework, and
try reproducing their sophisticated classifier as close as it gets.

7.1.2 Leave-one-out cross-validation

The parcellation-validation framework takes the following “leave-one-out” struc-
ture: First, all feature maps of the same (right) hemisphere in the data set
are Beltrami-low-pass filtered, as described in chapter 3, so as to construct an
anisotropic scale space for each hemisphere. Then, the resulting maps of all
subjects are mutually registered using the “Fast Geodesic Active Fields on the
Sphere” framework as seen in chapter 6, in a brute-force pairwise registration
scheme. Based on these individual mappings, for each subject the available
feature and label maps of every other brain in the set can be projected on to
the local brain. At this point, for every node of a subject’s feature map, there
is a list of registered feature and label maps issued of all other brains in the
data set, based on which the local label of the subject brain can be “predicted”.
We then compare those predictions to the available manual ground truth for
each individual brain and obtain an error measure (Dice similarity coefficient,
DSC). The same label prediction can be made without prior registration of
subject brains, i.e., simply assuming identity transforms between the different
subjects’ maps. Comparing the hereby resulting error measure to the complete
framework, including registration, will highlight the (hypothetically beneficial)
impact of registration on the parcellation scheme.
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7.2 Materials and Methods

In the next paragraphs, we will describe in more detail the available brain
data, the registration scheme and parameters used for pairwise registration,
the exact classification scheme employed for Bayesian label fusion onto the
subject brain surface, as well as the specific implementation using shell scripts
for job scheduling and the progress monitoring dashboard.

7.2.1 Brain Data

The set of 39 cortical maps used in this study are part of the “Anonymous
Buckner” data set, which was already used in (Desikan et al., 2006), and
which was made publicly available by B.T. Thomas Yeo1. As stated in their
data disclaimer, these data are a small subset of subjects originating from
Washington University, collected by Randy Buckner and colleagues.

Surfaces and features

Only the surfaces and labels are provided so as to preserve the anonymity
of the original subjects. Indeed, from the original MR image volumes, the
cortical white-matter-gray-matter and the gray-matter-CSF (pial) surface was
extracted, separately for each hemisphere using FreeSurfer (Dale et al., 1999).
In addition, smoothed, inflated and spherically parametrized versions are in-
cluded as well (Fischl et al., 1999a).

Moreover, the data set also contains feature maps, such as the mean curva-
ture of the white matter surface and of the inflated surface, as well as average
convexity (sulcal depth, (Fischl et al., 1999a)).

Manual label maps

Finally, manual labeling of each hemisphere into 35 gyral units by Raul De-
sikan (Desikan et al., 2006) constitutes the most valuable part of the data set.
The labels are respectively shown on the pial, the inflated, and the spherical
surface in figure 7.1. These manual labels will serve as atlas information in the
training set, and will simultaneously represent the ground-truth information
that allows some performance measurement of the registration-classification
scheme within a leave-one-out cross-validation scheme. A indicative list of the
different regions is provided in table 7.1. For an exact definition of the how
the regions were delineated, however, we refer to the original paper (Desikan
et al., 2006).

1see http://people.csail.mit.edu/ythomas/code release/AnonBuckner39.tar.gz
at the time of this thesis
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lateral medial

(a) pial

(b) inflated

(c) sphere

Figure 7.1: Manual parcellation scheme in the Buckner cerebral cortex data set.
The delineation was done manually in a sulcal approach, i.e., by “tracing from the
depth of one sulcus to another, thus incorporating the gyrus within” (Desikan et al.,
2006). The parcellation is shown both from a lateral and medial view, as well as on
(a) the pial surface, (b) the inflated surface, (c) the sphere. The pial view allows
for easiest identification of the gyral regions, while the inflated surface reveals
otherwise hidden buried structures, such as the banks of the superior temporal
sulcus or the pericalcerine fissure. The spherical surface is the configuration which
is actually used for registration and classification.
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Table 7.1: List of parcellated structures. Reproduced from (Yeo et al., 2010),
according to the definitions in (Desikan et al., 2006).

1. Unlabeled 13. Lateral Orbito Frontal 25. Pre-Central Gyrus
2. Banks of Sup. Temporal S. 14. Lingual 26. Pre-Cuneus
3. Caudal Anterior Cingulate 15. Medial Orbito Frontal 27. Rostral Anterior Cingulate
4. Caudal Middle Frontal G. 16. Middle Temporal Gyrus 28. Rostral Middle Frontal
5. Corpus Callosum 17. Parahippocampal 29. Superior Frontal Gyrus
6. Cuneus 18. Paracentral 30. Superior Parietal Complex
7. Entorhinal 19. Pars Opercularis 31. Superior Temporal Gyrus
8. Fusiform Gyrus 20. Pars Orbitalis 32. Supramarginal
9. Inferior Parietal Complex 21. Pars Triangularis 33. Frontal Pole
10. Inferior Temporal Gyrus 22. Pericalcerine fissure 34. Temporal Pole
11. Isthmus Cingulate 23. Post-Central Gyrus 35. Transverse Temporal
12. Lateral Occipital 24. Posterior Cingulate

7.2.2 Registration scheme

Given the complexity of the cortical feature maps, the high computational cost
of fine scaled spherical resampling, and the relatively important deformations
to compensate, we propose to register the cortical feature maps in a hierarchical
multiscale approach, both in terms of feature scale and mesh resolution.

Multiscale registration

The most intuitive and commonly used approach to hierarchical multi-scale
registration is to perform repeated registration at single scales, from coarse to
fine. The result of one stage is used as initialization for the next finer scale.
In contrast to simultaneous registration at multiple scales, this sequential ap-
proach has reasonable computational load. However, the link between scales is
relatively weak, and unidirectional: information is only passed from coarse to
fine. Only the information of the next coarser scale is exploited, and as pure
initialization it is not necessarily considered in any further iterations.

Downsampling

At each scale of the multiresolution pyramid, appropriate scales of both feature
maps to be registered are resampled on a “regular” spherical mesh, obtained as
subdivision of an Icosahedron, see section A.1 in the appendix. The subdivision
depth is increasing at each level, and the resampled maps become finer at
each stage. This resampling allows for considerable speed-up, in particular
at coarse level, since the number of vertices is drastically reduced from more
than 100’000 down to just a few thousand vertices. The resampled meshes are
then registered using a fixed number of iterations of the spherical FastGAF
scheme. At the first, coarsest scale, the deformation fields are initialized by
the identity transform (zero deformation), while at finer scales the result of
the previous scale is up-sampled through linear interpolation. Also, we store
the deformation fields at the end of each stage in separate files for later use.
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Registration parameters

Based on just a very few trial runs on a single pair of subject feature maps,
we chose the following parameters for the Beltrami scale-space generation:

• β = 0.01 (embedding aspect ratio)

• τ = 0.01 (PDE integration time step)

And for the FastGAF registration framework, we chose:

• α = 0.75 (data versus regularization balance)

• β = 1 (embedding aspect ratio)

• r = 50 (weight of the Augmented Lagrangian penalty term)

• L = 4 (semi-implicit data-step subdivisions)

• 12 data-step fixed-point scheme iterations

• 100 iterations per scale, enough to converge at each scale

• linear interpolation

• absolute error image distance weighting function (L1)

• 4 different scales (Icosahedron subdivisions ranging from 162 to 10’242
vertices), corresponding to feature map scales (time points) 30, 22, 14
and 6, see figure 7.2

7.2.3 Classification Scheme

After pairwise registration of a subject to all other maps in the data-sets, we
use the established spatial relationships to project both the feature maps and
manual parcellations into the respective subject space. This data allows con-
structing an elaborate automatic parcellation scheme for the subject brain.
Here, we use a Bayesian approach, as suggested in (Fischl et al., 2004), gener-
alized in (Sabuncu et al., 2010) and applied in (Desikan et al., 2006; Yeo et al.,
2010).

Bayesian approach

The central idea is to formulate the conditional probability of a parcellation
P given a surface model S in terms of the conditional likelihood of S given P ,
and the prior probability of the parcellation:

p(P |S) ∝ p(S|P )p(P ) (7.1)
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(a) scale=30 (b) 22 (c) 14 (d) 6

(e) depth=2 (f) 3 (g) 4 (h) 5

Figure 7.2: Spherical multiresolution scheme for faster registration. (a)–(d) The
full resolution cortical feature maps at different scales in the Beltrami scale-space,
from coarse to fine. (e)–(h) The same feature maps, sub-sampled at the nodes
of increasingly dense spherical meshes, obtained from icosahedron subdivisions of
different depth. Reducing the sampling density allows for an important speedup
of the registration task, without important loss of map detail. (Here we chose
gray-scale colormap in order to avoid artifacts that are actually due to bad color
interpolation in the rendering.)

In order to determine a maximum a posteriori (MAP) estimate of the par-
cellation P , we thus need to define both the likelihood model p(S|P ), where
S is the observed geometry of the subject surface, and a prior model for the
parcellation, p(P ).

Surface model

First, we look for a suitable surface model, i.e. the conditional PDF of the
geometry given a parcellation. If we assume the noise at each vertex to be
independent from all other vertices, then we may rewrite the global likelihood
of the observed geometry as a product of the local probabilities at each single
vertex:

p(S|P ) =
∏
i

p (S (xi) |P (xi)) (7.2)
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where S(x) denotes the local observation of the surface geometry at vertex
x. In particular, we consider a local feature vector composed of the equalized
cortical feature maps of mean curvature, at different scales (here: 3, 13, and 23)
as illustrated in figure 7.3. This is in contrast to the initial description of this
classifier in (Fischl et al., 2004), where the geometry was described respectively
by the average convexity (Fischl et al., 1999a) and mean curvature at a single
scale only.

Now, at each vertex and for each class (label) in the atlas, the geometrical
feature vector probability density function is modeled as a Gaussian distribu-
tion, of which the mean vector and covariance matrix are estimated directly
from the available data:

p (S(xi)|P (xi) = c) = N (S(xi)|µc(xi),Σc(xi)) (7.3)

Parcellation prior

Second, we need to define a prior on the parcellation P . Here, it is assumed
only that the spatial distribution of labels can be approximated by an non-
stationary Markov random field (MRF). In contrast, the initial model in (Fischl
et al., 2004) is also anisotropic. Formally, this reduced the dependency of
the local label from all other labels in the map to the first order neighbors
xj ∈ N1(xi) only:

p (P (xi)|P (xj 6= xi)) = p (P (xi)| {P (xj)|xj ∈ N1(xi)}) (7.4)

This restriction permits the probability of the entire parcellation to be rewrit-
ten in terms of neighborhood or clique potentials, using the Hammersley-
Clifford theorem and by introducing Gibbs distributions (Fischl et al., 2004).
Therefore:

p(P ) =
∏
i

p (P (xi)| {P (xj)|xj ∈ N1(xi)}) (7.5)

and, using Bayes’ rule:

p(P ) ∝
∏
i

p (P (xi)) p ({P (xj)|xj ∈ N1(xi)}|P (xi)) (7.6)

where p (P (xi)) is directly estimated from the number of occurrences of a label
at a given vertex in all available reference data sets.

