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And each man hears as the twilight nears,
to the beat of his dying heart,

The Devil drum on the darkened pane:
“You did it, but was it Art?’

Rudyard Kipling
The Conundrum of the Workshops
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Abstract

We propose statistically self-similar and rotation-invariant models for vector
fields, study some of the more significant properties of these models, and
suggest algorithms and methods for reconstructing vector fields from numer-
ical observations, using the same notions of self-similarity and invariance
that give rise to our stochastic models. We illustrate the efficacy of the pro-
posed schemes by applying them to the problems of denoising synthetic flow
phantoms and enhancing flow-sensitive magnetic resonance imaging (MRI)
of blood flow in the aorta.

In constructing our models and devising our applied schemes and algorithms,
we rely on two fundamental notions. The first of these, referred to as ‘in-
novation modelling’ in the thesis, is the principle—applicable both analytic-
ally and synthetically—of reducing complex phenomena to combinations of
simple independent components or ‘innovations’. The second fundamental
idea is that of ‘invariance’, which indicates that in the absence of any distin-
guishing factor, two equally valid models or solutions should be given equal
consideration.

Keywords: invariance, innovation modelling, fractional Brownian vector
fields, fractional Brownian motion, fractional stable motion, generalized ran-
dom fields, variational methods, vector fields






Résumé

Nous proposons des modéles stochastiques autosimilaires et invariant par
rotation pour les champs vectoriels, étudions certaines de leurs propriétés
les plus importantes, et suggérons des algorithmes et des méthodes pour la
reconstruction de champs vectoriels a partir de mesures généralisées. Pour de-
velopper ces méthodes, nous utilisons les mémes notions d’autosimilarité et
d’'invariance par rotation qui caractérisent nos modéles stochastiques. Nous
illustrons les méthodes proposés dans un premier temps en les appliquant
au débruitage de champs vectoriels simulés. Nous traitons ensuite des don-
nées de flux sanguin dans l'aorte obtenues par IRM (imagerie par résonance
magnétique).

La base conceptuelle de cette thése se resume en deux notions fondamen-
tales. La premiére, que nous avons nommeée « modélisation d’'innovations »,
se fonde sur ’idée de décrire un phénomeéne complexe par la composition d’
« innovations » simples et indépendantes. La deuxiéme est liée au principe
d’ « invariance », qui nous améne a établir des relations d’équivalence entre
observations possibles d’un phénomeéne vis a vis de critéres naturels définis a
apriori. Dans la recherche d’une solution, 1’on accorde alors la méme priorité
aux candidats appartenant a la méme classe d’équivalence.

Mots-clés : invariance, modeéles d’innovation, champs vectoriels brownien
fractionnaire, mouvement brownien fractionnaire, mouvement stable frac-
tionnaire, champs stochastiques généralisés, méthodes variationnelles, champs
vectoriels
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Preface

This thesis is concerned with developing models and methods of solution for
problems involving vector fields. Vector fields are mathematical idealizations
of physical phenomena that vary inside a spatio-temporal domain (the ‘field’
bit), and which, in some sense, specify a direction at or about each point
inside the domain (the ‘vector’ bit). An example is the velocity field inside
a water pipe (the domain).

Philosophically, this thesis rests on two pillars. One is the idea of ‘innovation
modelling’, and the other is the notion of ‘invariance’.

Broadly speaking, innovation is that which cannot be predicted. The view
put forward by innovation modelling is that the phenomenon being modelled
consists of a number of independent innovations that are combined together
through a process of ‘mixing’ in order to create the final object of interest.
We can represent this idea schematically as follows:

innovations —>» mixing |—> phenomenon

Going in the other direction, as an analytical principle, innovation modelling
suggests that to analyse a complex phenomenon, one might try to identify (or
hypothesize) the independent sources of innovation hiding underneath, and
the process through which they are compounded. In the role of a model of
creation, this view can be applied at different levels, from the representation
of natural phenomena such as physical systems of many particles, to the
study of human creativity and the works of art.

In this thesis we shall be concerned with a very narrow and specific inter-
pretation and application of this general idea, where we assume, first, that all
of the innovation sources are probabilistically comparable, meaning roughly
that if we were to look at a large number of innovations originating from each
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Preface

of these sources, they would all appear similar to us. Secondly, we assume
that the process of mixing can be modelled by a special kind of mathematical
object, called a continuous linear operator. ‘Operator’ is jargon for any-
thing that takes an object and returns something known in return (the box
in the above schematic). ‘Continuity’ of the operator means that if the input
to the box is only slightly modified, its output will also change only slightly.
Its ‘linearity’ signifies that its output corresponding to the superposition of
some collection of inputs is the superposition of individual outputs associ-
ated with each of the inputs. The mathematical framework is presented in
Chapter

The second philosophical underpinning of this thesis, which we have codified
by the term ‘invariance’, is a form of the principle of insufficient reason,
which in our application roughly states that in the absence of any factor
based on which to prefer one model or solution for a problem to another,
both should be given equal consideration. This quality is expressed by saying
that the models or methods of solution are invariant under (or insensitive
to) transformations that exchange objects uniquely for other equally valid
ones. Once again, our application of the general philosophical principle is
very specific: we concentrate on particular types of geometric invariances,
namely with respect to rotations and changes of scale as they apply to vec-
tor fields. Mathematically, this is done by identifying homogeneous and
rotation-invariant operators and potential functions. We introduce a family
of such operators in Chapter[2] and suggest some suitable potential functions
indirectly in Chapters [1] and [4] (although not always by this name).

Chapters (3| and [4] consist of applications of the above principles as developed
in the first two chapters. In Chapter [3] we transplant the invariant operators
of Chapter [2]in the innovation modelling framework of Chapter [1]in order to
define self-similar and rotationally invariant random models for vector fields.
In the following chapter, we rely on similar ideas, but this time in a heuristic
fashion, in order to devise methods of solution for the concrete problem of
refining measurements of a physical vector field.

We bring our unannounced overview of the thesis to an end by informing
the reader that Chapter [4]is followed by conclusions and two appendices, the
first concerned with some background material and musings about probab-
ility theory, and the second consisting of older publications that were not
fully incorporated in the text. A more detailed overview of the contents and
results is given after this preface. Apart from the above brief sketch and the
noted obligatory overview of contributions that will shortly follow, there is
no separate introduction. Instead, each chapter begins with introductory re-



marks that are intended to clarify its purpose and connection with the rest of
the thesis. The order in which topics are presented follows loosely the prin-
ciple of introducing mathematical tools and methods before they are applied
(references are given when this order is violated). Since the justification for a
definition often lies in its application, the purpose of some sections may only
become apparent later (this is particularly true of Chapter . Other than
that, the unbalanced presentation, which puts undue emphasis on trivialities
at times while passing lightly over some of the more technically challenging
concepts on other occasions, reflects the author’s variable mood and the wax
and wane of his enthusiasm.

BEach chapter is divided into a number of sections and subsections corres-
ponding to the main subjects considered therein, and independently into a
relatively large number of ‘paragraphs’, each of which develops a single idea
or two (regarding numbering: subsections of the third section of the second
chapter are numbered as &c.; paragraphs in the same chapter
are numbered independetly as 2.a, 2.b, €c., with 2.z then followed by 2.aa,
2.ab, and so on). Particularly fanciful digressions and generalizations that
may be skipped without compromise are marked by an asterisk, as in
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Technical Overview

After the overview of ideas and format given in the beginning of the preface,
I now give an overview of the main results and contributions. In doing so,
I also take opportunities, as they present themselves, to re-iterate some of
my main intellectual debts and influences, wrapping them now and then in
pieces of a quasi-narrative of how this thesis came to be.

With the excuse of its more personal nature, the following overview—like
the acknowledgements that precede it—is written mostly in the first person
singular. For the remainder of the thesis, I shall revert to the collective ‘we’.

*k%

This thesis is the outgrowth of my work as a Ph.D. student on mathematical
models with specific geometric invariances. Our work in this area resulted in a
number of journal publications [TVUQ9), [TU10b, [UT11] and papers delivered
at various conferences [TVU08, [TU09, TDGSU10, [TU104, TDGSU1LI|. To
evade the tedium of repetition and exploit the benefit of hindsight, in the
present thesis I have often departed, sometimes widely, from our published
work, revisiting and reworking the subject of study and our methodology
with the intention of reducing them to their essentials and presenting them
as coherently and completely as I could, while filling any gaps as I had noticed
in our original presentation, and generalizing the methodology and the results
where there seemed to be some value in doing so.

On the other hand, I have made no attempt to produce an exhaustive account
of our publications, preferring instead to leave out some material for the
sake of coherence and conciseness. To counter this omission, some of the
mentioned papers have been included as appendices, but the main text does
not depend on them. Other than the noted appendices, a few philosophical
passages in Appendix [A| that are quoted directly from Kolmogorov [Kol56]
and specifically marked as such, parts of the proof of that also appears
in one of our published papers, no part of the text has been copied verbatim
from elsewhere, including from our previous publications. In addition, except
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where specifically noted, the statements of the results as given in the main
text and their proofs are mine.

The first chapter of the thesis introduces what is called here the ‘innovation
modelling’ framework for defining stochastic models. I was introduced to
the basic idea of innovation modelling (in its strict interpretation as the
application of a linear shift-invariant operator to a ‘white noise’ process) and
the theory of generalized random processes soon after my arrival at the EPFL
in 2006, through the work of (and proximity with) my adviser, Professor
Michael Unser, and Professor Thierry Blu who collaborated with our group
at the time. Without formal training as a mathematician, in the years that
followed I tried to educate myself about the subject and its subtleties and
technicalities, first through the volume by Gel’fand and Vilenkin [GV64], and
later by referring to the works of Schwartz [Sch73, [Sch&1|, among others. I
do not pretend to have mastered this theory, but I believe that—at least
from the perspective of someone mainly interested in using this formalism
to construct stochastic models—a more or less systematic methodology has
eventually emerged through these contemplations, which I have tried to distil
and present in the first chapter. Some (less directly relevant and/or more
philosophically oriented) background material has found a place in Appendix
[A] The novelty of this chapter, whatever its extent, is to be sought in the
presentation of a general framework rather than basic matematical definitions
and results, which can all be found in the references cited therein.

Chapter 2] in its quasi-totality, is concerned with identifying linear operators
with prescribed invariance and continuity properties, and the derivation of
their other properties used in the following chapters. After a somewhat non-
standard and general overview of the notion of invariance in attention is
directed to specific geometric invariances for operators acting on scalars and
vectors (the main distinction between the two being in the different ways in
which they transform under rotations of the coordinate system). A study of
the scalar theory appears in followed by its (not always comparable or
similar) vector counterpart in the next two sections.

The first subsection of the second section of this chapter, where the
general theory of isotropic homogeneous generalized functions in IR® and
their associated convolution operators is considered, follows closely and draws
heavily from Gel’fand and Shilov [GS64] in terms of technique, results, and
arguments. I have, nevertheless, adapted these results and arguments to
our purpose, and derived some new formulae and results, which are used
later to define matrix-valued self-similar distributions. The inclusion of this
subsection was necessary also in order to have an umambiguous interpretation



of the singular integrals that abound in that chapter.

Next, in attention is turned to ‘L,-continuous’ modifications of the
scalar convolution operators introduced previously. The one-dimensional L,-
continuous subset of these operators was considered by Blu and Unser [BUQT]
without explicit mention of their continuity property. I later generalized this
definition to several dimensions ([TVUQ9, [TU10a]), in the first case without
direct reference to topological considerations and later only commenting on
it in passing (by this time, I had come to appreciate the central importance
of continuity in a certain topology in the theory of characteristic function-
als). Professor Qiyu Sun, who visited our lab a little later, extended these
definitions to the L, setting, 1 < p < co, emphasizing continuity throughout
[SU|. His definitions and results, as well as all of the previously cited ones,
are formulated in the Fourier domain. While I benefited from discussions
with Professor Sun during his visit, the definition of L,-continuous operators
given in which is stated in the spatial domain, and the proof of their
continuity, are not directly based on his paper (this is partly due to the fact
that I found it more convenient to define and derive them in the way they
appear here, but also because for p # 2, Fourier-domain definitions are, a
priori, somewhat ambiguous and require careful interpretation).

The previous scalar theory is developed here primarily in order that its results
might be used to construct and study homogeneous and rotation-invariant
operators acting on vector fields. This is done, first, in[§2.3 where the vector
operators and their associated matrix-valued distributions are introduced and
their basic properties derived and, later, in where their vector calculus
is developed.

Our definition of homogeneous and vectorially rotation-invariant operators
rests on the introduction of a family of matrix-valued (tensor) distributions
belonging to (2')%*?¢ and (&')?*¢, which can be seen as the natural tensor
generalizations of scalar homogeneous isotropic distributions, and this in
more than one sense. Specifically, in addition to being homogeneous and
rotation-invariant (the latter in a different sense than for scalars), the family,
which is parametrized by the (complex) homogeneity order and two addi-
tional coefficients, is closed under Fourier transforms. It also has very inter-
esting properties regarding the Helmholtz docomposition of its elements into
curl- and divergence-free parts. I investigate these properties in the last two
sections of Chapter

One of the definitions of the noted matrix distributions (the first line of
(2.34)) is inspired by the work of Arigovindan [Ari05]. During his doctoral
studies in the Biomedical Imaging Laboratory of EPFL, which preceded my
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affiliation with the same group, Dr Muthuvel Arigovindan worked on scale-
and rotation-invariant reconstruction of vector fields and identified the gen-
eral form of quadratic potential functionals with the noted invariances in two
and three dimensions, obtaining Fourier-domain formulae similar to for
their associated operators. I have extracted what I thought was fundamental
in his definition to introduce the said family of matrix-valued homogeneous
and rotation-invariant distributions in giving new proofs of their in-
variance properties in any number of dimensions, as well as finding different
expressions for them (they come in a number of essentially equivalent forms
and parametrizations, each suitable for some purpose) and deriving many of
their properties in relationship to each other. As already noted, these dis-
tributions are in essence the matrix generalizations of scalar homogeneous
isotropic distributions and retain many of their nice properties, while adding
others with no scalar equivalent.

The noted matrix distributions give definition to convolution operators that
map vector fields to vector fields. This development is then followed by the
identification of Lp-continuous rotation-invariant and homogeneous vector
operators in along similar lines as in the scalar case. Finally, in I
present the vector calculus of these operators, which brings to the forefront
their directional characteristics. With the exception of parts of the proof of
Theorem and some of the review material in these sections over-
lap very little, both in terms of presentation and results, with our previous
published work.

Chapter [3] where self-similar random vector field models are introduced, be-
gins with a few standard observations that motivate and suggest a number
of ways to define and characterize scalar fractional Brownian motion (fBm)
and its most trivial vector generalization (a vector composed of independent
fBm fields for each coordinate). The same scalar fields are then characterized
in the innovation modelling framework of Chapter (1, to prepare the scene for
introducing their non-trivial but nevertheless quite natural extension as ran-
dom vector fields that are probabilistically self-similar and rotation-invariant
in the vector sense.

The definition of these models—which I have called, interchangeably, ‘frac-
tional Brownian vector fields’ or ‘vector fBm’—in the innovation modelling
framework utilizes the Ly-continuous vector invariant operators of Chapter
This makes it possible to use the results of Chapter [2[ quite easily to obtain
the main properties of these new models. Finally, in the last section of the
chapter, I use the general Ly-continuous vector operators (with p typically
different from 2), and superpositions of innovation models to define more gen-



eral self-similar random vector field models with a-stable statistics, to which
I refer as ‘fractional stable vector fields’ and their ‘subspace-independent’
extensions. The significance of these models is that they are in a sense the
largest family of vector models with the required invariances; they also per-
mit us directly to account for the directional and scaling properties of the
phenomenon we wish to model, such as its curl and divergence.

Among the models presented in Chapter [3 the Gaussian ones were discussed
in our 2010 publication [TU10b|, but their non-Gaussian and subspace-
independent extensions have not been published previously.

Having disqualified myself as a mathematician early on in this overview, it
therefore seemed necessary to complement the previous theoretical develop-
ments with at least a semblance of the mixture of inspiration and science
and guesswork otherwise known as ‘engineering’ (in retrospect, what was
sacrificed in mathematical formalism seems to have been partially counter-
balanced by successful applications, which generated some level of enthusiasm
at a certain IEEE symposium [TDGSU11]).

