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Abstract

This thesis addresses the problem of industrial real-time process optimization that

suffers from the presence of uncertainty. Since a process model is typically used to

compute the optimal operating conditions, both plant-model mismatch and process

disturbances can result in suboptimal or, worse, infeasible operation. Hence, for

practical applications, methodologies that help avoid re-optimization during process

operation, at the cost of an acceptable optimality loss, become important. The

design and analysis of such approximate solution strategies in real-time optimization

(RTO) demand a careful analysis of the components of the necessary conditions of

optimality. This thesis analyzes the role of constraints in process optimality in the

presence of uncertainty.

This analysis is made in two steps. Firstly, a general analysis is developed to quan-

tify the effect of input adaptation on process performance for static RTO problems.

In the second part, the general features of input adaptation for dynamic RTO prob-

lems are analyzed with focus on the constraints. Accordingly, the thesis is organized

in two parts:

1. For static RTO, a joint analysis of the model optimal inputs, the plant optimal

inputs and a class of adapted inputs, and

2. For dynamic RTO, an analytical study of the effect of local adaptation of the

model optimal inputs.

The first part (Chapters 2 and 3) addresses the problem of adapting the inputs to

optimize the plant. The investigation takes a constructive viewpoint, but it is lim-

ited to static RTO problems modeled as parametric nonlinear programming (pNLP)

problems. In this approach, the inputs are not limited to being local adaptation of

the model optimal inputs but, instead, they can change significantly to optimize the

plant. Hence, one needs to consider the fact that the set of active constraints for the

model and the plant can be different. It is proven that, for a wide class of systems,

the detection of a change in the active set contributes only negligibly to optimality,

as long as the adapted solution remains feasible. More precisely, if η denotes the

magnitude of the parametric variations and if the linear independence constraint

qualification (LICQ) and strong second-order sufficient condition (SSOSC) hold for
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iv Abstract

the underlying pNLP, the optimality loss due to any feasible input that conserves

only the strict nominal active set is of magnitude O(η2), irrespective of whether or

not there is a change in the set of active constraints. The implication of this re-

sult for a static RTO algorithm is to prioritize the satisfaction of only a core set of

constraints, as long as it is possible to meet the feasibility requirements.

The second part (Chapters 4 and 5) of the thesis deals with a way of adapting

the model optimal inputs in dynamic RTO problems. This adaptation is made along

two sets of directions such that one type of adaptation does not affect the nominally

active constraints, while the other does. These directions are termed the sensitivity-

seeking (SS) and the constraint-seeking (CS) directions, respectively. The SS and

CS directions are defined as elements of a fairly general function space of input vari-

ations. A mathematical criterion is derived to define SS directions for a general class

of optimal control problems involving both path and terminal constraints. According

to this criterion, the SS directions turn out to be solutions of linear integral equa-

tions that are completely defined by the model optimal solution. The CS directions

are then chosen orthogonal to the subspace of SS directions, where orthogonality is

defined with respect to a chosen inner product on the space of input variations. It

follows that the corresponding subspaces are infinite-dimensional subspaces of the

function space of input variations. It is proven that, when uncertainty is modeled

in terms of small parametric variations, the aforementioned classification of input

adaptation leads to clearly distinguishable cost variations. More precisely, if η de-

notes the magnitude of the parametric variations, adaptation of the model optimal

inputs along SS directions causes a cost variation of magnitude O(η2). On the other

hand, the cost variation due to input adaptation along CS directions is of magnitude

O(η).

Furthermore, a numerical procedure is proposed for computing the SS and CS

components of a given input variation. These components are projections of the

input variation on the infinite-dimensional subspaces of SS and CS directions. The

numerical procedure consists of the following three steps: approximation of the op-

timal control problem by a pNLP problem, projection of the given direction on the

finite-dimensional SS and CS subspaces of the pNLP and, finally, reconstruction of

the SS and CS components of the original problem from those of the pNLP.
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Résumé

Cette thèse aborde le problème de l’optimisation en temps réel des procédés indus-

triels en présence d’incertitude. Pour déterminer les conditions opératoires optimales,

un modèle du procédé est généralement utilisé. En conséquence, les erreurs de mod-

élisation, l’incertitude paramétrique et les perturbations vont typiquement conduire

à la sous-optimalité voire à l’infaisabilité si l’on utilise telles quelles les conditions

opératoires optimales ainsi obtenues. Il est donc grandement nécessaire, pour les ap-

plications pratiques, de disposer de méthodes qui garantissent une perte d’optimalité

acceptable, sans pour autant nécessiter de réoptimisation en ligne, basée sur le mod-

èle. Pour concevoir et analyser de telles stratégies d’optimisation en temps réel

(OTR), il convient d’effectuer une analyse approfondie des composantes des con-

ditions nécessaires d’optimalité. Cette thèse analyse le rôle des contraintes pour

l’optimalité des procédés, en présence d’incertitude.

Cette analyse est faite en deux étapes. Premièrement, une analyse générale est

réalisée, pour mesurer l’effet de l’adaptation des entrées pour les problèmes d’OTR

statiques. Dans la deuxième partie, les caractéristiques générales de l’adaptation des

entrées pour des problèmes d’OTR dynamiques sont analysées, avec l’emphase sur

les contraintes. En conséquence, la thèse est organisée en deux parties :

1. Pour l’OTR statique, une analyse commune des entrées optimales du modèle, des

entrées optimales du procédé réel et d’une classe d’entrées adaptées, et

2. Pour l’OTR dynamique, une étude analytique de l’effet de l’adaptation locale des

entrées optimales du modèle.

La première partie (Chapitres 2 and 3) traite du problème de l’adaptation des

entrées pour optimiser le procédé. La recherche prend un point de vue constructif,

mais elle est limitée aux problèmes d’OTR statiques, formulés comme des problèmes

de programmation non linéaire paramétrique (PNLp). L’adaptation des entrées n’est

pas limitée au voisinage des entrées optimales du modèle mais, a contrario, les entrées

peuvent changer de manière significative. Par conséquent, on ne peut écarter que les

ensembles de contraintes actives à l’optimum du modèle et à l’optimum du procédé

puissent être différents. Dans cette thèse, il est montré que pour une large classe

de systèmes, la détection d’un changement de l’ensemble des contraintes actives ne
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contribue que de façon négligeable à l’optimalité, tant que la solution adaptée de-

meure faisable. Plus précisément, si η désigne l’ampleur des variations paramétriques,

sous couvert de la linear independence constraint qualification (LICQ) et la strong

second-order sufficient conditions (SSOSC) pour la PNLp, pour toutes les entrées

appliquées au procédé qui préservent inchangé l’ensemble des contraintes stricte-

ment actives obtenues avec le modèle nominal, la perte d’optimalité est de l’ordre

de O(η2), indépendamment de, si oui ou non, les ensembles de contraintes actives

du modèle et du procédé diffèrent. L’implication de ce résultat pour un algorithme

d’OTR statique est de donner la priorité à la satisfaction d’un ensemble de base de

contraintes, tant qu’il est possible de répondre aux exigences de faisabilité.

La deuxième partie (Chapitres 4 et 5) de la thèse étudie l’adaptation des en-

trées optimales du modèle pour les problèmes d’OTR dynamiques. Il est proposé de

réaliser cette adaptation selon deux ensembles de directions selon que l’adaptation

modifie ou pas les contraintes nominalement actives. Ces directions sont respective-

ment appelées sensitivity-seeking directions (i.e. directions qui cherchent les sensibil-

ités) et constraint-seeking directions (i.e. directions qui cherchent les contraintes), et

sont notées SS et CS, respectivement. Les directions SS et CS sont définies comme

les éléments d’un espace fonctionnel correspondant à une large classe de variations

d’entrée. Un critère mathématique est dérivé pour définir les directions SS pour une

classe générale de problèmes de commande optimale, impliquant des contraintes de

chemin et des contraintes terminales. Selon ce critère, les directions SS se révèlent

être les solutions d’équations intégrales linéaires qui sont complètement définies par

la solution optimale du modèle. Les directions CS sont alors choisies orthogonales

à l’espace des directions SS, où l’orthogonalité est définie au moyen d’un produit

scalaire choisi dans l’espace des variations d’entrée. Il s’ensuit que les sous-espaces

correspondants sont des sous-espaces de dimensions infinies de l’espace fonctionnel

des variations d’entrée.

Il est prouvé que, lorsque l’incertitude est modélisée en termes de petites varia-

tions paramétriques, séparer les adaptations des entrées selon les ensembles de direc-

tions susmentionnés, conduit à des variations du coût clairement identifiables. Plus

précisément, si η désigne l’ampleur des variations paramétriques, l’adaptation des

entrées optimales du modèle dans des directions SS entraîne une variation des coûts

de l’ordre de O(η2), tandis que selon de directions CS elle est de l’ordre de O(η).
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Par ailleurs, une procédure numérique est proposée pour calculer les composantes

SS et CS d’une variation d’entrée donné. Ces composantes sont des projections

de la variation de l’entrée sur les sous-espaces de dimensions infinies des direc-

tions SS et CS. La procédure numérique est constituée des trois étapes suivantes:

l’approximation du problème de contrôle optimal par un problème de PNLp, la pro-

jection de la direction donnée sur les sous-espaces SS et CS de dimensions finies du

problème de PNLp et, enfin, la reconstruction des composantes SS et CS du problème

original à partir du problème de PNLp.

Mots-clés:

Optimisation Statique en Temps Réel, Optimisation Dynamique en Temps Réel,

Incertitude Paramétrique, Programmation Non Linéaire, Contrôle Optimal.
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Ĩ Set of indices of strictly active constraints at (ũ, θ̃)
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Chapter 1

Introduction

1.1 Motivation

When it comes to choosing one from a multitude of options, it is possible to sys-

tematically choose the best option only if we know the result of the choice of each

option. If repeated choice is not possible or if the number of options is enormous, as

frequently happens in real-life, we need to have some knowledge of cause-effect type

between available options and possible results.

In engineering processes, this knowledge is the model of a process that relates

inputs of the process to its outputs. Mathematical process models are widely used

in engineering. Since engineering processes are man-made, there is naturally always

a choice from a multitude of inputs. As can be expected, choice of best inputs is

always a problem in engineering and it is solved by applying optimization techniques

to the available process model.

Consider, for example, the problem of

• choice of the speed of a rocket that is intended to put a satellite in a desired orbit in

minimum time, with the constraint that the rocket engine cannot generate speeds

above a certain limit and that body temperature of the rocket should remain below

a safety limit, or

• choice of the rate at which a raw material is to be fed to a chemical reactor so

that the amount of the chemical produced in a given time is the largest, with the

constraint that the physical equipment attached to the reactor cannot handle feed

rates larger than a certain limiting value and the reactor temperature cannot cross

above a safety limit.

1



2 1 : Introduction

Thus, while choosing best inputs, we have to choose the ones that satisfy properties

of both feasibility (satisfaction of the constraints) and optimality.

It is already evident that there is always a tension between constraints and opti-

mality in an optimization problem. Consider, for example, the hypothetical case:

• if the rocket engine could produce speeds higher than what is possible, the time

needed to reach the desired orbit could possibly be reduced further, or

• if the equipment of the reactor could handle larger feed rates than is possible, the

amount of the chemical produced in a given time period could possibly be higher.

Such confidence stems from the fact that our knowledge of the rocket dynamics or

the chemical reaction, in other words our process model, tells us that increasing the

rocket speed reduces the time to reach the desired orbit or that increasing the feed

rate of the raw materials increases the amount of the chemical produced. But how

complete or perfect is our knowledge? Consider, for example, the scenario that

• unforeseen strong local winds are generated that cross the path of the rocket

through atmosphere and the same rocket speeds result in higher friction that

raises the rocket body temperature beyond its safety limit, or

• catalytic degradation about which we are unaware slows down the chemical reac-

tion and, for the same feed rates of raw materials, the amount of chemical produced

is of lower than expected.

In practice, it is perfectly natural to be unable to foresee complex natural phe-

nomena like occasional local winds or to be unaware of changes in processes designed

some time ago, for example the catalyst degradation. Thus, unforeseen events or lack

of knowledge are the causes of uncertainty in process operation.

An important question follows: despite having a fairly good knowledge of the

process, will the uncertainty during process operation always result in less than best

operation or even disastrous operation? Well, if we could compensate for the effect

of uncertainty on the process operation, then things should be fine. After all, what

we lack is the knowledge of the uncertainty, not the knowledge of the process!

The main difficulty seems to be the fact that, in most cases, we will be aware

of the uncertainty only during process operation and, as noted earlier, possibility of

repeat operation is not always available. But, this difficulty is compensated by the

fact that we can collect various types of measurement data by observing the process

operation. Consider, for example, that it is possible to



1.2 State of the Art 3

• measure the altitude gained by the rocket at each instant, or

• measure the reactor temperature at each instant.

Then, using our knowledge of the rocket dynamics or chemical reaction, we can

• compare the altitude measurements with those predicted by the model of rocket

dynamics, or

• compare the reactor temperature measurements with those predicted by the model

of chemical reaction,

and thus, we can have some (indirect) knowledge about the effect of uncertainty.

What remains is to feed this knowledge back to the optimization routine in a

suitable form and get back the optimal inputs for the real-time operation of the

plant in contrast with those for the model.1 The big difficulty with this scheme is to

perform these computations during process operation, i.e., in real-time.

It turns out that to surmount these two challenges, it is necessary to answer the

following questions:

Given the tension between feasibility and optimality, how different is the impact

of uncertainty on feasibility and optimality of the plant? From the relative impact

of uncertainty on the two, can we deduce the importance of feasibility for plant

optimality? Can this knowledge be combined with that of the model-based optimal

solution and the data available from process operation to obtain the desired plant

optimum instead of performing a re-optimization?

The present thesis is an analytical study of some aspects of these questions.

1.2 State of the Art

If a mathematical model of a process is available, methods of mathematical optimiza-

tion enable the computation of process inputs or decision variables that optimize the

performance of the process. However, real-time performance of the optimum calcu-

lated using a model naturally depends on how truly does the model represent reality.

Unfortunately, highly accurate process models are rarely available in practice. This

is especially true for highly complex industrial processes that have become com-

monplace as well as for highly complex physical phenomena such as atmospheric,

1 In contrast to the cases where optimization is used as a tool to design a feedback mechanism for controlling a
process, here, we seem to witness the case of a feedback mechanism needed to bring about optimal operation.
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biological or nuclear processes. Many practical factors also go against the devel-

opment of very complex models, e.g. lack of knowledge of underlying phenomena,

tradeoff between efforts needed to develop complex models versus the relative bene-

fits brought in by them, efforts needed for detection of errors and for maintenance,

tradeoff between computational efforts needed to solve the problems formed using

complex models versus the benefits brought in by the computed solutions, ease of

regularly updating the models, if needed, and so on.

The lack of accurate knowledge of process operation gives rise to uncertainty about

the process operation. As already noted, plant-model mismatch is the most obvious

source of uncertainty. Another source of uncertainty in process operation is the

influence of events that are extraneous to the process itself, and so not included in

the model, but are part of the environment in the process operates. The effect of

unforeseen changes in operating environment on process operation is another source

of uncertainty. The last two types of uncertainty are generally clubbed under the

term disturbances. See [10, 32, 109] for excellent discussions on various sources of

uncertainty in dynamic chemical processes.

It is very common to represent process uncertainty in a mathematical model using

parameters. In this approach, it is assumed that the available model is valid for some

set of nominal values of parameters. Then, the uncertainty in operation is thought

to be generated due to deviation of the parameters from their nominal values. This

is referred to as process uncertainty represented in terms of parametric perturbations

or parametric uncertainty for short. In particular, we will deal exclusively with the

approach of parametric uncertainty throughout the thesis.

Since, the nominal and perturbed values of parameters correspond, respectively,

to process model and plant, the latter two will be referred to as nominal and per-

turbed model, respectively. Naturally, all entities associated with the model will be

referred by the epithet nominal while those for the plant by perturbed. For example,

model and plant optimum will, be referred to as nominal and perturbed optimum,

respectively.

Optimization of a large class of processes that are operated at steady-state neces-

sitates the choice of a finite number of decision variables or inputs. Such problems

are termed as steady-state or static optimization problems. Optimization of transient

processes consists of the choice of complete profiles of decision variables or inputs.
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The latter are termed as dynamic optimization problems. Methods of optimal control

theory address the problem of dynamic optimization [13, 89].

Since parametric uncertainty is a very common way of accounting for plant-model

mismatch or process disturbances, most optimization problems under uncertainty, of

both static and dynamic type, can be cast in the framework of parametric optimiza-

tion problems. For example, nonlinear programming problems (NLP) are, probably,

the largest class of static optimization problems studied and used in practice; see

[27, 96] for examples of optimization problems of chemical processes modeled as

nonlinear programs. Naturally, most static optimization problems subject to uncer-

tainty can be modeled as parametric nonlinear programming problems [14]. On the

other hand, parametric optimal control problems form a natural framework for dy-

namic optimization problems subject to uncertainty [74]. To be a bit more concrete,

let us consider example of a static optimization problem, in which a set of inputs u

is to be found to minimize a given cost J(u) subject to given operational constraints

Gi(u) ≤ 0, i = 1, . . . , nG. That is

min
u∈IRnu

J(u)

s.t. Gi(u) ≤ 0, i = 1, . . . , nG.
(1.1)

The formulation above is valid only if the knowledge of the functions J and Gi is

perfect. On the other hand, if, as a result of uncertainty, functions J and Gi for

the plant are known only up to certain parameters θ1, . . . , θnθ , then the optimization

problem for the plant becomes:

min
u∈IRnu

J(u,θ)

s.t. Gi(u,θ) ≤ 0, i = 1, . . . , nG,

θ :=

⎡
⎢⎢⎢⎣
θ1

...

θnθ

⎤
⎥⎥⎥⎦ .

(1.2)

Clearly, (1.1) is a special case of (1.2) (for θ = 0). Let u∗ be a optimal solution of

the former while ũ be that of the latter. In general, ũ will be different from u∗.
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Naturally, if we apply the model-based optimal solution (u∗ above) to plant in

real-time operation, both plant-model mismatch and process disturbances can result

in suboptimal process operation or, worse, infeasible operation [33, 109, 113]. Ideally,

one would need to compute the perturbed values of the parameters that correspond

to plant and to repeat the computation for optimization with perturbed parameters

to obtain the optimal inputs for plant. As the deviation between model and plant

can become evident only during the process operation, the re-optimization needs to

be done in real-time. Since static optimization problems involving hundreds of deci-

sion variables and constraints are common in practice, real-time re-optimization to

compute plant optimum can turn out to be a challenging task. Given the complex-

ity of solving realistic optimal control problems [8, 87, 108], re-solving the dynamic

optimization problem in real-time is also a challenge in most practical cases. Note

that computing the perturbed parameter values, or their estimates, itself is rarely

possible for complex industrial processes [1].

Another point of view regarding real-time optimization is to use the model-based

solution computed offline and appropriate process measurements to compute online

(approximations of) the plant optimal solution, while avoiding online re-optimization,

if possible.

This situation gives rise to the problem of optimization in the presence of uncer-

tainty, viz., the real-time computation of optimal inputs for the plant, preferably

without repeating the optimization, but possibly using the knowledge of the model

optimum and any data that can be measured from the actual process operation.

1.2.1 A Survey of Methods for Optimization in the Presence of

Uncertainty

There exist numerous methods for optimization in the presence of uncertainty. In

Figure 1.1, we have shown a broad classification of such methods.

The idea behind the classification is as follows:

• Level 1 of the classification is based on whether or not the concerned optimization

methods make use of measurements on-line.

• Level 2 of the classification is based on whether or not the concerned optimization

methods use a process model on-line.
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Optimization
under

Uncertainty

Robust Optimization
(No Measurements)

Model-based
Optimization

Model-free
Optimization

Process-model
Update

Modifier
Adaptation

Real-time Optimization
(Measurements)

Direct Input
Adaptation

Figure 1.1 A broad classification of existing approaches for optimization under uncer-
tainty. The approaches in the shaded boxes are mainly the sources of the research questions
dealt with in the thesis.

• The last level of the classification is based on the process adaptation strategy em-

ployed by the concerned optimization methods.

These aspects will become clear in the following broad overview of methods for

optimization under uncertainty. An attempt has been made in the overview to

outline key ideas underlying each method. For a more detailed and refined discussion

about these methods, as well as their comparison, we refer the reader to the excellent

surveys in [17] for static optimization problems and in [103] for dynamic optimization

problems as well as to the individual references that will be cited.

In the next Section, we will abstract certain key features of some of the most

promising methods and see what analytical results exist that underlie the methods.

Robust and real-time optimization methods constitute the first level of classifica-

tion in Figure 1.1.
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Robust optimization methods do not make use of measurement data. To handle

the effects of uncertainty, these methods introduce conservatism in process operation

so that the operational feasibility is guaranteed for the complete range of perturbed

parameters. See, for example, [81, 114] for static robust optimization and [79, 80, 117]

for dynamic robust optimization. A comprehensive reference, especially for analytical

results, on both static and dynamic robust optimization is [7].

Real-time optimization (RTO) methods include some of the most commonly

used methods in practice for optimization in the presence of uncertainty [34]. The

most significant feature of real-time optimization methods is to use measurement

data from real-time process operation to adapt process operation on-line so as to

compensate for process change and disturbances. Henceforth, we will concentrate on

different types of RTO methods.

Second level of classification in Figure 1.1 consists of two broad categories of RTO

methods: model-based and model-free. The distinction between the two is that

the former need to use a process model during online operation while the latter do

not.

Model-based RTO methods can further be divided in two classes, viz., process-

model update and modifier adaptation, depending on the on-line process adap-

tation strategy used. On the other hand, the process adaptation strategy in most

model-free RTO methods can be classified as direct input adaptation. Thus, the

last level of classification in Figure 1.1 is based on the process adaptation strategy

used by corresponding RTO methods. Next, we discuss a number of RTO methods

that belong to the three classes in this level.

1.2.1.1 Process-Model Update Methods

Process-model update methods for static RTO (SRTO) take a two-step approach that

consists of repeated identification of process parameters using output measurements

followed by optimization of the process model that uses the identified parameters.

Hence, they are also called as model-parameter adaptation methods. See [18, 73]

for examples of model-parameter adaptation methods in SRTO problems.

Discussion of model-parameter adaptation methods for within run optimization

of dynamic RTO (DRTO) problems can be seen in [1, 26, 40, 55, 85, 95]. Some
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examples of such methods addressing run-to-run optimization of DRTO problems

are included in [19, 30, 35, 100, 102].

In DRTO problems, there is an additional possibility of using process measure-

ments to update current states, rather than model parameters, followed by re-

optimization of the process model. Model predictive control (MPC) [2, 76, 77, 82, 98]

is the most well-known example of methods utilizing the said approach. Using the

measurement of the current state, MPC recomputes, at each sampling instant, the in-

put that optimizes a performance criterion over the future prediction horizon. Only

the first part of the computed input is applied to the process. Because the mea-

sured current state of the process is used to recompute the input, the measurements

provide the feedback that helps reject disturbances and reduce the sensitivity to

process-model mismatch.

1.2.1.2 Modifier Adaptation Methods

Modifier Adaptation methods add modifier terms to cost or constraints of an SRTO

problem. These methods use process measurements to adapt certain modifier terms

in the optimization problem formulation instead of updating model parameters as

in model-parameter adaptation methods. Hence, these methods are sometimes also

termed as fixed-model methods [70]. The adaptation of the modifier terms is done

in such way that after repeated online optimization the necessary conditions of op-

timality (NCO) for the adapted problem and the plant match. Important examples

of modifier adaptation methods are as follows:

• The bias update method [32] and the constraint-adaptation method [16] add

modifier term only to the process constraints. The modifier term is simply the

constraint bias, i.e., the difference between the measured and predicted constraint

values.