To render this problem computationally tractable, we further assume that
only the first order conditional dependence matters, i.e., the likelihood of a
label given its neighbors can be expressed as the product of some pairwise
probabilities. This leads to:

p(P ) ∝
∏
i

p (P (xi))
∏

j∈N1(xi)

p (P (xj)|P (xi)) (7.7)
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(a) scale=3 (b) 13 (c) 23

Figure 7.3: Multiple scales of cortical feature used as geometry descriptor. The
different Beltrami scales of the cortical feature map, that are used as feature
vectors to describe the local geometry for automatic parcellation of the cerebral
cortex.

Here, in contrast to (Fischl et al., 2004), we do not exploit the spatial rela-
tionship of the respective neighbors, and simply propose

p (P (xj)|P (xi)) ∝ exp (δ (P (xj), P (xi)) ln(λ)) = λδ(P (xj),P (xi)) (7.8)

where δ denotes Kronecker delta, and λ ≥ 1 is a constant that controls clique
parcellation smoothness. As a result, the probability of label c at xi will be
proportional to λfc , where fc denotes the number of occurrences of the same
label c among the neighbors xj ∈ N1(xi). Clearly, at λ = 1, the neighboring
occurrences have no impact, whereas λ→∞ yields “winner-takes-it-all”.

MAP estimate

As in (Fischl et al., 2004), we employ the iterated conditional modes (ICM)
algorithm (Besag, 1986) in order to make the MAP estimation of the proposed
MRF computationally tractable. This involves initialization of the parcellation
with the MAP estimate assuming λ = 1. Then, the parcellation is sequentially
updated at each location by computing the label P (xi) that maximizes the
conditional posterior probability p (P (xi)|{P (xj)|xj ∈ N1(xi)}, S(xi)):

P (xi) = argmaxc p (P (xi) = c|{P (xj)|xj ∈ N1(xi)}, S(xi)) (7.9)

= p (S(xi)|P (xi) = c) p (P (xi) = c)
∏

j∈N1(xi)

p (P (xj)|P (xi) = c)

This expression differs from the one given in (Fischl et al., 2004), where in-
stead of

∏
j∈N1(xi)

one maximizes over
∑

j∈N1(xi)
, the reason of which is cur-

rently under investigation. The impact of this difference on the outcome of
the parcellation, however, is only minor.

It is to note, also, that in contrast to (Fischl et al., 2004), we do not perform
any manual post-processing of the label maps.

7.2.4 Scripting and Process Monitoring

The data set contains 39 brains, of which we will arbitrarily consider the
right hemisphere only. In order to achieve full-blown pairwise registration,
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each subject has to be mapped to all 38 peers, and we have to perform 1’482
complete spherical registrations. Given the aforementioned registration setup
and the current implementation in 64-bit MATLAB R© R2009a, with Fedora 13
running on an Intel R© Core

TM
2 at 2.40GHz and with 8GB of RAM installed,

the registration of a single pair of cortical maps takes roughly one hour. Almost
95% of this time are spent on spherical interpolation, in particular for the
actual warping of the moving image at each iteration. Considering that 2 jobs
can run in parallel on the dual core computer, already the registration only is
expected to take around 30 days of computation time!

In order to protect these lengthy computations against computer failures
and data loss, we implemented a small stateless shell script daemon, which
defines the different computational tasks for each subject or pair of subjects
(mesh pre-processing, scale-space generation, registration, label and feature
warping, classification, etc.) as different jobs. These jobs are continuously
processed by launching the corresponding MATLAB script as soon as all re-
quired precursor data and free CPU are available. Upon OS failure, power
outage or program crash, the computations could then easily be resumed with
only little loss of data and computation time, and without important human
intervention. Also, the number of simultaneous tasks can easily be scaled
according to the number of CPU available on the respective computer, and
generalization to clusters and grid is possible without important effort. Fi-
nally, the status of all the different jobs is automatically reported within a
single HTML-file, which allows easy monitoring of the jobs and progress over
the Web.

7.3 Results and Discussion

Having run the pairwise registration and subsequent leave-one-out automatic
parcellation of the 39 right hemispheres in the data set, we will now provide
and discuss the obtained results. Three main aspects are being evaluated: first,
we want to get an idea of the success of the pairwise registration on its own.
We do so by computing the pairwise overlap of region labels prior to and after
registration. Second, we will try to characterize the label fusion scheme. In
particular, we want to compare against naive majority voting, and we illustrate
the impact of the MRF smoothing term. Finally, we analyze the parcellation
performance of the overall scheme, including both registration and automatic
label fusion, to get an idea of the impact of pairwise registration using the
proposed FastGAF method on the outcome of the subsequent parcellation.

7.3.1 Measuring label consensus: Dice’s similarity
coefficient

In order to quantify the overlap, viz. consensus, between two label maps,
projected on the same surface, we use the Dice’s similarity coefficient (DSC)
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Table 7.2: Pairwise labelmap agreement prior to and after registration. Ac-
curacy is measured in “percent correct”, with nodes weighted by surface area,
corresponding to DSC. Without registration versus using the proposed spherical
FastGAF framework.

Dice similarity coefficient (DSC) [%]

w/o registration FastGAF

mean median mean median

Labelmap agreement 61.0145 63.0689 62.3963 64.5976

(Dice, 1945). For any structure i, the respective DSC is computed as

Si(l1, l2) =
2
∫
S2 δ(l1, i)δ(l2, i)dA∫

S2 δ(l1, i) + δ(l2, i)dA
, (7.10)

i.e., the ratio between twice the area of the sphere where both label maps share
the label i, over the total area of label i on both maps. This measure ranges
from 0 to 1, where 0 corresponds to completely disjoint labelization, and 1 to
complete consensus w.r.t. the label i. The consolidated DSC for the entire set
of labels can be constructed as a weighted average of the individual Si:

S(l1, l2) =

∑
i Si(l1, l2)

∫
S2 δ(l1, i) + δ(l2, i)dA∑

i

∫
S2 δ(l1, i) + δ(l2, i)dA

=

∫
S2 δ(l1, l2)dA∫

S2 dA
(7.11)

which is the portion of the spherical area where both label maps are in agree-
ment.

7.3.2 Registration

In a first step, we want to assess the improvement of feature map alignment due
to the pairwise registration. Therefore, we compare the labelmap agreement
between pairs of subjects prior to and after registration. The key figures are
given in table 7.2, and illustrated in more detail in the boxplots provided in
figure 7.4.

In essence, we show that the improvement in feature map alignment due
to pairwise registration may be small in terms of mean DSC improvement
(increase from 61.01% to 62.40%) but consistent and significant.

A closer look at the subject-wise DSC distributions in the boxplots of
figure 7.4 reveals that there are a number of subjects, whose brain seem to be
consistently different from the rest of the data set. These brains (subject 5,
10, 14, 17, 23, 32 and 33) exhibit a clearly lower DSC than the sample average,
both before and after registration. Unsurprisingly, the worst subject (32), will
also perform weakest in the automatic parcellation, as we will see soon below.
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(a)

(b)

Figure 7.4: DSC of pairwise labelmap agreement, with and without registration.
The subjects are sorted by id in data set, and are numbered below. (a) In each
group, the gray box corresponds to the result without registration, and the black
box shows the DSC after FastGAF registration. (b) Pairwise DSC difference shows
small but significant (pairwise t-test, α = 0.01) improvement due to registration
for all structures.
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7.3.3 Label fusion scheme

Before we can look at the outcome of the parcellation cross-validation, we
want to characterize and discuss the proposed label fusion scheme. Therefore
we apply the proposed automatic parcellation scheme to one subject, given
the labels of all others. In particular, we want to show the difference be-
tween a simple majority voting, the proposed Bayesian scheme without spatial
smoothing (λ = 1), and the full scheme with λ > 1. Note that majority vot-
ing (MV) is equivalent to uniform conditional probabilities p(P |S) (no feature
dependency) and p(P (xi)|P (xj)) (no smoothing) in the Bayesian model.

The different obtained parcellations are illustrated in figure 7.5. Note that
majority voting intrinsically produces rather smooth maps, while the Bayesian
approach without smoothing yields label maps with lots of small “perturba-
tions”. These perturbations, however, are efficiently reduced by the spatial
smoothness prior.

Both schemes, MV and Bayesian, produce labelmaps that are similarly
different from the actual manual parcellation. The feature-based surface model
p(P |S) can improve the parcellation to some extent, locally. But the labelmaps
are consistently shifted off the true map, nonetheless.

The spatial smoothing based on different choices for the parameter λ is
illustrated in figure 7.6. As expected, the ICM algorithm converges rapidly,
and after around 12 iterations, the labelization only oscillates slightly. The
impact of the actual choice of λ > 1 is rather minor. Choosing λ = 100 clearly
produces smoother maps than λ = 1.25, but the difference is not dramatic.
Some small label-islands remain even when choosing λ that large. This is, why
(Fischl et al., 2004) performs manual correction of the automatic parcellations.

7.3.4 Parcellation Cross-validation

The overall results of the automatic registration-parcellation leave-one-out
cross-validation scheme are reported in table 7.3. In particular, we provide
the mean and median DSC of the parcellation with and without prior registra-
tion by the proposed FastGAF algorithm. For comparison, we also show the
corresponding numbers for the simple majority voting and the unsmoothed
Bayesian model.

To illustrate the variability of quality of the obtained parcellations, we also
give the numbers for the worst and best subjects, respectively. As expected,
the worst subject is sub32, which already had worst pairwise label agreement
before label fusion. At the other end of the spectrum, the best parcellated
brain, sub09, already showed best pairwise label agreement.

The numbers show, that on average the smoothed Bayesian classifier per-
forms best. Using the proposed Bayesian classifier, roughly 75% of the spher-
ical surface are correctly labeled. Further, we clearly see that FastGAF regis-
tration consistently improves this figure by ca. 1.3%.

To get a better intuition of where mis-parcellation typically occurs, we
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project the manual and automatic parcellation of an averagely performing
subject on to the pial and inflated surface, see figure 7.7. Further, we highlight
the mis-parcellated regions on the ground-truth labelmap, as well as on the
actual feature map. This clearly reveals, that most of the error is committed at
the boundaries only of the different gyral regions. A look on the feature map
suggests, that this happens in particular at regions that are not particularly
well-defined in terms of surface geometry, e.g., within highly variable sulcal
regions, or around the artificially dissected corpus callosum.