For the above reason, in the final chapter of the thesis I put forward a re-
latively general and systematic method of solution for practical problems
involving the reconstruction and refinement/enhancement of numerical rep-
resentations of vector fields. This chapter diverges from the preceding ones
in being more application-oriented, and the principles that were previously
applied mathematically to define new stochastic models now play the role
of heuristics meant to guide us to schemes whose utility is to be demon-
strated and evaluted through experiments. Near the end of the chapter,
specific solution methods for the vector field denoising/enhancement prob-
lem are presented. Similar approaches have been suggested in the literature
(I highlight, again, Arigovindan [Ari05|, which was my point of departure
in the study of such methods; other relevant works are cited in the chapter
itself), their main point of difference being that the ones I know about are
based on quadratic optimization, whereas here we mainly emphasize their
non-quadratic alternatives, and also generalize them to arbitrary differen-
tial orders while maintaining their invariance properties. To demonstrate
the relative efficacy of the proposed solution methods a few experiments are
conducted, on simulated as well as real-world measurements (obtained us-
ing flow-sensitive magnetic resonance imaging), and their (state-of-the-art)
results reported along with some discussion/interpretation.

The chapter on applications is followed by the one titled ‘Conclusion and
Outlook’, which, contradictorily, does not conclude the thesis, being in effect
succeeded by two appendices, a table of notation, a list of references, and the
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institution-required c.v. The first of the appendices, which was already re-
ferred to, is a collection of personal ruminations on the set-theoretical model
of probability, sprinkled with standard theorems, definitions, and results. It
is followed by a second appendix, also commented on already, where I have
collected some of our publications reporting other related work that I did
in the course of my doctoral studies, which I have left out of the thesis for
the reasons noted previously (these mostly relate to the theory of splines
and wavelets—including matrix-valued spline and wavelet bases for vector
fields—and their applications in estimating the parameters of the models
of Chapter . Also included for the purpose of comparison and historical
reference are our earlier publications where similar models as in the thesis
were originally introduced in a manner that would eventually lead us to—but
which was nevertheless less refined than, and not as fully developed as—the
formalism and models developed in Chapters [ to
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Innovation Modelling

Innovation modelling as presented here is a framework for constructing
stochastic models, guided by a separation of the (practical or essential) un-
predictability (or unwillingness to predict) ascribed to the model—imagined
in the form of many independent contributions or ‘atoms?! of randomness’
(innovations)—from factors that ‘mix’ and combine these independent ran-
dom contributions. In other words, it is postulated that at some funda-
mental conceptual level, the randomness that exists in the model depends
on the contribution of many independent factors that are then combined in
a deterministic fashion. Schematically, we have:

mixing
innovations (W) —>{ operator |—> random model (B)
U

In a variety of situations, the innovation atoms may be thought of as be-
ing probabilistically identical. The innovations (collectively denoted as W)
may then be modelled by a stationary stochastic field with some form of
independence built into it.

We shall not attempt to give a more profound philosophical justification for
the innovation framework, although it should not be difficult to identify in it
a certain level of intellectual appeal and practical relevance, at least in some
physically-motivated models. Instead of philosophizing, we simply special-
ize and clarify the mathematical framework we shall employ for the purpose
of our application, which consists in modelling a random field depending

1. Strictly speaking, we may be able to subdivide the innovations ad nfinitum, in which
case our ‘atoms’ would be infinitesimal.
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on a spatial variable z € R?. Because of spatial dependence, it is natural
(although by no means exclusive) to take the innovations to be distributed
‘spatially’. This idea is captured in the notion of random fields with inde-
pendent values at every point (Gel'fand and Vilenkin [GV64]), which we
shall introduce in due course. But, before doing so, let us first put in place
our analytical and probabilistic framework, which involves random objects
known as generalized random fields.

Generalized random fields

Both from the point of view of constructing a probability measure for the
random model in the above schematic, and also in order to take advant-
age of the powerful machinery of distribution theory and related techniques
(including those we shall employ in Chapter , it is fruitful to define our
stochastic models as random elements of a space of generalized functions
(distributions), and this is the course we shall follow. The underlying theory
of generalized random fields—which provides a sound probabilistic basis for
the construction—is well-developed, with a number of monographs available
that are dedicated either entirely, or in part, to its systematic exposition. We
highlight, in particular, the volume by Gel'fand and Vilenkin [GV64] (our
primary reference) and the book by Schwartz [Sch73|. A condensed summary
is given in the next few paragraphs; a slightly more detailed overview can be
found in the last section of Appendix [A]

Since the reader is likely to be familiar with classical random fields, we shall
define generalized random fields in analogy to the former. The ‘generaliz-
ation’ from a run-of-the-mill random field to a generalized one is similar,
in essence, to the passage from a classical function to a distribution in the
sense of Schwartz [Sch66| (like Dobrushin [Dob79] and the Russian school
more generally, we prefer the term ‘generalized function’ to ‘distribution’ in
probabilistic contexts, as the former choice avoids semantic absurdities such
as ‘the distribution of a distribution’).

Classical functions and random fields

Classical functions. In the classical setting, a (deterministic) function f is a
map from some domain .# into some value space such as IR. As is standard,
we define the space of all functions .4 — IR as the infinite product space
R’ =[I,e, R
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1.d Classical random fields. A classical real-valued random field F', defined on the
domain .# (typically = IRd), is identified with a probability law for drawing
a function from the space R”. This probability law is constructed as follows.
One begins with a collection of random variables, denoted as F(z), z € £,
corresponding to the point-wise values of the random function F. These
variables are characterized by the provision of the joint probabilities of F'(z),
z € I, for any finite subset I C #. We shall denote this joint probability as
Pr 1.

The joint probabilities #r;, I C .# finite, are subject to certain consistency
conditions, which guarantee the existence of a probability measure on the
product space R” corresponding to F' (Kolmogorov’s Extension Theorem;
see . The noted probability measure on IR*, which we shall denote
as Pp, is sometimes called the stochastic law of the random field F. We
may thus view F' as a random element of the function space R drawn in
accordance with the probability Zz.

Pr has the following defining property: the finite-dimensional marginals
of Pr, defined as its push-forwards through the canonical projections

R > R f e {(z, f(z)) :z € I}, IC.# finite,

correspond to the initial joint probabilities Pg;, I C # finite (see in
Appendix [A] for the definition of the push-forward and for an overview
of the connection between #r and its finite-dimensional projections).

Finally, since any probabilistic computation about F' depends only on &r, F
itself becomes redundant (even irrelevant) and we may say that the random
field ¢s the probability measure &g (this point of view is adopted in
where we discuss only probability measures and not random fields as such).

§1.1.2 Generalized functions and random fields

l.e Generalized functions. In intuitive terms, the passage from classical to gen-
eralized functions consists in replacing punctual ‘evaluations’ f(z), z € 4,
by linear ‘observations’ (¢, f), with ¢ belonging to some vector space & of
test functions. The space & is typically assumed to be rich enough so as to
distinguish between (or separate) any two non-equal generalized functions
f1, f2. In addition, the observations must be consistent with the vector space
structure of &, meaning that

(ap + B9, f) = al¢, f) + B, f)

for all ¢,% € & and scalars «, §.
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To make the theory richer and more useful, & is given the additional struc-
ture of a (complete, locally convex) topological vector space, and a general-
ized function f is required to be continuous with respect to the topology of
Z, that is,

& —¢ = (S, f) = (b f)

for any convergent net {¢,} in . We can then identify f with an element
of the continuous dual of &', which we denote as Z".

Scalar vs vector fields. Generally speaking, if the space & consists of ‘scalar’-
valued (typically real or complex) functions, we refer to elements of Z' as
generalized scalar fields. If, on the other hand, the space & corresponds to
the dth Cartesian power of some scalar test function space %, so that the test
functions ¢ = (¢1,...,¢4) € X = ¥ are ‘vector’-valued with d coordinates,
we may refer to the elements of ' = (%?)' = (#')? as generalized vector
fields. The scalar product (¢, f) of a generalized vector field and a vector
test function is defined in terms of the products of their coordinates:

(@, )= > ($u,fa)-

1<i<d

Generalized random fields. A generalized random field is a mathematical ob-
ject that allows one to model finite collections of linear observations of some
variable (stochastic) phenomenon, and in this sense, it can be viewed as the
stochastification of the concept of generalized function, in much the same
way that classical random fields correspond to the stochastification of the
classical notion of function.

Specifically, let & be our space of test functions as before. Our objective is to
construct a mathematical entity that models random observations associated
with test functions ¢ € . To this end, suppose that we are given a map F':
¢ — F(¢) = (¢, F') where for each ¢ € X', F(¢) is a random variable ((¢, F')
here is merely a suggestive notation, not a true scalar product). Suppose,
further, that for each finite set B C Z of test functions we are given a
probability measure #r 5 on R (or C? in the complex case), corresponding
to the joint probability of the random variables F((¢), ¢ € E (when E consists
of a single element ¢, we shall write 274 in place of P 43). To account
for the intuitive ideas that (1) our measurements are linear, and (2) we may
approximate any observation by limits of observations that are ‘close’ to it,
we impose the following requirements on F' (or, more precisely, on the finite
joint probabilities Pr g, E C 2 finite):

(C1”) Consistency: For any pair of scalars «, § and test functions ¢, 9,

(ad + By, F) = a{¢, F) + B{¢, F) in probability law.
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(C2") Continuity: For any convergent net B, — E in the space Z ¥ where
E C % is finite,

E, - E = Prpg, 2 PrE,

w . oy
where — denotes convergence in probability measure.

F—or the above collection of probability measures that defines it—is called
a generalized random field (Gel'fand and Vilenkin [GV64]).

We can then associate with F' a cylindrical probability #r on &', which is
a finitely-additive probability measure on the algebra of Borel cylinder sets 2
in &', with the property that its finite-dimensional marginals, corresponding
to the above probabilities Zr g, E C & finite, are countably additive (we
give only the bare minimum here; see for more detailed definitions).
The noted finite-dimensional marginals are recovered from %z as its push-
forwards through the canonical projections

g X' > f—={(¢ (s f)):¢d€E}, ECX finite.

The intuition behind the definition of generalized random fields, and the
cylindrical probability measures that characterize them, is that these no-
tions permit us to produce probabilistic models for any finite number of
linear observations of a phenomenon without contradiction. Concretely, the
probabilistic model for the observations (¢, F'), ¢ € E, E finite, is the finite-
dimensional marginal measure #r g, which describes the joint probability of
the aforementioned observations. On the other hand, one might reasonably
enquire as to whether this model permits of a ‘sample path’ interpretation,
meaning whether it is possible to interpret F itself as an element of the space
%' chosen randomly according to some probability measure.

The above enquiry can be formulated more precisely as follows. The cyl-
indrical measure %r is identified with a collection of ‘finite-dimensional mar-
ginals’ P  that fulfil properties and given above. By construc-
tion, these finite-dimensional marginals are countably additive, while & in
general is only known a prior: to be finitely additive. Answering the question
posed in the previous paragraph then amounts to identifying sufficient condi-
tions in order for the cylindrical probability #» to have a countably-additive
extension to (a o-algebra in) .

In the next two paragraphs, we provide sufficient conditions for a unique
countably-additive extension of &y to exist in specific cases. These condi-

2. In brief, a Borel cylinder set in &’ is the inverse image of some Borel set in RZ,
E finite, under a continuous finite-dimensional linear projection g : ' — RF; see the
final section of Appendix E] for details.
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tions are formulated in terms of the continuity of a certain ‘characteristic’
functional associated with & (the definition of this functional goes back to
Kolmogorov [Kol35]).

Characteristic functionals. The characteristic functional of a generalized ran-
dom field (cylindrical probability measure) & is the map

P X > C:¢p— | PPpp(df) = / et Pp 4(dt) = Bp{el®F 1.
2 R

The characteristic functional can be seen as the infinite-dimensional counter-
part of the classical characteristic function in probability theory. In particu-
lar, we can recover from it the characteristic function of any finite-dimensional

marginal Pr g, E = {$1,...,¢m} C X, as follows (see [§A.6.3):

@,E(‘fla N vgm) = ei Ek Cit c@F,E'(dt)
Rm

_ /l ei(i:,c €xdbr,f) Pp(df) = @'(Z fk‘ﬁk) (L1)
k

The characteristic functional of a generalized random field is continuous in
the topology of &, and non-negative definite in the sense that

D P (¢ —¢) >0
0

for all finite vectors ((1,...,¢:) € €™ and (¢P1,...,dn) € L™ of arbitrary
length n € IN. Conversely, if a functional has the above two properties and
is normalized so that @(O) = 1, it defines a cylindrical probability Zr on
x'.

If the space & of test functions is nuclear , then the above conditions
are sufficient for the cylindrical probability to admit a unique countably-
additive extension to the o-algebra generated by Borel cylinder sets, thanks
to

Minlos’s theorem. A functional @y :  — C where the space & is nuclear is
the characteristic functional of a countably-additive probability measure Zg
on (the Borel cylinder o-algebra in) &' iff it fulfils the following conditions:

(R1) 27(0)=1;
(R2) Pp is non-negative definite;

(R3) P is continuous in the (nuclear) topology of Z .
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1.k Important examples of nuclear spaces that we shall encounter in this thesis

1.

§1.2

1.m

are the test function spaces 2(IR?) and & (IR%), and their powers, specifically
the spaces 2%(R?) and &%(IR?) which are dual to generalized vector field
spaces. More generally, products, subspaces, and quotients with respect to
closed subspaces of nuclear spaces are again nuclear (Pietsch [Pie72]).

Equivalence and invariance in law. Since, as noted, the stochastic law of a gener-
alized random field is determined by its characteristic functional, two gener-
alized random fields are equivalent in law (have the same finite-dimensional
marginals) iff their characteristic functionals are equal. On account of this
definition, given a transformation (linear homeomorphism) G :  — Z with
adjoint G* : &' — %', a random field F' with characteristic functional Py is
G*-invariant in low iff

Pr oG =Py

(we say G*-invariant and not G-invariant because the probability law of F' is
defined on the dual space %', which is the domain of the adjoint operator

G*; cf. [1.n| below).

Innovation modelling with generalized random fields

The above theory of generalized functions provides a convenient formalism
for the innovation modelling framework presented in The following se-
quence of steps describes a procedure that sets the latter framework in the
former theory:

(IM1) Characterize the innovation W as a generalized random field over
some test function space & by specifying its (normalized, continuous,
and non-negative-definite) characteristic functional Py;. The space
% need not be nuclear (and the cylindrical probability 4y associated
with @y need not be countably additive).

(IM2) Identify a continuous linear operator U : & — % with prescribed
properties, where the space & is nuclear.

(IM3) Define the random model B as the generalized random field with
characteristic functional

Pp = Py o U. (1.2)
More explicitly, for any ¢ € &,

P5(9) == Fw (U9). (1.3)
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The characteristic functional defined above then identifies a unique
countably-additive probability measure &5 on &' (see below), which
we interpret as the stochastic law of the model B.

Note that in the last step, the non-negative-definiteness of Pp and its normal-
ization such that @(O) = 1 follow from the corresponding properties of Py
and the linearity of the operator U, while the continuity of Pg results from
the fact that it is the composition of two continuous maps. Consequently,
the requirements of Theorem [I.j are fulfilled, meaning that we can associate
with B a unique and well-defined (countably additive) probability measure
on &', which is related to its characteristic functional by the identity

Fn () = / 8 254 ).

&'

Moreover, we have the following equivalence ‘in probability’ between random
variables:

Ve & (¢, B) = (Ug, W) by (L.3);
= (¢, U W) by the definition of the adjoint.

The second identity defines the application of the adjoint U* : &' — & to
the generalized random field W. As, by assumption, & separates the points
in &', we may then symbolically write

B =U'W. (1.4)

This gives precise meaning to our original innovation schematic given in
the beginning of this chapter. We call (1.4) the innovation equation for
generalized random field B.

In Chapter [2] we shall identify families of operators U distinguished by their
invariances and continuity, taking as our innovation space & some Lp(le)
space in the scalar case and its dth Cartesian power Lg(IRd) in the vector
case, and choosing as our nuclear space &, accordingly, either @(Rd) or its
dth power 2%(IR?%), where 2(IR?) is the space of smooth compactly supported
test functions with its standard topology.

To complete the procedure described in (IM3)] we also need to identify
another component, namely the innovation W. This will be the subject of
our next section.
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81.3 Generalized random fields with independent values at every point

1.p Definition. Let & be a space of functions defined on the domain R%. Fol-
lowing Gel’fand and Vilenkin [GV64], we say that a generalized random field
W on & with characteristic functional #y has independent values at every
point iff, for any two functions ¢, ¢, € & with disjoint supports in R, the
random variables (¢;, W) and (¢>, W) are independent.