• The iterative set-point control method in [107] proposes to add to cost a

gradient correction term, i.e., the difference between measured and predicted cost

gradients, as a cost modifier that needs to be adapted iteratively using process

measurements.

There exists a whole group of methods under the umbrella of ISOPE (Integrated

System Optimization and Parameter Estimation) [12, 91, 92] that can be con-
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sidered as hybrids between model-parameter adaptation methods and modifier

adaptation methods that use a cost-gradient modifier term.

• The method in [39] uses a constraint bias term and a constraint-gradient correc-

tion term as modifiers of constraints that need to be adapted iteratively. The

constraint-gradient correction is the difference between measured and predicted

constraint gradients. It is shown that, if the method converges, then the NCO at

the converged points match those of the plant optimum.

• The method in [72] proposes the use of constraint biases, cost-gradient correction

terms and constraint-gradient correction terms as modifier terms for the respec-

tive entities. This ensures that, if the method converges, then the NCO at the

converged points match those of the plant optimum.

In contrast to the SRTO case, not many modifier adaptation methods are available

for DRTO problems. Some examples of modifier adaptation methods for run-to-run

dynamic optimization can be seen in [22, 71].

1.2.1.3 Direct Input Adaptation Methods

Direct Input Adaptation methods avoid repeated on-line optimization by adapting

the known model optimal inputs during process operation in such a way that the

process operation tends towards the unknown plant optimum. Thus, in contrast to

methods based on process-model update and modifier adaptation, these methods do

not need to use a process model during online operation. Since these methods use

only the nominal model (in offline computations), they are also sometimes termed

as fixed-model methods [70].

• Methods based on sensitivity analysis make use of the analytical results on the

change in optimal solutions of parametric optimization problems due to change in

parameters.

Recall from Section 1.2 that we are considering problems in which plant-model

mismatch or process disturbances are modeled using parametric perturbations,

so that the optimization problems in the presence of uncertainty that are under

consideration are parametric optimization problems. Hence, knowledge of how

optimal solutions change with parametric perturbations can be used for directly

adapting the known model optimum (u∗ corresponding to (1.1)) to obtain the
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desired, but unknown, plant optimum (ũ corresponding to (1.2)), thereby avoiding

the re-optimization completely.

As a simple example, assume that the magnitude of parametric variations is small

and the properties of the underlying parametric optimization problem (1.2) ensure

that the plant optimum is differentiable with respect to parameters. In this case,

one can write a first-order expansion of plant optimal solution with respect to

model optimal input as follows:

ũ = u∗ + η ξu∗
+O(η2), (1.3)

where η = ||θ|| and ξu∗
is called the first-order sensitivity of the optimal solution

with respect to parameters. For sufficiently small perturbations, i.e., η � 1,

the O(η2) term will, in practice, be negligible compared to η ξu∗
. Hence, if it is

possible to compute ξu∗
directly from the knowledge of u∗, then a very accurate

approximation for ũ can be computed using (1.3) after neglecting the O(η2) terms,

i.e., without solving the optimization problem (1.2).

The conditions under which the optimal solutions of parametric optimization prob-

lems are differentiable with respect to parameters and how to compute the first-

order sensitivity information if the former hold for a given problem are studied

under the sensitivity analysis of parametric optimization problems. Some other

problems most commonly studied in sensitivity analysis are:

– Conditions for continuity, Lipschitz continuity and differentiability of optimal

cost (J(ũ, θ̃)) with respect to parameters;2

– Conditions for continuity and Lipschitz continuity of optimal inputs and asso-

ciated Lagrange multipliers (ũ, λ̃) with respect to parameters.

Various sub-cases of the above categories are studied by considering whether the

underlying problem has cost and/or constraint functions convex or otherwise,

whether there exist unique or multiple optimal inputs and/or associated Lagrange

multipliers and so on.

A voluminous literature exists on the study of the sensitivity analysis of paramet-

ric NLP problems; see, for example, the classic references [4, 29] and the extensive

literature cited therein. A more recent and more comprehensive reference, which

2 The results dealing with continuity and Lipschitz continuity are sometimes labeled as stability results, in
contrast with sensitivity results.
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also addresses nonsmooth problems, is [65]. We also refer to the excellent survey

articles [9, 61]. A more detailed description of a number of results from sensitivity

analysis is deferred till Chapter 2 of the thesis, where they will be used to derive

results on the performance of certain adapted solutions to the underlying paramet-

ric NLP. Not all of the aforementioned results in sensitivity analysis are needed

however. The needed results can be divided in two categories: those implying

Lipschitz continuity of optimal cost (J(ũ, θ̃)), and others dealing with Lipschitz

continuity of optimal inputs and associated Lagrange multipliers (ũ, λ̃).

Extensive work has also been done on the sensitivity analysis of parametric optimal

control problems; see, for example, [57, 69, 74, 75] and the numerous references

cited therein. For a recent and comprehensive treatment, that also deals with

nonsmooth problems, see [58] and other references it cites.

The main difficulty with the application of sensitivity analysis in practical RTO

methods is that it is rarely possible to compute the (magnitude of) perturbed

parameters for complex processes, as noted already.

Even if an estimate of parametric perturbations is available, closed form expres-

sions for variations in optimal inputs are available only under restrictive assump-

tions. For example, for parametric NLP problems, closed form expressions for

first-order variations in optimal inputs are available only if strict complementarity

conditions hold [29]. Similarly, for parametric optimal control problems, first-order

variations of the optimal inputs with respect to parametric perturbations can be

computed [23, 86] only under the restrictive strict complementarity conditions for

optimal control problems [74].

• Another approach to direct input adaptation is by transforming the optimization

problem into a feedback control design problem such that the controller action

generates the plant optimal inputs. The main idea is that [83, 99], the feedback

controller should track such a function of measured outputs as will enforce optimal

plant operation. Hence, these methods are sometimes commonly referred to as

reference tracking methods.

For example, in self-optimizing control for SRTO [99], the feedback controller is

designed to track a linear combination of outputs. Similar ideas are applied to de-

sign self-optimizing controllers for DRTO problems involving polynomial systems

in [59].
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A more interesting objective to track using a feedback controller is the (full or par-

tial) set of NCO of the plant. An early example of this idea is the constraint control

method of [67]. More advanced methods based on this principle are: extremum-

seeking control [3, 52, 64] and NCO tracking [37, 104].

Methods of extremum-seeking control need to compute experimental gradients

using sinusoidal excitations. NCO tracking methods design a multivariable control

strategy to track the NCO related to active constraints and to gradients (i.e.,

sensitivities). While the tracking of active constraints is quite straightforward

using standard control tools [11, 102], the tracking of gradient terms involves

more complicated techniques like neighboring-extremal control [51].

For application of NCO tracking framework to dynamic RTO (DRTO) problems,

see [101, 103]. It is shown in [36, 101, 110] that the implementation of NCO-

tracking controllers for enforcing active constraints using standard tools from con-

trol theory is fairly easy for DRTO problems also. This is especially true if the

optimal active set remains unchanged after parametric perturbations. Further-

more, neighboring-extremal control techniques for tracking sensitivities of DRTO

problems are developed in [51], though they are much difficult than the controllers

tracking active constraints.

The main difference between reference tracking methods and methods based on

sensitivity analysis is that the former typically do not need the knowledge of the

parametric perturbations. As a result, the way the plant optimum is computed

in the two types of methods is different. The exception to this observation is the

neighboring-extremal control in which, the knowledge of the parametric perturba-

tions is needed [51].

• Another group of direct input adaptation methods is the class of so-called

interpolation-based methods [51] in which, the optimal input profiles are com-

puted for different possible problem instances and are stored in look-up tables

along with corresponding state and parameter instances. Using tools like search

trees [50] or neural networks [63, 97], these methods compare the online measure-

ments with stored instances and choose the input profiles corresponding to the

closest match to apply to the process.
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1.2.2 A Survey of Selected Analytical Results Relevant to RTO

Methods

Let us recall that of all the optimization methods in the presence of uncertainty that

were presented in the last section, only the methods that were clubbed under modifier

adaptation and direct input adaptation are fixed-model methods [70]. Precisely these

two groups of methods are shaded in Figure 1.1.

If we refer to various results on the different methods from these two groups, viz.,

bias update [32], constraint adaptation [16], (cost and/or constraint) gradient correc-

tion [12, 39, 72, 107], constraint control [67], self-optimizing control [99], extremum-

seeking control [3, 52, 64], static and dynamic NCO tracking [11, 37, 101, 102, 103],

we can realize that the results obtained by these methods, under different conditions,

are quite impressive. That is to say that these methods are in many cases capable of

converging (near) to plant optimum, and most of these methods have some or other

features that are easy for implementation.

A little bit of thinking reveals that a common thread in all these diverse methods

is that they are capable of operating in a selective manner, for example

• modifier adaptation methods choose to adapt part or all of the following:

cost bias, constraint bias, cost-gradient correction, constraint-gradient correction,

(1.4)

• direct input adaptation methods choose to track part or all of the following:

active constraints, functions of outputs, sensitivities. (1.5)

What differs among the methods is how they achieve their aim. Also, note that

the entities in (1.4) and (1.5) chosen selectively by the two types of methods are

directly related to the components of the necessary conditions of optimality (NCO)

for the plant [6, 89].

From these observations, we can abstract the following general conclusions:

The level of selectivity of the two types of methods affects their ease of implementation

and also determines the properties of solutions they generate, viz., which components

of the plant NCO the latter can satisfy. The last fact explains the general ability of

these methods to converge (near) to the plant optimum.
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At this point, the following question arises naturally:

What general analytical results exist to support the selectivity (or otherwise) of these

RTO methods, from the point of view of optimality, and not just for the sake of ease

of implementation?

An important result proved in [16] deals with the variational analysis of cost in

static RTO (SRTO) problems. Under suitable constraint qualifications, it is possible

to compute the singular value decomposition (SVD) of the Jacobian of the active

constraints evaluated at the nominal optimal solution [16, 37]. The properties of

the matrices that appear in the SVD [62] enable identification of two orthogonal

sets of directions in input space such that small local variation of the model inputs

(u∗) along directions in one set does not affect the nominally active constraints,

while variation along directions in the other set does [37]. The former are termed

sensitivity-seeking (SS) directions and the latter constraint-seeking (CS) directions.

Furthermore, the two sets of directions can be shown to span the entire input space.

The importance of the identification of the SS and CS directions in the input space

is that, in case of small parametric perturbations, it is possible to define selective

input adaptation strategies in which small local variation of nominal inputs along

either set of directions are considered. Let the locally adapted inputs along the SS

and CS directions be denoted by symbols us and uc, respectively. Thus, it is now

possible to consider the effect of the following three strategies on cost in the presence

of uncertainty:

1. no adaptation, i.e., applying the model inputs u∗ as is to the plant,

2. applying us to the plant,

3. applying uc to the plant.

The difference in costs resulting from the first two options can be considered as cost

variation due to SS adaptation (δJs) over no adaptation. Similarly, the difference in

costs resulting from the first and the third option can be considered as cost variation

due to CS adaptation (δJc) over no adaptation.

The important result proved in [16] is that, for small parametric perturbations,

the cost variation δJs is significantly smaller than δJc for any general parametric

NLP problem. The implication of this result is that, if full adaptation is not possible,

adaptation that favors meeting the active constraints should, in general, be preferred,

provided the perturbations remain small.
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Note, however, that the aforementioned arguments describe the situation only

around the set of nominal optimal inputs, i.e., they do not take into account the

set of plant optimal inputs. Indeed, the inputs us and uc are not even guaranteed

to be feasible under the perturbed parameters. Thus, in general, us and uc cannot

be treated as adapted solutions generated using some RTO method, neither is it

possible to treat the aforementioned cost variation as a measure of performance of

some RTO method. In particular, the absence of plant optimal inputs from the

analysis means that practically important scenarios like change in optimal active set

due to parametric perturbations cannot be addressed in this framework.

These results can be represented in a schematic diagram as shown in Figure 1.2.

Recall that the results described above are derived only for SRTO problems.
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SS + CS Adaptation

Cost Variation Analysis

Ref. [16]

J(u∗, θ̃)

J(ũ, θ̃)

Figure 1.2 Existing analytical results relevant to (static) RTO methods under considera-
tion before beginning of this thesis. θ̃ denotes the plant parameters while u∗ and ũ denote,
respectively, the model and plant optimal solutions, here of SRTO.

The term Point of Reference in Figure 1.2 is used to indicate the cost value used as

reference for comparing the performance of adapted inputs under investigation. For

example, the cost variation result in [16] described above deals with the difference

between cost due to adaptation and that due to no adaptation of model optimal
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inputs u∗. Hence, the Point of Reference for the block representing [16] is shown to

be J(u∗, θ̃). By analogy, if the Point of Reference for a block is J(ũ, θ̃) (plant optimal

cost), the block represents results of comparison of cost resulting from adapted inputs

under consideration with that resulting from the plant optimal inputs ũ.

1.3 Research Objectives

Figure 1.2 naturally gives rise to following questions:

• Is it possible – in SRTO problems – to move from a local variational analysis

around the model-based optimum towards a more complete analysis that involves

the plant optimum also? If yes, how exactly to do such an analysis and under

what conditions?

• Is it possible to extend the local variational analysis of SRTO problems to dynamic

RTO (DRTO) problems? If yes, what are the main challenges in doing so?

That these questions are not mere curiosities but have important implications for

RTO methods will be clear from the discussion that follows.

In the remainder of the section, we denote the nominal and perturbed optimal

inputs of the RTO under consideration by symbols u∗ and ũ, respectively.3

1. SRTO

It is well known that parametric perturbations cause change in the optimal so-

lutions of parametric NLP problems and possibly also in the optimal active set.

Given the tension between feasibility and optimality discussed at the beginning

of the chapter, what is the meaning of an active constraint becoming inactive, or

vice versa, in the presence of uncertainty?

Let us think again about the active constraints. Although general constraints

define the feasibility requirements in the problem, the set of active constraints are

actually part of the problem NCO. That is, active constraints contribute to the

optimality of the problem while being just feasible.

So, when the optimal active set changes in the presence of uncertainty, is it only

to maintain the feasibility of the plant or only to contribute to its optimality? Or,

3 If the problem under consideration is SRTO, the symbols need to be interpreted as vectors, whereas if the
problem is DRTO, the symbols need to be interpreted as vector functions.
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is it possible that some active constraints change owing to feasibility while others

owing to optimality?

The importance of these questions to RTO methods designed for selective adap-

tation is evident. For example, we can ask the following questions:

when the active set changes not to maintain plant feasibility, but due to optimal-

ity, precisely how important is the contribution of its change to optimality? Or,

thought differently, in which cases is the latter contribution not so important and

hence the change can be practically ignored by an RTO method? How best to

identify such conditions that help distinguish between changes that are due to

optimality and others that are due to feasibility? Is it possible to develop such an

analysis for as general a class of parametric NLP problems as possible?

These considerations give rise to the first research objective of the thesis:

Research Objective 1:

Under conditions as general as possible for SRTO problems,

develop a joint analysis involving model optimal inputs u∗,

plant optimal inputs ũ and different sets of adapted solutions ûi

obtained from u∗, such that different ûi conserve different parts

of the set of nominally active constraints.

(1.6)

2. DRTO

In Section 1.2.2, we saw that the importance of a local variational analysis of cost

due to selective adaptations along SS and CS directions is that it is possible to show

clearly distinguishable cost variations for the two cases of adaptation. The result

mainly implies a preference to active constraints over sensitivities in SRTO. If such

a result were available for DRTO problems, it would have similar implications for

its (active) constraints and sensitivities. This means that the first task for a similar

analytical study of DRTO problems is to develop a characterization of the SS and

CS directions.

Recall from Section 1.2.2 that the basic idea of these directions is such that a

small variation of the model inputs u∗ along an SS direction should not affect the

nominally active constraints of the problem, whereas an input variation along a

CS direction should. However, compared to SRTO problems, this task is more



1.3 Research Objectives 19

complicated in DRTO problems owing to the fundamentally different nature of

constraints in them.

Consider, for example, the case of active path constraints in DRTO. By definition,

a path constraint is an infinitude of constraints defined at each time instant. Recall

again from Section 1.2.2 that the definition and all the nice properties of the SS

and CS directions for SRTO problems followed from the properties of the SVD

of the Jacobian of active constraints of SRTO. So, to attain the final aim of cost

variational analysis of DRTO, should we consider the SVD of Jacobians of path

constraints active at each instant? In other words, just as there is an infinitude

of pointwise constraints in DRTO, should there be an infinitude of SS and CS

directions in it? But what is the guarantee that an input variation along an SS

direction of the present instant will not affect an active constraint in the future,

given the fact that the underlying system in a DRTO problem is dynamic.

On the other hand, consider a DRTO problem having only terminal constraints.

If we were to follow an SVD-based approach for the definition of SS and CS

directions, we would only be able to define the directions at the final time. Would

this mean that no SS and CS directions can be defined for intermediate time

instants? But, we can certainly imagine changes in inputs during process operation

propagating through the underlying dynamic system and changing the value of the

terminal constraints. So, these changes should qualify – on the basis of the broad

definition considered above – as changes along CS directions, which is absurd if

the directions are defined only at the final time.

Thus, the main challenge in DRTO is to account for the fact that the definition

of the input variation directions for time t requires that all past input variations

up to and including time t need to be taken into account, not merely the input

variations at time t.

Once such a dynamic characterization of the directions is available for a general

DRTO problem, the next question to address is how to perform the local cost

variational analysis for plant following selective input adaptation along each set

of directions. The final objective is to see whether the characterization of SS and

CS directions, and so of the local selective adaptation strategies, for the DRTO

problems leads to clearly distinguishable cost variations over the case of no input

adaptation.
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If the sought cost variation result can be proved, then the relative importance of

active constraints over sensitivities in DRTO problems can be inferred.

Thus, the second research objective of the thesis can be formulated:

Research Objective 2:

Extend the local variational analysis around u∗

that exists for SRTO problems (Figure 1.2)

to DRTO problems under conditions as general as possible.

(1.7)

These objectives can be represented in a schematic diagram as shown in Figure

1.3.
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Figure 1.3 Questions that form the basis of the Research Objectives of the present thesis.

The results of these investigations directly depend on the role of constraints in

RTO and so the investigations will, hopefully, yield an improved understanding of

the latter.



1.4 Organization of the Thesis 21

1.4 Organization of the Thesis

This thesis deals with some key analytical aspects of the real-time optimization

(RTO) in the presence of uncertainty. The type of static and dynamic RTO prob-

lems considered in the thesis are those in which, the uncertainty is represented by

parametric perturbations.

Chapters 2 and 3 constitute the first part of the thesis that deals with static RTO

(SRTO) problems.

Chapter 2 begins with a short survey of existing methods to SRTO problems and

of available analytical results on the role of constraints in SRTO. The insights gained

from this survey are discussed in Section 2.2, the main conclusion of which is the

necessity of developing a joint analysis of the model optimal solution, the adapted

solution generated by an SRTO method and the plant optimal solution while taking

into account the possibility of change in optimal active set. Based on these insights,

a precise mathematical formulation of the research objective for the SRTO is given

in Section 2.3.

Chapter 3 accomplishes the research objective set forth in Chapter 2. Under suit-

able conditions on the underlying problem, viz., linear independence constraint qual-

ification (LICQ) and strong second-order sufficient condition (SSOSC), the change

in optimal active set is analyzed in Section 3.1. Using these insights, the optimality

loss analysis is performed in Section 3.2. The main conclusion reached is that, un-

der the assumed conditions, the detection of a change in the active set contributes

only negligibly to optimality, as long as the adapted solution remains feasible. A

numerical example illustrating the results is presented in Section 3.3.

The second part of the thesis deals with an analytical study of the dynamic RTO

(DRTO) problems. It is divided in Chapters 4 and 5.

Chapter 4 begins with a short survey of existing DRTO methods and follows it

up with a discussion of the challenges in an analytical study of role of constraints in

DRTO, especially with reference to similar available results for SRTO. The precise

mathematical formulation of the DRTO problem and the research objective for its

analytical study is presented in Sections 4.3 and 4.4.

In Chapter 5, the research objective for the DRTO problem formulated in Chapter

4 is attained. First, a definition of sensitivity- and constraint-seeking (SS and CS)

directions for the DRTO problem is developed in Section 5.1. The section also
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introduces the concept of local variation of model optimal inputs along each of the

above set of directions and presents a numerical algorithm for computing SS and CS

components of a given input variation direction.

Section 5.2.2 presents a variational analysis of cost due to small local variation of

model optimal inputs along SS and CS directions. The main result of the analysis is

that, for small parametric variations, the cost variation due to input variation along

SS directions is negligible compared to that due to variation along CS directions.

In other words, under small parametric variations, satisfaction of active constraints

typically has more influence on cost than satisfaction of sensitivities. Section 5.3

presents two examples that demonstrate the results of Chapter 5.

Finally, Chapter 6 summarizes the main contributions of the thesis and results

obtained in it and discusses some future perspectives.



Chapter 2

Static Real-Time Optimization

Many engineering processes are operated at steady state. Steady-state operation

is attractive from point of view of implementation because the decision variables,

or inputs, of a process need to be simply kept at constant values, called operating

set-points, over long time-periods. There can be multiple set-points at which the

system can operate in the steady-state and different choices of set-points can incur

different operating costs or result in different profit levels. On the other hand, not all

set-points can be attained owing to various operational limitations and some other

set-points need to be avoided in order to obey various safety constraints. Hence,

the choice of a particular set of inputs is based on whether or not it satisfies all

process constraints and at the same time minimizes operational cost or maximizes

operational profits, as the case may be.

If a mathematical model of steady-state operation is available, the problem of

optimal selection of operating set-points can be formulated as a type of mathemat-

ical programming problem. For example, the most common formulations of such

problems in chemical process industries are as nonlinear programming (NLP) and

mixed-integer programming problems [27]. Owing to the advances in the theory and

computational methods for these problems, it is not uncommon to encounter exam-

ples of steady-state, or static, optimization problems involving hundreds of decision

variables and constraints. The optimal operating set-points can be computed using

the model even before the start of operation and during actual operation, their stored

values need to be simply maintained.

Unfortunately, highly accurate mathematical models are rarely available for in-

dustrial scale processes. Naturally, in real-time operation using model-based optimal

set-points, both plant-model mismatch and process disturbances can lead to subopti-

23
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mal operation or even infeasible operation. Hence, optimal steady-state operation in

the presence of uncertainty is an important problem faced by the process industries.

We refer to this problem as that of static real-time optimization (SRTO), which can

be defined as:

online computation of feasible and near-optimal input values for a static optimiza-

tion problem on the basis of the knowledge of nominal optimal solution and online

measurement data.

It is thus clear that a study of SRTO problems entails the study of the interplay

of the three main themes of the thesis, viz., uncertainty, feasibility and optimality.

2.1 A Short Survey of Existing Approaches for Static

RTO Problems

A common practice of dealing with uncertainty is to represent it in the form of

parametric perturbations. The optimal inputs are computed off-line for the nomi-

nal values of the parameters. Naturally, when some parameters deviate from their

nominal values, a change in optimal inputs is required to maintain feasibility and

optimality.

Ideally, one would need to repeat the computation with the modified values of

the parameters to obtain the modified optimal inputs. A way to avoid re-solving the

optimization problem is to quantify the parametric perturbations and adapt the nom-

inal optimal inputs to maintain optimality. In theory, such an approach requires a

sensitivity analysis of the parametric optimization problems, i.e., a study of the effect

that parametric perturbations will have on the optimal inputs. Extensive work has

been done regarding the stability and sensitivity analysis of parametric optimization

problems; see, for example, the classic references [4, 29] and the extensive literature

cited therein. A more recent and more comprehensive reference, which also addresses

nonsmooth problems, is [65]. We also refer to the excellent survey articles [9, 61].