The same illustrations are produced for the extreme subjects 09 and 32, in
figure 7.8. In the worst case, the mis-parcellation is clearly due to an outlier
cortex: The overall shape as well as the cortical folding pattern are clearly
particular with respect to the rest of the brains in the data-set. The parcel-
lation of subject 09, however, is almost perfect, with almost 90% correctly
labeled surface. The remaining mis-parcellation is extremely concentrated at
the region boundaries, and at this point become almost arbitrary with respect
to manual delineation.

Finally, we want to shed some light on the parcellation quality of the 35
individual gyral regions. Therefore, the structure-wise DSC was computed
for all parcellations, and the obtained data are shown in the boxplots of fig-
ure 7.9. This illustration clearly shows, that the parcellation quality improves
with bigger structures, which is a natural consequence of parcellation error
being concentrated around boundaries. Bigger structures not only are better
parcellated, the DSC variability among test brains is also drastically smaller.
Comparing the DSC values with and without registration, we can identify
again a systematic improvement thanks to registration. In the boxplot of
pairwise differences, we find that most structures are significantly improved,
whereas only few structures suffer by registration, and all of the deterioration
is non-significant. We identify a few structures that perform particularly bad:
This includes the frontal pole (33), the temporal pole (34), the corpus callosum
(5), the entorhinal (7) and the pericalcerine fissure (22). All of these structures
are either ill-defined (e.g., only in relation to their surrounding structures and
not by specific geometry), exhibit important natural intersubject variability, or
suffer from feature map design artifacts, such as the dissected corpus callosum.
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(a) (b) GT (c) MV (d) λ = 1 (e) λ = 100

Figure 7.5: Visual evaluation of different label fusion schemes. (a) Underlying
cortical feature map. (b) Manual delineated “ground truth” parcellation. (c)
Labels fused using pure majority voting. (d) Result of proposed Bayesian classifier,
without spatial smoothing (λ = 1). (e) Spatial smoothing with λ = 100 in the
spatial prior for multi-atlas fusion.
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λ Number of ICM iterations

2 4 6 20

1.25

1.5

2

5

100

Figure 7.6: Effect of spatial smoothing for varying λ. We show the estimated
parcellations after ICM iterations 2, 4, 6, and 20, for different λ > 1 ranging from
1.25 to 100. ICM converges quickly, and beyond ca. 13 iterations, the labelmap
has converged to just tiny oscillations. Already small λ successfully remove noise
from the labelmaps, and larger values just straighten the borders somewhat more.
A few isolated label-patches remain, however, that should be removed manually.
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Table 7.3: Parcellation accuracy for different atlas fusion schemes. Accuracy is
measured in “percent correct” (overall DSC), with nodes weighted by surface area.
Without registration versus using the proposed spherical FastGAF framework. In
addition, we give the accuracy of the worst (sub32) and the best (sub09) individual
parcellation.

Fusion Method Dice similarity coefficient (DSC) [%]

w/o registration FastGAF

mean median mean median

Majority voting 71.0723 74.9535 72.4938 76.5458
Bayes λ = 1 73.2996 74.7249 74.6315 75.9541
Bayes λ = 100 73.9480 75.4433 75.2338 76.7319

sub32 sub09 sub32 sub09

Majority voting 45.2556 87.8660 46.6625 88.2811
Bayes λ = 1 49.7565 86.1914 51.5298 86.4088
Bayes λ = 100 49.9253 86.9561 51.8386 87.2013

lateral medial

Ground Truth Automatic Ground Truth Automatic

Error on GT Error on Feature Error on GT Error on Feature

Figure 7.7: Manual and automatic parcellation for an average subject. First
and second row show manual (“ground truth”) and automatic parcellation results
on the pial and inflated cerebro-cortical surface, respectively, from lateral and
medial view. Most mis-parcellation occurs at boundaries. Due to the absence of
any manual post-processing of the automatic parcellation results, a few, clearly
identifiable and easily correctable isolated mis-parcellations occur.
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lateral medial

Ground Truth Automatic Ground Truth Automatic

Error on GT Error on Feature Error on GT Error on Feature

lateral medial

Ground Truth Automatic Ground Truth Automatic

Error on GT Error on Feature Error on GT Error on Feature

Figure 7.8: Manual vs. automatic parcellation for best and worst subject. Cf.
caption 7.7. As is clearly visible, the worst parcellated subject 09 exhibits a partic-
ular brain shape and an atypical folding pattern, difficult to parcellate. The parcel-
lation of the best subject, 32, is close to perfect: The remaining mis-parcellation
is very marginal, and close to arbitrary.
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(a)

(b)

Figure 7.9: Dice similarity coefficients for individual structures, with and without
registration. The structures are sorted by increasing mean area, and are numbered
below. (a) In each group, the gray box corresponds to the result without registra-
tion, and the black box shows the DSC after FastGAF registration. The solid red
curve indicates the relative cortical area of a structure, and the dotted line shows
cumulative area. (b) Pairwise DSC difference shows significant (pairwise t-test,
α = 0.01) improvement due to registration for most structures (black), gray boxes
indicate non-significant improvement, red highlights non-significant deterioration.
As mismatches mainly occur close to structure borders, small structures automat-
ically exhibit weaker performance and higher variance. It is to note, that some of
the worst performing structures are ill-defined on the feature maps that we use,
such as the frontal pole (33), the temporal pole (34), the corpus callosum (5), the
entorhinal (7) or the pericalcerine fissure (22).
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7.4 Conclusions and Outlook

In this chapter, we have proposed to build an automatic cortical parcellation
scheme, based on pair-wise registration of a subject map against all maps in
the atlas. In a second step, the registered feature and label-maps in the atlas
are used within a Bayesian classifier, of which the MAP estimate is solved for
using ICM.

Based on a data-set of 39 subject brain surfaces, each of which composed of
feature maps and manual delineations into 35 gyral regions on each hemisphere,
we were able to test the proposed parcellation scheme in a leave-one-out cross-
validation.

Using the results of this cross-validation, we were able to show:

1. pairwise registration of a subject brain against the atlas brains improves
the pairwise labelmap agreement consistently and significantly.

2. the proposed classifier outperforms simple majority voting,

3. estimating the MAP solution using ICM is efficient and converges fast,

4. most importantly, registering the spherical feature maps using the pro-
posed FastGAF algorithm improves the parcellation outcome consis-
tently and significantly.

7.4.1 Comparison to the state-of-the-art

Although the improvement thanks to spherical registration is consistent and
significant, we have to admit that the impact is surprisingly small. Indeed,
interestingly, in (Yeo et al., 2010) a high parcellation quality of around 88%
is claimed as average performance for the same data set in a similar cross-
validation scheme, both using the Freesurfer registration scheme as well as
spherical Demons. Nonetheless, their figure is extremely difficult to interpret
against our algorithm, since several poorly performing structures are excluded
from their measure, and it is unclear how the original classifier borrowed from
(Fischl et al., 2004) was exactly built and improved. Moreover, they allow for
manual post-processing of the automatically established labelmaps, which we
explicitly don’t.

7.4.2 Potential improvements of the registration scheme

As already pointed out in the conclusions of the spherical FastGAF algorithm
at the end of chapter 6, rigid rotations of the whole sphere do not come free of
cost with the proposed Beltrami regularizer. Therefore, one should definitely
consider pre-registering the feature-map pairs using rigid deformation (rotation
only), or with low-dimensional parametric deformation.

Also, we want to clearly state that the chosen set of registration param-
eters was only coarsly determined based on a few trial runs on a single pair
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of images, in order to protect against overfitting. To some extent, and within
limits of computational complexity, the parameters could be further optimized,
by maximizing the performance of the parcellation scheme on the right hemi-
spheres, and subsequent testing on the left hemispheres, for example.

Another weakness is the brute-force pairwise registration of all brains in
the data-set. As mentioned earlier, here this involves 1’482 registrations. An
alternative approach consists in the iterative construction of an average or sta-
tistical atlas brain, to which subjects are subsequently registered. The strength
of this approach is also its main weakness: averaging removes individual mod-
ulations and subjects are registered to the common base-pattern. For the same
reason, individual features of the subject may get lost and not find a suitable
counterpart. But the very idea of the Bayesian approach for label-fusion is
precisely to match a subject brain to all individuals in the atlas set, and to
weight the label-voting based on how good two labelmaps can be matched,
thus intrinsically allowing for multiple brain models in the atlas.

7.4.3 Potential improvements of the label-fusion

Although not the focus of this thesis, we would like to comment on a few
possible improvements of the classification scheme.

Spatial prior

Intuitively, a lot of performance difference between the proposed method de-
scribed in this chapter, and the reference results from literature, is due to the
classifier. In particular, we admit that the spatial prior is probably overly
simple. Since the labels are based on gyral regions, transitions between differ-
ent labels are expected to be more likely in sulcal regions. This prior on the
transition probability based on feature value is currently not being accounted
for.

ICM for MAP estimate

The important advantage of ICM over other MRF solvers, such as simulated
annealing (Geman and Geman, 1984), is its extremely simple structure and
fast convergence. However, it has been shown that ICM corresponds to in-
stant freezing from a simulated annealing point of view (Besag, 1986). ICM
therefore has tendency to fix the underlying label-map too quickly. It would
be interesting to see, whether slower cooling could provide slower fixation and
smoother parcellations. In particular, the ability of simulated annealing to
escape from local extrema might help reducing the occurence of isolated label
patches, that otherwise have to be removed manually.



142 Mapping the Human Brain

Label definition

Finally, since the region boundaries of the current 35 gyral regions are mainly
located at sulcal cavities of the feature maps, there is not much contrast be-
tween the geometry vectors on either side. Both the registration is imprecise,
and the surface model p(P |S) is rather unspecific at exactly these locations.
This obviously does not help in getting sharp and precise label boundaries. If,
in contrast, one had chosen separate regions for sulci and gyri, label bound-
aries would instead occur at the edges of the feature map, with much better
feature discrimination between both sides of the label boundary.



Diffeomorphic
Deformations 8

“Riding a mule while looking for a horse.”

Chinese proverb.

In biomedical image registration, diffeomorphic deformation fields are
widely accepted as a powerful class of deformations (Christensen et al.,
1996; Joshi and Miller, 2000; Beg et al., 2005; Rueckert et al., 2006; Ash-

burner, 2007; Vercauteren et al., 2009; Yeo et al., 2008). By definition, a
diffeomorphism is an invertible deformation that maps one image to another,
such that both the deformation and its inverse are smooth (differentiable).
A diffeomorphic deformation preserves the topology of the image and pre-
vents it from folding, even at large deformations. Moreover, inversibility of
the deformation field is an essential property when it comes to rendering the
registration process inverse consistent or even symmetric (Rogelj and Kovacic,
2006). On the other hand, inverse consistent image registration tries to opti-
mize the forward and inverse deformation fields simultaneously, to reduce the
impact of the choice of subject and target image roles. Symmetric methods
enforce equivalence between registration directions by construction.