Note that (¢;, W) and (¢, W) are independent iff their joint characteristic
function factorizes according to

P g1, (E1,62) = Pwg, ()P, (62).
Moreover, by , the above characteristic functions are related to &y by
Pwe.(6) = Pw(Ed:), i=12,
and . .
Pw {41,823 (61,€2) = Pw (€191 + E202).
We can therefore say that W has independent values at every point iff

P (E1¢1 + Ea¢2) = P (E101) P (E262)

for all ¢1, ¢ € & with disjoint supports and all £;,{> € R. Taking (multi-
valued) logs, we find the equivalent criterion

log P (é1¢1 + €a¢2) = log Py (161) + log P (€292), (1.5)

for all disjoint ¢y, ¢, € X and all £;1,&; € R.
1. In particular, in the event that ﬁw(qﬁ), ¢ € &, is of the form

—

Fir(d) = exp [ u(d(@)) do (16)
R
for some continuous u with u«(0) = 0, (1.5) is verified, since we then have

log (161 + a02) = [ u(6sshs(2) + oea(z)) d
= [ ue@) do+ [ uer(@) ce

upp ¢1 upp ¢2

= log P (£161) + log P (£2¢2).
The same holds more generally when log #y (¢) has the form

log Zy () = / wd(@),..., ™ (2)) do

R
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for some n € N U {0} and some function u, since we may again separate
the integral over the supports of ¢; and ¢, (in the above formula ¢ n e
IN U {0}, denotes the vector of nth-order derivatives of ¢).

The innovations we shall consider in this thesis are all of the type identified in
(1.6]), which equation we shall use to define both scalar and vector innovations
by choosing suitable functions .

Scalar vs vector innovations. Since, in order to define a scalar innovation field,
our test functions ¢ € & need to be scalar-valued, for scalar innovations u
in (1.6) must be a function of a single variable.

On the other hand, for a vector-valued innovation (a generalized random
‘vector’ field), the test functions ¢ € & are vector-valued with d components
#1(z),...,¢4(z) at any point z (cf. . Thus, in this case, u needs to be a
(scalar-valued) function of d variables.

Naturally, not every choice of the function u in leads to a valid (properly
normalized, non-negative-definite, and continuous) characteristic functional.
However, with the aid of the following lemma we can easily identify many
suitable choices (the lemma is inspired by Theorem 2 of Gel'fand and Vilen-
kin [GV64] §II1.4.2], where a similar result is obtained in one dimension for
continuous test functions ¢ using the same trick of applying Schur’s theorem
to a finite sum approximation of the integral).

Lemma. Let the continuous function u, with u(0) = 0 and Reu(z) < 0
everywhere, be such that the functional Py, defined in is continuous on
some space & . Assume, furthermore, that the elements of & are Lebesgue
measurable. Then, in order that Py be non-negative definite it is sufficient
that the function & — e°*() be non-negative definite for all s > 0.

Proof. We need to show that for a function w fulfilling the noted conditions,

> P (b — 85) >0 (1.7)
2%

for all finite vectors ((1,...,(n) € €™ and (¢1,...,¢,) € ™ of arbitrary
length n € N. Using (1.6) we have

Z@ng/’\(@ —¢5) = Z@Cj exp [/}Rd u(¢;i(z) — ¢5(z)) dz (1.8)

Since, per assumption, the ¢;s are Lebesgue measurable, by Lusin’s theorem
for any € > 0 a set M with )\(MC) < € such that any ¢; is equal to some
continuous function ¢; on M (A here denotes the Lebesgue measure).

Fix €, and let M and 4‘51- be as above.
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For k = (k1,...,kq) € Z% and | € N, let i = Jh(%) Then, since u is
continuous,

exp [/}Rd u(éz(x) - J’j (m))d:z:] e llino1o exp [l*d Z u(a; g — a]-,k)]

kez?

= K1£11Oo IIEEO exp [ldkngu(ai,k - a]-,k)] (1.9)

(where, for multi-integer k, |k| := |k1| + ... + |kq| per the multi-index nota-
tion).
Let A = [a;;]:; be the matrix with entries
a;; = exp(l*d Z u(og, — aj,k)) = H exp(l*du(ai,k - aj,k)).
|k|<K |k|<K

Also define, for |k| < K, the matrices Ay = [axs;];; With entries
Qg5 = €Xp [l_du(ai,k - Ol]',k):l.

For each k, the matrix Ay defined above is non-negative definite by assump-
tion (since the function es¥(®) is assumed to be positive definite for any s, and
in particular for s = I~%). Moreover, the matrix A is equal to the Hadamard
(i.e. entry-wise) product of the matrices Ag, |k| < K. Hence, by Schur’s
product theorem, A itself is non-negative definite. In other words we have

> {iGexp [l_d > ulek — aj,k)] >0
0

|k|<K

for any ((1,...,(,) € C™. Taking the limit in (|1.9)) we then obtain

ZZiCj €xp [/]Rd u(di(z) — q%(a:))dm] > 0. (1.10)

Finally, since Jn = ¢, outside a set of Lebesgue measure < € with € arbitrary,
we can obtain the integral in ((1.8]) as a limit of ((1.10) as € — 0 by forming a
sequence of phi;s for ¢ — 0, whence we find

S aG e[ ui) - o)) o

for any ((1,...,(n) € C™ and (¢1,...,¢n) € L™ with n € N. In other
words, Py (¢) = exp [fle u(qb(:z:))dac] is non-negative definite. |

11
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Using the above lemma, we can find families of non-negative-definite func-
tionals.® Of the remaining conditions for Py to be the characteristic func-
tional of a cylindrical measure, the normalization property (Zy (0) = 1)
follows from u(0) = 0, while continuity can be verified on a case-by-case
basis.

Examples: Gaussian and «-stable innovations. We note that for any s > 0,
e=35kI” is the characteristic function of a (jointly) Gaussian random variable
(vector) with variance s, hence positive definite. Therefore, for scalar ¢,
u(é) = —%|£ | fulfils the requirement of the previous lemma, and defines the
standard scalar Gaussian innovation Wg on Ly(IR?) with characteristic

functional

Pwe(9) = 67%”45”%, ¢ € Ly(RY) (1.11)

(the continuity of @VG in the topology of L is obvious as it is the composition
of two continuous functions, namely the norm* and e—%l'lz). It is easy to
see that finite-dimensional marginals obtained from the above characteristic
functional are all jointly Gaussian distributed (hence the Gaussian name).

We obtain a vector field counterpart of W, i.e. a generalized random vector
field in L¢(IR?), by choosing u(¢) = —%|§|2 where £ = (§1,...,£4) is now a
vector and |¢| denotes its magnitude. This choice amounts to replacing the
L;(IR%) norm in by the vector L¢(R%) norm

Iz = /Iququs:/RM?: ST iz,

1<k<d

where ¢ now denotes the column vector (¢1,...,¢4) and ¢ its Hermitian
transpose. We shall denote this innovation by W, and refer to it as the
standard vector Gaussian innovation.

More generally, for a € (0,2], the function e_27%5|5|a defines the positive-

definite characteristic functional of a symmetric a-stable random variable
(vector) centred at 0 (the previous Gaussian example is a special case corres-
ponding to a = 2). Thus, for 1 < a < 2 where the corresponding L, space is

3. It is easy to see that the requirement that es%(¢) be non-negative definite for any
s > 0 is verified if e*(£) is the characteristic function of an infinitely-divisible random
variable (r is infinitely divisible iff it can be written as the sum of n independent identically
distributed random variables for any n € IN).

4. Any norm is continuous in the norm topology by definition, but those readers who
prefer a more explicit demonstration may note that by triangle’s inequality we have

0 < |liell - lll] < lle—wll,

which guarantees that if ||¢ — 1|| goes to zero then ||¢|| converges to |||
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locally convex, we may define the scalar standard scalar a-stable innova-
tion Ws o as the generalized random field on Ly = (Ly)' (with % + % =1)
whose characteristic functional is defined as

P, (3) = e 2 Z 0l (1.12)
(again, L, continuity is evident).

As in the Gaussian case, to define a vector innovation field (denoted Wy ,,)
we replace the La(IRd) norm above by a vector norm on L‘;(IRd). Among all
topologically-equivalent norms on L&, we choose the rotation-invariant one
given below:

oz = [ (@02 = [ ol

with ¢ = (¢4, ..., ¢4) now denoting a column vector in Lz(Rd). This choice
corresponds to taking u(¢) = —27%|¢|* with € = (£1,...,&4) € R? and €]
denoting the magnitude of &.

Signfinicantly, if (and only if) a = 2 (corresponding to a Gaussian innovation)
then the coordinates of the above vector innovation become independent,
since in this case the characteristic functional of W , factorizes along its
vector coordinates:

P, (@)= [] Pwsa(ds)-

1<i<d
The random field W = W , is therefore equivalent to d independent stand-
ard Gaussian scalar innovations glued together to form a vector.

Homogeneity and rotation invariance. As far as stochastic modelling is con-
cerned, in this thesis we are interested primarily in those random models that
exhibit homogeneity (self-similarity) and rotation-invariance in law . To
construct random fields with these properties, in the following chapters we
shall first identify some families of invariant mixing operators, and later apply
them to innovations that are in turn homogeneous and rotation-invariant. We
therefore end the present chapter with a discussion of conditions that force an
innovation characterized by to be homogeneous and rotation-invariant
(the different senses of rotation-invariance in scalar and vector settings are
further clarified in also, we shall always understand the term ‘rotation’
to include all real orthogonal transformations).

Let W be an innovation whose characteristic functional @\W is of the form
specified in . We recall that for a scalar innovation, the corresponding
u in is a function of one variable, whereas in the case of a vector innov-
ation, u is a (scalar-valued) function of d variables. In this context, we have
the

13
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1w Lemma. In the scalar setting, a characteristic functional Py, of the form

given in defines an innovation W that is always rotation invariant in
law, and homogeneous of degree A = g — d as long as u(§) is homogeneous
of degree . In the vector field setting, W is again homogeneous in law of
degree A = g —dif u(¢) is a-homogeneous, and it is vector rotation-invariant
if the d-variate function w is scalarly rotation-invariant.

Proof. Let S, and R, be the operators corresponding to scaling by ¢ > 0
and rotation by the d x d orthogonal matrix w € O(d), as defined in [2.n| (with
the definition of R, changing according as whether its operand is scalar or
vector). We wish to find the conditions in order to have

Yw € O(d) REW =W in law (rotation-invariance)
and

VYo >0 SEW = oI AW in law. (degree A homogeneity)

The above equivalences in law translate to the following conditions on the
characteristic functional:

—

Przw($) = Pw(Ru) = P (9) (1.13)
and

Fsow(9) = P (Se9) = P 4., (8) = Pw(039), (1.14)

w

for all ¢ € . Combined together, the two requirements read
@;R;W(QZS) = eaj’\vv(a%+)\¢)~

We shall consider the scalar and vector cases separately.

First, let u be a function of a single variable, corresponding to a generalized
random scalar field (cf. . In this case, ¢ is rotated ‘scalarly’ by w according
to the formula (see [2.n)):

Ry = ¢(“"T')'

We therefore want to verify if

log Fiy (o™ (0 u)) = [ u(e™Fg(o"w"2)) do

]R,d

= / u(0i2¢(z)) da.
]R,d
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After a simple change of variables from 0wz to = in the middle integral, we

see that W is already rotation-invariant without any additional requirement
on u, since, fixing ¢ = 1, (1.13)) is always verified. It also becomes clear that
if u is a-homogeneous then the above identity holds for A = g —d.

Next, let Z be a space of vector-valued functions with d coordinates so that

X > ¢ = (¢1,..-,%4), meaning that u is now a function of d variables,
and W is a generalized random vector field . Viewing the test function
¢ = (¢1,...,¢4) as a column vector, we have for its ‘vector’ rotation the
formula

Rw,'u¢ = w¢(wT'))

which simply indicates that when rotating the coordinate system, the dir-
ection of the vector at each point should nevertheless remain constant (see
[2.n). Hence, in this case, we want to find out when

/ u(a*%wqﬁ(U*lem)) dz ;/ u(cr%+)‘¢(:z:)) dz.

R4 R4

Once again, by the same change of variables as before, we find that, as in
the scalar case, if u is a-homogeneous then W is homogeneous of degree
A= % —d. On the other hand, for vector rotation-invariance as per (.13
to hold we now need

[ ulwd@) de = [ u(p(e) do

R4 R

for all ¢ € & and w € O(d), which requirement is clearly satisfied if u is
scalarly rotation-invariant in the sense that u(w-) = u(:) for all w € O(d). B

Remark. As a consequence of the above lemma, we see that the scalar and
vectorial Gaussian and a-stable innovations introduced in [Lul are rotation-
invariant and homogeneous (self-similar) of degree A = g —d.

Motivating examples

White Gaussian Noise

The first example we give is that of (scalar) white Gaussian noise on R%. The
Gaussian innovation Wg introduced in [I.u] describes a generalized random
field in Ly(IR%) whose definition is sufficient for the purpose of modelling
finitely many observations of a point-wise independent field with stationary
Gaussian statistics. We first employ a more-or-less standard argument to
show that this is no longer true if we wish to consider an nfinite number of

15
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observations at the same time, which is necessary in order to have a sample
path interpretation of white Gaussian noise. Next, we use the methodology
of[l.m|to obtain such an interpretation of white Gaussian noise in some larger
space (specifically, either 2'(R%) or &/(R%)).

Let us put down the first statement plainly:

Claim. The Gaussian cylinder probability measure &y, on Lz(le) associ-
ated with the characteristic functional given in [I.ul does not extend to a
countably-additive probability measure on LQ(IRd).

Proof. Let {¢}ren be an orthonormal basis of Ly (IR%). Thanks to orthonor-
mality, the joint probability density of the random variables

<¢k7WG>1 kSKa

is found from their joint characteristic function (cf. (1.1)) and (1.11])) to be
given by the multi-variate Gaussian function

gK(tl, - ,tK) = (27[')_%e7% Zk ti.

For K € IN, we define the cylinder set
Cx ={f€Lly:Vk < K (¢, f) € [-1,1]}.

Note that the sets Cx, K € IN, are nested and decreasing.

We can measure Cx by Py, the cylinder measure associated with Weg.
Indeed,

where for simplicity we have defined 6 = erf (@) <1
Now, consider the unit closed ball of Ly(IR%), i.e., the set

B={fel:|lfll2 <1}

Clearly, B C Ck for any K € IN (in fact, B = (), Cxk). Thus, the outer
measure of B with respect to @y, is upper bounded by 8% for any K € N,
and this upper bound goes to zero as K — oo. In the light of this fact,
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we find B to have zero &y, outer measure. Taking B + ¢ to denote the
translate of B by some ¢ € Lz(IRd), one sees similarly that B + ¢ has zero
outer measure as well.

As L(IR?) is separable, it has a countable dense subset {1, }ien. Lo(IR?) is
then covered by the sets B + v;, | € IN. Therefore, the outer measure of
L (IR?) is no more than

> Pwa(B+) =) 0=0.

leEN IEN
In other words, Lz(IRd) has zero outer measure, contradicting the possibility
that &y, could be extended to a probability measure on it. |

We therefore conclude that Lz(IRd) cannot support a countably-additive
Gaussian law with independent values at every point, which is another way
of saying that our idea of white Gaussian noise does not have a sample path
interpretation in Ly (IR?).

We notice, however, that for both of the spaces Z(IR?) and . (R*)—we shall
write é"(]Rd) to refer to either—the natural injection ¢ : & — L is continuous,

and so is therefore also its adjoint ¢* : Ly — &’ (the chain & L L> &' is
sometimes called a Gel’fand triple). Thus, ¢ fulfils the requirements of step
of meaning we can use it to define a countably-additive probability
law on &' whose characteristic functional is given by step of as

83 ¢ Pug(ig) = Pg (9) = e 21715, (1.35)
which is formulaically the same as the characteristic functional of Wy, but
with its domain restricted to &. This shows that, unlike Lg(]Rd), the larger

spaces 2'(R%) and &' (IR?) can support a countably-additive white Gaussian
noise model with the characteristic functional given by (1.15]).

A simple innovation model—

We end this chapter with another example (divided between this subsection
and the next), which is meant to further illustrate the approach described in
and also give a flavour of the forthcoming chapters.