In practice, it may not be possible to quantify the parametric perturbations pre-

cisely. Even if an estimate of parametric perturbations is available, closed form

expressions for first-order variations in optimal inputs are available only if strict

complementarity and second-order sufficient conditions hold [29]. Thus, it may not
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always be possible to implement adaptation using first-order estimates in practice.

Hence, real-time optimization (RTO) methods typically try to use the knowledge of

the underlying system and adapt the nominal optimal inputs to obtain some set of

feasible inputs. Numerous real-time optimization algorithms have been proposed in

the literature. As noted in Introduction, these algorithms effect the input adaptation

via different mechanisms. Recall some examples of the RTO methods most relevant

to our investigations:

• some algorithms perform repeated optimization of fixed nominal model but with

updating of constraints at each iteration using process measurements [17],

• some methods do repeated optimization of fixed nominal model but with updating

of both cost function and constraints at each iteration using process measurements

[39],

• some methods are based on repeated optimization of a process model that is

updated at each iteration using process measurements [106],

• some algorithms are based on online control of active constraints [67] and some-

times, in addition, a provision of detecting the change in active set [111],

• some methods enforce the necessary conditions of optimality related to both con-

straints and sensitivities in a run-to-run fashion (NCO tracking for SRTO) [37].

For a more detailed survey of static RTO methods, refer to Section 1.2.1. As noted

there, RTO methods based on enforcing of NCO related to constraints are typically

simpler to implement than those based on enforcing of sensitivities.

Since the real-time adaptation may be sub-optimal, it becomes essential to be able

to compare the performance of a given set of adapted inputs with that of the optimal

inputs for the perturbed system.

2.1.1 Analytical Results on Role of Constraints

As mentioned in Section 1.2.2, for SRTO problems modeled in terms of parametric

NLP, two sets of directions in input space can be identified such that small local

adaptation of nominal inputs along directions in one set does not affect the nomi-

nally active constraints, while adaptation along directions in the other set does [37].

The former have been termed sensitivity-seeking (SS) directions while the latter

constraint-seeking (CS) directions.
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An important result proved in [16] is that, in case of small parametric pertur-

bations, a small local variation of the nominal inputs along the constraint-seeking

directions causes a larger cost variation over no input variation than does the varia-

tion along the sensitivity-seeking directions. To be more precise, consider parametric

perturbations of form θ̃ = θ0 + ηξθ, where |η| � 1 and ξθ is a given direction in

the space of parameters. In case of such small parametric perturbations, let us and

uc denote the aforementioned small local variations of nominal optimal inputs along

the SS and CS directions, respectively. If cost variation (δJ) over no adaptation due

to a given set of inputs u is defined as

δJ(u) := J(u, θ̃) − J(u∗, θ̃), (2.1)

then, the aforementioned result states that

δJ(us) = O(η2), δJ(uc) = O(η).

The implication of this result is that, under small parametric variations, if full adap-

tation is not possible, adaptation that favors meeting the active constraints should

be preferred.

Let us also recall from Section 1.2.2, that the aforementioned arguments describe

only a local variational analysis around the set of nominal optimal inputs; i.e., they

do not take into account the set of perturbed optimal inputs. Moreover, the inputs

us and uc are not even guaranteed to be feasible under the perturbed parameters

θ̃. Thus, in general, us and uc cannot be treated as adapted solutions generated

using some RTO method, and so the cost variation (2.1) cannot be treated as a

measure of performance of some RTO method. In particular, absence of perturbed

optimal inputs from the analysis is a major shortcoming of this framework due to

the fact that practically important scenarios like change in optimal active set due to

parametric perturbations can also not be taken into account.

We have already represented these results in the schematic diagram in Figure 1.2

in Introduction.
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2.2 Challenges in Analytical Studies

Let us abstract the main ideas scattered among the diversity of results surveyed in

Section 2.1:

1. Different SRTO methods can result in different adapted solutions. Hence, per-

formance measurement of an RTO method needs to compare the performance of

the set of adapted inputs generated by it with that of the (unknown) perturbed

optimal inputs.

2. Since an RTO algorithm will typically start from the nominal solution, the result-

ing adapted inputs might share only certain features with the perturbed optimal

solution; moreover, different RTO algorithms will, typically, yield different adapted

inputs.

3. Local analysis around nominal optimal solution of a general NLP implies that

active constraints can influence cost more than can sensitivities.

4. SRTO methods based on enforcing of NCO related to constraints are quite simple

to implement.

These observations naturally prompt the following questions:

Is it possible to develop a general analysis of performance loss due to a given set of

adapted inputs based on the features it shares with the perturbed optimal inputs?

What feature(s) might be most relevant for such an analysis to be most useful?

Observations (3) and (4) answer the last question:

the feature most important, from the point of view of optimality as well as practical

relevance, is the set of constraints made active by a given set of inputs.

This combined with observation (2) answers the first question:

since the nominal active set is known and the adapted solutions are generated using

the knowledge of nominal optimal solution, a general analysis of performance loss

due to adapted inputs is possible, if we consider a different set of adapted inputs that

conserve whole or part of the nominal active set and take into account the manner

in which the optimal active set itself might possibly change.

In summary, it is essential to perform a joint analysis of the nominal optimal

inputs (u∗), the adapted inputs (say, û) and the optimal inputs for the perturbed

system (ũ) while taking into account the possibility of change in optimal active set

as well as the fact the constraints kept active by the adapted solutions might be

different from the perturbed optimal set.



28 2 : Static RTO

In this spirit, we investigate the optimality loss due to different sets of adapted

inputs that conserve some or other elements of the nominal active constraint set

and thus share only a few features of the perturbed optimal solution. Naturally,

the optimality loss analysis is more involved than the cost variation analysis, since

the latter deals only with the nominal optimal (u∗) and adapted (û) solutions. It

is also different from the standard sensitivity analysis discussed in Section 1.2.1.3,

since the latter deals only with the relation between nominal optimal and perturbed

optimal entities (i.e., inputs: u∗, ũ, associated Lagrange multipliers: λ∗, λ̃, cost:

J(u∗,θ0), J(ũ, θ̃)), while there is, typically, no notion of adapted solutions involved.

However, as noted in Section 1.2.1.3, we will need to make use of various results from

sensitivity analysis in investigations of optimality loss.

These investigations will, hopefully, help understand in more detail the importance

of the active constraints in designing RTO schemes for static optimization.

2.3 Research Objective for Static RTO Problems

In this section, we give the precise mathematical formulation for the ideas men-

tioned in the previous section. We will be dealing with SRTO problems modeled

as general parametric nonlinear programming (pNLP) problems. First, we present

the mathematical formulation, various assumptions and the form of necessary con-

ditions of optimality for the pNLP problems considered. Then, we discuss the effect

of parametric uncertainty on the optimal solution of the problem.

Finally, we define the concept of optimality loss and present some results on the

optimality loss due to no adaptation, assuming it is feasible. The discussion of the

results leads to the precise research objective for SRTO problems.

2.3.1 Problem Formulation and Optimality Conditions

We consider the following parametric nonlinear programming (pNLP) problem

(NP(θ)):
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min
u

J(u,θ)

s.t. Gi(u,θ) ≤ 0, i = 1, . . . , nG,

u ∈ IRnu , θ ∈ IRnθ ,

(2.2)

where u is the input vector, J the cost function and Gi the ith constraint. The

nominal value of the parameters is θ0. We assume that the functions J and Gi are

twice continuously differentiable in all arguments, i.e.,

Assumption 2.1 (Differentiability of J and Gi)

J ∈ C2(IRnu × IRnθ , IR), Gi ∈ C2(IRnu × IRnθ , IR), ∀ i = 1, . . . , nG. (2.3)

Henceforth, we will be dealing with the global optimum solution(s) of the pNLP

(2.2). Let u∗ denote the nominal global optimal solution of (2.2).

The active set at u∗ is defined as [84]:

A∗ := {i | Gi(u∗,θ0) = 0}. (2.4)

We assume constraint qualification of the linear independence of the gradients of the

active constraints (LICQ) at the nominal solution u∗. In terms of the notation of

active set, we have1

Assumption 2.2 (LICQ)

Column vectors of
∂GA∗

∂u
(u∗,θ0) are independent. (2.5)

Under the assumption of LICQ, the Karush-Kuhn-Tucker NCO hold for NP(θ)

[5, 84, 88]:
∂J

∂u
+ λT ∂G

∂u
= 0,

λiGi(u,θ) = 0,

λi ≥ 0, i = 1, . . . , nG,

Gi(u,θ) ≤ 0, i = 1, . . . , nG.

(2.6)

1 Henceforth, we use the following notation: given an index set I = {m1, . . . , mp} and variables/functions

f1, . . . , fk, FI :=

2
664

fm1

...
fmp

3
775. A vector (function) without an index-subscript will indicate, as usual, the vector

(function) of all underlying elements, the total number of elements being clear from the context.
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Let the nominal solution (u∗,λ∗) be such that:

λ∗
i > 0 & Gi(u∗,θ0) = 0, i ∈ I∗,

λ∗
i = 0 & Gi(u∗,θ0) = 0, i ∈ J ∗,

λ∗
i = 0 & Gi(u∗,θ0) < 0, i ∈ K∗,

I∗ ∪ J ∗ ∪ K∗ = {1, . . . , nG}.

(2.7)

In practice, knowledge of (2.7) is available via off-line numerical optimization.

Note that there are no elements common in I∗,J ∗ and K∗ and that A∗ = I∗ ∪ J ∗.

In literature [31, 84], I∗ is called the index set of strongly active constraints, J ∗

that of weakly active constraints, and K∗ that of inactive constraints. Strongly and

weakly active constraints have been called nondegenerate and degenerate constraints,

respectively, in [60].

The main difference between the two parts I∗ and J ∗ of the active set is that non-

satisfaction of the strongly active constraints in I∗ has a more significant impact on

the cost function than non-satisfaction of the weakly active constraints in J ∗. This

aspect will be quantified later.

2.3.2 Uncertainty Description

The following type of parametric variations is considered:

θ̃ = θ0 + η ξθ, η ∈ B0, (2.8)

where ξθ is a vector – of unit Euclidean norm – in the parameter space IRnθ , and B0

is a small interval around zero that will be specified later.

Let ũ denote the global optimal inputs for the perturbed system, which are, typ-

ically, different from the nominal inputs. It is important to note that an additional

complexity for a general pNLP of type (2.2) is that there can exist multiple perturbed

optimal solutions ũi for some η ∈ B0.

Henceforth, we will assume that a perturbed optimal solution (ũ, λ̃) also satisfies

the NCO (2.6) for each η. Hence, the perturbed optimal solution for a given η

satisfies:
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λ̃i > 0 & Gi(ũ, θ̃) = 0, i ∈ Ĩ,

λ̃i = 0 & Gi(ũ, θ̃) = 0, i ∈ J̃ ,

λ̃i = 0 & Gi(ũ, θ̃) < 0, i ∈ K̃,

Ĩ ∪ J̃ ∪ K̃ = {1, . . . , nG}.

(2.9)

The index sets Ĩ, J̃ and K̃ can, in general, be different from I∗,J ∗ and K∗.

2.3.3 Optimality Loss

Recall from Section 2.2 that the research objective for the SRTO problems is to

develop a general analysis that will enable comparison of the performance of a given

set of adapted inputs with that of perturbed (global) optimal inputs. To this end,

we introduce a generic measure for the aforementioned comparison called optimality

loss:

Definition 2.1 (Optimality Loss)

For NP(θ̃) (2.2) and for parametric variations given by (2.8), the difference between

the cost resulting from a given set of feasible inputs u and the perturbed optimal

cost is called optimality loss and is denoted by δJ :

δJ(u) := J(u, θ̃) − J(ũ, θ̃), (2.10)

where ũ denotes the optimal inputs for the perturbed system.

Remarks:

1. Note that although the cost difference in (2.10) can be computed for any set of

inputs, the optimality loss is defined only for feasible inputs since it is pointless to

compare performance of infeasible inputs with perturbed optimal inputs.

2. When there is a set of multiple (global) optimal inputs {ũi} for some η ∈ B0,

the definition (2.10) of optimality loss is valid for each of ũi. This is because,

by definition of a global optimal solution, the perturbed optimal cost is a unique

number, i.e.

J(ũi, θ̃) = J(ũj, θ̃), ũi �= ũj.
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Note, in particular, that while computing the optimality loss due to a given set

of adapted inputs, no attention is given to how exactly the latter are (or can be)

generated. For example, one can imagine a given set of adapted inputs as an out-

come of a particular RTO method. But, while computing the optimality loss, other

performance features, e.g., rate of convergence, of the RTO method are not given any

consideration. Thus, the approach here is conceptually different from other existing

approaches in literature, notably [115, 116].

In other words, what we will be analyzing is the performance of a set of adapted

inputs and not the underlying RTO method, per se. The advantage of this approach

is that it will, hopefully, enable us to derive results that are fairly general, i.e., tied

not to the exact workings of different RTO methods, but solely to properties of their

outcomes. Also, as noted in Section 2.2, we will be considering such properties of

the adapted solutions as will make the analysis most relevant for the workings of a

large class of RTO methods.

2.3.3.1 The Basic Approach to Optimality Loss Analysis

In order to keep the optimality loss analysis amenable, we need to impose certain

conditions on the underlying problem. These conditions will ensure that the pNLPs

under consideration, and their solutions, have certain regularity properties and so

will help rule out cases of less practical importance. As mentioned in Section 1.2.1.3,

the most widely studied regularity properties of the solutions – inputs and Lagrange

multipliers – of pNLPs in the literature on sensitivity analysis of pNLP are continuity,

Lipschitz continuity and differentiability.

We would be dealing with systems in which the perturbed optimal inputs ũ(η)

are, at least, Lipschitz continuous with respect to the nominal optimal inputs u∗,

so that ũ(η) − u∗ = O(η). Following is a very short summary of the most relevant

results from the literature on sensitivity analysis about the Lipschitz continuity of

solutions of a pNLP that exhibit presence of weakly active constraints. Note that

most of the results treat more general pNLP that also includes nonlinear equality

constraints.

1. [93] defines a property called strong regularity for so called generalized equations

and proves in Corollary 2.2 that strong regularity of a generalized parametric
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equation implies the Lipschitz continuity of its solutions with respect to parametric

perturbations.

Further, Theorem 4.1 of [93] proves the strong regularity of the KKT system

(2.6) (expressed as a generalized equation) associated with a given pNLP, and by

implication the Lipschitz continuity of optimal inputs and associated Lagrange

multipliers, under assumptions (2.3), LICQ (2.5) and the following strong second-

order sufficient condition (SSOSC) for problem NP(θ0):

Assumption 2.3 (SSOSC)

vT

{
∂2J

∂u2
(u∗,θ0)v + λ∗T ∂2G

∂u2
(u∗,θ0)v

}
> 0, ∀v ∈ N s \ {0}, (2.11)

where N s :=
{
v ∈ IRnu

∣∣∣∣ ∂GI∗

∂u
(u∗,θ0)v = 0

}
.

Remarks:

a. It is easy to verify that the set N s in the SSOSC (2.11) is a vector space. Thus,

it is the null space of the Jacobian of the strongly active constraints at the

nominal solution u∗.

If strict complementarity condition holds at the nominal solution, viz. the

absence of weakly active constraints (J ∗ = ∅), then N s is the same as the

sensitivity-seeking subspace of NP(θ) defined in [37, 16].

b. Identifying

L(u,λ,θ) = J(u,θ) + λT G(u,θ), (2.12)

as the Lagrangian for NP(θ), the SSOSC (2.11) amounts to the positive defi-

niteness of the Hessian of the Lagrangian on the null space of the Jacobian of

the strongly active constraints at the nominal solution.

This sufficient condition is called strong because there exists a weaker second-

order sufficient condition for optimality (WSOSC), which requires the positive

definiteness of the Hessian of the Lagrangian only on the following subset of N s:

Cw =
{
v ∈ N s

∣∣∣∣ ∂GJ ∗

∂u
(u∗,θ0)v ≤ 0

}
. (2.13)

It is easy to see that Cw is a cone, not a vector space. For a proof that the

aforementioned WSOSC condition, viz.,
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vT

{
∂2J

∂u2
(u∗,θ0)v + λ∗T ∂2G

∂u2
(u∗,θ0)v

}
> 0, ∀v ∈ Cw \ {0}, (2.14)

is a sufficient condition of optimality for NP(θ0), see Theorem 12.6 in [84].

If strict complementarity condition holds at the nominal solution, viz. the ab-

sence of weakly active constraints (J ∗ = ∅), then, naturally, the two conditions

SSOSC and WSOSC coincide.

2. Theorem 2 in [60] proves the Lipschitz continuity of optimal inputs and associated

Lagrange multipliers of a pNLP under the assumption of LICQ and SSOSC. For

the sake of completeness, we reproduce the theorem in our notation below:

Theorem 2.1 (Theorem 2 in [60])

At a local solution u∗ of NP(θ0) satisfying (2.3), assume that LICQ (2.5) and

SSOSC (2.11)2 are satisfied, then

a. u∗ is a local isolated minimizer of NP(θ0) and the associated Lagrange multi-

pliers λ∗ are unique;

b. for η ∈ B0, there exists a unique continuous vector function
[
ũ(η) λ̃(η)

]T

satis-

fying the SSOSC for a local minimum for NP(θ̃(η)) such that
[
ũ(0) λ̃(0)

]T

=[
u∗ λ∗

]T

and, hence ũ(η) is the locally unique minimizer of NP(θ̃(η)) with

associated unique Lagrange multipliers λ̃(η);

c. LICQ holds at ũ(η) for η ∈ B0;

d. there exist 0 < α, β <∞ and η0 > 0 such that, ∀ η with |η| < η0,

||ũ(η) − u∗|| ≤ α|η|,∣∣∣∣∣∣λ̃(η) − λ∗
∣∣∣∣∣∣ ≤ β|η|,

(2.15)

e. optimal cost function Jo(η) := J(ũ(η), θ̃(η)) is differentiable with respect to η

at η = 0:
d

dη
Jo(0) =

∂J

∂η
(u∗,θ0) + {λ∗}T ∂G

∂η
(u∗,θ0).

Remarks:
2 It is easy to see that the form of SSOSC in [60] is equivalent to (2.11).
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a. Recall that we have already assumed LICQ (2.5) for the NCO (2.6) to hold.

Thus, the main additional condition needed for the Lipschitz continuity of the

optimal solution (relation (2.15)) is the SSOSC (2.11).

b. Result 2b of the theorem implies that the variation in u∗, i.e., the entity denoted

by symbol ũ(η), is (only) a local optimal solution of NP(θ̃(η)). In some cases, the

said entity can also be a global optimal solution of NP(θ̃(η)), as seen in Example

2.4 later. However, in general, it need not be a global optimal solution, as can

be seen from Example 2.3. Thus, result (2.15) (Lipschitz continuity of ũ(η)) is

applicable only for ũ(η) as a local optimal solution of NP(θ̃(η)).

Since, we had remarked earlier that the symbol ũ would be used to denote a

perturbed global optimal solution of NP(θ), its use in the theorem above is a

slight abuse of notation. Later, we will assume condition (2.21) to remove this

ambiguity.

Since the conditions of this theorem will be used subsequently, it is interesting

to see implications of these conditions using some simple examples. The first

(counter-)example demonstrates the necessity of SSOSC for Lipschitz continuity

of a local optimal solution.3

Example 2.1

min
u

J(u, θ) = {tanh(u− 1)}2 + (1 + θ){tanh(u+ 1)}2

θ0 = −0.576, ξθ = 1.

It is easy to verify that J(u, θ) above satisfies the differentiability assumption

(2.3). Since the problem has no constraints, the LICQ condition (2.5) is satisfied

everywhere, whereas the NCO (2.6) reduce to
∂J

∂u
(u∗, θ0) = 0 and the SSOSC

(2.11) reduces to
∂2J

∂u2
(u∗, θ0) > 0.

In Figure 2.1, plots of J,
∂J

∂u
and

∂2J

∂u2
at θ = θ0 are shown.

It can be seen that the NCO
∂J

∂u
= 0 is satisfied at two points marked u∗

A and u∗
B,

but the SSOSC is not satisfied at u∗
A while it is satisfied at u∗

B. Strictly speaking,

the former is only a stationary point while the latter is a local (and, in this case,

global) minimum.

3 The author is grateful to Prof. Nicolas Petit for providing the interesting problem.
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Figure 2.1 Plots of J,
∂J

∂u
and

∂2J

∂u2
for Example 2.1 at θ = θ0.

Next, in Figure 2.2, plots of J(u, θ0 + η) are shown for three different values of

η ∈ B0. It is clear from it that there is only one minimum for η ≤ 0, but two

(local) minima for η > 0, the new minimum arising close to u∗
A. Naturally, the

results of Theorem 2.1 cannot hold at u∗
A. On the other hand, the local minimum

u∗
B, at which the SSOSC holds, is Lipschitz continuous with respect to η as can

seen from Figure 2.3.
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Figure 2.2 Plots of J(u, θ(η)) in Example 2.1 for three different values of η.
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Figure 2.3 Plot of the variation of the local optimal solution u∗B with respect to η in
Example 2.1.



38 2 : Static RTO

The second (counter-)example to demonstrate the necessity of SSOSC is the fol-

lowing parametric Linear Program (pLP):

Example 2.2

min
u=

"
x1 x2

# J(u, θ) = x1 + θx2, θ0 = 1, ξθ = 1

s.t. G1 : x1 + x2 ≥ 1,

G2 : x1 ≥ 0,

G3 : x2 ≥ 0.

(2.16)

The feasibility region for this problem is shown in Figure 2.4. For η = 0, each
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∂G1

∂u

˛̨
˛̨
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∂G3

∂u
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∂G2

∂u

˛̨
˛̨
A

C

Figure 2.4 The shaded open region is the feasibility region for Problem (2.16).

point on the entire segment AB is an optimal solution.
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Consider the optimal solutions A,B and C shown in Figure 2.4. The active sets

at these points are A∗
A = {1, 2}, A∗

B = {1, 3}, A∗
C = {1}. Gradients of active

constraints with respect to u at these three points are also shown in Figure 2.4.

It can be easily verified that the LICQ is satisfied at each point of AB.

On the other hand, since the cost and constraints are linear in inputs, the SSOSC

cannot be satisfied at any optimal solution. As a consequence, the variation in

optimal solutions is not Lipschitz continuous as can be seen from Figure 2.5.
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x̃1(η) x̃2(η)

ηη

Figure 2.5 The variation in the optimal solution of Problem (2.16) with respect to η ∈
[−0.5, 0.5]. ũ(η) = [x̃1(η) x̃2(η)] denotes the optimal solution at θ = θ0 + η.

The next example shows that the results of Theorem 2.1 are valid only for local

optimal solutions (Remark 2b after the said theorem).

Example 2.3

min
u

J(u, θ) = {tanh(u− 1)}2 + (1 + θ){tanh(u+ 1)}2

θ0 = 0, ξθ = 1.

In this case, it can be seen that the SSOSC
(
∂2J

∂u2
(u∗, θ0) > 0

)
is satisfied at both

(local) minimum solutions marked u∗
1 and u∗

2 in Figure 2.6. Hence, as a result

of Theorem 2.1, the corresponding perturbed local optima ũ1(η) and ũ2(η) are
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Lipschitz continuous with respect to η in a neighborhood of η = 0, as can be seen

from Figure 2.7.
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Figure 2.6 Plots of J,
∂J

∂u
and

∂2J

∂u2
for Example 2.3 at θ = θ0.