In this chapter, we sketch how the GAF framework can be extended to
diffeomorphic and inverse-consistent deformation model. The extended frame-
work will be illustrated on simple toy examples.

143
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8.1 Background

Different approaches exist, that try to obtain a diffeomorphic deformation
field. Models, which only penalize non-positive determinants of the transform
Jacobians, may well guarantee deformations to be free of microfolds locally,
but they have no control, however, over macroscopic folding and are not nec-
essarily diffeomorphic. Fluid-like deformation models are shown to prevent
folding completely, but require complex computations. The use of exponential
maps results in truly diffeomorphic deformations. In parametric image regis-
tration, diffeomorphism is most of the time only implicitly achieved, through
constraints on model parameters or specific regularization terms (Narayanan
et al., 2005).

8.1.1 Exponential maps

The most intuitive way of incorporating exponential maps in diffeomorphic
image registration is inspired by the works of Joshi and Miller, Beg and Ash-
burner (Joshi and Miller, 2000; Beg et al., 2005; Ashburner, 2007). While Joshi
and Miller optimize a regularized, time-varying velocity field, which transports
points in space, Beg and Ashburner use a single, static velocity field. Let ~u
describe the static velocity field, and the transform be obtained as its expo-
nential map, e.g., T~x = exp(~u). The deformation field is directly guaranteed
to be diffeomorphic and invertible – the inverse is obtained as the exponential
map of the negative velocity field. But in return, a local change of the velocity
field does not only affect the displacement of a single pixel, but all pixels of
which the trajectories pass through the support of that change. Consequently,
the expression of the metric flow, i.e., the partial derivatives of the image
metric with respect to the velocity field, gets cumbersome (Ashburner, 2007).
Further, it is suspected that the class of diffeomorphisms that can actually be
generated by a static velocity field is quite limited.

8.1.2 Diffeomorphic Demons

Very recently, Vercauteren et al. introduced exponential map diffeomorphisms
in the Demons framework (Vercauteren et al., 2009). There, at each iteration
one looks for an infinitesimally small update d~s to ~s = 0, that is applied
through composition of its exponential map with the existing diffeomorphic
deformation:

T1 : T1~x = (~x+ ~u) ◦ exp(~s), (8.1)

where composition of two diffeomorphisms produces another diffeomorphism,
within the limits of discrete numerical computations. At each iteration, the
deformation field ~u is updated as:{

~s← ~0 + dt · d~s = dt · d~s
~x+ ~u← (~x+ ~u(~x)) ◦ exp(~s),

(8.2)
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where dt denotes the time step. This scheme has the advantage of keeping the
impact of the update very local. Also, successive composition of diffeomor-
phisms is commonly believed to generate a wider space of possible deforma-
tions, than exponential maps of static velocity fields.

8.1.3 Deformation model in GAF

In the GAF framework, the deformation field is embedded as a mapping be-
tween the n-dimensional image domain and a m-dimensional space, where
m > n. This is achieved by letting the components of the deformation field
become additional dimensions of the embedding space. The embedded man-
ifold then evolves towards a weighted minimal surface, while being attracted
by a deformation field that brings the two images into registration. Further,
we dealt with a deformation field ~u(~x) : ~x ∈ Ω ⊂ Rn → (u1, . . . , up) ∈ Rp that
describes the spatial displacement along p ≤ n dimensions of an n-dimensional
image of support Ω by addition:

T0 : T0~x = ~x+ ~u(~x), (8.3)

where addition is implicitly understood only along the p ≤ n dimensions of
the image that are actually deformed.

Once corresponding fixed an moving image locations can be mapped, the
matching quality can be quantified using one of several distance metrics. As
an example for monomodal image registration subject to additive Gaussian
noise let us consider the squared error metric (Toga, 1999):

fT0(~x, ~u) = (M(T0~x)−F(~x))2 = (M(~x+ ~u(~x))−F(~x))2 , (8.4)

where F and M refer to the fix and moving images respectively.
Here, we propose to integrate the demons-like deformation scheme T1 into

the geodesic active fields model. In a first step, we simply adopt the new
deformation model and compute the corresponding evolution equations of the
GAF energy. In a second step, we take profit of the availability at low cost of
an estimate of the inverse deformation field, to extend the weighting function
to be symmetric. This means that both, the matching of the fixed image with
the resampled moving image, and the matching of the inversely warped fixed
image with the moving image, are considered in the weighting function, thus
removing some asymmetry in the registration process.

The structure of the remainder of this chapter is as follows. First, sec-
tion 8.2 presents the integration of exponential mapping into the registration
scheme to provide diffeomorphic deformation fields. In section 8.3 we ex-
tend the weighting function by inclusion of the inverse deformation data term
to make the registration inverse consistent. Finally, we show some illustra-
tive, preliminary results obtained with our diffeomorphic geodesic active fields
framework in section 8.4 and we discuss our model in section 8.5.
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8.2 Diffeomorphic Deformation Model

Before we can tackle the integration of diffeomorphisms into the GAF de-
formation model, we shall briefly recall how diffeomorphisms are related to
exponential maps.

8.2.1 Exponential map

Diffeomorphisms do not form a vector space with respect to addition: addi-
tion of diffeomorphisms does not necessarily produce a diffeomorphism, and
the results may not be invertible. Instead, diffeomorphisms can be smoothly
composed and inverted (Vercauteren et al., 2009). Formally, diffeomorphic
deformation fields on the image manifold form a Lie group G. The group ele-
ment is a smooth manifold, and the associated operation is composition. The
neutral element is given by identity I, and an inverse of the diffeomorphism
exists by definition.

To this Lie group, a corresponding Lie algebra g can be associated. The
underlying vector space of this Lie algebra is the tangent space of G around
the neutral element Id. The Lie algebra and the Lie group are linked through
the exponential map (Vercauteren et al., 2009):

exp : g→ G, exp(X) = γ(1), (8.5)

where γ : R → G is the unique one-parameter subgroup of G whose tangent
vector at identity is given by X. The exponential map can be constructed as
the integral curve

d

dt
γ(t) = X ◦ γ(t), (8.6)

where X is a stationary vector field, and with initial condition γ(0) = I. Phys-
ically interpreted, the diffeomorphic deformation is the movement of particles
governed by a stationary velocity field X, after unit time. The exponential
map is a smooth mapping from a neighborhood of 0 in g to a neighborhood of
I in G. Note that being a one-parameter subgroup implies γ(2t) = γ(t) ◦ γ(t),
and more generally exp(tX) = γ(t) (Bossa et al., 2008). In particular, this
yields

exp(X) = exp(2−NX)2N , (8.7)

which leads to the scaling and squaring algorithm for fast vector field expo-
nential computation (Arsigny et al., 2006; Bossa et al., 2008):

1. Scaling: Divide X by a factor 2N , so that 2−NX is sufficiently close to
zero (for example N = 8)

2. Exponentiation: Perform an explicit first order integration using the
Taylor expansion of the exponential, exp(2−NX) ≈ I + 2−NX.

3. Squaring: N recursive squarings, exp(2−n+1X) = exp(2−nX)◦exp(2−nX).
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N = 0 N = 1

N = 2 N = 6

Figure 8.1: Convergence of exponential maps with increasing scaling and squaring
depths N . The blue arrows indicate the velocity field. The thick red lines indicate
the individual trajectories of a set of vertices during squaring, while the thin red lines
show the front propagation. N = 0 corresponds to the basic, non-diffeomorphic
model and can introduce heavy folding. Indeed, the whole set of points is mangled
onto a very small region. For N increasing, the exponential map approximation
becomes rapidly more accurate.

Composition of sampled deformations is obtained using recursive interpolation.
Fig. 8.1 shows the convergence towards diffeomorphic maps as a function

of the scaling and squaring depth N . The difference between warping a mesh
with a vector field and its exponential map is illustrated in Fig. 8.2.

8.2.2 Diffeomorphic weighting functions

First, we want to identify the update d~s in (8.2) with the minimizing flow d~u
corresponding to the formulation in (4.3). We have:{

exp(~s)|~s=0 = I,
∂
∂~s

∣∣
~s=0

exp(~s) = I.
(8.8)

Therefore, we obtain the following equality:

d~u = JT · d~s. (8.9)

where JT refers to the transpose of the transform Jacobian.
Given the compositive deformation model T1, the squared error weighting

function writes:

fT1(~x, ~u) = (M(~x+ ~u) ◦ exp(~s)−F(~x))2 . (8.10)
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(a) (b)

Figure 8.2: Warping a mesh with a vector field and its exponential. (a) A square
mesh warped by a vector field. (b) Warping by its exponential map. The velocity
field is considered zero outside the square, therefore the mesh cannot flow beyond
that border. The exponential map produces a diffeomorphic deformation of the
mesh, whereas direct deformation by the vector field introduces folding.

The spatial gradient of the weighting function, ∇f (1)T1 , is most easily obtained
numerically through finite differences of the available samples. The partial
derivatives with respect to the update are:

fT1

~s (~x, ~u)|~s=0 = 2 (M(~x+ ~u) ◦ exp(~s)−F(~x)) (8.11)

·JT∇M(~x+ ~u) · ∂~s exp(~s), (8.12)

and, more interestingly, we get the metric flow with respect to the deformation
field ~u:

fT1

~u = 2 (M(T0~x)−F(~x)) · ∇M(T0~x), (8.13)

which is exactly equal to the non-diffeomorphic, additive flow (4.25).
The diffeomorphic counterparts of, e.g., the absolute error and local joint

entropy weighting function are calculated analogously.
From an implementational point of view, there is only one difference be-

tween the additive, non-diffeomorphic T0, and the compositive diffeomorphic
T1 deformation model: in the latter, the update is obtained as composition
with the exponential map of the affinely transformed flow (4.3):

~u← (~x+ ~u(~x)) ◦ exp(dt · J−Td~u)− ~x. (8.14)

8.2.3 Inversibility

The main motivation for diffeomorphic deformations is the existence of a
smooth inverse. In this section, we shall compute the inverse deformation
along with the regular update of ~u.

At the end of every iteration k ≥ 0, the forward transform is composed
with the exponential map of the update. It is therefore also natural to compose
the inverse of the update with the current inverse transform, written (~x +
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~pk(~x)). The inverse of the update, in turn, is easily obtained by computing
the exponential map of the negative velocity field, and we get:{

~x+ ~uk+1 ← (~x+ ~uk(~x)) ◦ exp(~s),
~x+ ~pk+1 ← exp(−~s) ◦ (~x+ ~pk(~x)).

(8.15)

The proof using mathematical induction is straightforward. At any itera-
tion k + 1, inversibility requires:{

(~x+ ~uk(~x)) ◦ exp(~s) ◦ exp(−~s) ◦ (~x+ ~pk(~x)) = I,
exp(−~s) ◦ (~x+ ~pk(~x)) ◦ (~x+ ~uk(~x)) ◦ exp(~s) = I,

(8.16)

which is obviously true, iff (~x+~uk)−1 = (~x+ ~pk). Indeed, at the first iteration,
~u0 = ~0 = ~p0, and thus (~x+ ~u0)−1 = I = (~x+ ~p0).