In one dimension, the sign function, h(z) := L[o,c0)(Z) — 1 (—c0,0](%), is a ho-
mogeneous distribution of order 0 in the (real) space 2'(R) (h(c'z) = h(z)
for all ¢ > 0), which, however, is not rotation-invariant (i.e. not symmetric).
h gives definition to the convolution operator

z 400
H: 9(R) - 7'(R) : ¢(z) = h* d(z) = / o) dy— [ #y) dy.

17
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The above operator is continuous 2 — 2’ (simple application of the kernel
theorem of Schwartz) and homogeneous of order —1 in the sense that

S;eHp=01HS, ¢

for the normalized dilation operator S, : ¢ — o2¢(c~ 1), o > 0 (the nor-
malization of S, is irrelevant here, but we include it for consistency with
the following chapters, where it will be convenient to have S} = S,-1 for its
adjoint on 2). In addition, H is a left inverse of the derivative %d%. This
suggests that we can formally relate H to a Fourier multiplier of the form
’ﬁ(f) = 2(i€) "1, although the said Fourier multiplier is singular at £ = 0, and
its corresponding Fourier integral must therefore be interpreted (or ‘regu-
larized’) properly to avoid inconsistencies. In our formalism, this consistent
regularization is incorporated in the definition of the ‘distribution’ or ‘gen-
eralized function’ ﬁ({) itself, and is given by the Cauchy principal value of

the Fourier integral (denoted as p.v. [):

+oo Lizé 7 +oo iz 7 _ a—izE T
H¢(m):p'v'/,oo Z\/%?d :/O e ¢(§)2\/2%i§ $(=¢§)

Although presented for the sake of completeness, the above Fourier-domain
characterization of H is not needed in this section, hence we shall not bur-
den the reader with the technicalities involved therein (the concerned reader
may rest assured that s/he will find more than enough of them in the next
chapter).®

dé.

Intuitively, we might wish to apply the (adjoint of the) above homogeneous
operator to, say, a homogeneous Gaussian innovation W with characteristic
functional

Pw(¢) = e 202, ¢ € Lo(R),

as introduced in in order to obtain a homogeneous (self-similar) ran-
dom process B = H*Wg, which could be interpreted as an accumulation of
Gaussian innovations. This, however, poses the technical difficulty that for
test functions ¢ with non-vanishing integral (Oth moment), H¢ does not even
belong to Ly(IR) (it goes asymptotically to f]Rgb at +oco and to minus that
value at —00), let alone be continuously mapped into it, as required by step

(0] of 512

5. The above regularization of (i¢)~! is standard in the study of the Hilbert transform.
In the next chapter we shall consider integrals with kernels of the form [£ |>‘, ¢ € R%, which
become singular for Re A < —d; the presentation there is essentially self-contained and the
relevant aspects of the theory of singular integrals and distributions will be developed from
the ground up.
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In our framework, there exist at least two ways around the above problem.
One is to find a nuclear space A of test functions with vanishing 0th moment,
say as a subspace of 2, such that the restriction of H to this space will be
continuous A4 — L,. This permits us to employ the scheme outlined in
and characterize H*Ws as a generalized random process in A" with
characteristic functional ﬁ\WG(HqS), peN.

Alternatively (and this is the primary path we shall follow), we might find
a modification H of H that agrees with H on the smaller subspace of test
functions with vanishing 0th moment suggested previously, but which differs
from H for other ¢ € 9 (where H¢ ¢ Ly), and maps continuously into L, also
for such ¢. Concretely, we define

“+o0

H : ¢(z) = hx¢p(z) — h(z) ¢(y) dy. (1.16)

—oo
Note that H is homogeneous in the same fashion as H, namely,

S,H¢ = o *HS, 4.

From the above definition, it is clear that for any ¢ € 2, Hé is, first, bounded,
and, secondly, compactly-supported. A fortior:, it belongs to L, for any p.
Furthermore, by considering the limit of H for convergent sequences in 2,
we can convince ourselves without too much difficulty that the map into L,,
p > 1, is in fact continuous. Thus, we may define

B =H'Wg

with i
Pa(8) = P, (L1g) = e 3IWIE 4 c 9(R). (1.17)

We can relate the processes B and B described in paragraphs andby
observing that, since the restriction of H to the space .4 identified in the first
approach is identical to the corresponding restriction of H, the generalized
random process B, which was characterized in A7, can be interpreted (at
least formally) as an equivalence class of random processes in 2', of which B
is a representative.

—that describes Brownian motion

Since, unlike H, its modification H defined in (T.16]) is not shift-invariant,
the generalized random process B introduced above is non-stationary. It is,

19
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however, stationarized by taking first-order finite differences. This follows
from the fact that first-order differences of H are the same as those of H (the
non-stationary term h(z) [ ¢ in is annihilated by finite differences).
Indeed, for ¥ = ¢(- + u) — ¢(- + v) we have:

Ay = h*é(- +u) — h(-)/]R(jJ — hx¢(-+v) + h(-)/]RqS = Hy. (1.18)

Consequently, the variance of a finite increment of B should depend only on
the step size and not on its location. Let us compute this variance. We first

define an increment process I = B(- —u) — B(- — v). Now, for a test function
¢ € 9, we have

E{[(¢, )|’} = E{|(¢, B(- — ) — B(- — )|’}
= E{[(¢(- + ) — ¢(- + ), B)[’} = E{|(, B)[*},
using 9 once again to denote ¢(- + u) — ¢(- + v).

Next, by noting (as we did in (1.1])) that the characteristic function of the
random variable (1, B) is nothing but

By 5(€) = Pa(E0) = P (¢H1),
we find:
E{|(, B)I’} = — = 7,5 (€)

2 _1e2) 17402
L

¢=0

by (L.17),

£=0
= [Ify |3

= [IHy |13 by (T.29),

= |k ¢(- +u) — hx ¢(- + )l

=4[ L0,0) * 4|13 with a == |u —v|, (l.19)
=41 a0 * Ljo,a] * ¢, 9), (1.20)

where in the penultimate equality we have used the shift-invariance of the L,
norm together with the fact that h(-) — k(- — a) is equal to twice the indicator
of the interval [0, a].

Putting everything together and observing that
Li_a0) * Ljo,q(2) = 3la — 2| — |2| + 3|a + 2],

we then arrive at the identity

B DP} = [ 8(s)(Ra—s+t/— s —t] + Ha+ s — t)a() dsct,
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which (using the kernel theorem ©) indicates that the correlation function of
the increment random process I is

Ci(s,t) =%la—s+t|—[s—t|+ Lla+s—1t
In particular, we have

E{|B(u) — B(v)[’} = E{|I(0)]} = C1(0,0) = |a| = [u — v].

Using the above equation and the parallelogram identity, we further find that
for any sequence of points u < v < w,

E{|B(u) - B(w)|*} = E{|B(u) — B(v)|*} + E{|B(v) - B(w)*}.

As we know that B is Gaussian with zero mean, the above identity effectively
proves that its disjoint increments are independent. Since Gaussianity, zero
mean, and independent increments are the main properties that give defini-
tion to Brownian motion, we conclude that our innovation model B describes
such a process.

The novel aspect of the approach to stochastic modelling discussed here is
that it reduces the task of characterizing the random process to that of choos-
ing an innovation model (in this example, the Gaussian innovation) and de-
fining a continuous operator (here H).

6. The kernel theorem (cf. Gel’fand and Vilenkin [GV64], Ch. I, §1.3]) states that for
& = 9 or &, any bilinear functional I on &(R%) x &(IR%), continuous in each argument,
can be identified with a generalized function f on é"(]Rd X IRd) by means of an identity of
the form
U, ¥) = (d(=)¥(v), f)-
The above theorem has an abstract generalization for arbitrary nuclear spaces [GV64] Ch.
I, §3.5], which we shall not need.
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Some Similarity-Preserving Operators

In this chapter we identify certain families of operators that commute with
geometrical transformations. The idea is that these operators can then be
used to define random fields that are statistically invariant under the same
transformations (Chapter , as well as algorithms that are insensitive to
transformations of the coordinate system (Chapter . This chapter, al-
most in its entirety, serves as a collection of definitions, techniques, and
results. Motivation for the particular definitions and results should therefore
be sought in their applications in the following chapters.

Briefly, we review the contents of the chapter. In the following section, the
mathematical concept of invariance—as insensitivity to the exchange of ob-
jects that are transformations of one another—is developed, and special types
of geometric transformations, in particular translation, scaling, and scalar
and vector rotations, are introduced. This is followed in [§2.2] by a review
of of translation-, scaling-, and rotation-invariant operators acting on scalars
(§2.2.1), and modifications of them that acquire continuity 2(R%) — L,(R?)
for some p, usually at the expense of translation-invariance . The in-
troduction of these new continuous modifications is necessary in order to use
the framework of the previous chapter to construct and characterize prob-
abilistically homogeneous and rotation-invariant random scalar fields with
a-stable statistics, as we shall do in the next chapter.

Next, in we present a new family of matrix-valued distributions that
serve as kernels of homogeneous translation-invariant operators acting on
vector fields, with the additional property of being rotation-invariant in the
vector sense. This is again followed by introducing their L,-continuous vari-
ants (§2.3.2)), which we shall use in Chapterto define homogeneous rotation-
invariant random vector fields. Finally, in we study the vector calculus
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of the operators introduced in [§2.3) particularly in connection with their
Helmholtz decomposition into curl- and divergence-free components.

In addition to providing one of the two main ingredients (the ‘continuous op-
erator’) for defining self-similar random models in the framework of Chapter
(the other ingredient, the ‘innovation’, having been introduced already in
the previous chapter), the results obtained in this chapter make it possible to
have straightforward derivations of the main properties of the said random
models in Chapter [3| Later, in Chapter [4, we shall see another application
of these operators, this time in the context of devising solution methods for
engineering problems involving vector fields.

Domains and transformations

Intuitively, geometrical transformations are understood as transformations of
the domain of functions. This idea is made precise below.

Let us begin by considering geometric transformations of the Euclidean
domain IR®. Throughout this chapter x, y will denote column vectors in R,
with, for instance, z = (z1,...,z4). £ = ({1,-..,&4) will be used to denote
a column vector in the dual of the translation group RR?, which we identify
with IR? itself (in simpler terms, ¢ is the ‘Fourier’ variable for the ‘spatial’
variable z). In addition, we use the notation |z| := y/z? + ... + z2.

We define a geometric transformation of IR? to be a bijection R? + RZ.

Examples include any

— rotation (proper or improper)! by some orthogonal matrix w € O(d): z —
wlz;

— translation by some vector 7 € R%: z — z — 7; and,

— scaling by some real ¢ > 0: =+ 0~ 'z.

In the remainder of the chapter, the symbols w, 7, and ¢ will be used exclus-

ively to denote, respectively, orthogonal matrices, translation vectors, and

scaling factors.

We also consider the punctured Euclidean domain RY = R*\{0}. Geo-
metric transformations of R? include rotations by w € O(d) and scalings by
0 > 0 as defined previously, but not translations. On the other hand, we
can define a new geometric transformation of R* corresponding to
— inversion with respect to the unit sphere: z — m2.
In more generality, we put forward the

1. A rotation is improper iff its corresponding matrix has determinant —1.
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Definition. Given a set D, a geometric transformation of D is any per-
mutation of D or, what is the same, any element of the symmetric group
Sym(D) consisting of all bijections on D under composition. Any subgroup
of Sym(D) is a transformation group of D.

We now consider geometric transformations of functions with domain D.
Given a geometeric transformation g : D — D of the domain, the transform-
ation of a function f(z), z € D, by g is defined thus:

frfog. (2.1)

A space & of functions on D is said to be invariant with respect to the trans-
formation group G C Sym(D), in short G-invariant, iff the transformation
of any f € & by any g € G belongs back in &'; in symbols,

fogeXx foral feX,geq.

We recall some familiar examples of function spaces, namely the Lebesgue
spaces Lp(]Rd), 1 < p < oo, with the norm topology, the space 2(IR%) of
compactly-supported test functions with its standard topology, the space
9'(R?) of distributions that is dual to 2(IR?), the space & (IR?) of Schwartz
test functions with its usual topology, and its dual &'(IR%), the space of
tempered distributions. Notational convention: in this chapter the symbol
&, wherever it appears, can be replaced by either 2 or &.

Note that, with the exception of 2(R%) and &(IR?), in the above examples
of ‘function’ spaces, an element f(z) of the space in question is not a function
of z € R? in the familiar sense (i.e. point-wise). Rather, the domain R*
and the argument z serve to remind us, among other things, that (some of)
the geometric transformations of IR can be applied to elements of the space
in a manner reminiscent of . In particular, we can translate, rotate, and
scale elements of each of the above spaces. Moreover, the said transforma-
tions preserve the algebraic (vector space) and set-theoretical (topological)
structure of the noted spaces. More precisely, they are linear (vector space
morphisms) and bi-continuous (topology-preserving).

These observations give rise to the following generalizations.

Definition. We define the domain Dm X of a space & to be the group of all
automorphisms of . An automorphism is a structure-preserving bijec-
tion. Structures that are of interest to us are either algebraic (e.g. in vector
spaces) or set-theoretical (e.g. in topological or measurable spaces), or a com-
bination thereof (in topological vector spaces); the various types of structure
are defined below.
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We re-iterate that structure-preserving bijections on a vector space are noth-
ing but linear bijections, while on a topological space they are precisely the
homeomorphisms or bi-continuous maps (continuous maps with continuous
inverse). The generalizations of the different notions of structure given below
will not be used afterwards, and may safely be skipped (go to .

Definition. The algebraic structure of a space & is described, in the language
of universal algebra, by a (possibly infinite) set M of finitary operations,
each of which is a map

m:x™™ 5

where r(m) is a non-negative integer called the arity of m (by convention,
20 is a singleton). A map h: & — % preserves the algebraic structure of
Z iff

VmeM moh™™ =hom,

where h7(™) is the r(m)-fold Cartesian product of h.

Example. For a vector space on the field IF we have the binary addition map
X? - % : (f,9) = f+ g and a (possibly infinite) number of unary scalar
multiplication maps & — % : f — af, a € [F. Maps that preserve these
operations are precisely those that are linear.

We take a convenient if not particularly elegant approach to introducing set-
theoretical structure, aimed at bringing together the notions of topological
and measurable spaces. Given a space (set) &, the power set of &, de-
noted P(ZX), is a Boolean algebra. A bijection h on & defines a set function
h:PB(X) = P(X) taking each set to its image under h, as well as an inverse
set map h~! taking each set to its pre-image, as discussed in Every
set function h obtained from a bijection is a bijection on PB(ZX'), which auto-
matically preserves the Boolean algebraic structure of (&) (it preserves
joins and meets, i.e. unions and intersections, as well as complements and
the partial order defined by inclusion).

Definition. The set-theoretical structure of & is specified by a number of
set systems T, C PB(X) (v is an index). These set systems are in general not
independent of one another (think of the systems of open, closed, compact,
or Borel sets), and they are not arbitrary in the sense that they have some
algebraic ‘closedness’ properties (topology, o-algebra, €c.), but these will be
of no consequence to us. We define structure-preserving automorphisms in
& as those bijection A which preserve all ¥, s in the sense of meaning
that we have,

VW TeT, & h(T)ET,. (2.2)
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*2.k Examples. Thus the automorphisms of a Borel space are Borel-measurable

*2.1

bijections with Borel-measurable inverse. For a topological space & with set
systems Open(%’), Closed(Z), and Comp(%), automorphisms are precisely
the homeomorphisms of Z. In this case, each of the two requirements

T € Open(Z') < h(T) € Open(%)
or
T € Closed(Z) < h(T) € Closed(X)
implies the other, and they both imply

T € Comp(Z) & h(T) € Comp(Z),

so there is some redundancy in (2.2)). Moreover, if & is a Hausdorff k-space,
the last condition implies the former two; see[A.d| and Proposition

Definition. Finally, an automorphism on a space with both algebraic and
set theoretical structure is a bijection that preserves both algebraic and set
theoretical structures (in a topological vector space this is precisely a linear
homeomorphism).

Definition. A transformation group of Z is a group G that is isomorphic
to a subgroup of Dm . The isomorphism G —C Dm % must be given, and
is referred to as the realization of G in &. Once a transformation group G
and its realization in & are given, the space & is labelled G-invariant.