We can also see that both local minima are also global minima at η = 0. However,

as η crosses 0 from a negative to a positive value, the global minimum solution,

say ũg(η), changes abruptly from a positive value to a negative value. This can

be seen from Figures 2.8 and 2.9.
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Figure 2.7 Variation of the (local) optimal solutions u∗1 and u∗2 in Example 2.3 with respect
to η.
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Figure 2.8 Variation of the global optimal solution of Example 2.3 with respect to η.
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Figure 2.9 Plots of J(u, θ(η)) in Example 2.3 for three different values of η.

Based on the result of Theorem 2.1, let us now define the interval B0 as follows:

B0 := [−η0, η0]
⋂

[−η1, η1], (2.17)

for some η1 chosen such that 0 < η1 � 1 and where η0 is as defined in result 2d

of Theorem 2.1 for u∗ under consideration. Hence, one can also write

B0 := [−η0, η0], if η0 < η1 � 1,

[−η1, η1], if η0 > η1.
(2.18)

A schematic representation of B0 is shown in Figure 2.10.

Definition (2.17) simply ensures that B0 is a small interval (length of B0 � 1)

around 0 on which the relations (2.15) hold, if the conditions of Theorem 2.1 hold

at the optimum solution u∗.

Theorem 3 in [60] further proves the existence of the directional derivatives of ũ(η)

and λ̃(η) with respect to η for a given the direction of parametric perturbations ξθ,

under conditions of Theorem (2.1) and shows that these derivatives are (unique)

solutions of an associated system of equalities and inequalities.
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Figure 2.10 Schematic representation of B0 (the shaded band).

3. Corollary 2.3 in [21] proves the same result as Theorem (2.1) above. Under similar

assumptions, viz. LICQ and SSOSC, Theorem 2.2 (in combination with Propo-

sition 2.1) in [20] also proves the Lipschitz continuity of the optimal inputs ũ(η)

with respect to parameters.

4. Similar, but less general, result on Lipschitz continuity of optimal solutions of

NP(θ) using SSOSC is also proved in Theorem 4.3 [43] assuming a restriction on

ξθ, but under regularity assumptions somewhat less restrictive than LICQ.

Theorem 5.1 in [43] also proves the existence of directional derivative of ũ(η) with

respect to η under certain restrictions on ξθ.

The following two results deal directly with the stronger property of (one-sided)

differentiability of (ũ(η), λ̃(η)) and so, automatically, imply (one-sided) Lipschitz

continuity of the same.

1. Theorem 3.3.4 in [53] proves the piecewise differentiability of ũ(η) and λ̃(η) under

similar assumptions, viz., (2.3), LICQ, SSOSC and an additional technical condi-

tion, which restricts the number of changes in the active set of NP(θ) to be finite

as η varies over B+
0 , a small interval on the right(positive) side of 0. It shows that

the right-hand derivatives of ũ(η) and λ̃(η) with respect to η at η = 0, i.e.,

u̇(0+) := lim
η→0+

ũ(η) − u∗

η
,

λ̇(0+) := lim
η→0+

λ̃(η) − λ∗

η
,

(2.19)

are, respectively, the (unique) solutions (w∗) and associated Lagrange multipliers

(μ∗) of the following quadratic program:
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min
w∈IRnu

1
2
wT ∂

2L
∂u2

(u∗,λ∗,θ0)w +
∂L
∂u∂η

(u∗,λ∗,θ0)w,

s.t.
∂GI∗

∂η
(u∗,θ0) +

∂GI∗

∂u
(u∗,θ0)w = 0,

∂GJ ∗

∂η
(u∗,θ0) +

∂GJ ∗

∂u
(u∗,θ0)w ≤ 0,

(2.20)

where L is the same as in (2.12).

Remark: For a given direction ξθ, the directional derivatives in Theorem 3 of

[60] mentioned above are the same as (2.19). It is indeed easy to check that the

system of equalities and inequalities satisfied by these derivatives in [60] is the

same as the KKT NCO for the quadratic program (2.20).

2. Theorem 3.4 in [24] is very similar to Theorem 3.3.4 in [53] in that it proves

the piecewise differentiability of (ũ(η), λ̃(η)) in terms of the (unique) solutions of

the same quadratic program (2.20) under similar assumptions (2.3), LICQ, SSOSC

and an additional technical assumption of strict complementarity for the quadratic

program (2.20).

As mentioned in Remark 2 following the above theorem in [24], the purpose of

the technical condition is to guarantee the constancy of the active set of NP(θ)

for small variations in η and thus, it is somewhat similar in spirit to the technical

condition in Theorem 3.3.4 in [53].

[24] also mentions an additional technical condition, viz., strict complementarity

for an inverted version of the quadratic program (2.20), for existence of two-sided

derivatives of (ũ(η), λ̃(η)).

Since, as mentioned at the beginning of the survey above, we would like NP(θ)

to be regular enough as to have Lipschitz continuous optimal solutions, we would

henceforth impose conditions of Theorem 2.1, viz., (2.3), LICQ (2.5) and SSOSC

(2.11) on NP(θ), unless stated otherwise.

Let us also recall that we are interested in global optimum solutions u∗ and ũ

whereas Theorem 2.1 (point b.) ensures the Lipschitz continuity only of local opti-

mum solutions. In other words, the theorem only ensures that the entity denoted

by the symbol ũ(η), which satisfies the relation (2.15), is a local optimal solution of

the perturbed problem NP(θ̃(η)) for each η ∈ B0. Hence, as mentioned in Remark

2b after the said theorem, it is necessary to be more precise while using the notation

ũ(η) for a global optimal solution of NP(θ̃(η)).



2.3 Research Objective for Static RTO Problems 45

For example, as seen in Figure 2.8 of Example (2.1), in some problems, there

is a possibility that one local optimum solution takes over the other as the global

optimum as η changes, even if conditions of Theorem 2.1 hold at each local solution.

That is, there is a possibility of discontinuity in variation of global optimum solution

with respect to η. Hence, to avoid such scenarios and to make sure that the use of

notation ũ(η) is not ambiguous, we make the following additional assumption:

Assumption 2.4

For given pNLP (2.2) satisfying the conditions of Theorem 2.1, viz., (2.3), LICQ

(2.5) and SSOSC (2.11), and for corresponding B0 as defined by (2.17),

the (local) variation in u∗ given by (2.15), i.e., ũ(η),

is a global minimum solution for the corresponding

perturbed problem NP(θ̃(η)) for each η ∈ B0.

(2.21)

Since ũ(η) is defined by the Lipschitz continuity relation (2.15) and since it is also

a global optimal solution of NP(θ) over B0 by assumption (2.21), the said global

optimal solution itself is Lipschitz continuous over B0. Hence, for the said global

optimal solution ũ(η), we can write:

ũ(η) − u∗ = O(η), η ∈ B0. (2.22)

This is illustrated in the following example:

Example 2.4

min
u

J(u, θ) = {tanh(u− 1)}2 + (1 + θ){tanh(u+ 1)}2

θ0 = −1.5, ξθ = 1,B0 = [−0.5, 0.5].

In this example, the variation in u∗ can be seen to be the global optimal solution,

say ũg(η), of NP(θ̃(η)) for each η ∈ B0 = [−0.5, 0.5] (Figure 2.11). Thus, assumption

(2.21) is satisfied in this example. As in Examples 2.1 and 2.3, it is easy to verify that

the conditions of Theorem 2.1 hold at u∗ = ũg(0), i.e., the nominal global optimal

solution.

Hence, ũg(η) can be seen to be Lipschitz continuous with respect η over B0 (Figure

2.12).
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Figure 2.11 Plots of J(u, θ(η)) in Example 2.4 for three different values of η. ũ(η) denotes
the local variation in u∗ with respect to η (as in (2.15)). It is also a global minimum for
J(u, θ(η)) for each η ∈ B0, thus satisfying condition (2.21).
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Figure 2.12 Variation of the global optimal solution of Example 2.4 with respect to η.
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As already remarked earlier, an example in which assumption (2.21) is not satisfied

is Example 2.3 at η = 0 (Figures 2.7 and 2.9). In this example, ũ2(η) is not a global

optimal solution for η ∈ (0, 0.5] while ũ1(η) is not a global optimal solution for

η ∈ [−0.5, 0), although both are local optimal solutions and are local variations of

u∗
1 and u∗

2 respectively. Hence, the variation in the global optimal solution is not

Lipschitz continuous at η = 0 (Figure 2.8).

Equipped with suitable regularity conditions on the underlying pNLP, we are now

ready to demonstrate the general approach for analysis of optimality loss using the

following theorem. It will also clarify the exact research question we will be dealing

with.

Theorem 2.2 (Optimality Loss due to No Adaptation)

Consider the pNLP (2.2) satisfying (2.3), for which conditions (2.5) (LICQ) and

(2.11) (SSOSC) and (2.21) hold at the nominal optimal input u∗. If u∗ remains

feasible under parametric perturbations (2.8), then the optimality loss without adap-

tation is O(η).

Proof: Using the differentiability properties of J with respect to u, it is possible

to consider the first-order Taylor series expansion of J(u, θ̃) around (ũ, θ̃):

δJ(u) =
∂J

∂u
(ũ, θ̃) {u− ũ} +O(||u − ũ||2), (2.23)

where || || denotes the Euclidean norm on IRnu . From the NCO (2.6) written for the

perturbed optimal solution and (2.9), one can write:

∂J

∂u
(ũ, θ̃) + λ̃

T

Ĩ
∂GĨ
∂u

(ũ, θ̃) = 0. (2.24)

Using (2.24) in (2.23), gives:

δJ(u) = − λ̃T

Ĩ
∂GĨ
∂u

(ũ, θ̃) {u− ũ} +O(||u − ũ||2). (2.25)

Without adaptation, i.e. when u = u∗, following results of Theorem 2.1 and

assumption (2.21), we have u∗ − ũ = O(η) (as in (2.22)).

This implies δJ(u∗) = O(η). ��
Remarks:
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1. Note that for a general pNLP (2.2), there is no guarantee that the nominal optimal

solution will remain feasible after parametric perturbations, in which case, adap-

tation becomes necessary. The theorem above says that, when input adaptation

is not necessary to maintain feasibility, the optimality loss due to no adaptation

is of the order of O(η).

2. Instead of assuming (2.21), by assuming that the conditions of Theorem 2.1 hold

at each global optimal solution u∗
i of pNLP (2.2), the same result as Theorem 2.2

can be obtained.4

Under these conditions, all corresponding perturbed local minimum solutions ũi(η)

are Lipschitz continuous with respect to η. Hence, due to assumption (2.3), the

corresponding cost values J(ũi(η), θ̃(η)) are also Lipschitz continuous. Let J◦(η)

denote the perturbed global optimal cost, i.e., J(ũg(η), θ̃(η)) at any perturbed

global optimal input ũg(η). Hence, by definition

J◦(η) = min
i
{cost due to each perturbed local minimum ũi(η)},

= min
i
{J(ũk(η), θ̃(η))}.

Hence, J◦(η) is Lipschitz continuous, since the minimum of a set of Lipschitz

continuous functions is itself Lipschitz continuous. Thus, J◦(η)−J(u∗
i ,θ0) = O(η).

Now, optimality loss due to (non adaptation of) any nominal optimal input u∗
k,

assuming it remains feasible, is

δJ(u∗
k) = J(u∗

k, θ̃(η)) − J◦(η),

= J(u∗
k, θ̃(η)) − J(u∗

k,θ0) + J(u∗
k,θ0) − J◦(η),

=
∂J

∂u
(u∗,θ0) η ξ

θ +O(η2) +O(η),

= O(η). ��

(2.26)

Note that the importance of derivation (2.26) is that it shows that the Lipschitz

continuity of global optimal cost (J◦(η)) is sufficient to obtain the result of opti-

mality loss due to no adaptation of order O(η) and that Lipschitz continuity of

global optimal solution (2.22) is not necessary. In other words, the assumption

(2.21) is not necessary for the above result to hold.

4 The author is grateful to Prof. Dr. Moritz Diehl for pointing out the possibility of such a result.
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This can be illustrated using Example (2.3) seen earlier, in which the global opti-

mal solution is not Lipschitz continuous on B0 = [−0.5, 0.5] (Figures 2.8 and 2.9).

For this example, the variation of global minimum cost J◦(η) with respect to η is

plotted in Figure 2.13 below. Evidently, J◦(η) is Lipschitz continuous over B0.
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Figure 2.13 Variation of the (global) minimum cost J◦(η) in Example 2.3 with respect to
η.

In summary, the result (2.26) is applicable even when the global minimizer changes

discontinuously with respect to η and so is more general than that of Theorem

2.2.

2.3.3.2 Optimality Loss Analysis due to No Adaptation under Weaker

Conditions

Before moving on to optimality loss analysis due to adaptation, it would be inter-

esting to discuss a stronger version of Theorem 2.2 that can be proved by assuming

weaker conditions on NP(θ).5

5 The author is grateful to Prof. Dr. Moritz Diehl for pointing out the possibility of such a result.



50 2 : Static RTO

Recall from Remark 2 after Theorem 2.2 of the last subsection that to obtain the

result of optimality loss due to no adaptation of order O(η), what is more important

is the Lipschitz continuity of global optimal cost (J◦(η) = J(ũ(η), θ̃(η))) and not

that of global optimal solution. Also recall from Theorem 2.1 and the illustrative

Examples 2.1 and 2.2 that the role of the assumption of SSOSC (2.11) was to ensure

the Lipschitz continuity of a given (local) optimal solution.

Combining these observations, it might be further asked whether even the strong

condition of SSOSC is necessary to ensure the Lipschitz continuity of optimal cost.

It turns out that it is not. For example, consider again the pLP in Example 2.2 in

which the SSOSC cannot be satisfied at any optimal solution. However, the variation

of optimal cost (J◦(η)) with respect to η for this example can be seen to be Lipschitz

continuous (Figure 2.14 below).

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

0

0.5

1

1.5

J◦(η)

η

Figure 2.14 Variation of the optimal cost J◦(η) in Example 2.16 with respect to η. The
SSOSC cannot hold at any optimal solution of this example.

There exist a number of results in the literature on sensitivity analysis that ensure

Lipschitz continuity of the optimal cost J◦(η) with respect to parametric perturba-

tions without assuming SSOSC. Following is a short list of such results relevant to

pNLP (2.2). Almost all the results assume some basic regularity conditions on the
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feasible set mapping, viz.,

F(η) :=
{
u ∈ IRnu

∣∣∣Gi(u, θ̃(η)) ≤ 0, i = 1, . . . , nG

}
. (2.27)

Most of the said results are applicable to more general pNLPs that involve equality

constraints also.

1. Theorem 5.1 in [42] proves the Lipschitz continuity of optimal cost under the

Mangasarian-Fromovitz constraint qualification (MFCQ) [5, 88]:

∃ a direction d ∈ IRnu such that dT ∂Gi

∂u
(u∗,θ0) < 0, i ∈ A∗. (2.28)

We reproduce the theorem below in our notation.

Theorem 2.3 (Theorem 5.1 of [42])

For pNLP (2.2), suppose F(η) is nonempty for η ∈ B0, F(η) is uniformly compact

near η = 0 and MFCQ holds at each nominal optimal solution u∗, then the optimal

cost is locally Lipschitz continuous near η = 0.

Remarks:

a. The theorem admits the possibility of multiple optimal solutions u∗. Thus, the

optimal cost is Lipschitz continuous despite the multiplicity of optimal solutions

under the assumed conditions.

b. It is well-known that MFCQ is a weaker condition than LICQ [5, 88]. Fur-

ther, in contrast to Theorem 2.1, there are no second-order conditions in the

theorem above and so the functions f,Gi can be C1, rather than C2, in their

arguments. Thus, the conditions of the theorem above are much weaker than

that of Theorem 2.1.

c. The uniform compactness of the feasible set mapping F(η) is a technical reg-

ularity condition, which ensures that for small variations in η, any sequence of

feasible u converges within the closure of F(η); for more details, see [42, 56].

2. Corollary 4.1 in [44] proves the directional differentiability (and by implication

Lipschitz continuity) of optimal cost with respect to η for a given ξθ under condi-

tions of Theorem 2.3 and the additional condition of WSOSC at any one nominal

optimal solution (u∗,λ∗). The last condition, of course, necessitates f,Gi to be

at least C2 in their arguments.
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3. Corollary 1 (in view of Definition 1) in [78] is essentially the same result as Theorem

(2.3) above.

For the special type of pNLPs having only the so called right hand side (RHS)

perturbations, results on Lipschitz-continuity of optimal cost are derived in a number

of publications. For the sake of completeness, we list a few of these results below:

Theorem 4.1 and its corollaries in [105], Theorem 3.3 in [45], Theorem 2 in [41],

Theorem 3.2 of [48] and Theorem 3.2 of [43].

As remarked in [43] and [44], a general pNLP (2.2) can always be transformed

into a problem with RHS perturbations (with equality constraints). Based on the

equivalence of the two formulations, the results on Lipschitz continuity of optimal

cost for the latter can be easily extended to the former.

Earlier results on Lipschitz continuity of optimal cost for a special case of the

aforementioned problems in which there is no parametric perturbation in cost are

Theorem 3 of [38] and Theorem 1 of [46].

Under conditions of Theorem 2.3 above, it is easy to show that the optimality loss

due to no adaptation, if it remains feasible, is O(η):

Theorem 2.4

(Optimality Loss due to No Adaptation under Weak Conditions)

For pNLP (2.2), suppose the feasible set mapping F(η) is nonempty for η ∈ B0, F(η)

is uniformly compact near η = 0 and MFCQ holds at each nominal optimal solution.

If any nominal optimal solution u∗ remains feasible under parametric perturbations

(2.8), then the optimality loss without adaptation is O(η).

Proof: The derivation is similar to (2.26). Starting from the general expression

for optimality loss (2.10), we get

δJ(u∗) = J(u∗, θ̃(η)) − J(ũ(η), θ̃(η)),

= J(u∗, θ̃(η)) − J(u∗,θ0) + J(u∗,θ0) − J(ũ(η), θ̃(η)),

=
∂J

∂η
(u∗,θ0)ηξ

θ +O(η2) + J(ũ(0), θ̃(0)) − J(ũ(η), θ̃(η)),

(2.29)

the last step owing to continuity of J in its θ-argument. (Recall: J is, at least,

continuously differentiable in its θ-argument.) Since results on Lipschitz continuity

of optimal cost of Theorem 2.3 hold under the assumed conditions, we have
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J(ũ(0), θ̃(0)) − J(ũ(η), θ̃(η)) = O(η),

using which in (2.29) proves the result. ��
Remarks:

1. A special feature of this theorem is that it admits cases in which the pNLP (2.2)

has multiple optimal solutions (recall Remark 1a after Theorem 2.3), in contrast

to Theorem 2.2, in which the optimal solutions happen to be unique under the

assumed strong conditions.

The possibility of multiple optimal solutions means that there can be a jump in

optimal solution for some values of η. The theorem above implies that irrespective

of the possibility of jump in solutions in a pNLP that satisfies the stated conditions,

the non adaptation – as long as it can remain feasible – results in optimality loss

of the order of O(η).

As a special case, consider parametric linear programming (pLP) problems, i.e.

when cost J and constraints Gi are linear functions of their arguments. It is well

known that a pLP can have multiple optimal solutions for some values of η. This

means that there can be a jump in optimal solution of a pLP for some values of

η. Recall, for example, Figure 2.5 of Example 2.2.

The theorem above implies that irrespective of the possibility of jump in solutions

in a pLP, even the non adaptation – as long as it can remain feasible – prevents

a jump in optimality loss. Moreover, any Lipschitz continuous feasible adaptation

û of a nominal optimal solution u∗ of a pLP (i.e., û− u∗ = O(η)) will also result

in an optimality loss of O(η). This is easy to check by simply replacing the term

J(u∗, θ̃(η)) by J(û, θ̃(η)) in (2.29) in the derivation above. In summary, for a

pLP that satisfies conditions of Theorem 2.4, no feasible adaptation of a nominal

optimal solution can bring any significant benefit, in terms of optimality loss, over

non adaptation, as long as the latter is feasible.

2. Note that the restrictive condition (2.21) assumed for Theorem 2.2 is not assumed

for Theorem 2.4 above. As observed in Remark 1b after Theorem 2.3, other con-

ditions assumed for Theorem 2.4 are also weaker than those assumed for Theorem

2.2, making the former a strong version of the latter. Remark 1 above can be seen

as an example of this fact.

The results of Theorems 2.2 and 2.4 above naturally raise the following question:
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for an SRTO problem expressed as a general pNLP, if no adaptation, in general,

cannot reduce the optimality loss below O(η), can some type of (feasible) adaptation

that is based on the knowledge of nominal solution, reduce it below O(η)? If yes,

what type of adaptation can achieve this and under what conditions?

In other words, we want to compare the performance of adapted inputs with that

of nominal inputs; although, not in the manner of the local cost-variation (2.1), but

with the perturbed optimal cost J(ũ, θ̃) as a point of reference.

Hence, the research objective for the SRTO problem can be schematically repre-

sented as in Figure 2.15:
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Cost Variation Analysis
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J(ũ, θ̃)

Ref. [16]

Figure 2.15 Research objective for the analytical study of SRTO.



Chapter 3

Role of Constraints in Optimality of

Parametric Nonlinear Programs

In this chapter, we perform a joint analysis of nominal optimal, perturbed optimal

and feasible adapted solutions that conserve part or whole of the nominal active

set. As explained in Chapter 2, the motivation behind such a characterization of

adapted inputs, viz., the one that is based on their properties common with nominal

solution, is to imagine that the adapted inputs are generated by some RTO method

that makes use of the knowledge of the nominal optimal solution.

Recall also from Section 2.3.3 that the aim here is not to study how such an RTO

method is to be designed; but, to assume that such adapted inputs are available. The

main goal is to develop an analysis to quantify the optimality loss incurred due to

such – possibly insufficient – adaptation, especially when the nominal and perturbed

active sets are different.

It is hoped that the results of the analysis in turn will help shed some light on the

relative importance of RTO methods, when they exist, that are capable of generating

the concerned adapted inputs and might provide some insights in simplifying the

design of such RTO methods.

We perform the said analysis using the following two-step approach:

Step 1 Characterize the change in the optimal active set resulting from small

parametric perturbations.

Step 2 Use the information about the change in active set in combination with

the information about the set of constraints kept active by the adapted solution

to quantify the optimality loss suffered by the adapted solution.

Thus, it is evident that to perform a quantitative analysis of the optimality loss

resulting from a given set of adapted inputs, it is first necessary to impose certain

conditions on the underlying pNLP so as to ensure a sufficiently regular behavior of

55
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the optimal inputs for the perturbed system, ũ(η). A number of such conditions

were discussed in Section 2.3.3. Let us recall the role of the main conditions:

• LICQ (2.5) ensures that the KKT NCO hold at the nominal optimal solution u∗,

• the combination of LICQ (2.5) and SSOSC (2.11) ensures Lipschitz continuity of a

local optimal solution of NP(θ) and of its associated Lagrange multipliers (relation

(2.15)),

• the combination of LICQ (2.5), SSOSC (2.11) and assumption (2.21) ensures Lip-

schitz continuity of a global optimal solution of NP(θ) and of its associated La-

grange multipliers (relation (2.22)).

Under the last set of assumptions, we will use the same symbol ũ(η) to denote a

global optimal solution of NP(θ̃(η)) that is also the local variation in the (global)

optimal solution u∗ of NP(θ0).