8.3 Inverse Consistent Registration Model

An inverse consistent registration model measures both the quality of the for-
ward and inverse deformation field. This has the advantage of removing some
asymmetry between the moving and fixed image by introducing further mir-
ror terms. Let us again consider the squared error weighting function, now
involving the inverse update exp( ~−s) and the current estimate of the inverse
deformation field ~p:

fT1∗(~x, ~u) =
1

2

(
(M(~x+ ~u) ◦ exp(~s)−F(~x))2

+
(
M(~x)−F(exp( ~−s)) ◦ (~x+ ~p)

)2
)
. (8.17)

The partial derivatives with respect to the update ~s are:

fT1∗
~s (~x, ~u)|~s=0 = (M(T0~x)−F(~x)) · JT∇M(T0~x)

+
(
M(~x)−F(T−1

0 ~x)
)
· ∇F(T−1

0 ~x). (8.18)

Substituting (8.9) into this, the partial derivatives of the weighting function
with respect to the deformation field ~u, finally, write:

fT1∗
~u = (M(T0~x)−F(~x)) · ∇M(T0~x) (8.19)

+
(
M(~x)−F(T−1

0 ~x)
)
· J−T∇F(T−1

0 ~x). (8.20)

8.4 Results

We have implemented the diffeomorphic and inverse consistent geodesic ac-
tive fields and ran them on a toy test problem. All single-scale problems have
been solved in a pyramidal multi-resolution approach (Modersitzki, 2004). Im-
ages are low-pass filtered and diadically downsampled in several stages, to
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allow fast coarse-to-fine registration. The flow is integrated using a simple for-
ward Euler scheme. As for all forward schemes, the step length, and thus the
speed of the registration, is heavily limited by the stability of the integration.
The implementation was done using Matlab R©(R2009a) on a standard 2.4GHz
Intel R©CoreTM2 Duo desktop machine, running a 64bit Fedora Core 11.

A nice illustrative example is the registration of a star to a disc. These
two binary images have been created at resolution 350 × 350. For compar-
ison, both the additive squared error weighting function (4.24) and the dif-
feomorphic squared error weighting function (8.10) are applied. The setup,
the warped images and the resulting deformation fields are all shown in fig-
ure 8.3. The warped images of both direct and diffeomorphic deformation
field are of comparable quality, that could be further improved by registering
at higher resolution deformation fields. For the example we provide, the main
difference between diffeomorphic and non-diffeomorphic registration is the in-
verse deformation field that is automatically obtained within the diffeomorphic
setup. Indeed, we show that composition of the forward transform T1 with its
co-evolving inverse T−1

1 produces a map very close to identity, as expected.

8.5 Discussion and Conclusion

In this chapter, we have presented a sketch of how diffeomorphic deformations
can be used within the geodesic active fields framework. By means of expo-
nential maps we have defined deformations that are diffeomorphic, i.e., that
keep the warping free of folds. Indeed, at each iteration, the deformation field
is updated through composition with a small diffeomorphic field, obtained as
the exponential map of the computed flow, keeping the whole deformation
field diffeomorphic. Simultaneously, the exponential map of the reverse flow,
i.e., the inverse update, is composed with the current estimate of the inverse
deformation to update the inverse diffeomorphism.

In image registration, existence and computation of the inverse deforma-
tion is as important as obtaining the forward transform, because this allows
mapping points between fixed and moving image in both directions. We have
shown within the limits of precision of numerical computations, that compo-
sition of the forward and inverse diffeomorphism actually matches identity.

In a second step, the incorporation of the inverse deformation into the
weighting function has enabled us to symmetrize the data term. This greatly
reduces the impact of the role attribution between fixed and moving image, as
the image mismatch is optimized in both directions simultaneously. Indeed,
in the non-symmetric setting, only the edges of the moving image result in
deformation forces, whereas in the symmetric weighting function both images
contribute equally.

Despite this symmetric data term, the GAF model does not provide com-
plete symmetry, as the GAF functional still measures the weighted surface of
just the forward deformation field, only. Had we used the LDDMM version
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(a) F (b) M (c) M−F

(d) T0 (e) M◦ T0 (f) M◦ T0 −F

(g) T1 (h) M◦ T1 (i) M◦ T1 −F

(j) T−1
1 (k) T1 ◦ T−1

1 (l) F ◦ T−1
1

Figure 8.3: Diffeomorphic registration of a star to a disc. (a)–(c) The fixed
star and the moving disc, and their difference. (d)–(f) The computed non-
diffeomorphic deformation field, T0, the warped disc and the remaining intensity
difference. (g)–(i) Deformation field T1, warped disc and remaining intensity
difference in the diffeomorphic setting. (j) Inverse transformation T−1

1 in the dif-
feomorphic setup. (k) Composition of the forward and backward transform is very
close to identity:T1 ◦ T−1

1 ≈ I. (l) The star warped with the inverse transform
maps close to the disc. In this case, both the non-diffeomorphic and diffeomorphic
deformation are free of folds. The precision of the registration, i.e. the remain-
ing shape differences, are mainly due to the limited resolution we chose for the
deformation field.
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(a) (b)

Figure 8.4: Additive and diffeomorphic deformation on the sphere. Deformation
field for (a) N = 0 (basic additive model) and (b) N = 10 (accurate diffeomorphic
model). While the basic model involves a lot of crossing lines, corresponding to
important folding, the diffeomorphic model produces smooth stream-lines as point
trajectories.

of diffeomorphic deformations, i.e., if the deformation field was described and
regularized by its logarithm, the static velocity field ~u, then complete symme-
try could be obtained at the prize of much more complex flow computations.
Indeed, the inverse of such a deformation field is described by the negative of
its logarithm, which obviously has equal hyperarea.

As future work, it will now be interesting to minimize the inverse-consistent,
symmetric diffeomorphic deformation model within the fast scheme, and, more
importantly, on the sphere. The difference between standard and diffeomorphic
deformation fields on the sphere is illustrated in figure 8.4. However, since
computing the exponential map of a velocity field involves several recursive
compositions through interpolation (deformation field warping), the speed of
spherical data interpolation will quickly become an important bottleneck.



Conclusions 9
“Success is not final, failure is not fatal: it is the courage to
continue that counts.”

Winston Churchill.

The goal of this thesis was to develop a method to register human
cerebro-cortical feature maps on the sphere. First, prior to registration,
the spherical maps are anisotropically low-pass filtered using a Beltrami

scale-space, so as to allow for morphogenically meaningful hierarchical regis-
tration. Then, based on a few concepts from Gestalt theory, and the central
hypothesis that Beltrami-regularization of the inverse problem would allow
reproducing some of the grouping phenomena observed in human vision, we
have developed a novel geometric framework for image registration in general,
and on the sphere in particular. In order to speed up the computation, a fast
scheme has been implemented. Finally, the spherical registration has been
employed and proven useful in a leave-one-out cross-validation study of auto-
matic cortical feature map parcellation, based on a data set consisting of 39
pairs of left and right hemispheres, each of which being manually parcellated
into 35 gyral regions.

9.1 Summary and Main Contributions

The main contributions of this thesis can be summarized as follows:
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9.1.1 Scale-space of cortical feature maps

Given the highly convoluted structure of the cerebro-cortical sheet, it is today
commonly accepted to work with spherical representations of the extracted
actual cortical surface. Cortical folding patterns vary a lot between subjects.
The degree of inter-subject variability, however, changes hierarchically with
the “importance” of the cortical fold in question. It was shown in different
studies that some structures are particularly stable between subjects, while
smaller structures exhibit more variability. It was also suggested, that the
degree of variability is related to brain morphogenesis, and that a scale-space
of cortical mean curvature well reproduces the involved hierarchy.

In this thesis, we have therefore chosen to pre-process the cortical feature
maps into an anisotropic scale-space, based on the Beltrami framework. We
propose to simply include the data of the map, associated to a particular
node of the spherical triangulated mesh, as additional coordinate of the em-
bedding space. Mesh regularity is then measured using the Beltrami energy,
of which the minimizer is efficiently computed using mean curvature vector
estimators, well-known from computer graphics. Our results indicate that the
simplification in coarser scales of the generated scale-space are appropriate
simplifications of the initial feature map. The pattern of sulci and gyri is suc-
cessfully simplified from the detailed initial map into coarser and more abstract
sketches, while keeping the important main structures well-conserved.

9.1.2 Geodesic Active Fields

The proposed Geodesic Active Fields (GAF) framework for image registration
is built around the Beltrami framework. We propose to use an embedding
of the unknown deformation field and the associated Beltrami energy as reg-
ularizer in the inverse problem of image registration. Despite the increased
computational complexity, geometric regularization has several appealing ad-
vantages over standard Gaussian regularization. In particular, the flow-driven
regularization increases separation between different Gestalts in the observed
images, i.e., regularization is reduced across Gestalt boundaries, defined by
sharp transitions in deformation space.

In addition, we replace the traditional additive coupling between data-term
(the image mismatch) and regularity term (Beltrami energy) by multiplica-
tion. Indeed, we use the local image-mismatch as a weighting function in
the Beltrami energy, and the registration problem is actually redefined as a
weighted minimal surface problem. Again, this choice makes the optimization
more complex, but involves some very interesting properties. First, the result-
ing weighted Beltrami energy functional is invariant under re-parametrization,
i.e., choosing one or another parametrization of the images (Cartesian, polar,
...) does not change the registration problem. Second, thanks to the gener-
ality of the Beltrami framework, the registration method can be applied to
images defined on any Riemannian manifold, and is not restricted to the flat
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Euclidean domain. In particular, we show examples of patches on curved sur-
faces and multiscale images. Finally, the multiplicative coupling between data
and regularization involves an automatic, intrinsic modulation of the regular-
ization strength depending upon the local quality of alignment, and/or noise
level. Indeed, in the initial phase of registration, the data-term will generally
perform bad, and regularity is required to be stronger. However, later in the
optimization, images are better aligned, regularization becomes less strict and
local fine-tuning may start. The same observation holds for spatially vary-
ing noise level. Low-noise regions can be aligned in more detail compared to
regions that are more severely affected – or regions where a one-to-one corre-
spondence cannot be established due to “topological changes”, such as lesions.

9.1.3 Fast Scheme

With the FastGAF scheme, we have shown an efficient optimization scheme
for the weighted Beltrami approach, that can outperform current state-of-the-
art approaches both in terms of registration quality, as well as computation
time. The fast scheme relies on a splitting approach, where data-term (the
weighting function) and regularity term (the “Beltrami term”) are optimized
over separate deformation fields, that are, however, constrained to be equal.
This constraint is addressed using an Augmented Lagrangian method, and
the resulting problem can be optimized efficiently in three different sub-tasks.
Currently, we show some promising solutions for these respective sub-problems:
A fixed-point scheme based on semi-implicit gradient descent for the data-
term, and approximate inverse based on a few Jacobi-iterations on a semi-
implicit scheme for the regularity term problem. For sure though, even faster
schemes may still be implemented, based, e.g., on operator splitting such as
AOS (implemented but not reported in this thesis).