In this chapter we shall be concerned only with certain transformation groups
that have finite-dimensional representations aoups of operators on R? or

and

Notational convention. The realization of g € G in & will be denoted as H,
with B replaced by an appropriate symbol indicating the type of the trans-
formation, namely B = T for translations, B = R for rotations, B = S for
scalings, and B = O for inversion with respect to the unit sphere. When
dealing with different G-invariant spaces 2 and %, we understand that m,
denotes different operators according as whether it is acting on & or #.
The distinction is typically irrelevant for spaces of the same type (scalar,
vector, tensor, €c.), and even for spaces of different types, it is only in the
case of rotations that we really need to distinguish between scalar and vector
rotations, which we shall do by indexing the two respectively as R, s (s for
scalar) and Ry, , (v for vector).

.
IR?; these representations were considered in

We give the realizations of the mentioned transformation groups below:
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(G1) Translation: T = {r} = R under addition;
realization: Tr: fe f(-—7);
adjoint:? T:: f f(+ 7).
(G2) Scaling: ¥ = {0} = R, under multiplication;
realization: Se: f o 2f(o™l);
adjoint: St f ot fo).
(Gs) Rotation: Q = {w} = O(d) (the real orthogonal group);

realization (scalar): Rys: fr f(w"),
realization (vector):*Ry., : f = wf(w');

adjoints: Ry :fr flw), Ry, fr Wl f(w).
(G4) Spherical inversion: O = the trivial group;

realization: O :f(z)m— |3:|_df(ﬁ);

adjoint: O*: f(z) — |3:|_df(ﬁ).

Blurring further the distinction between realizations in different function
spaces of the same type, with a harmless abuse of notation we may write
T; =T 7, S; = Sg-1, R}, , = Ryre, ® = 5,9, and O* = O, thus identifying
adjoints with group inverses in these particular examples.

Some invariant function spaces. The familiar spaces 2(RR?), 2'(R?), &(R%),
&'(R%), and Lp(]Rd), 0 < p < o0, are invariant with respect to the trans-
formation groups T', ¥, and 2, but not with respect to O.

We define their vector counterparts as their dth Cartesian power, namely
the spaces 2¢(R%), (2')4(R?), #4(R?), (#)4(R?), LE{(IR?), and the like.
These spaces are also T', ¥, Q2-invariant.

Later on, in the study of homogeneous operators, we shall find it convenient to
consider certain spaces of test functions and distributions that are O-invariant
(or whose Fourier transforms are so). For this reason, we introduce the space

@(Iﬁd) as a vector subspace of 2(IR?) obtained thus:

I(RY) = {p € 7:0¢ € 2},

and give this new space a stronger topology than @(IRd) by defining the
convergent nets (¢,) of @(]I.{d) as those nets for which both (¢,) and (O¢,)
converge in the topology of #(IR?) (recall that the set R¢ = R\ {0} is

2. With respect to the bilinear map (f, g) — (f,g9) = f]Rd fTg.

3. The different realization of Q2 for vector fields can be justified by the physical require-
ment that the direction of the vector should remain the same in the rotated coordinate
system. Mathematically, it can be seen as a consequence of the chain rule of differenti-
ation following the identification of vector fields with differential 1-forms; cf. Rudin [Rud76),
§§10.21, 10.42].



§2.1. Domains and transformations

O-invariant). The space & (I!Rd) is defined similarly, replacing 2(IR?) every-
where by &(IR?) in the above definition. The spaces 9’(]f{d) and Y’(]I.{d) are
defined as the corresponding topological duals. The newly introduced spaces
@(]I.{d), @'(Iﬁd), &c., and their vector counterparts, are O, %, Q-invariant
but not T-invariant.

We shall denote by | (]1.%‘1) the homeomorphic image of & (]1.%‘1) under the
Fourier transform, and use similar notations for the Fourier images of the
other spaces defined above.

*2.p The inclusion map ¢ injects 2 (]1.%‘1) continuously into 2(IR?) (same for . (Iﬁd)
and &(IR?)), while its adjoint 7 maps 2'(IR?) continuously into 9’(1[1‘1)
(similarly for &#'(IR?%) and &' (]f{d)) Putting topology aside, one then ob-
tains the following direct sum decompositions of 2'(IR%) and 9’(]1.{‘1) as vec-
tor spaces:

2'(R%) = 9'(RY) /i’ @ Keri' and 9'(R?) = 9'(R%)/4' @ coKer1'.

§2.1.1 Invariant operators

2.q Intuitively, an operator U: & — % is invariant under some transformation
g iff the order in which g and U are applied is inconsequential. This assumes
that, in some sense, the same transformation g is defined on & and %. We
extract this notion of sameness from the language of transformation groups
and realizations:

2.r Definition. Given G-invariant spaces &, %, an operator U : & — % is said
to be (strictly) G-invariant iff

um, =0, U forall gegG, (2.3)

where B, denotes the realization of g € G in & on the left-hand side, and its
realization in % on the right.

2.s We shall adopt the above ‘strict’ definition of invariance with respect to ro-
tations and translations. On the other hand, it is observed that in practice
homogeneity often happens to be a more interesting property than strict
scale-invariance (in fact, we shall see that the only continuous linear op-
erators 2(IR%) — 92'(R%) that are simultaneously scale-, translation-, and
rotation-invariant are multiples of the identity map). For this reason, for the
transformation group ¥ of scalings we relax as

US, =0 *S,U forallo € Ry, (2.4)
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2.t

2.u

to which property we refer as homogeneity or self-similarity of order A (with
A a real or eventually complex scalar). Notationally, we shall henceforth
indicate the homogeneity order of U as a superscript thus: U*.

Let us point out that the mathematical form of the gain o~ in is not
arbitrary, and is in fact the most general kind of gain-relaxation possible
for scale-invariance. Moreover, a similar relaxation for rotations would not
yield any further generalization (at least when limiting oneself to real-valued
gains). These assertions are captured in the next two lemmata.

Lemma. Suppose
US, = a,S,U foralloce X

with o, € Ry and 0 — o, continuous. Then there exists A such that

0y = 0.

Proof. o0 — a, is a homomorphism (R, -) = (R4, ). Let &(z) := log ttexp z-
& satisfies Cauchy’s additive functional equation

®(z +y) = 2(z) + 2(y)

since ®(z 4+ y) = l0g Qexp z expy = 108(Qexp 2 texp y) = 108 Ctexp ¢ + 108 Qtexpy =
®(z) + $(y). By the continuity of 0 — a,, $ is continuous at at least one
point. It is known that any solution of Cauchy’s equation that is continuous
at at least one point is linear: ®(z) = —Az for some A. From there,

Ay = e<I>(log o) _ 0'7)‘.

Lemma. Suppose
UR, = a,R,U forallw € Q

with a, € R;. Then o, = 1.

Proof. First of all, for those elements of Q@ = O(d) that are of some finite
order m, i.e. for any real orthogonal matrix w such that w™ = I, by the
homomorphism w — «a, we have 1 = oy = a,m = ]} = a, = 1, using
oy € Ry.

Now, any element w of €2, including those of infinite order, can be written as
a product of at most d simple reflections w; (this is the Cartan-Dieudonné
theorem). Simple reflections are of order 2 and therefore, by the previous
paragraph, a,,; = 1 for all of them. Thus, for arbitrary w € Q, o, = []; w; =
1. |

In the remainder of this chapter, we shall identify continuous linear operat-
ors 2(R%) — 2'(R%) (scalar operators) and 2¢(IR?%) — (2')¢(R?%) (vector
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operators) that are self-similar with respect to scaling and invariant to trans-
lations and rotations (the key distinction between scalar and vector cases be-
ing in the different definition of rotation for vector fields vs scalars; cf.
above). In each case, we also introduce modifications of these families of op-
erators, which map 2 continuously into a given L, space, while maintaining
homogeneity and rotation-invariance. This continuity property is needed in
order to use the framework of Chapter[I]to define homogeneous and rotation-
invariant random fields, but we shall see that it frequently comes at the cost
of translation-invariance. We derive some of the main properties of the fam-
ilies of operators that we introduce, most importantly in connection with
the interaction of the vector operators with physically-significant operators
such as curl and divergence. These properties, as we shall later see, have
interesting consequences for our random models.

§2.2 Rotation-invariant homogeneous operators: Scalar case

By the Schwartz kernel theorem, any continuous operator U : @(Rd) —
9'(R%) is associated with a unique distribution Ky € 2'(R* x IR?) by the
identity
Up= | Ky(z,)¢(z) dz. (2.5)
Rd

If U is translation-invariant, the above formula takes the form of a convolu-
tion:

Ug = , Ky(z — )¢(z) dz = ¢ % Ky (2.6)

R

(redefining Ky as a distribution in 9'(IR?)). Moreover, U is rotation-invariant
and homogeneous in the sense of (2.4) iff Ky is isotropic and homogeneous
of order —A — d in the sense that S, Ky = 05 Ky (cf. ([2.7) below).

The question of identifying homogeneous translation- and rotation-invariant
operators is therefore seen to be the same as that of identifying homogen-
eous rotation-invariant distributions (convolution kernels) in 2'(RR?). If, in
addition, the distributions thus obtained happen to belong to &' C 2’ we
shall have found all operators U : & — &' with the desired invariances.

§2.2.1 Homogeneous and rotation-invariant scalar distributions

The story of scalar homogeneous distributions on R? is relatively well-under-
stood, and we do not claim originality in this subsection, which is meant
primarily as a compendium of known results and some of the techniques used
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to obtain them; most of the material of this section is essentially covered in
Gel’fand and Shilov [GS64] and also in Hérmander [Hor90].
2.v  We say that a distribution f is homogeneous of order A € R iff
Sof =0 2 %f forallo >0, (2.7)
or, equivalently, iff
* _y_ga
($,S0f) = (Ss¢, f) =0 2(¢, f)
for all test functions ¢. If a A-homogeneous distribution is, in addition,
rotation-invariant, then on the punctured Euclidean domain RR* (ie. as a
distribution in 2'(R%)) it can be written as a multiple of the isotropic ho-
mogeneous function
2|
The question we shall consider in this subsection is if and how the above
distribution, initially defined on 2(IR%), extends to a distribution on 2(R%).
2.w We can immediately say that the required extension of f(z) = |z|* to 2(IR%),
if it exists for some A, is determined up to a homogeneous distribution loc-
alized at 0, i.e. up to a finite sum of homogeneous derivatives of the § dis-
tribution (which sum we shall call the local part of f). Furthermore, since
any such sum can at best be homogeneous of some integer order < —d, the
extension for A +d #0,—1,—2,... is (again, if it exists) unique.
For A\+d=0,-1,-2,..., we can write the local part of f as
Z axd™® = ( Z ax0i)d =: Q(0)6
|k|l=—A—d |k|l=—X—d
where k is a multi-index in € Z%o: |k| = k1 + ...+ kg, and O = Ok, ... Ok,-
Since § itself is rotation-invariant, the partial differential operator Q(89) must
be rotation-invariant as well; in particular it cannot include any odd partial
derivatives (i.e. all k;’s are even); more specifically, it can only be a multiple
of an integer iterate of the Laplacian. Consequently, the local part of f is
proportional to
A8 forA+d=-2m =0,-2,—4,—86,..., (2.8)
and is zero for other values of A.
2.x Let us now turn our attention to the non-local part of f. For real A > —d, the

32

regular function f(z) = |z|* is locally summable in R?, and hence defines
a distribution in 9'(IR%). In view of the preceding paragraph, this uniquely
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identifies f (up to normalization) for Re A > —d (we shall henceforth allow A
to be complex). Moreover, as a function of A, the product

$>\: $)\$ T
@lal) = [ lePe(e)d

is analytic, as can be seen by complex differentiation under the integral sign
with respect to A (which is permitted since ¢ is compactly supported). Re-
writing the integral in spherical coordinates 7 := |z|,60 := z/|z| we obtain

6.la = [ T g, ) dr (2.0)
0
with

Se(r) ::/S¢(r9)d9

(S as the domain of integration denotes the unit sphere in IRd). Sy is easily
seen to be compactly supported (as was ¢) and infinitely differentiable at
any r > 0. Also, at » = 0, by looking at finite Taylor expansions of ¢ we find
that Sy has derivatives of all finite orders and that its odd derivatives vanish
at 0 due to anti-symmetry (we shall calculate them explicitly later on).

We noted that (¢, |z|*) is analytic in X for Re A > —d. It can be analytically
continued to the entire complex plane with the exception of the discrete set
of points A = —d,—d — 2,—d — 4,—d — 6,.... Within strips of the form
—d—2m — 2 < ReA < —d — 2m, m € NN, this continuation is obtained by
the formula

(¢, z|*) :/ Se(r) — Z ;75;")(0)] A1,
0 n<|—Red—d| J - 10)

= /IR TOREEDY ,Zk¢<k>(0)} o] da

|k|< |~ Re A—d]

(using multi-index notation in the last expression), which coincides with the
previous definition of (@, |z|*) if ReA > —d (the analytic continuation is of
course unique).* We can thus define |z|* as the generalized function whose
value at any test function ¢ is given by the above analytic continuation. This
completely determines the non-local part of f for A\+d # 0, -2, —4,—6,....5

4. We have used the fact that odd derivatives of Sg vanish (i.e. odd terms in its Taylor
expansion are zero) to deduce that the integral is well-defined for A +d = —1,-3,-5,....
It can also be seen from the above expression that (¢,|z|*) in general has simple poles at
A+d=0,-2,—4,—-6,.... We shall later verify this fact in a different manner.

5. The reader may have noted that defines the Mellin transform of Sy at A +d; the
procedure described here then amounts to analytically continuing the Mellin transform to
the left half-plane (excepting even negative integers).
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The equality of the two integral expressions in ([2.10)) is a consequence of the
fact that each term in the Taylor expansion of S, about 0 is the spherical
integral of the corresponding homogeneous term of the expansion of ¢. More

explicitly,
s(”) Z fs

|kl=

T d9
) (0). (2.11)
Let us now compute these terms.

2.y The spherical integral of z* can be evaluated using a known trick described

in Folland [Fol01]: we wish to calculate [ z* df for any monomial z*¥ =

zh . ghe = (rg)k = rl*lg* (where, we recall, » = |z|,6 = z/|z|). Due to

anti-symmetry we have

/ zFdo =0 if any of the k;’s is odd.
S

Otherwise,

/mkdezr\kl/ekde
S

k| +d—1g—72 k
_,ﬂ\klfo r dr [ 6% df
fo rlkl+d—le—r? dp
\k|fo J5(r6) ke’ pd=1 qgdy
fo rlkl+d—le—r2 dp
K f]Rd:v e~ 2% dg
[y rlkl+d-1e=r=dp
:t
‘k|1_[1<z<dfu{$ e i da;
fo plkl+d—le—r2 qp

ki+1
\k|nl<z<d1—‘( ;_)

if all k;’s are even,

()
where we have used the formula
/0 r~le=dr = ir(s) (2.12)
for the gamma function. Using the properties of the gamma function, we can
then write
Fly )
Js*dé AR
s® |%| 3 K
= T ()T (E 1) (2)(2+1) (21 B 1) all k;’s even,
0 otherwise.
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Plugging this into (2.11)) and comparing with the formula for the iterated
Laplacian, with n even,

L}
2360 = X (i * 4)e0,
Pyl 2y g
all k;’s even
we finally get:

27r% =
i'gw(o): T (Zrz-n A7 #(0) neven, (2.13)
n! 0 n odd.

The last result is a version of Pizetti’s formula.

It remains to identify the non-local part of f for A + d = 0,—-2,—4,—6, ...
(the local part having been identified in ) In other words, we want to
find an isotropic homogeneous extension of |z|~¢72™, m =0,1,2,3,... from
@(Iﬁd) to 2'(IR?%). We shall now show that such a homogeneous extension
does not exist. Indeed, let f(z) be an extension of |z|~¢~2™ to 2'(R%). The
distribution fy(z) := f(z)|z|*™ then also belongs to 2'(R%). Furthermore,
fo is isotropic like f , and if it is true that f is homogeneous of order —d—2m,
then fo must be homogeneous of order —d. Therefore, fo corresponds to an
extension to R? of |z|~¢. We have already seen that such an extension is
determined uniquely up to a term localized at 0. We may therefore write
fo as the sum of the particular extension given by the first two terms of the
following expression plus some finite sum of derivatives of § (corresponding
to the third term):

. #(z) - 9(0) #lz) )
<¢:f0> /x§1 |$|d l‘+/|$|>l |:I:|d +|I;Nak¢

for some finite N and ay’s (the reason the above expression is a valid extension

is that it agrees with |z| ¢ for test functions in 9(]I.{d)—which vanish at
0—and is continuous for all ¢ € 2(IR?)).