In the next two sections, we present the optimality loss analysis under these as-

sumptions. We prove the important result that the optimality loss associated with

adaptation that conserves the nominal active set is O(η2), even when there is a

change in the set of active constraints. In addition, we show that conserving only a

particular subset of nominal active set, viz., the nominal strong active set, is suffi-

cient to limit the optimality loss to the order of O(η2). In Section 3.3, an example

is presented to illustrate the results and in Section 3.4 the results are summarized.

3.1 Change in Active Set due to Parametric Perturbation

As mentioned at beginning of the chapter, Step 1 is to analyze how the active set

for Problem (2.2) changes as a result of the parametric perturbations (2.8).

Without loss of generality, suppose that there is a change in active set around

η = 0. In terms of the notation introduced in (2.7) and (2.9), we need to deal with

three triplets of sets: At η = 0, the strongly active, weakly active and inactive sets

correspond to I∗, J ∗, and K∗, respectively; at η = 0+, these sets are Ĩ+, J̃+, and

K̃+, while at η = 0−, these sets are Ĩ−, J̃−, and K̃−. The relationship between them

is studied next.

Recall from Section 2.3.3, that conditions (2.3), (2.5) (LICQ), (2.11) (SSOSC) and

(2.21) on NP(θ) ensure Lipschitz continuity of (ũ(η), λ̃(η)). As a straightforward

consequence of it, we can derive the following relation between the sets K∗ and K̃:
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Lemma 3.1 (Constancy of inactive set under θ̃(η))

For pNLP (2.2) satisfying assumption (2.3), if conditions (2.5) (LICQ), (2.11)

(SSOSC) and (2.21) hold at the nominal optimal solution u∗, then under parametric

perturbations (2.8), K∗ ⊆ K̃.

Proof: For η = 0+, let us assume the contrary, namely, that there exists an index

i ∈ K∗ ∩ (Ĩ+ ∪ J̃+). Hence,

Gi(u∗,θ0) < 0; with Gi(ũ(0+), θ̃(0+)) = 0.

The last statement, however, is a contradiction since ũ(η) is continuous as a result of

Theorem 2.1 and Gi is continuous in both its arguments by assumption (2.3). Hence,

it must be that K∗ ∩ (Ĩ+ ∪ J̃+) = ∅. The same argument holds for η = 0−. ��
Lemma 3.1 implies that it is not possible for inactive constraints to become

(strongly/weakly) active after small parametric perturbations.

Next, we prove that strongly active constraints at the nominal solution remain

strongly active after parametric perturbations.

Lemma 3.2 (Constancy of strongly active set under θ̃(η))

For pNLP (2.2) satisfying assumption (2.3), if conditions (2.5) (LICQ), (2.11)

(SSOSC) and (2.21) hold at the nominal optimal solution u∗, then under parametric

perturbations (2.8), I∗ ⊆ Ĩ.

Proof: Let us assume the contrary, viz., some nominal strongly active constraints

do not remain strongly active after parametric perturbations so that only a (strict)

subset of I∗ belongs to Ĩ. Next, we will show, for η = 0+, that this leads to

contradiction.

In general, there can be some new indices in Ĩ+ that are not present in I∗. Thus,

we have:

I∗ = C ∪ Z1, Ĩ+ = C ∪ Z2, Z1 �= ∅, C ∩ Z1 ∩ Z2 = ∅. (3.1)

Thus, Z2 represents the new strongly active constraints after perturbation. Since

result of Lemma 3.1 holds under the assumed conditions, Z2 cannot be part of K∗.

Hence, from the last relation in (3.1), we can infer that

Z2 ⊆ J ∗, (3.2)
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i.e. the constraints in the strict active set of perturbed solution that are not present

in the strict active set of nominal solution must have come from the marginal active

set of the nominal solution.

The KKT NCO (2.6) for NP(θ) at η = 0 and (2.9) η = 0+ read:

0 =
∂J

∂u
(u∗,θ∗) + λ∗

I∗
T ∂GI∗

∂u
(u∗,θ∗),

0 =
∂J

∂u
(ũ, θ̃)

∣∣∣∣
η=0+

+ λ̃
T

Ĩ+
(η = 0+)

∂GĨ+

∂u
(ũ, θ̃)

∣∣∣∣
η=0+

,
(3.3)

respectively. Using (3.1) and (3.2), the above system can be rewritten as:

0 =
∂J

∂u
(u∗,θ∗) + λ∗

C
T ∂GC
∂u

(u∗,θ∗) + λ∗
Z1

T ∂GZ1

∂u
(u∗,θ∗),

0 =
{
∂J

∂u
(ũ, θ̃) + λ̃

T

C
∂GC
∂u

(ũ, θ̃) + λ̃
T

Z2

∂GZ2

∂u
(ũ, θ̃)

}
η=0+

.
(3.4)

Under the assumed conditions on NP(θ), results of Theorem 2.1 hold implying

the Lipschitz continuity of ũ(η). Owing to continuity of the derivatives of J and G

with respect to u and θ, and that of ũ and θ̃ with respect to η, (3.4) implies

0 =
{
λ̃C(η = 0+) − λ∗

C
}T ∂GC

∂u
(u∗,θ∗) + λ̃

T

Z2
(η = 0+)

∂GZ2

∂u
(u∗,θ∗)

− λ∗
Z1

T ∂GZ1

∂u
(u∗,θ∗),

which, owing to the (Lipschitz) continuity of λ̃(η), reduces to:

0 = λ̃
T

Z2
(η = 0+)

∂GZ2

∂u
(u∗,θ∗) − λ∗

Z1

T ∂GZ1

∂u
(u∗,θ∗). (3.5)

Next, we make two important observations.

Observation 1: λ∗
Z1

�= 0.

The reason is that the first relation in (3.1) implies that Z1 ⊂ I∗.

Observation 2: From Observation 1 and (3.5), we can infer that the column

vectors of
∂GZ2

∂u
(u∗,θ∗) and

∂GZ1

∂u
(u∗,θ∗)

cannot all be independent.
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But, the last observation is a contradiction, since (3.2) implies that Z2 is a part

of J ∗ and LICQ (2.5) implies that the the column vectors of
∂GJ ∗

∂u
(u∗,θ∗) must be

independent of those of
∂GI∗

∂u
(u∗,θ∗).

Hence, it is not possible that some nominal strongly active constraints do not

remain strongly active for η = 0+.

Since the same arguments can be applied for the case η = 0−, the same result also

holds for Ĩ−. ��
As a consequence of the above two lemmas, the following theorem describing

possible change in all index sets due to parametric perturbations can be proved:

Theorem 3.1 (Relation between I∗,J ∗,K∗,A∗ and Ĩ, J̃ , K̃, Ã)

For pNLP (2.2) satisfying assumption (2.3), if conditions (2.5) (LICQ), (2.11)

(SSOSC) and (2.21) hold at the nominal optimal solution u∗, then under parametric

perturbations (2.8), the following relations hold:

I∗ ⊆ Ĩ, K∗ ⊆ K̃, J̃ ⊆ J ∗, Ã ⊆ A∗. (3.6)

Proof: Since results of Lemmas 3.1 and 3.2 hold, the strict active set will remain

strongly active, and the inactive set will remain inactive, after parametric pertur-

bations. Only the elements in the weakly active set can change sides, i.e., they can

either stay weakly active, become strongly active or become inactive, proving the

result. ��
Remark: Note that I∗ is the minimal strict active set, i.e. smaller than or equal

to Ĩ+ and Ĩ−, while A∗ is the maximal active set, i.e., larger than or equal to Ã+

and Ã−.

A schematic representation of these results is shown in Figures 3.1 to 3.3.
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Gi

Gi Gi

λi(η)> 0

0

0

0 η

η

η

Figure 3.1 Effect of parametric variation on the strongly active constraint Gi, i ∈ I∗.
The rectangle denotes G∗

i . The dashed lines with arrows show the impossible change in
value of Gi. The solid lines with arrows show the possible change in Gi. The reason for
the impossible change in the top-left figure is the LICQ, while that in the top-right figure
is the continuity of Gi and ũ with respect to η. The reason for the corresponding Lagrange
multiplier λi(η) being strictly greater than zero (bottom figure) is again LICQ.

GiGi

λi(η)≥ 0

0

0

ηη

Figure 3.2 Effect of parametric variation on the weakly active constraint Gi, i ∈ J ∗. The
rectangle denotes G∗

i . The solid lines with arrows show the possible change in Gi, which
can become inactive (left figure), remain weakly active or become active (right figure).
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Figure 3.3 Effect of parametric variation on the inactive constraint Gi, i ∈ K∗. The
rectangle denotes G∗

i . The dashed lines with arrows show the impossible change in value
of Gi. The solid lines with arrows show the possible change in Gi. The reason for the
impossible changes in Gi is the continuity of Gi and ũ with respect to η.

3.2 Optimality Loss Analysis

This section accomplishes the task of Step 2, viz. it investigates the optimality loss

when the nominal active constraints are kept active using input adaptation. To be

precise, let û denote adapted inputs that satisfy

û− u∗ = O(η) (3.7)

and keep the set A∗ active without violating any other constraint, i.e., the adapted
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inputs û satisfy the following conditions for the perturbed system:1

Gi(û, θ̃) = 0, ∀ i ∈ I∗,

Gi(û, θ̃) = 0, ∀ i ∈ J ∗,

Gi(û, θ̃) ≤ 0, ∀ i ∈ K∗.

(3.8)

We assume that, for the pNLP (2.2) and θ̃ under consideration, there exist solution(s)

to the system of equations (3.8) that satisfy (3.7).

We start with the case when there is no change in the active sets of constraints.

3.2.1 Optimality Loss with Same Index Sets of Constraints

The simplest case is when there is no change in the index sets of constraints after

parametric perturbations, i.e. I∗ = Ĩ, J ∗ = J̃ , and K∗ = K̃.

Theorem 3.2

For pNLP (2.2) satisfying assumption (2.3), if conditions (2.5) (LICQ), (2.11)

(SSOSC) and (2.21) hold at the nominal optimal solution u∗, and the active in-

dex sets I∗ and J ∗ do not change under parametric perturbations (2.8), then the

optimality loss associated with any input adaptation that satisfies (3.7) and (3.8)

(keeping the constraints A∗ active while being feasible) is O(η2).

Proof: The Taylor series expansion of GĨ(û, θ̃) around (ũ, θ̃) yields:

GĨ(û, θ̃) = GĨ(ũ, θ̃) +
∂GĨ
∂u

(ũ, θ̃) {û− ũ} +O({û − ũ}2). (3.9)

Note that GĨ(û, θ̃) = 0 by the definition of û since Ĩ = I∗. Also, GĨ(ũ, θ̃) = 0

by definition of the active set of the perturbed optimum.

û − u∗ = O(η) by construction as given by (3.7) and ũ − u∗ = O(η) since (2.22)

holds under the assumed conditions. Hence, û− ũ = O(η).

Using all these facts, (3.9) gives:

∂GĨ
∂u

(ũ, θ̃) {û− ũ} = O(η2), (3.10)

1 Note that the value of η used to specify the difference between û and u∗ in (3.7) is the same as the
magnitude of parametric variations in (2.8).
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which, when combined with (2.25), leads to δJ(û) = O(η2). ��
Remark: Note that keeping GJ ∗(û, θ̃) = 0 does not help toward optimality

since the corresponding Lagrange multipliers are zero, i.e., these constraints though

active do not contribute to the cost. Hence, they could indeed be relaxed to become

inactive.

3.2.2 Optimality Loss with Change in Optimal Active Set

For this scenario, several possibilities need to be considered. One could use input

adaptation to keep either A∗ or Ã active over the interval B0. Alternatively, as noted

in the remark above, it is sufficient to keep the smallest of these sets, namely either I∗

or Ĩ active. Of course, in all these adaptation strategies, it is assumed that feasibility

of the other constraints is guaranteed. Also recall that we are not concerned with

how exactly can the strategies that produce said adapted inputs be designed; we are

concerned with analysis of such adapted inputs, if they are available.

The next result proves that all these strategies are equivalent.

Theorem 3.3

Let pNLP (2.2) satisfy assumption (2.3) and let conditions (2.5) (LICQ), (2.11)

(SSOSC) and (2.21) hold at its nominal optimal solution u∗. In case of parametric

perturbations (2.8), consider Strategy (i) that adapts the inputs to keep the con-

straints A∗ active, Strategy (ii) that keeps the constraints Ã active, Strategy (iii)

that keeps the constraints I∗ active, and Strategy (iv) that keeps the constraints Ĩ
active. The optimality loss associated with all these adaptation strategies, assuming

they are feasible, is O(η2).

Proof: Let S be the set of constraints enforced by the adopted strategy. It follows

from (2.25) that the constraints to be enforced for the sake of optimality are only

C = S ∩ Ĩ. Although other constraints are enforced, they do not have a first-order

effect on the cost. Also note that all strategies ensure that I∗ ⊆ C.

On the other hand, there are other elements in Ĩ that are not forced to zero. Let

us denote them by D, i.e. D = Ĩ \ C. Note that D does not contain any elements of

I∗. From Ĩ = C ∪ D, (2.25) can be written as

δJ(û) = − λ̃T

C
∂GC
∂u

(ũ, θ̃) {û − ũ} − λ̃T

D
∂GD
∂u

(ũ, θ̃) {û− ũ} +O(η2). (3.11)
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Since results of Theorem 2.1 and relation (2.22) hold under assumed conditions, the

first term of the expression above can be shown to be O(η2) following the same argu-

ments as in the proof of Theorem 3.2. Results of Theorem 2.1 also imply Lipschitz

continuity of Lagrange multipliers associated with ũ(η), so that λ̃D − λ∗
D = O(η).

However, since D does not contain any elements of I∗, λ∗
D = 0, which results in

λ̃D = O(η). Also, û − ũ = O(η) as discussed in the proof of Theorem 3.2, and thus

(3.11) becomes:

δJ(û) =O(η2) +O(η)
∂GD
∂u

(ũ, θ̃)O(η) +O(η2) = O(η2). (3.12)

��
Remark: As noted earlier, I∗ is the minimal set characterizing the four strategies

under consideration in Theorem 3.3. The implication of all strategies being equal in

terms of optimality loss is the following: I∗ is the constraint set that needs to be

kept active under parametric variations to guarantee an optimality loss of no more

than O(η2), even when the perturbed active set is different from the nominal one.

In summary, when LICQ and SSOSC hold for the pNLP NP(θ), the optimality

loss associated with conserving the nominal active set is always O(η2), regardless

of whether or not the active set for the plant, which is unknown in practice, is

the same as that of the model. The practical implication of this result is that, at

least locally, static RTO methods are better off in terms of cost by simply striving

to maintain the active set found with the nominal model. As long as the adapted

solution remains feasible, there is no need for any mechanism to detect the constraints

that become active.2 On the other hand, failure to maintain the active set in RTO

can, in general, result in an optimality loss of the order of O(η).

3.3 Illustrative Example

This section illustrates the results of Section 3.1 via the optimization of a chemical

process. The alkylation process is taken from Example 14.3 in [27] and modified

slightly for the purpose of this illustration.

2 Note, however, that such a mechanism might be necessary to ensure feasibility.
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Mathematically, the optimization problem is formulated as the following paramet-

ric NLP:
max

u={x1,x3}
J(x1, x3,θ) = C1x4x7 − C2x1 − C3x2

− C4(x3 − xmean
3 − θ4)2 −C5x5,

s.t. G1 : −x1(1.12 + 0.13167x8 − 0.00667x2
8)

+ k1x4 ≤ 0,

G2 : x1(1.12 + 0.13167x8 − 0.00667x2
8)

− k2x4 ≤ 0,

G3 : k3x7 − 86.35 − 1.098x8 + θ2x
2
8

− 0.325(x6 − 89) ≤ 0,

G4 : −k4x7 + 86.35 + 1.098x8 − θ2x
2
8

+ 0.325(x6 − 89) ≤ 0,

G5 : L1 − x5 ≤ 0,

G6 : x5 − U1 ≤ 0,

G7 : L2 − x6 ≤ 0,

G8 : x6 − U2 ≤ 0,

G9 : L3 − x8 ≤ 0,

G10 : x8 − U3 ≤ 0,

0 ≤ x1 ≤ 2000,

0 ≤ x3 ≤ 120,

(3.13)

where
x5 := θ1x4 − x1,

x6 :=
98000x3

x4x9 + 1000x3

,

x7 :=
x10 + 133

θ3

,

x8 :=
x2 + x5

x1

,

x9 := 35.82 − 0.222x10,

and x2, x4 and x10 are kept at the following constant values:
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x2 = 16000 barrels/day,

x4 = 3049 barrels/day,

x10 = 149.598.

Parameters θ1 to θ4 are uncertain. Two different sets of nominal parameters θ0 and

of directions of parametric variations ξθ will be chosen to illustrate the two cases

mentioned in Section 3.2, namely no change and change in optimal active set after

parametric variations.

Table 3.1 Set of values for θ0 and ξθ in the chemical process optimization problem.

θ0 ξθ

Case 1: θ0,1 =

⎡
⎢⎣
1.2225
0.0355
2.9975
2.9975

⎤
⎥⎦ ξθ

1 =

⎡
⎢⎣
−0.5
0.5
0.5
0.5

⎤
⎥⎦

Case 2: θ0,2 =

⎡
⎢⎣
1.2200
0.0394
3.0000
2.9986

⎤
⎥⎦ ξθ

2 =
−1√

3

⎡
⎢⎣

1
−1
0
1

⎤
⎥⎦

The values of other parameters in the problem are given in Table 3.2.

Table 3.2 Values of parameters in the chemical process optimization problem.

Parameter Value Unit Parameter Value
C1 0.063 $/octane-barrel k1 99/100
C2 5.04 $/barrel k2 100/99
C3 0.035 $/barrel k3 99/100
C4 0.1 $day/(103 lbs)2 k4 100/99
C5 3.36 $/barrel L3 3.0
xmean

3 65 103 lbs/day U3 12.0
L1 0.0 barrels/day
U1 2000.0 barrels/day
L2 85.0 weight %
U2 93.0 weight %
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The problem encompasses lower and upper bounds on the decision variables x1

and x3 as well as the constraints G1 to G10 that are (nonlinear) functions of x1, x3

and θ.

3.3.1 Case 1: No Change in Active Set

Consider θ0,1, ξθ
1 and the range of uncertainty Bη = [−0.005, 0.005]. The nominal

optimal solution is (x∗
1, x

∗
3) = (1727.4, 68.0), for which the constraint G6 is active.

For η = −0.0044, Figure 3.4 shows the iso-cost contours, the nominal optimal

solution u∗, the perturbed optimal inputs ũ, and the adapted inputs û generated by

constraint control that conserves the nominal active set. One sees that û and ũ are

very close to each other. The legend for all contour plots is given in Table 3.3.
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η = −0.044

x
3

x1

Figure 3.4 Iso-cost contours for Case 1 for η = −0.0044 depicting the nominal optimal
inputs (star), the perturbed optimal inputs (circle), and the adapted inputs generated by
constraint control (triangle). The triangle and circle appear to be almost overlapped. Refer
to Table 3.3 for a complete legend.



68 3 : Feasibility and Optimality in Parametric NLP

Table 3.3 Legend for the contour plots in Problem (3.13)

Thin solid curves iso-cost contours for θ̃
Thin dotted line G2(u,θ0) = 0 curve
Thick dotted line G2(u, θ̃) = 0 curve
Dash-dotted curve G3(u,θ0) = 0 curve
Thick solid curve G3(u, θ̃) = 0 curve
Dashed vertical line G6(u,θ0) = 0 curve
Thick solid vertical line G6(u, θ̃) = 0 curve
Arrow at a point u◦ = [x◦

1, x
◦
3] direction of Ju at u◦

Star u∗

Triangle û
Circle ũ
Dark shaded region nominal feasible region
Light shaded region perturbed feasible region

Note that it is difficult to distinguish between the loci of G2(u,θ0) = 0 (thin

dotted line) and G2(u, θ̃) = 0 (thick dotted line).

Figure 3.4 shows that the nominal optimal inputs are on the G6(u,θ0) = 0 curve

and the perturbed optimal inputs are on the G6(u, θ̃) = 0 curve. Hence, the active

set remains unchanged under parametric variations. The same is verified for all

η ∈ Bη.

Figure 3.5 shows the optimality loss associated with input adaptation as a function

of η (Theorem 3.2). The O(η2) fit of the plot agrees with the result of Theorem 3.2.

3.3.2 Case 2: Change in Active Set

Consider θ0,2, ξθ
2 and Bη = [−0.005, 0.005]. The nominal optimal solution is

(u∗
1, u

∗
2) = (1719.8, 71.4), for which the constraints G3 and G6 are active. Note

that, for η ≤ −0.0023, the constraint G3 is no longer active and thus the active set

is smaller.

For η = 0.0029, Figure 3.6 shows the iso-cost contours, the nominal optimal

solution u∗, the perturbed optimal inputs ũ, and the adapted inputs û generated

by constraint control that conserves the nominal active set. The nominal optimal

inputs are at the intersection of the G3(u,θ0) = 0 and G6(u,θ0) = 0 curves and,
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Figure 3.5 Optimality loss associated with the adapted inputs û that keep the nominal
active set active when there is no change in optimal active set. y(η) is the best quadratic
fit.

similarly, the perturbed optimal inputs are at the intersection of the G3(u, θ̃) = 0

and G6(u, θ̃) = 0 curves. Here again, one sees that û and ũ are very close to each

other.

Figure 3.7 shows the same information for η = −0.0044. Since the perturbed

optimal inputs are only on the G6(u, θ̃) = 0 curve, the adapted inputs û, which lie

at the intersection of the G3(u, θ̃) = 0 and G6(u, θ̃) = 0 curves, deviate significantly

from ũ.

Finally, Figure 3.8 shows the optimality loss associated with input adaptation that

conserves the nominal active set as a function of η (Theorem 3.3). Note that the

adapted inputs coincide with the perturbed optimal solution for η > −0.0023, which

results in zero optimality loss.
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Figure 3.6 Iso-cost contours for Case 2 for η = 0.0029 depicting the nominal optimal inputs
(star), the perturbed optimal inputs (circle) and the adapted inputs generated by constraint
control (triangle). The circle and triangle appear to be almost overlapped. Refer to Table
3.3 for a complete legend.

3.4 Summary

Input adaptation methods have become the cornerstone of static RTO. The perfor-

mance of these methods can be enhanced by consideration of how the optimal active

set changes under parametric perturbations and what effect does the said change

have on optimality.

We have studied input-adaptation strategies that compensate the effect of para-

metric variations by keeping the nominal active set active, under the assumption

that the problem remains feasible. For small parametric variations, the difference

between the cost associated with adaptation and the perturbed optimal cost can be

expressed as a function of η, the magnitude of the parametric variations. Under

conditions that are standard for parametric NLP, the following important result has

been proved: the optimality loss associated with adaptation that keeps the nominal
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Figure 3.7 Iso-cost contours for Case 2 for η = −0.0044 depicting the nominal optimal
inputs (star), the perturbed optimal inputs (circle) and the adapted inputs generated by
constraint control (triangle). Refer to Table 3.3 for a complete legend.

active set is O(η2), even when there is a change in the set of active constraints. In

addition, it has been shown that keeping only the strict nominal active set is what

really matters to limit the optimality loss to the order of O(η2).

The practical implication of this result is that static RTO methods are sub-optimal

by order of only O(η2) by simply striving to maintain the nominally active set. On

the other hand, failure to maintain the strict active set in an RTO will certainly

result in a larger optimality loss – at least of the order of O(η).