Since the problem is non-linear and non-convex, and because of the multi-
plicative relation between the split terms, no guarantee on convergence exists
so far for this optimization method. Nonetheless, we have experienced good
stability and convergence for sufficiently large – but finite and actually rea-
sonably small – penalty weight. This is a clear advantage over pure penalty
methods, where an infinitely large penalty weight is required in order to really
enforce the (equality) constraint.

9.1.4 Registration on the Sphere

In order to register the spherical feature maps obtained after full inflation
of the cortical surface mesh, we adapted the GAF framework to the sphere.
This is somewhat particular, since the full sphere does not comply with the
Riemannian requirements of the GAF method: No single, global and smooth
parametrization can describe the complete spherical surface without singu-
larities. To address this problem, we embed the spherical deformation field
patch-wise, by discretizing the global deformation field hyperarea over each
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Voronoi region separately. We introduce local coordinate charts and local co-
ordinates around each vertex. The resulting discretized registration energy
can be efficiently optimized by employing a similar fast minimization scheme
as in the previous, “flat” case.

The registration scheme is shown to work successfully on a basic artificial
image pair. It is to note that currently, most of the computational complexity
of the spherical registration problem that we propose actually stems from
spherical data interpolation; repeated warping and resampling of the entire
moving image is required at each minimization iteration.

9.1.5 Automatic cerebro-cortical parcellation

In order to assess the spherical registration framework, and to provide a prac-
tical application, we have implemented a simple automatic parcellation scheme
based on a set of available atlas brain surfaces together with their manually
delineated gyral labelizations. The parcellation scheme consists of pairwise
registration of a subject hemisphere to all available atlas hemispheres, individ-
ually. After registration, the atlas feature maps and labelizations are projected
into subject space, where a Bayesian classifier can be trained. This classifier
combines (1) the a priori probability of observing a specific label at a vertex,
estimated from the observed frequency in the atlas data, (2) the likelihood
of observing a specific label given the local subject surface geometry and the
class-specific surface geometries learned from the atlas brains, and (3) the
first-order Markovian likelihood of observing a specific label at a vertex given
the estimations of its immediate mesh neighbors, as a measure of parcellation
smoothness. The MAP solution of this classifier is very efficiently estimated
using iterated conditional modes (ICM), in just a few iterations.

In a leave-one-out cross-validation study based on this automatic parcella-
tion procedure, we were able to show that (1) the proposed Bayesian classifier
outperforms popular majority voting atlas fusion. Further, thanks to the reg-
istration scheme proposed in this thesis, we obtain (2) significant improvement
of the pairwise label agreement before classification, and subsequently (3) sig-
nificant improvement of the parcellation after atlas fusion.

9.1.6 Diffeomorphic Deformations

As the small cherry on top, we sketch how recent, more sophisticated defor-
mation models can easily be integrated into our proposed GAF framework.
Indeed, we provide a deformation model and update rule that imitates the
diffeomorphic demons method. Further, we show how the framework can then
easily be made more inverse consistent, by including a symmetric image match-
ing term based on the now-available inverse deformation. The data-symmetry
reduces the registration differences due to the arbitrary role attribution of fixed
and moving image.
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Nevertheless, we note that the proposed data-symmetric diffeomorphic de-
formation model is still not entirely symmetric, since the regularization term
only acts on the forward deformation field. However, the same restriction holds
for many state-of-the-art models as well.

9.2 Future Work

The conclusions of the different parts constituting this thesis have revealed
directions of future research, that may lead to further improvement of the
proposed methods.

9.2.1 Short term

In particular, we think of the following “immediate” propositions:

• Today, we have not yet fully exploited the spatially adaptive regulariza-
tion strength of the GAF framework. In particular, it would be inter-
esting to test the framework on image pairs exhibiting spatially varying
noise levels and/or topological defects, such as lesions present in only
one of the images. Comparison with state-of-the-art methods, such as
Demons, should then allow to prove this alleged strength of the proposed
GAF algorithm.

• In order to overcome some shortcomings of the current spherical regis-
tration model, it would be important to include the diffeomorphic defor-
mation model in the spherical scheme.

• In the automatic parcellation scheme, rigid pre-registration of the spher-
ical feature maps might help improving the pairwise inter-subject agree-
ment between labelmaps, and thus the outcome of the parcellation after
Bayesian atlas fusion1. Also, the registration parameters of the proposed
spherical registration model can be optimized to improve the perfor-
mance. Here, we the full-blown pairwise registration of all subjects was
run only once, also in order to protect against overfitting.

• We also point out, that the current Bayesian atlas fusion scheme can
still be improved. In particular, we suggest including better spatial and
smoothness priors, e.g., since we know that boundaries between gyral
regions will favorably be located at sulcal cusps (as opposite to gyral
ridges).

1Actually, in the course of this thesis, we have also developed a parametric, multiscale
registration framework on the sphere, theoretically capable of rigid registration, but we
decided not to include it in this document due to missing experimental validation and to
keep the thesis at reasonable scope.
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• The proposed GAF model only embeds the deformation field compo-
nents along with the spatial coordinates, and the resulting regularizer is
purely flow-driven. It is straightforward, however, to obtain a combined
flow-intensity-driven regularizer, by including intensity or other features
of the underlying image pair. This is in full accordance with the idea,
that edges in the images are valid predictors for edges in the deformation
field. Ultimately, since the Beltrami energy involves a coupling term be-
tween different embedded feature channels, this will allow resigning from
a data-term weighting function altogether. Indeed, the mutual alignment
of both image gradients, as well as flow-intensity driven regularization
of the unknown deformation field, are all obtained by minimizing this
extended hypersurface, corresponding to a model that we may call “Har-
monic Active Fields” in analogy to the similarly defined harmonic active
contours.

9.2.2 And beyond

Finally, we would like to end this thesis with a more “long distance perspective”
of interesting research directions, unfolding from results achieved and insights
gained during the last few years while working intensely in this domain.

Indeed, multiplicative regularization, with TV as regularization penalty,
was already proposed in the context of inverse problems in wave propagation
and scattering, (Abubakar and van den Berg, 2001), and shown to offer some
benefit in image deblurring (Abubakar et al., 2004). However, only very re-
cently, this work has raised some interest in the computer vision community
(Orozco Rodŕıguez, 2011; Lam, 2011). Also, in contrast to the deformation
field regularization proposed in this thesis, there data-term and regularizer are
multiplied on a global level, i.e., both terms compete not locally, but globally.

Now, we propose a slightly different, more local approach. The main inter-
est of multiplicative regularization is the adaptive modulation of the required
regularization strength by the current local “regression quality”, i.e., the local
error on the data-term. Depending upon the specific inverse problem, this error
is constituted of local mismatch, misalignment, or noise level. Now, based on
the general intuition on geometric regularization, we believe that the weighted
Beltrami framework has great potential as generalized regularizing functional,
and propose the following general approach, as a substitute for the classical
Tikhonov regularization approach:

Weighted minimal surface problem: The unknown data u is embed-
ded and the Polyakov energy penalizes its variations to obtain regularity. The
weighting function includes the local contribution to the global data-term
‖Φu − f‖pp, which we write |Φu − f |pp(x) with some abuse of notation. In
case of L1 denoising, this term might be given by |u − f |(x). The weighting
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then drives the minimization towards the solution of the inverse problem:

min
u

{
E =

∫ (
1 + α|Φu− f |pp(x)

)√
g(u) dx

}
(9.1)

Note, however, that determining the local data term contribution |Φu−f |pp(x)
may not be straightforward, depending on the specific inverse problem.

Since Beltrami regularization is used instead of TV, and because the mul-
tiplication is on a local basis, the resulting energy functional inherits very inter-
esting properties already observed with GAF: (1) it maintains re-parametrization
invariance, (2) it is applicable to any Riemannian manifold and not just spe-
cific Cartesian images, and (3) it seamlessly generalizes to regularization of
vectorial inverse problems, such as deformations or color.

We are confident that, much like the FastGAF scheme, this approach
will likely benefit from research in related fields, such as compressed sens-
ing (Donoho, 2006) and optimization theory (Glowinski and Le Tallec, 1989),
where very efficient optimization algorithms have been developed.

Also, we will focus further research on how the idea of data-term weighting
can be extended to more recent regularization concepts, such as non-local
regularization (Gilboa and Osher, 2008; Buades et al., 2008; Lou et al., 2009;
Elmoataz et al., 2008; Peyré et al., 2008; Bougleux et al., 2011).





Some Spherical Tools A
As illustrated in figure 3.1, the cortical maps are sampled at the

vertices of a triangular surface mesh. In order to work with these
samples, several tools need to be defined for the mesh and the function

defined on it. Particular entities that are of interest are the gradient of the
function defined on the mesh, i.e. its first order Taylor expansion in any vertex,
as well as the interpolation of the function and its gradient at any other surface
point.

One can distinguish two major approaches in defining those tools. The
first one consists of expanding the mesh and the function using (differentiable)
basis functions in order to perform analytical resolution of the aforementioned
linear operations. The second approach exploits the available topological in-
formation of the triangulation to perform discretization of the desired opera-
tions in a more direct fashion. While the former way is more rigorous from
a mathematical point of view, the latter has important benefits with respect
to implementation and computation time, what makes it the approach of our
choice.

A.1 Spherical Mesh Generation

A perfectly regular distribution of an arbitrary number n of nodes on the
spherical surface is not easy to determine. If regularity is defined in terms of
a minimal total potential energy In based on relative distances between the
n points, the problem is called the Fekete problem. One choice to define the
potential energy of an n-tuple of points wn = {~x1, . . . , ~xn|~xi ∈ S2} uses Riesz’s
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energies:

In =
∑
i 6=j

1

‖~xi − ~xj‖s
, (A.1)

where in the general case s > 0. The choice of s = 1 leads to the standard
Coulomb potential used to model electrons repelling each other (the Thomson
problem (Thomson, 1904)). The limit s → ∞ corresponds to the packag-
ing problem, where the minimal angle between adjacent points needs to be
maximized (the Tammes problem (Tammes, 1930)).