Now, if fo is indeed homogeneous of order —d, we must have

(#(5), fo) = (¢, fo)

for any o > 0, and a fortior: for o > 1, which translates to the identity

M (k)
/|:c<; || dm+/||>1 || o + 2 |k\¢

|k|<N

_ #(z) —4(0) #(z) ®) (0
/mgl i +/|x|>1 o ot 2w

|k|<N
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or, what is the same,

> i )é®0) =60) [ el tde = g(0)loga,  (214)

L<le|<L

for all ¢ and all o > 1. But it is clear that, for any given N and ay’s (i.e.
for any extension), we can always choose ¢ € @(le) and o > 1 such that
the above identity is violated. Therefore |z|~¢ and its relatives of the form
|z|~¢=2™ do not possess homogeneous extensions to 2'(IR%).

The family p},\,c € C. We therefore see that the local and non-local solu-
tions of the problem are in fact mutually exclusive, in the sense that for
A+d#0,-2,—4,—6,..., -homogeneous radial distributions are non-local
and are fully characterized by (2.10]), while for A+d = 0, -2, —4, —6, ... they
are localized at 0 and have the form specified in . Thus, for any A € C,
the solution is unique up to normalization. In fact, by a suitable choice of
normalization, we can include both local and non-local solutions in the same
parametric family.

To this end, first note that, by analytic continuation of (2.12)) we have

(el Ja) = (&7, 471 = Ar (25

valid for all A different from —d, —d—2, —d — 4, ... where the right-hand side
has simple poles. Accordingly, we define a new distribution p), ¢ € C, by
normalizing |z|*:

Ed

po(z) = C@ (2.15)

where |z|* is the distribution defined in (2.10). This normalization, as we
now show, will lead to the cancellation of the singularities of |z|* at negative
even integers.

For Re X > —d, and, a fortiori, for ReA > 2 —d, p), ¢ € C, is an ordinary
function with at most an integrable singularity at 0. By differentiating it we
obtain the simple identity

Apy =222 (216)

which, in view of the uniqueness of the analytic continuation of both sides,
extends, a priori, to all A # —d, —d—2, —d —4, .... Furthermore, taking the
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limit as A — —d we obtain:

—d\ __ <¢vApgid> _ <A ¢’p57d>
< ’pc ) - 2 _ d - 2 _ d
C

= z|? ¢ T)dz
S 282 - d)I(1) /]Rd| Fagle)d

_ C/Oordgs () + (d—1)Ls,(r)dr
_21—%(2_(1) o dr? ¢ dr”?
c * d
= d—2)—S4(r)dr Dby integration by parts;
SE g ), g Selr)dr by integration by p
c
= 217%S¢(0)
_ 15l
= -2 4(0) by (2.11),

d
21-%

where |Sy| = 72/ T'(£) is the surface area of the unit sphere in d dimensions.

We have thus shown that the continuation of p} at A\ = —d is the distribution
2 4
7%= c( 7r)dz J.
2I(%)

From there, by iterating (2.16)), for A = —d—2m, m =0, —1,-2,... we find:

—d—2m (277')% m (277')% m
Pe =C a (_A) 5 = Cﬁ(_A) 5
20(3) [To<kam(d + 2k) 2mHIN(m 4+ §)
(2.17)
In fact, in addition to the above, for other values of A we could have found

the regularization formula (2.10)) and the coefficients given in (2.13)) directly
by iterating and analytically continuing (2.16)).

The expression of p, ¢ 2™ given in (2.17) coincides with our previous com-
plete characterization of radial homogeneous distributions of order A = —d,

—d—2,—d—4,...given in . Therefore, in addition to the non-local iso-
tropic homogeneous distributions, the family p2, A, c € C, also includes the
local ones. We conclude that up to the choice of ¢ € C, p) is the only radial
homogeneous distribution of order A for any given A € C. Furthermore, it is
obvious that p) is tempered. We summarize these observations as a

Theorem. The family of isotropic homogeneous distributions € @’(le) of
order A, A € C, consists precisely of the distributions

pi‘, ceC.

Moreover, all such distributions are tempered, i.e., they all belong to &’ (]Rd).
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Corollary. In order that a continuous linear operator 2(R%) — 2'(IR%) be
simultaneously translation- and rotation-invariant and homogeneous of order
A € C in the sense of , it is necessary and sufficient that it can be
expressed as

Wid o drp = (2n) / 00 () Ble) de
Rd

for some ¢ € C, where A= —d— A\

Remark. For A = —d — 2m, d € Ny, the image of U is finite-dimensional
(since the Fourier symbol of U) is then concentrated at ¢ = 0).

The Fourier-domain characterization of U} in the above corollary (i.e. the
integral) additionally makes use of

The Fourier transform of p2. We define the (unitary) Fourier transform ¢ = é
of a test function ¢ € &(IR%) by the integral

a
2

" () = (2m) 3 /}Rd e @8 ¢(z) dz = (21) "2 (¢, e 8.

The Fourier transform is inverted by the integral

¢"(2) = (2m) "% /R L e®0g(6) de = (2m) 5 (4, e¥)

which also shows that

¥ =5
(4 is the complex conjugate of ¢). The same relations hold for ¢ € 2(R%)
with the additional property that ¢ is then complex analytic (since the sup-
port of ¢ is compact, to find the complex derivative of ¢ we can differentiate

under the first integral with respect to complex £). We denote the space of
é with ¢ € 2 by J.

The Fourier transform is a continuous operator (in fact a homeomorphism) on
S (IR%). It also becomes a homeomorphism 2(R%) — 2(IR%) by identifying
the open sets of 9 with the Fourier image of open sets in 2. In either case
(& or 2), one can show that for test functions ¢,v we have the identity
($,¢> = (45,{5). Using these facts, we define the Fourier transform fofa
distribution f € &'(IR%) or 2'(R%) by the identity

(8, f) = (&, f)

(in the case of f € 9', ¢ runs through %).



2.af

§2.2. Rotation-invariant homogeneous operators: Scalar case

It follows from the basic properties of the Fourier transform that the trans-
form of an isotropic and A-homogeneous distribution is also isotropic, and
homogeneous of order —d— . Since we now have a complete characterization
of such distributions in #’(IR%), we determine that the Fourier transform of
o2 must be of the form p,cid*)‘ for some ¢ € C proportional to ¢. It thus
remains only to find the proportionality factor. We can compute it using the
technique suggested in Gel’fand and Shilov [GS64] Ch. II, §3.3]. By plugging
#(z) = e~1=*/2 with Fourier transform @(¢) = $(¢) in the identity

~

(@,02) = (¢, (p2)") = (&, p5"7) (2.18)

we find

2

L2 T(y) e T dr

Cc = c==¢
2ET(H2)  [*e~HpAldr

where in the last equality we have used (2.12]). Thus,

(p)" = pc

ie.c=c.

We therefore see that for ReA < —d where the distribution p? does not
correspond to an ordinary function, its Fourier transform p,%~* does. This

suggests the use of (2.18) as an alternative to (2.10) for evaluating (¢, p2) for
Re A < —d.

As the map A — —d — X\ will appear often in the sequel, we introduce a
special notation for it (which we already used in Corollary [2.ad):

Ni=—d— X\

Note that R
A=A and A—a=A+a.

With this notation we have N
(o)™ = 2.

Derivatives of p). We already noted the Laplacian formula (2.16]), reproduced
below:

AP} (z) = A2 72 ().

Taking Fourier transforms we find another formula:

al? pX(2) = —A)+(2). (2.20)
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We can also symbolically write

AT p () = $2(2)
and
~ 1
2| =202 (2) = —ip?(m) (2.20)

but, to avoid inconsistencies, the symbols A~! and |z|~2 in the last two
formulae must be interpreted simply as shorthand for the maps p} — p2T2/X
and p) +— —p* 2 /3: respectively. In particular, they often fail to commute
with operations such as taking derivatives and multiplication by polynomials
(as seen below).

Similarly, by differentiating p? where (in ) it is a regular function and analyt-
ically continuing the resulting formula we obtain the first- and second-order
differential identities

(X +2)8:p2 (2) = —Azip) > ()

and

~

A _
e R el

A A2 A 2\ (2.21)
_maszc - »)\\ 12 (6szc )
J

= — [Xai]‘ AL +)\T;T2 ]p?

8ijp7 =

(6;5 is the Kronecker delta).

The passage to the last line of the last display equation takes place in ac-
cordance with the previous discussion about A™! and |z|=2 (in particular,
although this is not clear from the notation, |z|~2 must be applied before
.’I)il’]‘).

Products and convolutions. We say that the product f; f» of two generalized
functions fi, fo equals some generalized function f iff (f1¢, f2) = (¢, f) for
all test functions ¢ taken from the space over which f is defined. Similarly,
we may define the convolution f; * f> to be equal to f iff (fi * @, f2) =
(¢, f) for all test functions ¢. Note that with these definitions, the product
and/or convolution of two arbitrary generalized functions may not always be
defined, and even when they are, a priori, they need not be associative or
commutative. (It is instructive, in considering such questions, to consider
the maps ¢ — f1¢ and ¢ — f1 * ¢ as operators on test functions. The most
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convenient situation is of course when these operators map back into the
same test function space.)

In the case of the distributions we have just introduced, considered as temper-
ed distributions in y’(IIid) (and, a fortiort, as distributions in 9’(1&‘1)), P2
and p) can be multiplied and the result is always a distribution in &’ (]f{d)
that belongs to the same family (this is because ¢ € & (Iﬁd) = plp €
4 (ll.ld)) Specifically,

AN A . "no__ F( )\J;/\I)
PePo = P with ¢’ =cc PSP VY
I(=5)M(=%)

(2.22)

0[>)

Similarly, from the convolution-multiplication exchange formula we see that

as distributions on | (I[.{d), pg and pg can be convolved according to

A+ 1"

o2 % pN = pl with ' =¢cc (2.23)

(in this case, we rely on the implication ¢ € f(Iﬁd) = pr*xgE f(I!Rd))

Moreover, convolution and multiplication are associative and commutative
in the above cases.

If, on the other hand, we take ¢ from the larger test function space & (IRd),
the product p)¢ and convolution p} * ¢ will be distributions in &'(IR%)
that, generally speaking, are no longer confined to SW(IR”’). For this reason,
the above formulae for products and convolutions may not always hold, and
where they do hold, they may fail to be associative. Yet, at least for Re A > 0
and Re) > —Re ), and are still valid (operating from left to
right). We have already seen a special case of the former result in ([2.19)).

In particular, for A’ = —X with Re A > 0 we have

¢
P} ot = B c1c2 =:cc'Hy (a constant) (2.24)

r(-Hr-32)  TENNER)

and also,

p) % p* = cc'Hy 6. (2.25)

The last product and convolution are zero iff, at the same time, A € R and
[A| —d=0,2,4,... (cf. Figure[2.1).

41



2. Some Similarity-Preserving Operators

§2.2.2

2.ah

42

——————————

Figure 2.1: Plot of Hy = along the real A line for d = 2 (solid)

1
T(5)0(5%)
and 3 (dashed). For d = 1, H) is equal to the sinc function sinc(}) := %
(cf. Euler’s reflection formula).

L,-continuous homogeneous and rotation-invariant operators

In the previous subsection we considered translation- and rotation-invariant
homogeneous continuous operators &(R%) — &'(R?%), & = 9,5. Looking
back at the Fourier-domain characterization of these operators given in Corol-

lary we see that the restriction to g(]f{d) of these operators is continuous
E(R?) — &(R*) and, a fortiori, E(R?) — L,(IR?) for all p, 1 < p < co.

Moreover, from ([2.25)), on é;(]l.{d) we have the following tnversion formula:

1
U b= Hrd= o 6 (2.26)

CRNE=Y
By Paragraph the latter formula extendstoall ¢ € & (IRd), provided that
Re A > 0 (we are implicitly extending the domain of the leftmost operator).
Note, however, that for A—d = 0, 2,4, ..., where H, = 0, we cannot use ([2.26)

to invert Ui\ /e from the left. But this is not a limitation in our theory since

in fact, in this case U} /. does not have any left inverse on either of &(R?)

or g(]f{d); this is because the image of U} /e is finite-dimensional for such
A while its domain isn’t; see Remark Symmetrically, we shall exclude

—A—d=0,2,4,... from consideration since there again H, = 0.

The translation-invariant extension of U;* from &| (]f{d) to &(IR?) character-
ized by the convolution kernel p2~¢ (which, assuming the additional invari-
ances and continuity, is unique as we showed in Corollary , in general
fails to map into Lp(]Rd). Since the latter property is necessary for our
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characterization of generalized random fields in the next chapter, in this sub-
section we introduce a modified version of the operator U;* that achieves
&(R?) — L,(IR?) continuity at the cost of translation-invariance (which we
can afford to relax, since we are comfortable with non-stationary solutions).

Definition. The operator Reg(’},k : &(R?Y) = &' (RY), & = 9,5, is defined as

Bipd
e [ oo ay,

Regén RO Z

|k|<n
where k is a multi-index in INg with |k| = 33, ks, (—y)* = [[,(~v:)*:, and
k! =[], k;!; we further understand the sum to be zero when empty, i.e. for
n < 0.
The following lemmata are not immediately needed but will prove useful later

on.

Lemma. The adjoint &(R%) — &'(R?) of Regf}’n is the operator

£ OxUc4(0)

Regyn + ¢ = D vF =,

|k[<n
which maps ¢ precisely to the nth degree Taylor expansion of U2¢ at 0.

Proof. One needs to verify that (gb,Regz‘; P) = <¢,Regi‘,’; @) for ¢, ¢ € &;
this can be done simply by replacing the definitions of the two operators in
the identity. |

Lemma. Regi‘,n 0 = 0; Reg?,n_l 9.

Proof. For n < 0 both sides are null, thus equal. For n > 0, we re-express
Regi‘,n in the Fourier domain by writing moments in terms of Fourier deriv-
atives and then taking a Fourier transform with respect to x:

(i8)*p2(¢)

(Reg2n 8)"(6) = > == (-1)"6:4(0)
|k[<n '
k
=20 Y Lad0=20T,0 (22
|k[<n

where T$n(§) denotes the nth-degree Taylor series expansion of $ at £ =0.
Replace ¢ by 8;¢, hence $ by i&;¢, to have

(Regln 8:9)"(6) = 02 (€)T, 3,(6)-
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Next, note that Tgian = &Tan_l. Thus,

(Regln 8:9)"(€) = i&:p2 (6)T5,, 1 (&) = (8 Regsn_1 6)"(€)

by (2.27). B

The next lemma concerns homogeneity and rotation-invariance.

Lemma. Regi‘,n is rotation-invariant and homogeneous of order A in the sense
of (2.4).

Proof. Homogeneity is easily established by putting the following facts to-
gether: the distribution p§ is homogeneous of order ’)\\; ka§ is therefore
homogeneous of order Py |k| = —d — X\ — |k|; the map ¢ — fRd(—y)de(y) dy
is homogeneous of order —d — |k| in the sense of (2.4)).

To prove rotation invariance is to show that Reg(’_},n Ru,s¢ = Rus Reg;\’n 1)

for all orthogonal matrices w € Q = O(d) and all ¢ € &(IR?). We use the
Fourier-domain expression of Regi‘,n ¢ given in (2.27):

(Regl, )(€) = P2(E) T, (6).

By the uniqueness of the Taylor series expansion, the Taylor expansion of any
rotation of ¢ is equal to the corresponding rotation of its Taylor expansion;
that is, we have

Combining the last identity with the rotation-invariance of p? and the rota-
tion property of the Fourier transform (namely, that (R,$)" = R,¢) yields
the lemma. |

Corollary. The corrected operator
UZ,){ = UC’A — Reg;f{

is (—XA)-homogeneous and scalar-rotation-invariant.

Remark. Note that, in general, Uc_,;\z is not translation-invariant except when
Reg;* is nullified either by choosing n < 0 or by restricting the domain of
U;,’; to (a subspace of) the kernel of Reg,*. However, a finite difference of
sufficiently high order of Regc_ﬁ (and hence that of UC_;\I) becomes translation-
invariant:
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2.a0 Lemma. Let Dy, h € R, be the first-order symmetric finite difference oper-
ator

f 5 £+ 3h) = £( - 3h)
and let
Dy :=Dp,Dy\{n,}
be the recursively-defined finite difference operator of order n+1 correspond-

ing to the finite set of vectors H = {hq, ..., h, € R*} (for H = & we define
Dy to be the identity operator). Then,

Reg;f{ Dy =Dpgy Regc_’f; =0.