Thus, we have accomplished the task set at the end of Chapter 2 and the results

obtained can be represented in the following schematic diagram:

It is hoped that the results presented here will help analyze and compare the

performance of existing static RTO methods and will also inspire the design of al-

ternative RTO schemes.
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Figure 3.8 Optimality loss associated with the adapted inputs û that conserve the nominal
active set when there is a change in the optimal active set. y(η) is the best quadratic fit.
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Figure 3.9 Contributions of this thesis to the analytical study of SRTO.



Chapter 4

Dynamic Real-Time Optimization

Transient processes represent an important class of industrial processes. For ex-

ample, many processes in the resource industries are either inherently transient or

operated in an unsteady-state manner. Batch and semi-batch processes in the chem-

ical process industry are other examples of processes that are characterized by the

absence of a steady state. Many alternative technologies in the energy sector also ex-

hibit discontinuous operation, and transient energy-generation systems are expected

to play a key role in future years.

The optimization of transient processes, in contrast to that of processes operated

at steady-state, necessitates computation of time profiles of certain process variables

so as to reduce production costs or improve product quality, while meeting strict

safety requirements and environmental regulations. Similar to static optimization

problems, aforementioned dynamic optimization problems are generally solved by

computing optimal input profiles off-line on the basis of a process model and ap-

plying these profiles open-loop to the process. However, the off-line computation of

the input profiles involves solving an optimal control problem as opposed to solving

nonlinear or mixed-integer programming problems that arise in static optimization.

However, in real-time operation, both plant-model mismatch and process distur-

bances can result in suboptimal process operation or, worse, infeasible operation.

This gives rise to the problem of dynamic real-time optimization (DRTO), which can

be defined as:

online computation of feasible and near-optimal input profiles for a dynamic op-

timization problem on the basis of the knowledge of nominal optimal solution and

online measurement data.

73
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Thus, the three main themes of the thesis, viz., uncertainty, feasibility and opti-

mality, are already evident in a study of DRTO problems also.

4.1 A Short Survey of Existing Approaches for Dynamic

RTO Problems

A common practice of dealing with uncertainty in transient processes is to represent

it in the form of parametric perturbations. The optimal input profiles are computed

off-line for the nominal values of the parameters. Naturally, when some parameters

deviate from their nominal values, a change in optimal input profiles is required to

maintain feasibility and optimality.

The ideal way to compute the plant optimal input profiles is to repeat the compu-

tation with the modified values of the parameters. Given the complexity of solving

realistic optimal control problems [8, 87, 108], re-solving the problem in real-time can

be a challenging task in many practical cases. Another point of view is to avoid re-

solving the optimal control problem by quantifying the parametric perturbations and

by adapting the nominal optimal inputs accordingly to maintain optimality. In the-

ory, such an approach requires a sensitivity analysis of the parametric optimal control

problems, i.e., a study of the effect that parametric perturbations will have on the

optimal input profiles. The sensitivity analysis of parametric optimal control prob-

lems has been studied in a number of publications; see, for example, [57, 69, 74, 75]

and the numerous references cited therein. For a recent and comprehensive treat-

ment, that also deals with nonsmooth problems, see [58] and other references it cites.

See also [23] for a derivation, based on the theory of neighboring extremals [13, 86],

of the first-order variations of the optimal input profiles with respect to parametric

perturbations in optimal control problems with mixed control-state constraints.

In practice, it may not be possible to quantify the parametric perturbations pre-

cisely. Even if an estimate of parametric perturbations is available, closed form

expressions for first-order variations in optimal input profiles are available only if

strict complementarity conditions and strong second-order sufficient conditions hold

[74]. Thus, it may not always be possible to implement adaptation using first-order

estimates in practice. Hence, real-time optimization (RTO) methods typically try to
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use the knowledge of the underlying system and adapt the nominal optimal input

profiles to obtain some set of feasible input profiles. Numerous real-time optimization

algorithms for dynamic optimization problems have been proposed in the literature.

As noted in Introduction, these algorithms effect the input adaptation via different

mechanisms. Recall some examples of the dynamic RTO methods most relevant to

our investigations:

• some methods are based on repeated optimization of a process model that is

updated using process measurements either within run [1, 95] or in a run-to-run

manner [19, 100], as the case may be,

• some methods enforce the necessary conditions of optimality related to both con-

straints and sensitivities (NCO tracking for DRTO) [101],

• some algorithms addressed to polynomial systems involve a self-optimizing con-

troller to track a linear combination of outputs [59],

• some algorithms perform repeated optimization of the fixed nominal model but

after adding correction terms to constraint functions at each iteration using process

measurements [71],

• some methods do repeated optimization of fixed nominal model but after adding

correction terms to either dynamics or constraint functions and cost function [22]

at each iteration using process measurements.

For a more detailed survey of static RTO methods, refer to Section 1.2.1.

4.2 Challenges in Analytical Study of Dynamic RTO

Problems

As mentioned above, the quantification of parametric perturbations may not be pos-

sible in most practical processes that exhibit complex dynamics. Thus, adapting all

parts of the model optimal input profiles to compensate for the effect of parametric

perturbations is rarely possible in practice. Partial or selective input adaptation sce-

narios that result in sub-optimal process operation with acceptable performance loss

are therefore worth analyzing. Recall from the survey of DRTO methods in Section

1.2.1 that, the direct input adaptation methods for DRTO problems typically enforce

the constraints or sensitivities selectively and the particular choice can affect signif-
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icantly the complexity of implementation. For example, enforcing of NCO related

to constraints are typically simpler to implement than those based on enforcing of

sensitivities since the latter involves more complicated techniques like neighboring-

extremal control.

Following the example of the selective adaptation approach for static RTO prob-

lems as explained in Chapter 2, it is natural to ask if a similar approach can be

developed for DRTO problems. We know that the implication of results concern-

ing selective adaptation is that full knowledge of the change in optimal inputs is

not needed to achieve effective input adaptation and that one component of opti-

mality (viz., constraints) needs to be given more importance over the other (viz.,

sensitivities). From the experience of the static case, we know that the first step

in this direction is to identify sensitivity- and constraint-seeking directions for local

variation of nominal optimal inputs and the effect of such directional variations on

cost.

Hence, the research objective for the DRTO problem is as shown in Figure 4.1
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Figure 4.1 Research objective for the analytical study of DRTO.

Specifically, the first objective is to develop a characterization for the sensitivity-

and constraint-seeking directions in DRTO such that a small variation of nominal
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optimal inputs along any of the sensitivity-seeking directions will not affect the active

terminal and path constraints, whereas such an input variation along a constraint-

seeking direction will. Note that this task is much more complicated than in the

SRTO owing to the different nature of DRTO problems.

Consider, for example, the case of active path constraints. By their definition,

the latter are functional constraints, i.e. they represent a continuum of constraints.

So, when we talk of an input variation that does not cause change in an active path

constraint, we are referring to no change in an infinitude of pointwise constraints.

On the other hand, active terminal constraints are finite in number; but, by their

definition, effect of any of the input variations, which occur within the process du-

ration, on the the former needs to be anticipated. Indeed, a variation in input at

a given instant is also going to affect the value of an active path constraint at any

future instant. To summarize, the main challenge here is that the definition of the

input variation directions for time t requires that all past input variations up to and

including time t need to be taken into account, not merely the input variations at

time t.

Once such a dynamic characterization of the directions is available, the next chal-

lenge is to analyze the effect of selective input adaptation along each set of direc-

tions on cost in the presence of parametric perturbations. The final objective is to

see if the aforementioned characterization of selective adaptation strategies leads to

clearly distinguishable cost variations over the case of no input adaptation. Only in

the latter case can we be assured about the relative importance of the corresponding

components of the NCO in DRTO.

4.3 Problem Formulation and Assumptions

In this section, the precise mathematical formulation for the general parametric

optimal control problem involving both terminal and mixed control-state path con-

straints is given, along with a summary of the necessary conditions of optimality

(NCOs) and of the corresponding assumptions.

The following parametric optimal control problem in the parameters θ, subject

to the terminal inequality constraints T ≤ 0 and the mixed control-state inequality

constraints Ω ≤ 0, with given initial time t0 and terminal time tf , is considered
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(OC(θ)):

min
u

J(u) = ϕ(x(tf),θ) +
∫ tf

t0

φ(t,x(t),u(t),θ) dt, (4.1)

ẋ(t) = f(t,x(t),u(t),θ); x(t0) = h(θ), (4.2)

Ti(x(tf),θ) ≤ 0, i = 1, . . . , nT, (4.3)

Ωi(t,x(t),u(t),θ) ≤ 0, i = 1, . . . , nΩ, (4.4)

where t ∈ [t0, tf ], u(t) ∈ IRnu , x(t) ∈ IRnx and θ ∈ Θ, where Θ is a compact subset

of IRnθ . Moreover, the functions f , T, Ω, ϕ and φ are assumed to be continuously

differentiable with respect to all their arguments.

Let the nominal values of the system parameters be θ0, and let (u∗(t),x∗(t)) be an

optimal pair for the problem OC(θ0). We assume that the following two constraint

qualifications hold [74]1:

1. rank ({Ta
x(x∗(tf), θ0)}) = nTa ,

2. rank ({Ωa
u(t,x∗(t),u∗(t), θ0)}) = nΩa(t), ∀ t ∈ [t0, tf ],

where nTa and nΩa(t) denote the numbers of active terminal constraints and the

number of active path constraints at time t, respectively. Introducing the Hamilto-

nian function H,

H(t,x(t),u(t),λ(t),μ(t),θ) := φ(t,x(t),u(t),θ) + λ(t)T f(t,x(t),u(t),θ)

+ μ(t)TΩ(t,x(t),u(t),θ),

and assuming that the problem OC(θ0) is not abnormal, the following first-order

necessary conditions of optimality must hold almost everywhere in [t0, tf ] [54]:

1 The notation yz is used for the Jacobian matrix of the vector y with respect to the vector z [68].
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0 = Hu(t,x∗(t),u∗(t),λ∗(t),θ0), (4.5)

λ̇
∗
(t) = −Hx(t,x∗(t),u∗(t),λ∗(t),θ0), (4.6)

λ∗(tf) = ϕx(x∗(tf),θ0) + Tx(x∗(tf),θ0)Tρ∗,

0 = ρ∗iTi(x∗(tf),θ0), ∀ i = 1, . . . , nT, (4.7)

0 ≤ ρ∗i , ∀ i = 1, . . . , nT,

0 = μ∗
i (t)Ωi(t,x∗(t),u∗(t),θ0), ∀ i = 1, . . . , nΩ, (4.8)

0 ≤ μ∗
i (t), ∀ i = 1, . . . , nΩ,

for some λ∗(t) ∈ IRnx , μ∗(t) ∈ IRnΩ , t ∈ [t0, tf ], and ρ∗ ∈ IRnT .

The vectors of multipliers corresponding to active terminal constraints and active

path constraints will be denoted by ρa and μa(t), respectively.

Two additional assumptions are made in the analysis that follows in Chapter 5:

1. Strict complementarity slackness holds, i.e.,

a. the multipliers ρa are strictly nonzero, and

b. if [aik, bik] ⊂ [t0, tf ] is an interval of maximal length on which the path constraint

Ω∗
i is active, then the corresponding multiplier function μ∗

i (t) is strictly nonzero

for each t ∈ (aik, bik) [74].

2. The Hamiltonian function is regular, which implies that the optimal inputs u∗(t)

are continuous in [t0, tf ] [74].

4.4 Details of the Nature of Nominal Optimal Solution

Since the subsequent analysis of the DRTO problem is based on the knowledge of

nominal optimal solution, it is necessary to characterize the nature of the latter

in detail. To this end, the terminology of switching times of mixed control-state

constraints and related notation are formalized in the following.

For problems having mixed control-state constraints, a constraint can be active

over a number of different time intervals, meaning that the number of active con-

straints may fluctuate over time. To describe this situation, let the structure of

the nominal optimal inputs be such that the constraint Ωi is active on Ni disjoint

intervals [aik, bik] ⊂ [t0, tf ]. Therefore,
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Ωi(t,x∗(t),u∗(t),θ0) = 0,

for each i = 1, . . . , nΩ and at each t ∈ {[ai1, bi1], . . . , [aiNi
, biNi

]}.
The time instants aik and bik are called the switching times for the constraint Ωi,

and the vector of active constraints at time t is denoted by Ωa(t,x∗(t),u∗(t),θ0).

Let the set of all switching times for the nominal solution, together with the initial

time t0 and final time tf , be denoted by T ,

T :=
⋃

i∈{1,...,nΩ}
{ai1, bi1, . . . , aiNi

, biNi
}
⋃

{t0, tf} .

Henceforth, the set T will simply be represented by

T = {t∗0, . . . , t∗N} ,

with t0 = t∗0 < · · · < t∗N = tf .

It is important to note that the set of active constraints in any subinterval [t∗k, t∗k+1]

is constant, while the sets of active constraints in different subintervals [t∗k, t
∗
k+1] and

[t∗l , t
∗
l+1] of [t0, tf ] are generally different. That is, Ωa(t,x∗(t),u∗(t),θ0) will typically

be a different vector function on different subintervals [t∗k, t∗k+1] and [t∗l , t∗l+1]. To keep

notations simple, we still choose to keep the generic notation Ωa for vector of active

constraints on any subinterval of [t0, tf ]. In the sequel, care will be taken to associate

each vector function Ωa with its corresponding subinterval.



Chapter 5

A Directional Variational Analysis of

Parametric Optimal Control Problems

In this chapter, we accomplish the task of the directional variational analysis of

DRTO problems modeled as parametric optimal control problems (4.1) – (4.4) sub-

ject to parametric uncertainty.

The analysis is performed in two steps.

The first step begins with the identification of selective input adaptation direc-

tions around the nominal optimal solution. Specifically, the space of input variation

functions is split into two orthogonal subsets of directions, namely the sensitivity-

and constraint-seeking directions, with the following property:

An input variation along any of the sensitivity-seeking directions will not affect the

active terminal and path constraints, whereas an input variation along a constraint-

seeking direction will.

In the second step, the effect of different selective input adaptation strategies

on cost is analyzed in case of small parametric perturbations. Using the sets of

input directions defined previously, it is possible to propose two selective adaptation

strategies, for which the cost variation obtained with either strategy compared to no

adaptation can be quantified.

The important contribution of this chapter will be to establish that, for small para-

metric perturbations, the cost variation resulting from input adaptation along the

sensitivity-seeking directions is typically smaller than that resulting from adaptation

along the constraint-seeking directions.

Finally, the results are demonstrated using two real-life optimal control examples.
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5.1 Sensitivity- and Constraint-Seeking Directions

The purpose of this section is to introduce the concepts of sensitivity- and constraint-

seeking directions in the space of input variation functions. To characterize these

directions, small variations of the optimal inputs around their nominal optimal values

u∗ are considered and their effect on active terminal and path constraints is studied.

As mentioned in the previous chapter, the main challenge here is that the definition of

these directions for time t requires that all past input variations up to and including

time t be taken into account, not merely the input variations at time t.

After defining the directions, selective input adaptation along each set of directions

can be defined.

5.1.1 Directions of Invariance

Consider a small variation around the nominal optimal inputs u∗ in the direction

ξu ∈ Ĉ[t0, tf ]nu ,

ũ(t; η) = u∗(t) + η ξu(t), ∀ t ∈ [t0, tf ], (5.1)

with |η| � 1 and where Ĉ[t0, tf ]nu stands for the linear space of piecewise-continuous

vector functions of size nu on [t0, tf ].1 In the sequel, ξu(t), as in (5.1), will be called

an input variation function, or simply input variation, and the space Ĉ[t0, tf ]nu will

be referred to as the space of input variation functions. Parameter η represents the

magnitude of input variation.

The functions ξu(t) can have a finite number of discontinuities over [t0, tf ], but the

points of discontinuities are not varied with η. In other words, the input variations

chosen here act only on the magnitude of the nominal optimal inputs u∗(t) and not on

the associated switching times. Note that parametric perturbations would typically

cause variations in both the magnitude and the switching times of the optimal inputs

[86]. Hence, since the class of input variations defined in (5.1) can only accommodate

variations in the magnitude of u∗(t), the formulation proposed here cannot solve the

parametric optimal control problem in full generality. However, this limitation on

1 The wording ‘size of a vector’ is used to mean ‘number of elements in a vector’.
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the class of input variations allows keeping the ensuing analysis relatively simple and

tractable.

Let the resulting perturbed states be denoted by x̃, so that the pair (x̃(t), ũ(t))

satisfies (4.2) for the parameter values θ0. From the continuous differentiability of

f with respect to inputs and states at (x∗(t),u∗(t)), Taylor expansion of f around

(x∗(t),u∗(t)) gives:2

˙̃x(t) − ẋ∗(t) = f(t, x̃(t), ũ(t),θ0) − f [t]

= f∗x [t] (x̃(t) − x∗(t)) + η f∗u[t]ξu(t) +O(η2).

A first-order approximation of x̃(t; η) is obtained as

x̃(t; η) = x∗(t) + η ξx(t) +O(η2), (5.2)

where ξx(t) satisfies

ξ̇
x
(t) = f∗x [t]ξx(t) + f∗u[t]ξu(t), ∀ t ∈ [t∗k−1, t

∗
k), k = 1, . . . , N,

ξx(t0) = 0; ξx(t∗k
+) = ξx(t∗k

−), k = 1, . . . , N − 1. (5.3)

The unique solution to the above linear system can be written in the form [94]

ξx(t) = Φf∗x (t, t∗k−1)ξ
x(t∗k−1) +

∫ t

t∗k−1

Φf∗x (t, s)f∗u[s]ξu(s) ds (5.4)

=
k−1∑
i=1

∫ t∗i

t∗i−1

Φf∗x (t, s)f∗u[s]ξu(s) ds +
∫ t

t∗
k−1

Φf∗x (t, s)f∗u[s]ξu(s) ds, (5.5)

for each t ∈ (t∗k−1, t
∗
k], k = 1, . . . , N , where ΦA(t, s) stands for the state-transition

matrix of the homogeneous linear system

ż(t) = A(t)z(t), ∀ t ≥ t0; z(t0) = z0. (5.6)

Next, consider a general function ψ ∈ Ĉ[t0, tf ]nu → IRnψ defined as:

2 The following compact notations are used throughout the chapter: y∗[t] := y(t, x∗(t), u∗(t), θ0) and
z∗[tf ] := z(x∗(tf ), θ0).
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ψ(u) := Ψ(t,x(t),u(t),θ),

with t a fixed time in (t∗k−1, t
∗
k], for some k ∈ {1, . . . , N}. The variation in the

function ψ caused by the input variation (5.1) can be obtained as the Gâteaux

derivative [15, 66, 112] of ψ in the direction ξu at u∗:

δψ(u∗; ξu) :=
∂

∂η
Ψ (t, x̃(t; η), ũ(t; η),θ0)

∣∣∣∣
η=0

= Ψ∗
x[t]ξ

x(t) + Ψ∗
u[t]ξu(t).

Using (5.4), this variation can be rewritten as

δψ(u∗; ξu) = DΨ ,tξ
u, (5.7)

where DΨ ,t : Ĉ[t0, tf ]nu → IRnψ is the linear operator

DΨ ,tξ := Ψ∗
x[t]

[
k−1∑
i=1

∫ t∗i

t∗i−1

Φf∗x (t, s)f∗u[s]ξ(s) ds+
∫ t

t∗
k−1

Φf∗x (t, s)f∗u[s]ξ(s) ds

]
+Ψ ∗

u[t]ξ(t).

If the value of ψ remains unaffected by a small variation in the direction ξu around

u∗, then ξu is called a direction of invariance of ψ at u. This concept is formalized

in the following definition.

Definition 5.1 (Direction of Invariance of ψ at u)

A function ξu ∈ Ĉ[t0, tf ]nu is called a direction of invariance for the function ψ at u

and for t ∈ [t0, tf ], if

DΨ ,tξ
u = 0.

Clearly, any linear combination of directions of invariance for the function ψ is itself

a direction of invariance. Therefore, the set of all directions of invariance for ψ,

denoted by

VΨ ,t := {ξu ∈ Ĉ[t0, tf ]nu : DΨ ,tξ
u = 0},

is a subspace of Ĉ[t0, tf ]nu .
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5.1.2 Characterization of Sensitivity- and Constraint-Seeking

Directions

A sensitivity-seeking direction at the nominal optimal solution u∗ corresponds to

a direction in the space of input variation functions along which an infinitesimal

variation of u∗ leaves the active constraints unchanged. A formal definition can now

be provided based on the concept of direction of invariance introduced previously.

Definition 5.2 (Sensitivity-Seeking Directions)

A function ξu ∈ Ĉ[t0, tf ]nu is called a sensitivity-seeking direction for the optimal

control problem OC(θ0) at u∗ if ξu is a direction of invariance for:

1. the active terminal constraints Ta(x̃(tf ; η),θ0),

0 = DTa,tfξ
u = Ta

x[tf ]
N∑

k=1

∫ t∗k

t∗
k−1

Φf∗x (tf , s)f∗u[s]ξu(s) ds, (5.8)

and

2. the active path constraints Ωa(t, x̃(t; η), ũ(t; η),θ0),

0 = DΩa,tξ
u = Ωa

x[t]

[
k−1∑
i=1

∫ t∗i

t∗i−1

Φf∗x (t, s)f∗u[s]ξu(s) ds +
∫ t

t∗
k−1

Φf∗x (t, s)f∗u[s]ξu(s) ds

]

+Ωa
u[t]ξu(t), (5.9)

at each t ∈ (t∗k−1, t
∗
k], k = 1, . . . , N .

Let the set of sensitivity-seeking (SS) directions for OC(θ0) at u∗ be denoted by

Vs := {ξu ∈ Ĉ[t0, tf ]nu : DTa,tfξ
u = 0 and DΩa,tξ

u = 0, t0 ≤ t ≤ tf}

= VTa,tf

⋂⎛
⎝ ⋂

t∈[t0,tf ]

VΩa,t

⎞
⎠ .

Clearly, Vs is a subspace of Ĉ[t0, tf ]nu , by properties of the sets of invariance VTa,tf and

VΩa,t. It is referred to as the sensitivity-seeking subspace for OC(θ0) at u∗ thereafter.

Next, a constraint-seeking (CS) direction is defined as one that is orthogonal to

the sensitivity-seeking subspace.
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Definition 5.3 (Constraint-seeking Directions)

A function ξu ∈ Ĉ[t0, tf ]nu is called a constraint-seeking direction for the optimal

control problem OC(θ0) at u∗ if ξu is orthogonal to Vs,

0 = 〈ξu,ϕ〉 , ∀ϕ ∈ Vs,

in the sense of a given inner product 〈·, ·〉 on Ĉ[t0, tf ]nu .

In the sequel, the following inner product on Ĉ[t0, tf ]nu will be chosen to define the

CS directions:

〈σ,ϕ〉 :=
∫ tf

t0

σ(t)Tϕ(t) dt, σ,ϕ ∈ Ĉ[t0, tf ]nu . (5.10)

Denote the set of all CS directions for OC(θ0) at u∗ by Vc. By the sesquilinearity

property of an inner product, Vc is itself a subspace of Ĉ[t0, tf ]nu . It is referred to as

the constraint-seeking subspace for OC(θ0) at u∗ subsequently.

Thus, the SS and CS subspaces can be seen as a property of the nominal optimal

solution u∗ of OC(θ).

Lemma 5.1

No non-zero vc ∈ Vc satisfies (5.8) and (5.9),

Vs ∩ Vc = {0} .

Proof: Let ξ ∈ Vs ∩ Vc. By construction, we have 〈ξ, ξ〉 = 0, which by the

elementary properties of an inner product implies ξ = 0. ��
The concept of selective input adaptation can now be defined formally.

Definition 5.4 (Selective Input Adaptation)

The process of adapting the nominal optimal inputs u∗ according to (5.1) in any

nonzero direction ξu ∈ Vs is called selective input adaptation along a SS direction.