A.1.1 Regular polyhedra

Three regular, triangular polyhedra are solutions to the Thomson problem,
corresponding to n = 4, 6, 12: the tetrahedron (4 vertices, 4 faces, 6 edges),
the octahedron (6 vertices, 8 faces, 12 edges), and the icosahedron (12 vertices,
20 faces, 30 edges). The vertices of the isocahedron of edge-length 2 are

(x, y, z)12 = {(0,±1,±φ), (±1,±φ, 0), (±φ, 0,±1)},

where φ = (1+
√

5)/2 is the golden ratio. The unit sphere octahedron vertices
are given simply by

(x, y, z)8 = {(±1, 0, 0), (0,±1, 0), (0, 0,±1)},

and the tetrahedron vertices can be found in the corners of a cube:

(x, y, z)4 = {(1, 1, 1), (−1,−1, 1), (−1, 1,−1), (1,−1,−1)}.

For arbitrary n, the Riesz energy criteria define a highly non-linear opti-
mization problem. The resulting point sets are called minimum energy (ME)
points. Other regularity criteria maximize the determinant of an arbitrary
spherical polynomial basis. Such point distributions are called extremal or
maximum determinant (MD) points (Womersley and Sloan, 2001).

A.1.2 Subdivision

A computationally interesting approach to generate highly regular point distri-
butions on the sphere is recursive triangular subdivision of the above polyhe-
dra. Each edge is split in two, and new edges connect the additional vertices to
replace each triangle by four sub-triangles. Consequently, the triangular sub-
division creates vertices with 6 neighbors each. The icosahedron has vertices
with 5 neighbors each, and the resulting subdivision triangulation is there-
fore of highest regularity. In contrast, the tetrahedron with only 3 neighbors
per vertex creates important artifacts, also with respect to regularity of the
subdivision triangles.

At each iteration, the additional vertices are projected onto the spherical
surface. An illustration of the subdivision meshes at different levels for each
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of the three considered polyhedra is shown in figure A.1. In total, the number
of faces and edges is multiplied by 4 at each iteration, while the number of
vertices is given by the sum of vertices and edges in the previous iteration:

fi+1 = 4fi (A.2)

ei+1 = 4ei (A.3)

vi+1 = vi + ei, (A.4)

where fi, ei and vi denote the number of faces, edges and vertices in the mesh at
iteration i, respectively. Moreover, these three numbers obey Euler’s formula
at all time:

χ = v − e+ f = 2, (A.5)

where χ is called the Euler characteristic. On top of that, in triangular meshes
the number of edges and faces is directly calculated by the number of vertices
as

e = 3v − 6 (A.6)

f = 2v − 4. (A.7)

Therefore, the number of vertices distributed on the sphere evolves as

vi+1 = 4vi − 6, (A.8)

and the set of possible numbers of vertices distributed on the sphere by a
triangular subdivision scheme is spanned by a geometric series of ratio 4:

vi = 4i(v0 − 2) + 2, (A.9)

where the coefficient v0 is the number of vertices in the initial polyhedron. At
first sight, this set of possible node configurations might seem too restrictive.
The geometric series, however, corresponds well to the exponential sampling
of equidistant scales.

A.2 Mesh smoothing

Some of the meshes produced by freesurfer are not perfectly inflated to the
sphere. Although all vertices are eventually projected on the spherical surface,
the mesh contains some remaining microfolds. These folds are not visible at
macroscopic scale and probably have no impact. At small scale, they are
characterized by vertices being located within neighboring or slightly distant
triangles. Three layers of the mesh cover the same spherical region. This not
only undermines the spherical triangle walking algorithm presented later in
this appendix – the middle layer is oriented oppositely to the spherical tangent
plane – it also means that the spherical parametrization of the cortical surface
is not bijective. Three cortical points map to the same spherical location.
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v = 4 10 34 130 514

v = 6 18 66 258 1026

v = 12 42 162 642 2562

Figure A.1: Polyhedra subdivision for regular point distribution on the sphere.
The integer v under the subdivision mesh indicates the number of vertices dis-
tributed on the sphere. The shaded patch corresponds to a single face in the
initial polyhedron. Top: Tetrahedron and 4 subsequent subdivision levels. The
meshes suffer from heavy artifacts and uneven triangle size. Center: Octahedron
and 4 subsequent subdivision levels. The subdivided meshes have 6 vertices that
are connected to 4 neighbors only. Bottom: Icosahedron and 4 subsequent sub-
division levels. The icosahedron subdivisions contains 12 vertices that have only 5
direct neighbors. Among the three polyhedron subdivision meshes, the icosahedron
presents highest regularity.

The unmet bijectivity condition represents a major problem. To overcome
it, we propose to perform mesh smoothing. Implicit fairing using Laplacian
diffusion does a good job (Desbrun et al., 1999).

The Laplacian matrix of the mesh is built as follows:

Lij =


1
mi

j ∈ N1(i)

−1 i = j
0 otherwise

(A.10)

This very simple Laplacian is also known as the umbrella operator. It drives
a vertex i to the center of gravity of its surrounding first-order neighbors
j ∈ N1(i).
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Figure A.2: Detail of the original and smoothed mesh, using implicit Laplacian
smoothing. The colored triangles initially contain vertices of neighboring faces and
thus indicate the presence of microfolds. Coloring is conserved in the right-hand
image, although no more folds are detected. Both images represent the same
angle-of-view.

The diffusion equation of the vertex coordinates x ∈ RN×3 is written as

∂x

∂t
= λLx, (A.11)

where λ is the diffusion coefficient. We apply time-shifted evaluation to for-
mulate an implicit integration scheme, also known as backward Euler scheme:

(I − λdtL)xn+1 = xn, (A.12)

where the exponent refers to the time index of the coordinates. After each
integration, the vertices must be reprojected on the spherical surface. The
parameter λdt governs the speed and precision of the integration scheme. In
contrast to the simpler forward Euler scheme, the implicit scheme is uncon-
ditionally stable, but requires resolution of a linear system. As the Laplacian
matrix is highly sparse, this is nevertheless achieved in reasonable time. The
results are illustrated in figure A.2.

A.3 Gradient estimation

At several occasions, we need to estimate the gradient of a function on a
spherical triangulated mesh. Here we present a solution we chose in our im-
plementation.

A.3.1 Definitions

Let the surface be defined by ~r = ~r(u1, u2) = (x(u1, u2), y(u1, u2), z(u1, u2))T

in R3 1. Let ~r,α = ∂~r
∂uα

, α = 1, 2 be the intrinsic tangent vectors, defining the

1The gradient of the attached function over the 2D manifold is an intrinsic measure, i.e.,
the dimension and structure of the embedding space does not matter.
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tangent plane. Further, we define a data function f : R2 → R, that maps a
feature to each point of the 2D manifold 2. The gradient of the function with
respect to the parametrization is then defined as

∇Sf =

(
∂f

∂u1
,
∂f

∂u2

)
, (A.13)

and within the embedding space, this is written

∇f = [~r,1, ~r,2]

(
∂f

∂u1
,
∂f

∂u2

)T
= ~r,αf,α, (A.14)

where in the second equality f,α = ∂f
∂uα

, and Einstein summation was used.

A.3.2 Gradient estimation on triangulated maps

Unfortunately, the data function is only sampled at the vertices. These sam-
ples can be interpolated using differentiable basis functions to analytically
compute its gradient at the vertices. Nevertheless, the data values attached
to the vertices are usually interpolated linearly over the surface, which is not
differentiable at the vertices, and estimators need to be used.

Again, one can use spatial averaging of the gradient information around
the vertex (Lopez-Perez et al., 2004). Alternatively, the gradient can be fitted
using least squares approximation (Frank and Lang, 2000). As one is interested
in the gradient within the tangent plane of the manifold, it is useful to enforce
this by design. Therefore we will extend the latter approach to this end through
projection of the data into the local plane, prior to gradient fitting.

First, we construct a local coordinate chart and determine the local coor-
dinates of the neighboring vertices, as defined in (6.2) and (6.3).

A first order Taylor expansion of the feature map f around ~xi, using these
local coordinates ~θi now yields:

f(~xj) = f(~xi) +
〈
~θj,∇Sf

〉
+ ε. (A.15)

To simplify the notation, we define

f ′j =
f(~xj)− f(~xi)

‖~θj‖2

, (A.16)

where ‖ · ‖2 denotes the L2-norm, and rewrite equation (A.15) accordingly:

f ′j =

〈
~θj

‖~θj‖2

,∇Sf

〉
+ ε. (A.17)

2The extension to multidimensional features is straightforward and omitted for simplicity
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a) b) c)

Figure A.3: Gradient estimation on the cortical map. (a) The mean-curvature
map is projected on the partially inflated surface. (b) The norm of the estimated
gradient, and (c) its azimuth.

Now we look for an optimal ∇Sf that minimizes ε in the least square sense.
We define the following matrix

Akj =
[~θj]k

‖~θj‖2

, (A.18)

where k = 1, 2 denotes the components of the local coordinates vector ~θj. The
minimization problem and its direct solution can now be written in matrix
notation as

∇̂Sf = argmin~g(‖A~g − ~y‖2)

= (ATA)−1AT~y. (A.19)

In figure A.3 we show an example of estimated gradient of a cortical feature
map, projected onto the inflated surface for easier understanding.

A.4 Spherical point location and data
interpolation

In order to perform image or deformation field interpolation, resampling and
warping on the spherical surface, we need to locate a query point (e.g. vertex
of the fixed mesh) within the correct triangle in the target mesh (e.g. moving
image). Point location is one of the basic problems in computational geometry.
Let S be a (triangular) mesh and p the query point, then point location means
finding the polygon (triangle) T in S containing p. Point location is a key
step for the interpolation of a data function, but is also used in real time
classification.

A.4.1 Triangle containment

In order to determine whether a point p be contained by the triangle T , it is
useful to define the barycentric coordinates of p with respect to T . Let the
triangle be defined by its three vertices ~vi, ~vj and ~vk. These three vectors form
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a basis of R3, and any point p with Cartesian coordinates ~p may be represented
as a weighted sum of them, i.e.

~p = Tλ1~vi + Tλ2~vj + Tλ3~vk, (A.20)

where Tλ1, Tλ2 and Tλ3 are the barycentric coordinates of p with respect to
T . If the point p lies in the same plane as the triangle T , then the barycentric
coordinates are subjected to the constraint

Tλ1 + Tλ2 + Tλ3 = 1. (A.21)

Further, if p lies within the triangle T , all barycentric coordinates are non-
negative. Substituting Tλ3 = 1− Tλ1− Tλ2 into equation (A.20) and rearrang-
ing yields

~p = ~vk +T λ1(~vi − ~vk) + Tλ2(~vj − ~vk), (A.22)

where ~p is required to be in the triangular plane. p is now contained by T if
both Tλ1 and Tλ2 are non-negative, and if Tλ1 + Tλ2 ≤ 1.