Consequently, UC_,%DH =D HUc_,f; = DyUZ?, which is translation-invariant.

Proof. For H = & we have n = —1 and Reg;ﬁ = 0 is trivially translation-
invariant. For n > 0, it suffices to note that the moments of Dy ¢ vanish up
to order n for any test function ¢. The latter property is easily proved by
induction on 7. |

Similar to U, ?, the corrected operator U;,’; is also a left inverse of Ui\ /e To

wit, g(]f{d) lies in the kernel of Reg;,)‘“ which, together with (2.26]), proves
the first part of the following

2.ap Lemma. U;;}Ui\/c ¢=Hypforall g € é;(]I.{d). The same relation holds more

generally for ¢ € &(R%) and the corresponding extension of the leftmost
operators, provided that n < Re .

The second half of the lemma is proved by observing that, according to
the Fourier-domain characterization of Ui‘ /e given n < Re A the moments of
Ui‘ /c¢ vanish up to degree n at least; hence Regc_ﬁ Ui‘ o = 0 for n < Re ), and

we are back to ([2.26).

Finally, we have the following key result about L, continuity, which will
be used in the next chapter to characterize homogeneous rotation-invariant
random fields.

2.aq Theorem. The operator
U, = U;> — Reg;

with n = [Re X + %J —d and Re X + % ¢ N is continuous 2(R?) — L,(IR?),
1<p<oo.

Proof. For simplicity, we shall assume A € IR. In the general case we may
replace A by Re A and carry on with the same proofs.
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(a) The image of D(RR?) lies in L,(R%).  We have,

A—d T
UA0le) = o (o) - 0 2T [ e, (2o

|k|<n

which is infinitely smooth (and therefore locally bounded) in RY = R\ {0}
(in all of R%ifn < 0), and possibly singular at the origin only if n > 0, but
even then dominated by a multiple of |z|*~¢~" in a punctured neighbourhood
of 0. Note that

A—d-n=2+2-A+4]-2={4+9}-
d d

= —-Z2<A-d-n<1l-2

p p

where {) + %} € (0,1) denotes the fractional part of A + %. This shows
that for n = |\ + %J — d, the derivatives of p)~¢ appearing in the sum—and
consequently U;f;qb itself—are ordinary functions.

Therefore, U, ;¢ € Ly 1oc. We next prove that U, ;¢ decays faster than |w|7%
as |z| — oo. Together, these facts will establish that U_ )¢ € L.

To prove a minimal rate of decay for U;f;gb at infinity, take the function
A(z) == |z|*|U_,¢(z)|. We shall show that it vanishes as |z| — oo for some
a > g. We have,

A—d T
A=) = /}R o) |2 v - 3 () T gl o (2.29)

|k|<n

We consider two cases, depending on the sign of n. For n < 0, where the
sum over n is null, we have n = |A —d + %J < 0 and therefore A — d < —g.
Thus, in this case, the integral inside A(z) corresponds to the convolution of
a rapidly decaying function with an ordinary function with faster than |w|7%
decay. A(z) as a whole therefore vanishes at co for some a > %.

In the case of n > 0, assume z # 0 and let h := |z| 71, § := hz = z/|z|]. Also
take K > 0 sufficiently large such that |y| > K = ¢(y) =0 (¢ € 2(R?) is
compactly supported). Then,

A(z) = A(h18)

= ¢(y) {P?d(G - hy) — Z (—hy)kakp‘):\d(e)} dy hfafAthf

k!
ly|<K |k|<mn
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using the homogeneity of p2~¢ and its derivatives.

The sum inside the brackets above corresponds to the degree n Taylor series
expansion of p} ¢ about §. For h < K ! (equiv. for |z| > 2K the difference
inside the brackets may therefore be bounded by a term like

S Re|(-hy)f|=hm ST Rl
|k|=n+1 |k|=n+1
: — Bkp2 % (6—2)
with Ry = supj,|<1 |="5—| < 00. Consequently, A(z) may be bounded
as

0 S A(m) S h—a—)\+d+n+1/

‘gb(y)yk‘ dy — A¢h—a—)\+d+n+1
ly| <K |k|=

n+1
(2-30)
with the constant Ay defined as the integral in the middle expression.

This proves that as ™! = |z| — o0,
|z|*|Ugné(z)| — 0
for any

a<Atd+n+l=-2A+A+qf+1-242 =149} 414

d
P
and, in particular, for some o > g (recall that 0 < {) + %} < 1 by assump-

tion). This proves that the tail of U7, ¢(z) decays faster than |3:|_% also for
n > 0.

Thus, in all cases, Ug’;\lgb decays faster than |m|_% at oo and is also locally
p-integrable, as we already showed. We therefore have Ugf;qb € Lp(IRd) for
all ¢ € 2(RY).

(b) Uz, is continuous 2(R%) — L,(IR?). Take any sequence ¢ — ¢ in
9.

First, observe that for any z # 0,
- Bp2 % (2)
us(y) =2 Mo —y) = Y (—u)
|k|<n
is a distribution in 2'(IR?) (in fact in %'(IR%)) and we may write
Uopdi(z) = (¢1, Ua).

This proves that U2 ¢i(z) — Uz, éi(z) point-wise in R*\{0}.
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Secondly, since ¢; converges in @(Rd), there exists K > 0 such that all
¢:1(y)s vanish outside |y| < K. From the discussion leading to it
then follows that from some ! onwards, Uc_,;\ngl(x) is bounded by a term like
A1|:z:|_%_51 for some €; € (0,1) in the region |z| > 2K (A; is a constant
that eventually dominates the Ag s of (2.30)). One similarly shows that for
|z| < 2K, Uz} ¢i(z) is eventually (in I) bounded by some A2|:r|_%+62 with
€2 € (0,1). Thus, all in all, the sequence {U;};q&l}l is eventually bounded by
the function

_d_ _d
Alz| "7 gk (z) + Aol P T Lig <ok (),

which is p-integrable. From there, by Lebesgue’s dominated convergence the-

orem, we have limy o |[U;ndtllp = [ im0 Ugpdilly = ||Uz @, proving

L, convergence. i

Remark. For Re ) < d — % where in the above theorem we have n < 0, the
Lp-continuous operator introduced above corresponds to a convolution and
is translation-invariant, but clearly not otherwise. In the former case, these
translation-invariant L,-bounded operators are proportional to Riesz poten-
tials and derivatives discussed (for instance) in Stein [Ste70] and Mikhlin and
Prossdorf [MP86].

Remark. In the case of p = 2, one-dimensional versions of the above operators
were introduced by Blu and Unser [BUQ7| without specific mention of their
continuity. We generalized their definition to multiple dimensions in Tafti
€ al. [TVUQY, [TULO0L]. A further extension for p # 2, comparable to the
one described here, appears in Sun and Unser [SU]. In all of the cited works,
the operator is defined in terms of a singular Fourier domain integral, whose
correct interpretation for p # 2 is not always straightforward. In contrast,
here we have given the primary definition of the operator and proved its
continuity in the spatial domain (we have also generalized the theory to
complex A since the approach permitted it).

Remark. Using (2.28]) and Lemma we find the adjoint of U_) on 2 (R%)
to be given by the expression

Uz = U ge) - 3 200 o) 7, o)

|k[<n
Here TU;x o denotes the polynomial corresponding to the nth degree Taylor
expansion of U, *¢ at z = 0. We therefore see that Ug,’;*qb and its derivatives
up to order n vanish at the origin.

By the previous theorem, the above adjoint extends to a continuous operator
Ly (R%) — 2'(IR?%) with n as above and p' = p/(p — 1).
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Rotation-invariant homogeneous operators: Vector case

We shall now develop the vector field parallel of the previous section. In
this case our spaces of test functions are 2¢(IR?) and %¢(IR?%) with duals
(2%)(RY) = (2/)4(R?) and (%) (R?) = (#)4(R?). 2%(RY), F4(R?),
and other varieties of Iﬁd spaces are defined in similar fashion to , as
the dth Cartesian power of the correponding spaces introduced there. As
in the previous section, we shall use the symbol & to refer either to 2 or
& . For the purpose of matrix multiplication, a vector (generalized) function
f = (f1,-.-, fa) is understood to be a column vector (the same goes for
variables such as z = (z1,...,z4), test functions ¢ = (¢1,...,d4), and all
other vectors).

In what concerns us, the distinction between scalar and vector theories is
primarily due to the different realization of rotations in the vector setting
(see of 2.n)), plus the fact that the integration kernels of and
become matrices in (&')¥*¢(R% x R?) and (&')%*¢(R?) respectively. We
recall the law of rotation of a vector field by an orthogonal matrix w € O(d)
from [2.n}

Rw,v fe wf(wT')'

One easily verifies that a translation-invariant vector field operator is rotation-
invariant in the vector sense iff its convolution kernel Ky fulfils the condition

Ky(w') = wKy()w” (2.31)

for any w € O(d) (or, equivalently, if the Fourier transform of Ky satisfies
a similar condition). Hence, in the vector setting our task is to identify
homogeneous distributions in (&')%*¢(R%) that fulfil (2.31)).

Homogeneous and rotation-invariant vector distributions

Notation. In this section, we shall introduce a number of different paramet-
rizations of a family of matrix-valued distributions in (&')#*¢(IR%) that are
homogeneous and rotation-invariant as per . Members of this family we
shall represent as P, with A denoting the homogeneity order and e serving

as a place-holder for any one of the following three parametrizations:
§:(slv32)’ Iz(rlvTZ)y or E:(kl,kQ)

(the underline is there to emphasize that s, r, k denote a pair of scalar para-
meters and not a single parameter).
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Thus, in writing P", P}, or Pk to denote an element of the family, the re-
spective symbols s, r, and k are an integral part of the notation that distin-
guish the different parametrizations. Accordingly, when assigning numerical
values to the parameters we shall write, e.g., Pz‘ or P() r2) and indicate that
(r1,72) = (1, 1), rather than refer to an ambiguous P(1,1) We shall, however,
use variations of the notation involving the same letter to denote instances
of the same parametrization but with a different value for the parameters;

thus, for instance, we may write P}, Py, or P,kZ‘, all to refer to the third (k)
parametrization but with potentially different values for the parameters k,
k', and k.

The unfortunate and superficial complexity that is associated with the use of
several parametrizations instead of a single one is partly balanced by the fact
that a variety of important properties of the family are simple to formulate
in one parametrization but cumbersome in another.

Definitions and conversion formulae. We define P}, P}, P} below as matrices

in (6')%*% by indicating the form of their 75th entry, 1 < 1,7 < d. We then
provide the formulae that relate each parametrization to the others.

For s = (s1,53) € C* and A € C,
[P)ij := Bijlz* 0}, + ziz; AP?
= — )\6”,05"' + Az, .’L’Jp
=~ )‘611i02\+2 A (awpi\:—Q)
L'C‘.'Bj A

XA +2)8; A7 —AA+2) |;|2 o2, (2.32)

(the equivalence of the different formulae is due to . P;‘ fulfils the re-
quirements of A-homogeneity and rotation-invariance as per (that the
$o term fulfils is evident; for the s; term it becomes clear in the Fourier
domain). We also define:

[P ]] = az]A p"‘l (6 _aij Ail) pi\z

_ A2
= 6ijpr2 + mawprl —r (2'33)

Ao TiZj A T o
Rl = Gt (5= )
1 N
= 51‘]’)022 - mfﬂjpkl_zk2~ (2.34)

Using the relations given in Paragraph [2.af], it is seen that we have the equality
P" P" P)‘ when the parameters s, r, k, and X are related by the following
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i\ (A +2) O+D)A+2)\ [s1) 1 [-A-1 1-d\ [k
o) 0 A+2 ss) 2\ =1 X+1/\ky)’
B\ [(O+D)A+2) =23 +2)) (s1) 1 [-X-1 1-d)\(m

ky| — A+2 0 s3] A\ =1 A41)\r)°

Therefore, P} and P, represent alternative parametrizations of the same
family, and for a given r or k, the respective distributions enjoy the same
invariances as previously noted for Pg‘.

formulae:

For completeness, we also state the following converse result concerning in-
variant distributions in the vector setting (this result is the vector counterpart

of Theorem [2.ab).

Theorem. Distributions in (&')%*¢(IR%) that fulfil (2.31)) and are homogen-
eous of order A are of the form P;‘ for some s = (s1,52) € C2.

Proof. Let us denote a candidate distribution by F.
First, observe that ([2.31) implies

F(=)=(DF()(=1) = F(). (2.35)

Next, fix z # 0 where F' is regular and let ar:iL, 1<21<d-1, bed—1 pairwise
orthogonal vectors in R* all perpendicular to z and with |z;-| = |z|. We
define the rotation matrices

zzt  _zl(z)T .
w,=1-2— -2t~ 1< <d-1.
|z[? |z[?
Each w; is a simple rotation by 7 in the a:/\aciL plane. In particular, w;z = —z.

We also define, for ¢ # 7, the 7 rotation matrix

st @) aEh) o)

wi; =1 — —
K |22 |z? |22 |22

Wij maps
L

[

T T T

and leaves « fixed (in this proof only, w;; denotes a whole matrix and not the
27th element of w; similarly, only for the purpose of this proof, xf- denotes a
complete vector and not the ith element of some unknown vector z).

Note that the matrices w;, 1 < ¢ < d — 1, commute pairwise; also, by (?2.35)

and [233),

F(z)w; = F(—2)w; = F(w;z)w; = w; F(z),
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which shows that the w;s commute with F(z) as well. In other words,

w1, -..,wq 1 and F(z) together form a system of commuting matrices. Since,
for d > 2, the vectors z,z7,...,z4_, are precisely the common eigenvectors
of wy,...,w4 1, they must be eigenvectors of F'(z) as well, in particular z is

an eigenvector of F/(z). Denote its corresponding eigenvalue by p; = ui(z).
By taking the transpose of and applying the same argument, we can
show that z is also an eigenvector of F(z)T. Its corresponding eigenvalue,
temporarily denoted by u}j = uj(z), must be the same as u1(z) since

wiztz = 2" F(z)z = pyz'z.

We similarly denote the eigenvalue corresponding to :EZL by 2 i(z).

Alternatively, to find the eigenvectors of F'(z) we might note that F(z) com-
mutes with all w;;s, © # j:

F(z)w;j = F(wijz)wi; = wij F(z),

and since z is an eigenvector of all w;js with eigenvalue 1 (it is their only
common eigenvector), F(z)z must be a common eigenvector of all w;;s, thus
F(z)z = p1(z)z for some scalar eigenvalue p(z). Then, to show that the
z}s are also eigenvectors of F(z), we observe that

i

F(z)z} = F(—z)zi = F(w;z)z}

2

wiI*"(a:)w;l:viL = wiF(:c)(—a:il) = —wiF(w)wiL;

whereby,
(14 w;)F(z)z; = 0.

This shows that F(z)z; lies in the kernel of I + w;. But the kernel of I+ w;
corresponds exactly to the span of {z, :rf} We can therefore write

F(z)z; = 0T + po 77
for some o, po ;. But then

mTF(x)mf‘ = ai|:1:|2;

we also have

' F(z)z] = paz’z) = 0.

The last two equations show that «; = 0, that is, we have F(x):r:f- =
o,i(z)zi . F(z) therefore has z,z1, ...,z ; as d eigenvectors with respect-
ive eigenvalues p1(z), ta,1(2), ..., to,a—1(2).
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Next, we show that all us ;s are equal to some uy = pa(z): by (2.31),

/.LQ,jxj_ = F(x)xj‘ = F(wijac)acj‘ = w;; F(z)w,
1

_ _ el — P
= wijF(m)mi = H2,iWii T = H2,:T5,

proving that all us ;(z)s are equal as claimed. Putting everything together,
we find that F(z) has the orthogonal eigenvectors z,zi,...,z5 ; with ei-
genvalue puq(z) for z and eigenvalue ps(z) for the remaining vectors. Its

eigen-decomposition is therefore of the form
F(z) = zz' i (z) + (J2°I - zz7) pa(z)

(for d = 2 we can make a similar demonstration of the above decomposition
by working with the reflection matrix with axis z instead of the w;;s).