Likewise, the process of adapting u∗ in any nonzero direction ξu ∈ Vc is called

selective input adaptation along a CS direction.

Subscript s or c will henceforth be added to various notations to indicate a SS or

a CS direction of input adaptation, respectively.
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5.1.3 Numerical Procedure to Compute Sensitivity- and

Constraint-Seeking Directions

This section proposes a numerical procedure to compute the SS and CS components

of a given input variation.

Since the procedure is numerical, the direction of input variation under consider-

ation will be a function that can be represented in terms of a finite number of basis

functions χi ∈ Ĉ[t0, tf ]nu , i = 1, . . . ,m:

ξu(t) := U(t, ξω) =
m∑

i=1

ξω
i χi(t), t ∈ [t0, tf ], (5.11)

where ξω ∈ IRM , M = mnu, denotes the vector obtained by appending the vectors

ξω
i ∈ IRnu , i = 1, . . . ,m, that is,

ξω :=

⎡
⎢⎢⎢⎣
ξω

1

...

ξω
m

⎤
⎥⎥⎥⎦ . (5.12)

Note that the vectors ξω
i , i = 1, . . . ,m, do not depend on i; the index i only denotes

their association with particular basis functions in (5.11).

In the sequel, we will consider a special case of (5.11), viz., when the given input

variation U(t, ξω) is a vector of nu piecewise-constant functions on [t0, tf ], such that

the points of discontinuity of all elements of U(t, ξω) are fixed at ti ∈ (t0, tf), i =

1, . . . ,m− 1, and the times ti divide [t0, tf ] in m sub-intervals of equal length:

U(t, ξω) = ξω
i , ∀ t ∈ [ti−1, ti], i = 1, . . . ,m, (5.13)

tf − t0
m

= ti − ti−1, i = 1, . . . ,m, (5.14)

where the symbol tm corresponds to the final time tf .
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5.1.3.1 Projection of a given Input Variation on the SS and CS

Subspaces

Consider a specified direction ξu(t) := U(t, ξω) of type (5.13), for which we would

like to compute the SS and CS components ξu
s ∈ Vs and ξu

c ∈ Vc.

To avoid the difficulty of computing projections on the infinite-dimensional func-

tion spaces Vc and Vs, we propose to approximate the parametric optimal control

problem by a parametric nonlinear program (NLP):

1. Approximate the input profiles u(t) using the parametrization (5.13) as:

u(t) ≈ U(t,ω), ∀ t ∈ [t0, tf ], (5.15)

where ω ∈ IRM denotes the vector obtained by appending the vectors ωi ∈
IRnu , i = 1, . . . ,m, that is,

ω :=

⎡
⎢⎢⎢⎣
ω1

...

ωm

⎤
⎥⎥⎥⎦ .

2. Use the control parametrization technique to transform the optimal control prob-

lem OC(θ) into a parametric NLP in terms of the decision variables ω [47]; note

that:

The path constraints Ω in OC(θ) will have to be transformed into a set of p

discrete – typically nonlinear – constraints in the variables ω. The latter, together

with the terminal constraints T in OC(θ), will be denoted by G(ω,θ). Note

also that p may be chosen equal to m for simplicity. Let the resulting pNLP be

denoted as follows:

min
ω∈IRnω

J(ω,θ)

s. t. Gi(ω,θ) ≤ 0, i = 1, . . . , nG.
(5.16)

3. Solve the pNLP (5.16) numerically to obtain the optimal values ω∗, and denote

by Ga the set of active constraints of the NLP at ω∗.
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4. Compute the Jacobian matrix Ga
ω at ω∗, and use its singular value decomposition

(SVD)3

Ga
ω = UΣ

[
Vc Vs

]T

,

to determine the orthogonal matrices Vs and Vc that define, respectively, the SS

and CS directions for the NLP (5.16); see [16, 37] for details.

It is worth pointing out that the properties of the SVD ensure that the column

space of Vs, called SS subspace of the underlying NLP [16], is the null space of the

Jacobian of active constraints. Hence, as remarked in Section 2.3.3, when strict

complementarity condition holds for the NLP, the SS subspace coincides with the

null space N s of the Jacobian of strongly active constraints defined in (2.11).

5. Compute ξω, as in (5.12), from the given input variation ξu(t) using (5.11).

6. Compute the orthogonal projections of the vector ξω on the column space of Vs

and Vc:
ξω

s =VsVs
Tξω,

ξω
c =VcVc

Tξω.
(5.17)

7. Obtain the approximations of the desired SS and CS components ξu
s (t) and ξu

c (t)

using the parameterization (5.13):

ξu
s (t) ≈ U(t, ξω

s ), ∀ t ∈ [t0, tf ],

ξu
c (t) ≈ U(t, ξω

c ), ∀ t ∈ [t0, tf ].

Steps 5 to 7 are depicted in Figure 5.1.

Next we show that, as desired, the computed functions U(t, ξω
s ) and U(t, ξω

c ) are

orthogonal under the chosen inner product (5.10) on Ĉ[t0, tf ]nu .

Lemma 5.2

〈 U(t, ξω
s ), U(t, ξω

c ) 〉 = 0, where the inner product 〈., .〉 is as defined in (5.10).

Proof:

We first note that the vectors ξω
s and ξω

c are orthogonal under the standard inner

product on the Euclidean space IRnu [16]:

(ξω
s )Tξω

c = 0. (5.18)

3 It is assumed that Ga
ω of the resulting NLP (5.16) is full rank.
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ξu(t) := U(t, ξω) ξω

ξω
s , ξ

ω
c

ξu
s (t) ≈ U(t, ξω

s ),

ξu
c (t) ≈ U(t, ξω

c )

Ps,

Pc

VsVs
T ,

VcVc
T

Figure 5.1 Computation of SS and CS directions. Exact computations (dotted arrow),
approximate computations (solid arrows). Ps and Pc denote the projection operators from
V on Vs and Vc, respectively.

Next, consider the inner product of U(t, ξω
s ) and U(t, ξω

c ) as per (5.10):

〈 U(t, ξω
s ), U(t, ξω

c ) 〉 =
∫ tf

t0

U(t, ξω
s )TU(t, ξω

c ) dt,

=
m∑

i=1

∫ ti

ti−1

(ξω
s )T

i (ξω
c )i dt, due to (5.13),

=
m∑

i=1

(ξω
s )T

i (ξω
c )i

(
tf − t0
m

)
, due to (5.14),

=
(
tf − t0
m

)
(ξω

s )Tξω
c ,

= 0, due to (5.18).

Hence, the approximate directions U(t, ξω
s ) and U(t, ξω

c ) are orthogonal with respect

to the inner product (5.10). ��
It can further be shown that

U(t, ξω) = U(t, ξω
c ) + U(t, ξω

s ), ∀ t ∈ [t0, tf ], (5.19)

using the following property of the SVD [62] that was also mentioned in Section

1.2.2:

VsVs
T + VcVc

T = I.

It should be noted that, it is also possible to subdivide each of the m sub-intervals

of [t0, tf ] in (5.15) in even smaller sub-intervals and to obtain another, and more
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refined, re-parameterization of type (5.13) in terms of m+ variables such that m+ �
m.

5.2 Selective Input Adaptation under Parametric

Uncertainty

Parametric perturbations of the following form are considered in this section:

θ̃(η) := θ0 + η ξθ, η ∈ [−η◦, η◦], η◦ � 1, (5.20)

where ξθ is a given direction in IRnθ .

For the purpose of this analysis, it is assumed that the magnitude η and direction

ξθ of the parametric perturbations are known. The idea is to use an input adaptation

of type (5.1) to compensate for the effect of the parametric perturbations (5.20). In

particular, the aim is to assess the cost variation following input adaptation along

either SS or CS directions in comparison to no adaptation.

5.2.1 Effect of Input Adaptation on Cost

If one wishes to avoid repeating the whole solution procedure to compute the optimal

inputs ũ∗(t) for the perturbed system, two options are available:

1. No Input Adaptation:

The nominal optimal inputs u∗ are applied ‘as is’ to the perturbed system. Let

the pair of perturbed states and resulting cost be denoted by (x̂(t), Ĵ). Thus,

(x̂(t),u∗(t)) satisfies (4.2) for θ̃. Since f is continuously differentiable with respect

to x and θ, x̂(t) has a first-order approximation around x∗(t) given by:

x̂(t; η) = x∗(t) + ηξx̂(t) +O(η2), (5.21)

where
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ξ̇
x̂
(t) = fx[t]ξ

x̂(t) + fθ[t]ξθ,

ξx̂(t0) = hθ(θ0)ξ
θ.

2. Input Adaptation:

The nominal optimal inputs are adapted according to (5.1) along a direction ξu ∈
Ĉ[t0, tf ]nu , using the magnitude of parametric perturbation η as the magnitude

of input variation. The resulting inputs ũ(t; η) are then applied to the perturbed

system. Let the pair of perturbed states and resulting cost be denoted by (x̃(t), J̃).

Hence, (x̃(t), ũ(t; η)) satisfies (4.2) for θ̃. Since f is continuously differentiable with

respect to x, u and θ, the first-order approximation of x̃(t) around x∗(t) is given

by:

x̃(t; η) = x∗(t) + ηξx̃(t) +O(η2), (5.22)

where

ξ̇
x̃
(t) = fx[t]ξ

x̃(t) + fu[t]ξu(t) + fθ[t]ξθ,

ξx̃(t0) = hθ(θ0)ξ
θ.

Evidently, both of the above options will result in sub-optimal process operation,

although Option 2 can be expected to perform better under judicious choice of the

adaptation directions. The cost difference between input adaptation and no adapta-

tion is

δJ(ξu) := J̃ − Ĵ , (5.23)

and is termed cost variation resulting from input adaptation. The objective in the

next subsection will be to compare the cost variations δJ(ξu
s ) and δJ(ξu

c ).

5.2.2 Cost Variation Resulting from Selective Input Adaptation

A variational analysis will be conducted to assess the cost variation resulting from

selective input adaptation. It should be noted that the directions ξu
s and ξu

c that

will be used for the selective input adaptation are general directions in the infinite-

dimensional spaces Vs and Vc, respectively. Hence, the aim of the following analysis

is to quantify the cost variations resulting from input adaptations along any general
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directions in Vs and Vc. In particular, the subsequent analysis does not address the

issue of how close the adapted costs are to the perturbed optimal cost.

For the purpose of the variational analysis, the cost functionals are augmented as

follows [13]:

Ja := ϕ(x(tf),θ)

+
N∑

k=1

∫ t∗k

t∗
k−1

[
φ(t,x(t),u(t),θ) + π(t)T {f(t,x(t),u(t),θ) − ẋ(t)}

]
dt,

for some multiplier functions π(t) ∈ C1[t0, tf ]nx , where C1[t0, tf ]nx represents the linear

space of continuously differentiable vector functions of size nx on [t0, tf ].

Using integration by parts, the expression for Ja can be rearranged as follows:

Ja = ϕ(x(tf),θ) +
N∑

k=1

[
π(t∗k−1)

Tx(t∗k−1) − π(t∗k)
T x(t∗k)

]

+
N∑

k=1

∫ t∗k

t∗
k−1

[
φ(t,x(t),u(t),θ) + π(t)T f(t,x(t),u(t),θ) + π̇(t)T x(t)

]
dt.

(5.24)

If the pair (x(t),u(t)) satisfies (4.2) for θ, then Ja = J for any multiplier function

π(t). It follows that, minimizing J with respect to u is equivalent to minimizing Ja

with respect to u(t).

Since both pairs (x̃(t), ũ(t)) and (x̂(t),u∗(t)) satisfy (4.2) for θ̃ and x̃(t0) = x̂(t0) =

h(θ̃), the cost variation in (5.23) can be written as4

δJ(ξu) = ϕ̃[tf ] − ϕ̂[tf ] +
N∑

k=1

[
π(t∗k−1)

T
{
x̃(t∗k−1) − x̂(t∗k−1)

}
− π(t∗k)

T {x̃(t∗k) − x̂(t∗k)}
]

+
N∑

k=1

∫ t∗k

t∗k−1

[
φ̃[t] − φ̂[t] + π(t)T

{
f̃ [t] − f̂ [t]

}
+ π̇(t)T {x̃(t) − x̂(t)}

]
dt. (5.25)

Taylor expanding ϕ̃[tf ], φ̃[t] and f̃ [t] around (x̂(t),u∗(t)) and rearranging the terms

in (5.25) using (5.21) and (5.22) gives:

4 The additional compact notations ŷ[t] := y(t, x̂(t), u∗(t), θ̃), and ỹ[t] := y(t, x̃(t), ũ(t), θ̃) are used in the
remainder of the chapter.
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δJ(ξu) = η

([
ϕ̂x[tf ]T − π(tf)T

] [
ξx̃(tf) − ξx̂(tf)

]

+
N∑

k=1

∫ t∗k

t∗
k−1

[
φ̂x[t]T + π(t)T f̂x[t] + π̇(t)T

] [
ξx̃(t) − ξx̂(t)

]
dt

+
N∑

k=1

∫ t∗k

t∗k−1

[
φ̂u[t]T + π(t)T f̂u[t]

]
ξu(t) dt

)
+O(η2). (5.26)

Since the multiplier functions π(t) are arbitrary, they can be specialized as the

(unique) solution π̂ to the following linear system:

˙̂π(t) = − f̂x[t]T π̂(t) − φ̂x[t], (5.27)

π̂(tf) = ϕ̂x[tf ].

This way, and after Taylor expanding the terms φ̂u[t], f̂x[t] and f̂u[t] around (x∗(t),u∗(t),θ0),

the cost variation reduces to:

δJ(ξu) = η

N∑
k=1

∫ t∗k

t∗
k−1

(
φ∗

u[t]T + π̂(t)T f∗u[t]
)
ξu(t) dt +O(η2). (5.28)

Since the optimality condition (4.5) holds along the nominal optimal trajectory u∗(t),

(5.28) can be rewritten as

δJ(ξu) = η
N∑

k=1

∫ t∗k

t∗
k−1

(
[π̂(t) − λ∗(t)]T f∗u[t] − μa(t)TΩa

u[t]
)
ξu(t) dt +O(η2). (5.29)

Let π∗(t) be the (unique) solution to the following linear system:

π̇∗(t) = −f∗x [t]Tπ∗(t) − φ∗
x[t], (5.30)

π∗(tf) = ϕ∗
x[tf ].

Using (5.27) and (5.30), it can be verified that π̂(t) has the following first-order

approximation around π∗(t):

π̂(t) = π∗(t) + η ξπ(t) +O(η2).
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The term {π̂(t) − λ∗(t)} in (5.29) can thus be rearranged as

π̂(t) − λ∗(t) = β(t) + η ξπ(t) +O(η2), (5.31)

where β(t) := π∗(t) − λ∗(t) satisfies

β̇(t) = −f∗x [t]Tβ(t) +Ωa
x[t]

Tμa(t), ∀ t ∈ (t∗k−1, t
∗
k], k = 1, . . . , N,

β(tf) = −Ta
x[tf ]

Tρa, β(t∗k
−) = β(t∗k

+), k = 1, . . . , N − 1,

because λ∗(t) satisfies (4.6). The linear dynamic system for β(t) has the following

unique solution on [t0, tf ]:

β(t) = −Φf∗x (tf , t)T Ta
x[tf ]

Tρa −
∫ t∗k

t

Φf∗x (s, t)TΩa
x[s]

Tμa(s) ds

−
N∑

i=k+1

∫ t∗i

t∗i−1

Φf∗x (s, t)TΩa
x[s]

Tμa(s) ds, t ∈ [t∗k−1, t
∗
k], (5.32)

for each t ∈ [t∗k−1, t
∗
k), k = 1, . . . , N . Combining (5.32) and (5.29) gives:

δJ(ξu) = − η
N∑

k=1

∫ t∗k

t∗k−1

[
μa(t)TΩa

u[t] +
∫ t∗k

t

μa(s)TΩa
x[s]Φ

f∗x (s, t)f∗u[t] ds

+
N∑

i=k+1

∫ t∗i

t∗i−1

μa(s)TΩa
x[s]Φ

f∗x (s, t)f∗u[t] ds

]
ξu(t) dt

− η ρaTTa
x[tf ]

N∑
k=1

∫ t∗k

t∗
k−1

Φf∗x (tf , t)f∗u[t]ξu(t) dt +O(η2). (5.33)

Using (5.8), the last term in (5.33) can be rewritten as

η

N∑
k=1

ρaTTa
x[tf ]

∫ t∗k

t∗k−1

Φfx(tf , t)f∗u[t]ξu(t) dt = ηρaTDTa,tfξ
u. (5.34)

Furthermore, the order of integration in all double integral terms in (5.33) can be

changed as follows [25]:
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∫ t∗k

t∗
k−1

[∫ t∗k

t

μa(s)TΩa
x[s]Φ

f∗x (s, t)f∗u[t] ds

+
N∑

i=k+1

∫ t∗i

t∗i−1

μa(s)TΩa
x[s]Φ

f∗x (s, t)f∗u[t] ds

]
ξu(t) dt

=
∫ t∗k

t∗
k−1

μa(s)TΩa
x[s]

[∫ t

t∗
k−1

Φf∗x (s, t)f∗u[t]ξu(t) dt

]
ds

+
N∑

i=k+1

∫ t∗i

t∗i−1

μa(s)TΩa
x[s]

[∫ t∗k

t∗
k−1

Φf∗x (s, t)f∗u[t]ξu(t) dt

]
ds.

Noting that
N∑

k=1

N∑
i=k+1

αi,j =
N∑

i=1

i−1∑
k=1

αi,j , the first summation term in (5.33) gives:

N∑
k=1

∫ t∗k

t∗k−1

[∫ t∗k

t

μa(s)TΩa
x[s]Φ

f∗x (s, t)f∗u[t] ds

+
N∑

i=k+1

∫ t∗i

t∗i−1

μa(s)TΩa
x[s]Φ

f∗x (s, t)f∗u[t] ds

]
ξu(t) dt

=
N∑

k=1

∫ t∗k

t∗
k−1

μa(s)TΩa
x[s]

[∫ t

t∗
k−1

Φf∗x (s, t)f∗u[t]ξu(t) dt

]
ds

+
N∑

i=1

∫ t∗i

t∗i−1

μa(s)TΩa
x[s]

[
i−1∑
k=1

∫ t∗k

t∗
k−1

Φf∗x (s, t)f∗u[t]ξu(t) dt

]
ds

=
N∑

k=1

∫ t∗k

t∗
k−1

μa(s)TΩa
x[s]

[
k−1∑
i=1

∫ t∗i

t∗i−1

Φf∗x (s, t)f∗u[t]ξu(t) dt

+
∫ t

t∗
k−1

Φf∗x (s, t)f∗u[t]ξu(t) dt

]
ds.

Using (5.9), it follows that the first term in (5.33) can be rewritten as

N∑
k=1

∫ t∗k

t∗k−1

[
μa(t)TΩa

u[t] +
∫ t∗k

t

μa(s)TΩa
x[s]Φ

f∗x (s, t)f∗u[t] ds

+
N∑

i=k+1

∫ t∗i

t∗i−1

μa(s)TΩa
x[s]Φ

f∗x (s, t)f∗u[t] ds

]
ξu(t) dt

=
N∑

k=1

∫ t∗k

t∗
k−1

μa(t)TDΩa,tξ
u dt. (5.35)
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Finally, using (5.34) and (5.35), the expression (5.33) for cost variation becomes:

δJ(ξu) = −η
[
ρaT (DTa,tfξ

u) +
N∑

k=1

∫ t∗k

t∗k−1

μa(t)T (DΩa,tξ
u) dt

]
+O(η2) (5.36)

We are now ready to state the main result of the chapter.

Theorem 5.1 (Cost Variation resulting from Selective Input Adaptation)

Let u∗ be an optimal solution for the optimal control problem OC(θ0), and consider

parametric perturbations of the form (5.20). The cost variation resulting from se-

lective input adaptation of type (5.1) along any (nonzero) SS direction ξu
s ∈ Vs is

O(η2), whereas the cost variation resulting from adaptation along any (nonzero) CS

direction ξu
c ∈ Vc is generally O(η).

Proof: By Definition 5.2, ξu
s satisfies the system of linear integral equations (5.8)

and (5.9). Therefore, from (5.36), δJ(ξu
s ) = O(η2). On the other hand, no nonzero

direction in Vc satisfies (5.8) and (5.9) from Lemma 5.1. Since strict complementarity

slackness holds for the terminal and path constraints at u∗, it follows that the first-

order term in (5.36) is nonzero in general, whence δJ(ξu
c ) = O(η). ��

5.2.3 Implications of Selective Input Adaptation

The main implication of Theorem 5.1 is that, for small parametric perturbations,

adapting the inputs along CS directions has the largest impact on the performance

of the perturbed system, while the effect of not adapting the inputs along SS direc-

tions is relatively smaller. Accordingly, when designing a practical input adaptation

strategy for problem OC(θ̃), priority should be given to meeting the active terminal

constraints (4.3) and the active path constraints (4.4) over enforcing the Hamiltonian

sensitivity condition (4.5).

As noted at the beginning of Section 5.2.2, the input variation ξuc chosen for the

variational analysis is a general direction in Vc. It turns out that a judicious choice

of ξu
c will lead to substantial cost improvement, while a poor choice of ξu

c could

potentially worsen the performance of the adapted system, even with respect to

the no-adaptation scenario (Option 1). Special care must therefore be taken when

selecting the input-adaptation directions.
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5.2.3.1 Choice of input variation in the numerical procedure:

In the case of small parametric perturbations around θ0, a possible choice of the

input variation for the numerical procedure in Section 5.1.3 is

U(t, ξω∗
), ∀ t ∈ [t0, tf ], (5.37)

where ξω∗
is the vector of (first-order) sensitivity of the nominal optimal solution ω∗

with respect to parameters θ at θ0. This sensitivity information can be computed,

under certain conditions on the underlying NLP (5.16), via linearization of the cor-

responding KKT NCO. To be precise, the requisite conditions are strict complemen-

tarity, linear independence constraint qualification (LICQ) and weak second-order

sufficient condition (WSOSC), which are explained in Section 2.3.3. Under these

conditions, if ω̃(η) and ρ̃(η) denote the optimal solution and associated Lagrange

multipliers for (5.16) at θ̃(η) given by (5.20), then

ω̃(η) = ω∗ + η ξω∗
+O(η2),

ρ̃(η) = ρ∗ + η ξρ∗
+O(η2),

(5.38)

where ⎡
⎣ξω∗

ξρ∗

⎤
⎦ := −M(0)−1N(0)ξθ, (5.39)

where

M(η) :=

⎡
⎢⎢⎢⎢⎣

∂2L
∂ω2

(ω̃(η), ρ̃(η), θ̃(η))
∂G
∂ω

(ω̃(η), θ̃(η))T

diag{ρ̃(η)}∂G
∂ω

(ω̃(η), θ̃(η)) diag{G(ω̃(η), θ̃(η))}

⎤
⎥⎥⎥⎥⎦ ,

N(η) :=

⎡
⎢⎢⎢⎢⎣

∂L
∂η∂ω

(ω̃(η), ρ̃(η), θ̃(η))

diag{ρ̃(η)}∂G
∂η

(ω̃(η), θ̃(η))

⎤
⎥⎥⎥⎥⎦ ,

(5.40)
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where L is the Lagrangian of the pNLP (5.16), i.e.,

L(ω,ρ,θ) := J(u,θ) + ρT G(u,θ),

and diag{y} denotes the diagonal matrix whose diagonal is formed by vector y.

The strict complimentarity condition on (5.16) is needed to ensure the invertibility

of M(0) in (5.40); for more details see, Theorem 3.2.2 and Corollary 3.2.3 of [29].