In the spherical case, both the query point p and the vertices of the trian-
gles lie on the spherical hull, but the triangle edges are cords of the sphere.
Consequently, the query point will generally not lie within the triangular plane.
In this case, triangle containment is understood as the radial beam from the
sphere center through the query point intersecting the triangular plane within
the triangle. Equation (A.22) is extended by an additional degree of freedom
along the radial beam, defined by the vector (~p− ~c):

~p = ~vk +T λ1(~vi − ~vk) + Tλ2(~vj − ~vk) + ε(~p− ~c), (A.23)

where the value of ε is not of actual interest. The introduction of this additional
degree of freedom leads to some ambiguity as triangles of opposite sides of the
sphere might now concurrently apply as containing triangles. In such a case,
the candidate triangle exhibiting smaller |ε| should be selected.

A.4.2 Classical point location schemes

A naive solution to point location is exhaustive search through the whole set
of mesh-cells. Such an algorithm is expected to perform in O(n). The first effi-
cient point location algorithm in the plane was proposed by Dobkin and Lipton
(Dobkin and Lipton, 1976). They put parallel lines L through any vertex of
a planar mesh, and any pair of neighboring lines Li and Li+1 forms a band.
The band itself is structured into subregions by a set of non-intersecting mesh
edges. For a new point p, both the band and the subregion within the band
can be determined in O(log n), using binary search. However, the bands and
subregions need to be pre-calculated, requiring a considerable amount of space
O(n2 log n) and time O(n2). Kirkpatrick proposed a point location algorithm
making use of hierarchical subdivision of the strictly triangular mesh cells, that
locates in O(log n) as well, but requires only O(n) space and O(n) time for
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preparation (Kirkpatrick, 1983). They recursively embed several mesh cells in
one or more parent cells up to a certain height during preparation, while for
point location the algorithm descends this hierarchy, looking for the respective
daughter cell containing the query point p. Other authors have provided more
practical algorithms and implementations with similar performance (Sarnak
and Tarjan, 1986; Edelsbrunner et al., 1986).

In contrast to the aforementioned algorithms, that all are based on a di-
vide and conquer strategy, another class is formed by so-called walk-through
algorithms. The general complexity of these algorithms is O(

√
n), without

any extra preparation except having direct access to the neighboring triangles.
Starting from a random triangle, these algorithms walk through the mesh until
they find the triangle containing the point p. Several authors provided differ-
ent decisions on how to progress through the mesh: Mücke et al. perform a
segment intersection test (Mücke et al., 1996). A line segment between the
starting point and the query point is drawn, and one walks only over triangles
that are intersected by this line segment. Earlier, Guibas and Stolfi proposed
the Counter Clock Wise Search (Guibas and Stolfi, 1985). They compute the
determinant of an edge with respect to the query point and compare this to
the determinant of the vertex opposite to that edge – if the two determinants
are of opposite sign, then the edge is crossed. In case both remaining edges of
the triangle could be crossed, there is ambiguity, and the path begins to me-
ander. Sundareswara et al. resolve this ambiguity with the use of barycentric
coordinates to obtain a straighter path (Sundareswara and Schrater, 2003).
This algorithm computes the barycentric coordinates of the query point with
respect to the current triangle, and crosses the edge corresponding to the two
highest coordinates, until all barycentric coordinates are positive. Wu et al.
port this point location algorithm to the sphere, and add a pre-processing
stage that provides a good starting triangle for each query point p (Wu et al.,
2005). This is basically a combination of a divide-and-conquer algorithm to
determine the start triangle, and of a walk-through algorithm for final point
location.

A.4.3 Spherical triangle walk

In the present context, spherical interpolation will take place in 2 well-defined
situations: During warping, to interpolate the fixed map at the vertices of the
moving map, and during velocity field exponentiation, defining the deforma-
tion field in a diffeomorphic setting. In both cases, a good initial guess for
the starting triangle can be obtained easily, and spherical triangle walk is a
promising point location and interpolation method.

For warping, as the deformation does not change drastically between itera-
tions, the triangle hit of the previous iteration can be used as a good guess for
triangle walk initialization. At the very first iteration, such a “history” is not
available, but nice guesses can easily be approximated by (randomly) looking
for corresponding triangles no farther than a certain certain threshold.
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To locate a point p on the sphere and starting at a given triangle T , we
compute the local coordinates Tλ1 and Tλ2 of p w.r.t. T according to equa-
tion (A.23). If p is not contained in T , the coordinates can be signed in four
different ways, and the next triangle is selected accordingly. If both coordi-
nates are positive, the next triangle selected shares the edge ~vi~vj, opposite
to the vertex ~vk. If only one coordinate is positive, the corresponding edge
is crossed, i.e. the next triangle will be the adjacent face, which is opposite
to the negative vertex. Finally, if both coordinates are negative, the query
point lies “behind” ~vk, and we select a triangle linked to ~vk, but that does not
share any of the vertices ~vi or ~vj. Triangle walk proceeds until the containing
triangle is found, usually within a reasonable amount of time. See figure A.4
for a long walk on the sphere.

A major condition for this triangle walk scheme to work, is having a suffi-
ciently convex mesh. In deed, if the mesh is too much convoluted, the triangle
plane and the “mean” tangent plane are oppositely oriented. Thus, the algo-
rithm will walk in the wrong direction, and it can get stuck indefinitely. An
easy but only partially successful solution to this problem consist in perform-
ing short random walks as soon as the normal walk gets stuck. Alternatively,
the mesh is processed to remove undesirable folds, as seen below. An instance
of a triangle walk getting lost in a microfold, and its success in a smoothed
mesh, are shown in figure A.4.

A.4.4 Vertex binning

In cases, where the mesh surface is not regular, i.e. not “sufficiently” spheroid,
and where smoothing is not possible, we propose a different approach to point
location. It is based on a divide-and-conquer preparation step. But in contrast
to the previously mentioned methods, we index faces according to the spatial
location of their vertices only. This is based on the fundamental assumption
that if the query point p is in the immediate vicinity of a vertex v, then there is
a high chance that the containing triangle shares this vertex. For a sufficiently
regular triangulation, i.e. non-obtuse triangles, this is generally true 3.

Our method consists in binning the vertices as a preparation step. Once
the vertices are binned, they are replaced by the corresponding faces. The
same face can therefore be assigned to three different bins. A query point
can directly be mapped into a corresponding bin as well. According to the
fundamental assumption mentioned above, we expect to find the containing
triangle in the same bin, and the all respective faces of the bin are checked for
containment according to equation (A.23). If no triangle within the selected
bin contains the query point, an appropriate fallback strategy needs to be
defined. The expected complexity of the algorithm does not depend on the
number of faces or vertices of the mesh, i.e. O(1), as the size of the bins can be

3If a 1-ring patch consists of only non-obtuse triangles, then it entirely covers the Voronoi
region corresponding to its central vertex. All points having the central vertex as its nearest
neighbor then automatically lie within one of the 1-ring triangles.
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a) b)

c) d)

Figure A.4: Triangle walk for spherical point location. (a) Global view of a single
trajectory over a relatively large walking distance. Point location is initialized at
the top left end of the trajectory, the target point to be located is marked with
a green circle, at the lower right end of the trajectory. (b) Density plot of 250
trajectories between the same start and target triangles. When both containment
coordinates are negative, the algorithm chooses randomly among the triangles that
do not share any of the vertices ~vi or ~vj, providing some randomness w.r.t. to the
chosen trajectory. All observed trajectories cover between 161 and 207 triangles,
the mode being at 192. (c) Close-up of a trajectory trapped in a microfold of a
different mesh. The point to be located is the barycenter of the triangle shaded in
grey. (d) After mesh smoothing, the microfold has disappeared. The dense region
is easily traversed, and the target is reached within few iterations.



172 Some Spherical Tools

chosen arbitrarily small. The worst-case performance depends on the fallback
strategy.

A simple approach is to bin the vertices of the mesh according to their
spherical coordinates, θ and φ. This requiresO(n) both in space and time. If no
triangle in the bin contains the query point, full blown search is performed over
the whole mesh. This θ-φ binning is easily implementable, but has important
drawbacks. The main problem resides in the fact, that a triangle can span
part of a bin, even without having one of its vertices in this bin. This is
particularly the case in polar regions, where the bins get extremely narrow. In
case of failure, the fallback strategy is not very interesting, as it directly leads
to O(n).

A.4.5 Octree binning

A more sophisticated approach makes use of hierarchical binning of the ver-
tices, to allow for a smoother fallback strategy. We propose to bin the vertices
according to a octree division of the 3D space embedding the spherical mesh.
Also, coordinate transforms are thus not necessary anymore, as the 3D coor-
dinates of the vertices can directly be used for binning.

A global cube enveloping all the vertices of the mesh is divided into 8
identical octant cubes. Each of these cubes is recursively split in the same
way, until a certain stop criterion is met. The set of all cubes at all levels form
the nodes of an octree. Each cube in the tree has either eight children or no
children. All cubes, that have no children, are called terminal nodes, or leaves
of the tree. The volumes spanned by the terminal nodes form a partition of the
initial volume, i.e. each point within the initial cube is contained in exactly
one terminal cube. Each terminal node writes its label into a cubic lookup-
table, typically a 3D image of resolution corresponding to the dimensions of
the smallest terminal node.

We choose to stop the recursive splitting, if the number of vertices contained
in a cube falls below a certain threshold. Each node of the octree is aware of
the vertices it contains, and it knows its parent cube. Again, once the vertices
are binned, they are replaced by the corresponding faces. The binning requires
a total of O(n log n) space, and can be achieved in O(n log n) time.

Thanks to the hierarchical structure of the octree binning, one disposes of a
gradual fallback strategy, with full blown search necessary only at the very last
resort. Although worst-case search performance is still of O(n), the average
performance with respect to θ-φ binning is expected to improve significantly,
thanks to the intermediate fallback steps.

A.4.6 Interpolation

Once the containing triangle of a query point has been determined according
to equation (A.23), we use linear interpolation to estimate the data function
at the query point. The barycentric coordinates, i.e. the coefficients Tλ1 and
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a) b)

c) d)

e) f)

Figure A.5: Different aspects of octree vertex binning. (a) The regular bin-
pattern on the sphere, obtained using θ-φ binning, as opposed to (b) irregular
binning pattern resulting from spatial octree splitting. (c) 3D visualization of
the octree terminal nodes, containing the spherical vertices. Empty cubes are
only drawn in the posterior half. Cube color corresponds to subdivision depth,
transparency indicates lower density cubes. (d) Terminal node cell-size histogram.
The threshold below which a cube is not further split has been chosen at 40. (e)
Frequency plot of the different node levels, showing that not many empty cubes
are generated as overhead. 7 levels were sufficient to bin the 130k vertices in bins
smaller than 40. (f) The triangular spherical mesh has been resampled at 1.6M
vertices of a regular θ-φ spherical mesh. More than 99% of these points could be
located within the leaf cube, and only one instance required full blown search.
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Tλ2, are used to interpolate the data function from the three vertex-samples
as follows:

f̂(~p) = Tλ1f(~vi) + Tλ2f(~vj) + (1− Tλ1 − Tλ2)f(~vk). (A.24)
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