5.3 Illustrative Examples

This section computes SS and CS directions for the optimization of two dynamic

systems, namely, a batch chemical reactor and a space shuttle reentry problem.

The first system is simple as it comprises of only 2 states, 1 input and 1 terminal

constraint. The second system is more complex as it is highly nonlinear and comprises

of 5 states, 2 bounded inputs, 1 mixed path constraint and 3 terminal constraints.

5.3.1 Optimization of a Batch Chemical Reactor

This parametric optimal control problem is concerned with the performance opti-

mization of a batch chemical reactor, in which the reactions A k1−→B
k2−→C take

place non-isothermally [90]. The problem comprises a single input variable, the reac-

tor temperature u(t), and a single (terminal) constraint, the reactant concentration

at final time xA(tf). The objective is to determine the temperature profile that

maximizes the amount of product B for a given batch time. In addition, there is un-

certainty in the kinetic parameter k1. The optimization problem can be formulated

mathematically as
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max
u(t)

xB(tf), (5.41)

s.t. ẋA(t) = −k1(u(t))xA(t), xA(0) = 0.53 kmol m−3,

ẋB(t) = k1(u(t))xA(t) − k2(u(t))xB(t), xB(0) = 0.43 kmol m−3,

k1(u(t)) = θ k◦1exp
(
− E1

u(t)

)
,

k2(u(t)) = k◦2exp
(
− E2

u(t)

)
,

xA(tf) − 0.1 ≤ 0,

where the parameter θ denotes the uncertainty in modeling the kinetic parameter

k1, with the nominal value θ0 = 1. The numerical values of the other parameters are

given in Table 5.1. The relative values of E1 and E2 indicate that low temperatures

will slow down the second reaction more than the first one, and thus favor the

production of B, which is desired.

Table 5.1 Parameter values

Parameter Value
k◦1 0.535 × 1011 h−1

k◦2 0.461 × 1018 h−1

E1 9 × 103 K
E2 15 × 103 K
tf 8 h

Following the procedure outlined in Section 5.1.3, a piecewise-constant input pa-

rameterization involving m = 100 equal-length stages over [0, tf ] is considered. Fig-

ures 5.2 and 5.3 show the nominal optimal solution of Problem (5.41) reconstructed

from the solution ω∗ of the associated NLP.

The relative production of B is favored by low temperatures. However, at low

temperatures, the reactions proceed slowly and the desired conversion of A will not

be achieved in the given batch time. Hence, there exists a compromise, with the

temperature being high initially – to favor both reactions – and reducing with time

to limit the second reaction as more B is produced.

Based on the nominal solution ω∗ and on the associated Jacobian Ga
ω, the projec-

tion matrices VcVc
T and VsVs

T are computed according to Step 4 of the numerical

procedure in Section 5.1.3. The chosen input variation is U(t, ξω∗
), as in (5.37). The
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Figure 5.2 Nominal optimal temperature profile approximated as a piecewise-constant
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Figure 5.3 Nominal optimal concentration trajectories.

approximations of its SS and CS components are then computed according to Steps

6 and 7. The input variation profiles are shown in Figure 5.4.
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Figure 5.4 Input variation U(t, ξω∗
) and its approximated SS and CS components.

As was noted in (5.19), it can be observed that the input variation U(t, ξω∗
) is

the pointwise sum of its SS and CS components.

Note that, for the considered uncertainty direction ξθ = 1, the forward reaction is

faster than in the nominal system, which produces more B. This allows the optimal

temperature to be lower (thus more favorable from an equilibrium viewpoint) than

the nominal optimal solution and still meet the terminal constraint. Figure 5.4 shows

that the input variation U(t, ξω∗
) is negative for all t, thus consistent with the need

of a lower temperature. The CS component U(t, ξω∗
c ) is also negative, which says

that, to be able to meet the terminal constraint regarding xA(tf) in the presence of

a faster forward reaction, the temperature has to be reduced, and in fact a bit more

initially than towards the end. In comparison, the SS component is much smaller,

initially positive and then negative, indicating that, for the perturbed reactor, an

initially slightly higher temperature followed by a slightly lower temperature would

improve productivity without affecting the terminal constraint. Based on the rela-

tive magnitudes of the CS and SS components, one might conclude that the input

variation in this case is mostly constraint-seeking.

Next, parametric perturbations of type (5.20) are considered for η◦ = 0.05.

The cost variation resulting from input adaptation along the SS direction, δJs :=
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δJ(U(t, ξω∗
s )), is plotted versus η in Figure 5.5. The plot can be seen to have a

O(η2) fit, which is consistent with the derivations in Section 5.2. In contrast, the

cost variation δJc := δJ(U(t, ξω∗
c )) shown in Figure 5.6 is seen to have a O(η) fit, as

predicted by the theory.
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Figure 5.5 Cost variation resulting from input adaptation along U(t, ξω∗
s ) versus η.

Note that CS adaptation can lead to cost worsening (negative cost variation). This

is, for example, the case for positive values of η, that is, when the forward reaction is

faster than in the nominal case. Indeed, the adaptation forces the terminal constraint

to become active by lowering the temperature, whereas the constraint is violated

when the nominal solution is applied to the perturbed system. Note also the relative

size of the cost variations resulting from adaptations along the SS and CS directions,

the latter being three orders of magnitude larger than the former.
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Figure 5.6 Cost variation resulting from input adaptation along U(t, ξω∗
c ) versus η.

5.3.2 Space Shuttle Reentry Trajectory Optimization

This subsection investigates directional input adaptation for the optimization of the

reentry trajectory of a space shuttle. The parametric optimal control problem is a

slight modification of the space shuttle reentry problem in [8] and [49].

The system comprises 5 states and 2 inputs, the details of which are given in Table

5.2.

Table 5.2 The five states and two inputs in the space shuttle reentry problem.

h altitude (ft) a angle of attack (radians)
ϑ latitude (radians) b bank angle (radians)
v velocity (ft / sec)
γ flight path angle (radians)
ψ azimuth (radians)

The optimization problem is subject to lower and upper bounds on both inputs

(5.43), an upper limit on the aerodynamic heating of the vehicle wing leading edge

(5.44), which results in a mixed control-state path constraint. Furthermore, there
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are 3 terminal constraints, namely, an upper limit on the final altitude of the space

shuttle and lower limits on its final velocity and final flight path angle (5.45).

The objective is to maximize the cross-range of the space shuttle, that is, the final

value of its latitude:

max
a(t), b(t)

ϑ(tf),

s.t. ḣ = v sin γ,

ϑ̇ =
v

r
cos γ cosψ,

v̇ = −D(h, v, a, θ)
m

− g(h) sin γ,

γ̇ =
L(h, v, a)
mv

cos b+ cos γ
(

v

r(h)
− g(h)

v

)
,

ψ̇ =
1

mv cos γ
L(h, v, a) sin b+

v

r cos ϑ
cos γ sinψ sinϑ, (5.42)

0 ≤ a(t) ≤ π

2
,

− π

2
≤ b(t) ≤ −π

6
, (5.43)

Ω(a, h, v) =
qa(a)qr(h, v)

qU

− 1.0 ≤ 0, (5.44)

h(tf) ≤ 8.0 × 104,

v(tf) ≥ 2.5 × 103,

γ(tf) ≥ − 5π
180

, (5.45)

where the functions r, g, ρ,D,L, qa and qr are as follows:

r(h) = Re + h,

g(h) =
μ

r2
,

ρ(h) = ρ0 exp
(
− h

hr

)
,

D(h, v, a, θ) =
1
2
θcDSρ(h)v2, cD := d0 + d1â, â :=

180a
π

,

L(h, v, a) =
1
2
cLSρ(h)v2, cL := l0 + l1â+ l2â

2,

qa(a) = c0 + c1â+ c2â
2 + c3â

3,

qr(h, v) = k1

√
ρ(k2v)3.07.

(5.46)
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The parameter θ, with the nominal value θ0 = 1, is uncertain in the modeling of the

aerodynamic drag D. The final time tf is 2000 sec. The initial values of the states

are given in Table 5.3. All other parameters are specified in Table 5.4.

Table 5.3 Initial conditions for the space shuttle reentry problem.

h(0) ϑ(0) v(0) γ(0) ψ(0)
2.6 × 105 0.0 2.56 × 104 −π/180 π/2

Table 5.4 Parameter values for the space shuttle reentry problem.

Parameter Value Parameter Value
m 6.30944 × 103 d0 −0.20704
Re 2.09029 × 107 d1 2.9244 × 10−2

μ 1.4076539 × 1016 l0 7.854 × 10−2

ρ0 2.378 × 10−3 l1 −6.1592 × 10−3

hr 2.38 × 104 l2 6.21408 × 10−4

qU 70.0 c0 1.0672181
S 2.69 × 103 c1 −1.9213774 × 10−2

k1 1.77 × 104 c2 2.1286289 × 10−4

k2 1.0 × 10−4 c3 −1.0117249 × 10−6

The solution of the above problem is obtained by using a piecewise-constant control

vector parameterization involving m = 150 equidistant stages and discretizing the

path constraint at the end of each stage. The two nominal optimal inputs and the

value of the path constraint are shown in Figures 5.7, which also depicts the nature

of the optimal solution in terms of four arcs. The input U(t,α∗) consists of the

interior arc α1, followed by the boundary arc α2, and finally the interior arcs α3 and

α4. The input U(t,β∗) consists of the interior arcs β1,β2 and β3, followed by the

boundary arc β4.

The nominal state trajectories are depicted in Figure 5.8. The terminal constraints

on the states v and γ are seen to be active.

Using the knowledge of the nominal optimal solution, the projection matrices

VcVc
T and VsVs

T are computed as described in Step 4 of the numerical procedure

in Section 5.1.3.
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Figure 5.7 Two nominal optimal inputs and one path constraint. Dashed lines show the
corresponding bounds. Shaded regions depict the regions of infeasible operation.

The input variations are chosen according to (5.37), and their SS and CS compo-

nents computed by following Steps 6 and 7 are shown in Figure 5.9. Again, as noted

in (5.19), the two input variations U(t, ξα∗
) and U(t, ξβ∗

) are equal to the pointwise

sum of their respective SS and CS components.
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Figure 5.8 Five nominal optimal state trajectories. Shaded bands depict the infeasible
regions of the respective terminal constraints. Vertical dotted line is the t = 2000 sec line.

Note that the SS component U(t, ξα∗
s ) becomes small after about 500 sec, an

indication that the variation in the input a(t) is mostly constraint-seeking. The

first contribution of U(t, ξα∗
c ) between 500 sec and 1150 sec is needed to enforce

the path constraint, the second contribution, towards the end, is to meet a terminal

constraint. For the input b(t), since it is on its upper bound after about 1300 sec,

and since the upper bound does not depend on the parameter θ, the input variation

U(t, ξβ∗
) is 0 on this interval. Since, except for the initial part, U(t, ξβ∗

c ) is small,

the variation in the input b(t) is mostly sensitivity-seeking.
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Figure 5.9 SS and CS components of the input variations U(t, ξα∗
) and U(t, ξβ∗

).

Finally, parametric perturbations of type (5.20) were considered for η◦ = 0.05

and ξθ = 1. The cost variation δJs resulting from input adaptation along the SS

directions U(t, ξα∗
s ) and U(t, ξβ∗

s ) is plotted versus η in Figure 5.10. The O(η2) fit

of the plot is in agreement with the theory presented in Section 5.2. Furthermore,

the O(η) fit for the cost variation δJc resulting from input adaptation along the CS

directions U(t, ξα∗
c ) and U(t, ξβ∗

c ) can be seen in Figure 5.11. δJc is one order of

magnitude larger than δJs.
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Figure 5.10 Cost variation resulting from input adaptation along the SS directions versus
η.
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Figure 5.11 Cost variation resulting from input adaptation along the CS directions versus
η.

5.4 Extension to more Complex Problems

The results of Section 5.1 and Subsection 5.2.2 were obtained for continuous signals,

in particular continuous nominal optimal inputs u∗(t). This is, however, not the case
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for many practical applications. Fortunately, careful inspection of the derivations

reveals that the procedure is not limited by the requirement of continuity of u∗(t),

though it is much simplified by the latter assumption. Indeed, if we include the points

of discontinuity of u∗ in the set T , the derivation holds as is, provided the number of

continuous arcs in u∗ is finite. Furthermore, since the results are valid for piecewise-

continuous u∗(t), we can forgo the assumption of regularity of the Hamiltonian. This

allows the results to be extended to more complex problems like singular optimal

control problems.

Finally, in the case of problems having pure state constraints, additional care must

be taken in the derivation since there might be jumps in the adjoint functions λ∗(t) at

some interior points [54]. Since the nominal solution is known, these interior points

are known and need to be added to T . Definition 5.2 of the SS directions will include

an additional condition - in the form of suitable integral equations - representing the

zero change in the values of the pure state constraints due to small local variation in

the nominal inputs of type (5.1). In the cost variational analysis, the expression of

β(t) in (5.32), and thus also that of δJ(ξu) in (5.33) and (5.36), will be modified to

accommodate the appropriate terms involving the pure state constraints. The rest

of the procedure, and thus also the results, remain the same.

5.5 Summary

The complexity of solving optimal control problems plays a decisive role in con-

troller design considerations for practical applications. Various practical limitations

dictate that real-time optimization methods should not require recomputing the ex-

act solution. Hence, methods that involve only adaptation of the nominal optimal

inputs, which can be computed off-line, at the cost of acceptable optimality loss are

appealing.

Clearly, a theoretical framework is essential for identifying useful input adaptation

schemes and analyzing the effect on the cost of such adaptations. For a fairly general

class of parametric OC problems, two input adaptation schemes are envisaged by

focusing on the role of constraints in OC problems and the cost variation that results

from each adaptation scheme are studied.
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For problems involving terminal and mixed control-state constraints, it is possible

to identify directions in the space of input variation functions, along which small

variations in the nominal optimal inputs do not cause any change in the nominal

active path constraints for all t ∈ [t0, tf ] as well as the nominal active terminal

constraints. These directions are defined as the SS directions and are shown to be

solutions of certain linear integral equations. The directions orthogonal to the set of

SS directions are defined as the CS directions.

The main result of the analysis of constrained parametric optimal control problems

is that, in the case of parametric perturbations of type (5.20), the cost variation due

to selective input adaptation along SS directions – with respect to no adaptation – is

O(η2), whereas it is O(η) with selective input adaptation along CS directions. Hence,

the main implication of this result for DRTO problems is that, for small parametric

perturbations, adapting the inputs along the CS directions has the largest impact on

cost, while the consequences of not adapting the inputs along the SS directions will

remain small in comparison.

Thus, the aim set at the end of Chapter 4, viz., to extend the directional variational

analysis to DRTO problems under conditions as general as possible, is accomplished.

The contributions of this chapter can be shown in a schematic diagram as in Figure

5.12:

These results might prove valuable in the design of adaptive methodologies for

constrained DRTO problems, e.g. the NCO tracking methodology mentioned earlier

[101, 103]. Recall from Introduction that in NCO tracking various parts of the input

profiles are adapted selectively by tracking separately the NCO related to constraints

and to sensitivities. Hence, prioritization of selective adaptation strategies is cru-

cial for the implementation of practical NCO-tracking controllers. More specifically,

the tracking of NCO related to sensitivities necessitates neighboring-extremal (NE)

control [51, 101]. As the study [51] of NE control techniques for NCO tracking re-

veals, the said techniques are valid only under restrictive assumptions and moreover,

the computation of NE control can be difficult and time consuming. Under these

circumstances, given the trade-off between

• computational complexity of NE control, assuming it is possible in the first place,

for tracking NCO related to sensitivities, and

• the practically negligible gains obtained by enforcing sensitivities as indicated by

the results presented above,
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Figure 5.12 Contributions of the thesis to the analytical study of DRTO.

it may be possible in practice to dispense altogether with the efforts of building

an NE control unit to enforce sensitivities and still suffer only a negligible loss of

optimality. Needless to say, the design of NCO-tracking controller for enforcing the

remaining component, viz., NCO for constraints, is already simpler than enforcing

both. Moreover, it is well-documented [36, 101, 110], that the implementation of

NCO-tracking controllers for enforcing constraints using standard tools from control

theory, especially when the active set is unchanged after parametric perturbations,

is fairly easy.

As mentioned in Section 5.1.1, a limitation of the present work is that the class of

adapted inputs (5.1) does not consider switching times that depend on η.





Chapter 6

Conclusions

This chapter summarizes the main contributions of the thesis and provide some

perspectives for future research.

6.1 Summary of Main Contributions

This thesis has addressed some key analytical aspects of the real-time process opti-

mization in the presence of uncertainty.

It is well known that, since a process model is typically used to compute the

optimal operating conditions, both plant-model mismatch and process disturbances

can result in suboptimal or, worse, infeasible operation. Hence, methodologies for

practical applications that try to avoid re-optimization during process operation, at

the cost of an acceptable optimality loss, become important. A careful analysis of

the components of the necessary conditions of optimality (NCO) is essential for the

design and analysis of such approximate solution strategies in real-time optimization

(RTO). This thesis has attempted to analyze, under fairly general conditions, the

role of constraints in process optimality in the presence of uncertainty.

6.1.1 Contributions to the Analytical Studies of Static RTO

A careful study of numerous RTO methods for static RTO problems reveals that it

is possible to abstract important common features of some of the most promising

methods. It is seen that these features are mainly selectivity in either adapting or

115
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enforcing the various components of the NCO. Hence, it is possible that two different

RTO methods generate the same solutions by two different means (e.g., the way they

are implemented).

Based on this insight, we proposed to consider a general class of feasible adapted

inputs, which are designed using the model of the plant but in fact attempt to opti-

mize the plant. In this approach, the inputs are not limited to being local adaptation

of the model optimal inputs but, instead, they can change significantly to optimize

the plant. It is then proposed to develop a joint analysis of the model optimal, plant

optimal and adapted inputs under conditions as general as possible. The conceptual

importance of this formulation is that

• the possibility of change in optimal active set can be naturally incorporated in

this formulation,

• since the plant optimum is incorporated in the analysis, it is possible to quantify

the optimality loss due to adaptation.

Note that the main drawback of the existing analytical study of static RTO problems

is that it is based on local variational analysis around the model optimal solution

[16, 70] and so cannot address either of the important possibilities above. Of course,

incorporation of the two possibilities in the present analysis makes it much more

complicated than the local variational analysis, but with the added advantage of

being more constructive in its approach.

The most important contribution of the thesis for static RTO problems has been

to prove that, for a wide class of systems, the detection of a change in the active

set contributes only negligibly to optimality, as long as the adapted solution remains

feasible. More precisely, if η denotes the magnitude of the parametric variations,

and if the LICQ (2.5) and SSOSC (2.11) conditions are satisfied for the underlying

pNLP, then the optimality loss due to any feasible input that maintains the strict

active set of the model inputs is of magnitude O(η2), irrespective of whether or not

there is a change in the set of active constraints. The implication of this result for

a static RTO algorithm is to satisfy only a core set of constraints with priority, as

long as it is possible to meet the feasibility requirements.
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6.1.2 Contributions to the Analytical Studies of Dynamic RTO

The second part of the thesis has presented an analytical study of the effect of local

adaptation of the model optimal inputs of dynamic RTO problems. This adaptation

is made along two sets of directions such that one type of adaptation does not

affect the active constraints, while the other does. These directions are termed the

sensitivity-seeking (SS) and the constraint-seeking (CS) directions, respectively.

Although the basic concept of SS and CS directions is taken from the similar ana-

lytical study of static RTO problems [16, 37], none of the technical results for static

problems can be extended in a straightforward manner to the dynamic problems

since the latter are infinite-dimensional optimization problems.

The first main contribution of the thesis for this problem has been to identify that

the most crucial feature of dynamic RTO problems, especially in contrast with static

problems, is that temporal effect of input adaptations on both path and terminal

constraints of the problem needs to be taken into account. In particular, input

variations at all the past instants and the present instant need to be taken into

account to compute the current change in path and terminal constraints.

The next important contribution has been to define the SS and CS directions

as elements of a fairly general function space of input variations and to derive a

mathematical criterion to define SS directions for a general class of optimal control

problems involving both path and terminal constraints. According to this criterion,

the SS directions turn out to be solutions of certain linear integral equations that

are completely defined by the model optimal solution. The CS directions are then

chosen orthogonal to the subspace of SS directions, where orthogonality is defined

with respect to a chosen inner product on the space of input variations. It follows

that the corresponding subspaces are infinite-dimensional subspaces of the function

space of input variations.

The most important contribution of the thesis in the analytical study of the dy-

namic RTO problem has been to prove that, when uncertainty is modeled in terms

of small parametric variations, the aforementioned classification of input adaptation

leads to clearly distinguishable cost variations. More precisely, if η denotes the mag-

nitude of the parametric variations, adaptation of the model optimal inputs along

SS directions causes a cost variation of magnitude O(η2). On the other hand, the

cost variation due to input adaptation along CS directions is of magnitude O(η).
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Thus, for small parametric variations (η in a small neighborhood of 0), the cost

variation due to input adaptation along SS directions is negligible compared to that

due to adaptation along CS directions. In other words, satisfaction of active con-

straints typically has more influence on cost than satisfaction of sensitivities.

Another contribution of the thesis has been to develop a numerical procedure for

computing the SS and CS components of a given input variation. These components

are projections of the input variation on the infinite-dimensional subspaces of SS

and CS directions. The numerical procedure consists of the following three steps:

approximation of the optimal control problem by a nonlinear programming (NLP)

problem, projection of the optimal direction on the finite-dimensional SS and CS

subspaces of the NLP and, finally, reconstruction of the SS and CS components of

the original problem from those of the NLP.

6.2 Future Perspectives

We propose to close the thesis by offering a couple of perspectives for future research.

• The two research objectives imagined at the start of the thesis (Section 1.3) have

been accomplished in the thesis, viz., developing a fairly general joint analysis of

the model optimal, plant optimal and adapted inputs for static RTO problems

and developing a local variational analysis for dynamic RTO problems.

It is most natural to think of combining the insights developed in these two anal-

yses to develop a fairly general joint analysis of the model optimal, plant optimal

and adapted inputs for dynamic RTO problems. We represent this direction of

research by the two long arrows in Figure 6.1.

• The analysis of static RTO problems is made under the assumption that the mag-

nitude of parametric perturbations η is in a small neighborhood of 0. Hence,

the results are not applicable for processes that experience large uncertainty, i.e.,

significant disturbances and/or large plant-model mismatch. Of course, such sce-

narios are common in practical applications.

Analytical results on change in optimal inputs of parametric NLP problems for

finite parametric perturbations are not as prolific as that of the (local) sensitivity

analysis. In a general parametric NLP, finite parametric perturbations can result

in a variety of (undesirable) behaviors of optimal solutions [53]. In such a scenario,
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it seems difficult to develop a fairly general analysis of the kind developed in this

thesis (under the assumption of small perturbations). Probably, a case-based ap-

proach can be developed by restricting attention to a few classes of NLP problems

that are of practical interest and have various special features. An example of an

RTO method for quadratic programming problems based on this type of analysis

can be seen in [28].

We represent this direction of research by the small arrow in the Static RTO block

in Figure 6.1.

• As remarked at the end of Chapter 5, one limitation of the local variational analysis

developed for dynamic RTO problems is that the class of input variations is not

generic enough to allow for a dependence of the switching times on the magnitude

of parameters η. Hence, a possible direction of future research is to extend the

results of Chapter 5 for the said class of input variations.

We represent this direction of research by the small arrow in the Dynamic RTO

block in Figure 6.1.
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Figure 6.1 Small arrows denote possible generalizations of the existing results. Long
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