Finally, note that the scalar distribution |z|*u;(z) = z"F(z)z is by assump-
tion homogeneous of order A+2 and by rotation-invariant in the scalar
sense. This implies that u;(z) is rotation-invariant and homogeneous of or-
der A —2, which in turn implies the same about p(z) in view of F(z)’s being
A-homogeneous and satisfying (2.31). Using Theorem [2.abland we thus
find that wi(z) = |2|7%p;, (2) and uo(z) = |z|~2pp (z) for some arbitrary,

yielding the form of P for the solution, which we can rewrite as P;‘ using

thus completing the proof. |

2.ax Remark. A version of the above theorem for dimensions d = 2,3 and using
the Pé‘ parameterization can be found in Arigovindan [Ari05].

2.ay The Fourier transform of P;‘. As in the scalar case, using the properties of
the Fourier transform it is easy to verify that the Fourier transform of P;‘ is
A-homogeneous and satisfies the same rotation formula as P;‘, ie. (2.31). We
therefore expect the Fourier transform of P, to be of the form P,.Z‘, where @

depends on e = s, 7, k and possibly on ) as well. This is also evident directly

from the definition of Pg‘ given in (2.32)). Specifically, using (2.32) and the
formulae derived previously we obtain the

2.az Lemma. The parametric family {P{;1 52)} is closed under the Fourier trans-
form with

where
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This in turn shows that for the alternative parametrizations P(’\k1 k2) and

P}, 7,y We similarly have P% = (P})" and Pg = (P})", with, respectively,

;‘\1 _ 1 -A—-1 1—-d 71
- B\ 1/(-2-1 1-4d)\ [k
k=~ |== . 2.
= <k2> ) < ~1 ,\+1> <k2> (2.37)

Products and convolutions. Using previous results about the derivatives of p}
in combination with we find the identities

1=3)
Il

and

1 ] F(_m’
PEAPE’ :PEAI;H\ with E":(klllvkg) :ﬁ(klkikaké)
L(=3)r'(=%)

~—

and
X, DN _ pAEA T (i STy — L(—*5%) oo
B x Py = with 1" = (r'y,r"3) = ————=2—S—(F1r'1,72r'3),
T T r' A Y
: r(-Hr-%)

valid on é;dXd(]l.{d) (convolution and multiplication of distributions are con-
ducted per the matrix product order, namely, [A*B];; = >~ [A]ix *[B]x; and
similarly for the product). The second result can be seen as a consequence
of the first and the convolution-multiplication exchange formula.

As in these results extend to £4*¢(IR?) at least for ReA > 0 and Re ' >
—Re A (with the suitable order of application); notably, we have

A - _
P(kfl,k;UP(kl,kz) = Ml

and

—~

P, ~, *P2*. =H,Ié (2.38)

(T1 T ) (r1,72)
with I denoting the d x d identity matrix and Hy = 1/I'(£2)['(%2) denoting
the constant defined in (2.24)).

Corollary of Theorem[2.aw} Continuous linear operators £4(IR%) — (&")4(R%)
that are simultaneously translation- and vector-rotation-invariant, and ho-
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mogeneous of order —\ € C in the sense of (2.4)), are of the form®
R N R R AR GRS
= : Rd =

where e stands for any of the three different parametrizations by s, r, or k
as for the corresponding distributions.

2.bc  For later reference, we give a different representation of the operator identi-
fied in the above corollary. Recall that in we defined the scalar operator
U} with ¢ € C. We shall denote its coordinate-wise application to a vector
field ¢ € &? as the operator Qi‘, meaning that we have

[U2¢], = Ul¢:.

We define a new operator

GD : ¢ - GradDive = [ 8¢
J

and note that it is associated with the Fourier multiplier matrix [—¢&;;].
Using (2.33)), we may then rewrite QE‘NM) as

1
U} =0U) + =072, GD
X+2

T r1—"T2
L1 s (2-39)
=U,, + 312 GDU; =,.,.

§2.3.2 L,-continuous homogeneous and rotation-invariant operators

We proved in that the operator Uc_ﬁ‘b with n = |[Re X + %J —d and
Re X + % ¢ N exhibits the same form of rotation and scale invariance as
U.?, and, also similar to U;?, it is proportional to a left inverse of U2 for
ReAd > 0, A # d,d+ 2,.... The distinguishing property of Uc_j‘l, captured
in Theorem is that it maps 2(IR%) continuously into L,(IR?). In this
section we shall propose a similar modification of the vector operator U7
which shares its homogeneity and vectorial rotation-invariance properties and

is at the same time continuous 2¢(R?) — L(IR?).

6. We use an underline visually to distinguish the new vector-to-vector operators from
similar-looking scalar-to-scalar ones introduced previously (cf. Qi‘ Vs Uz‘ and, later, Regi‘ n

vs Regg"n).
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We shall make use of Theorem as follows. By the said theorem, the
vector to vector operator

fcn . [¢1] |: ;,2¢l:|y

¢ € C, which corresponds to the coordinate-wise application of the scalar
operator U}, is continuous 2%(R%) — LE(R%), 1 < p < oo, for n = [Re X +

c,n?

;J d. Furthermore, we have the

Lemma. U_>‘ is (—A)-homogeneous and and vector-rotation-invariant.

Proof. By Corollary m UC,); is (—)\)-homogeneous and scalar-rotation-
invariant. The homogeneity of U_ 1mmediate1y follows. To prove vector-

rotation-invariance, take an arb1trary orthogonal matrix w = [w;;]; we have

I:UC‘VLRW 'U¢ cn Zw_‘)l ws¢j
= ijiU;,an,Sij by linearity,
= Z "-’J'iRw,sUc_,y}{d’j by Corollary
J

= [Ru,uU 0], by the definition of Ry, (2.n)). .

Note that the operator GD = Grad Div with Fourier matrix [—§;;] (defined
in is continuous on &%(IR%) (derivatives are continuous on 2(R%) and
&(R%)). In addition, GD is clearly both homogeneous of order 2 in the
sense of and rotation-invariant in the vector sense. Putting these facts
together with the previous lemma, we obtain the

Theorem. The operator

1
U =00
w —)\ +2

U2, ,GD

—ri1—ra,

withn = |[Re A+ %J —d, Re /\-I-% ¢ N, is (—\)-homogeneous, vector-rotation-
invariant, and continuous 2¢(IR?) — LI(IR?).

The formula that we used above to define UT_ ;» can be compared to ([2.39).
We next intend to show that U, ; can also be seen as a modified (corrected)
version of the vector operator U U 1ntroduced in the previous subsection, in

the same way that the scalar operator U. ) was defined i 1n as a correction
of U;A. To this end, we first define the vector operator EE o CE C, as
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the coordinate-wise application of the scalar operator Regc_’f‘z of Next,
we define

1
- _ - —A=2
Eﬁm B @rz,n + :\A +2 Regrlfrg,nq% GD.

This permits us to write

Upn=U;"~Reg " . (2.40)

Reg * is null for functions in gd( ) (whose moments of any order vanish),
Whence we obtain the
Lemma. The restriction of Qé,n to gd(ﬁ{d) coincides with the translation-
invariant operator Qé .

In addition, the above relations, in combination with Lemmata
and directly prove the following parallel of Lemma

Lemma. Let Dy be the vector-to-vector operator corresponding to the co-
ordinate-wise application of the scalar symmetric finite difference Dy with
H = {ho,..., hyn}, defined in[2.a0l Then

Reg | Dy =Dy Reg ) =0.

Consequently, U, f‘LQH =DyU, f‘z =DyU, *, which is translation-invariant.
Using the previous lemmata and (2.38) and we obtain the next result
(compare with [2.ap)).

Lemma.
Y
g(rl,rz) "*(7“71 ryt) ¢=H¢

forallg € E(H.{d) (reminder: the constant Hy = 1/I'(452)T'(452) was defined
in (229)).

More generally, the above relation holds for ¢ € &(IR%) and n < Re A.

The vector calculus of rotation-invariant homogeneous operators

Notational convention. In this section we shall find it convenient to make
use of a loose version of Finstein’s index convention, according to which
repeated indices in a product are summed upon (typically over the range
1,2,...,d); thus, for instance, the product of matrices [a;;] and [b;;] is the
matrix [c;;] with

Cij = Qikbi;.
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Review of vector calculus

We begin by recalling some familiar operators from vector calculus.

Definitions. In d dimensions, the gradient operator, which maps a scalar to
a d-dimensional vector, is defined as

(Grad f]; = 6; f.

Its adjoint is the negative divergence, mapping d-dimensional vectors to
scalars and defined as

Grad* f = — Div f = —8; f;

(recall that per Einstein’s convention, the last formula denotes a sum over
7).

We next give a definition of the d-dimensional curl operator, which maps a
d-dimensional vector to a d x d anti-symmetric tensor:

[Curl f];; = %(@‘fj - 0;fi)

The curl adjoint is the operator

[Curl” fl; = 750;(fi; — fii)

which carries a d x d anti-symmetric tensor to a d-dimensional vector (in the
latter equation j is a summation index, following Einstein’s convention).

Since a d x d anti-symmetric tensor has %d(d — 1) degrees of freedom, we
may also look at the curl operator as a map from d-dimensional vectors to
%d(d — 1)-dimensional bi-vectors. In the common 3-dimensional situation
(i.e. when d = 3), we have 1d(d — 1) = 3 = d, and the curl operator can
then be given the same formulaic form as its adjoint, which partly explains
why the curl and its adjoint are sometimes confused in common usage.”
Explicitly, with the above definition of Curl f, in 3 dimensions we have

fi 0 O1fa —0af1 0O1fz —03f1
Curll| fo | = % 02f1 — 01 f2 0 Oafs —0afa |,
f3 03f1—01fs O3fa—02f3 0

7. A 3-dimensional bi-vector behaves like an ordinary vector under proper rotations
(those with determinant 1), but flips sign under improper rotations (with determinant
—1); cf. the right-hand rule in physics.



§2.4. The vector calculus of rotation-invariant homogeneous operators

and since the anti-symmetric matrix given above is determined by its upper-
diagonal half, we can define a compressed curl operator,

fi 03 fa — Oaf3
oCurl | fo | = | 01fs —85f1 | ;
f3 O2f1 — 011z

whence ¢ can be understood formally as the map

0 —g93 g g1
o % g3 0 g1 |—=|g2],
92 g1 0 g3

which relates 3 x 3 anti-symmetric tensors to their bi-vector equivalent with
1d(d — 1) = 3 components.

2.bn  Some familiar identities. As is readily verified, for a scalar field f
Grad*Grad f = — A f
where A is the scalar Laplacian. Also,
CurlGrad f =0
and, dually, for a bi-vector field f,
Grad* Curl* f = — DivCurl* f = 0.
Additionally, for a vector field f,
Curl* Curl f = —Grad Grad* f — A f

with A now denoting the vector Laplacian. This yields the familiar decom-
position of the vector Laplacian,

A f = — Grad Grad® f — Curl* Curl f,

which is sometimes used to ‘define’ A f.

2.bo The Helmholtz decomposition. For test functions ¢ € Efd(IE{d), let E denote
the operator

E:¢— 0 A"
associated with the Fourier multiplier matrix with ijth entry &¢;/|€%, 1 <
1,7 < d. (We shall also denote the adjoint of E on (gd(léd))’ by the same
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symbol E since it shares the same Fourier domain representation.) E is idem-
potent, in other words a projection (i.e. E* = E), as is its complement id —E
(¢d denotes the identity operator). It follows that

E (id — E) = (id — E)E = 0.
Moreover, we have,
Curl E¢ =E Curl ¢ =0 and Div (id —E) ¢ = (id — E) Div ¢ = 0.

Thus, the Helmholtz decomposition of ¢ € gd(]f{d) into the sum of a curl-
free term and a divergence-free one is given as

¢ =E¢ + (1d —E)¢.

The Helmholtz decomposition of rotation-invariant homogeneous operators

2bp For ¢ € é;d(lf{d) it is straightforward to see that we have

§2.4.3

60

U)¢ = U)E¢ + U (:d — E)¢
=EU ¢ + (id —E)Up¢ = Uy, 0y8 + Uly )@

(term-by-term equality) with
Curlgf‘rl’o)qb =0 and DinE‘O’TZ)gb =0. (2.41)

The last two identities hold more generally for ¢ € &%4(IR%), thus proving
that

Qg‘ﬁ = Q?Tl,o)qs + Q?o,m)d’ (2.42)

is the Helmholtz decomposition of ¢ into the sum of a curl-free and a diver-
gence-free field (in that order), with parameters 1,7 controlling the curl-
free and divergence-free contributions respectively (setting r; = 0 therefore
produces a divergence-free field while 7o = 0 generates a curl-free one).

In duality to (2-41]), we also have, for ¢; € £9*¢ and ¢, € &,

U, 0 Curl* ¢ =0 and Up,,,) Gradg, = 0. (2.43)

The Helmholtz decomposition of the L,-continuous operators

Finally, we are able to make the following connection between the ‘corrected’

continuous operators U, ;\l of and curls and divergences (cf. (2.43))).
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Lemma.
U, Curl* = g(—o?mm Curl* and U, ) Div* = g(;io),n Div*.
Proof. 1t is sufficient to show that the above relations hold with U, replaced

by Reg 7 _ The rest then follows from ) and ([2.40)).

To prove the claims about Reg , first, note that for ¢ € £9%49,

[GD Curl* ¢, = %aij(aﬂﬁjl O1bi;) = f( Oijidi — Oijidi;) =0

by a simple change of variables (I + j in the second expression). Also, this
time for ¢ € &,
[GD Div* (}5]1 = —Bijajqb = —A0;¢.

More concisely put,

GDCurl* =0 and GDDiv* = ADiv*.

Writing
Reg™ — Reg™ +—— Reg>> _GD
Jﬁ,n 7&"2,”1 3\ + 2 grlfrz,nJrz
1 1
_ - —A—2 —A—2
= Regrz,n Sz Regrzm+2 GD4+— =12 Regn’nﬂ GD

we therefore see that
Reg ? Curl* = Reg * Curl*
—=r,n —2ry,n

Reg 2 GD Curl*

ro,n+2

= Reg;:‘n Curl® — =5
°E,.. St

= E(’Of‘m)'n Curl”

which proves the first half of (2.bq)). Also, for the second half of (2.bq)) we
have

1
—A VoK - Tk =2 C
Regﬁ)n Div® = Regr n Div® — =2 Regrrrz’n+2 A Div

_ A -
Reg D1V — Regr1 ram Div
= Reg~ )‘ Div*
—T1,n
using and (2.20) together in the penultimate step. |
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2.br The results of this section, most importantly Lemma about vectorial
rotation-invariance and homogeneity, and Theorem [2.bfl about LZ—continuity,
mirror the results we obtained in for scalar Lp-continuous operators
and scalar rotation-invariance. We also made a connection between the intro-
duced Lg—continuous operators and curl and divergence operators in Lemma
which has no parallel in the scalar case. In the next chapter, we shall
use these results and the operators we constructed above in order to define
random vector fields with statistical rotation-invariance and self-similarity
properties and the possibility to control their irrotational vs solenoidal tend-
encies by virtue of Lemma
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3

Fractional Brownian Vector Fields and Some
Non-Gaussian Extensions

We begin this chapter with an overview of a few modelling contexts and
assumptions that give rise to fractional Brownian models. We see a few dif-
ferent ways of characterizing fractional Brownian fields, among which we pay
more attention to their representation in the innovation modelling frame-
work of Chapter We then extend the definition of fractional Brownian
motions to the vector setting by importing the vector operators of the pre-
vious chapter into the innovation modelling framework, and derive some of
the key properties of the new models. Some of these properties have direct
equivalents in the scalar setting, while others are specific to the vector case
with no scalar counterpart. Finally, we find some further extensions of the
models that are consistent with the fundamental properties derived previ-
ously, by considering non-Gaussian innovations and introducing the notion
of subspace-independence.

A few characterizations of fractional Brownian motion

Axiomatic characterization of (non-fractional) Brownian motion. To a large extent,
the motivation behind the mathematical definition of the (non-fractional)
Brownian motion process B(z), z € R, comes from physics. One is in-
terested in modelling the type of phenomenon, imagined as the limit of a
symmetric random walk starting at some arbitrary point called the origin,
with the properties that its increments B(z) — B(y) are Gaussian, independ-
ent from one another, and identically distributed for the same step size. In
addition, one normally requires the process to be continuous in some sense
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3.b

(we shall assume the weakest form that suits our needs). We summarize
these properties below.

(B1) B(0)=0.

(B2) B(z) is a Gaussian process with zero mean.

(B3) DnB(z):=B(z+ %) — B(z — %) is stationary for fixed k. (stationary
increments)

(Ba) B(z) is continuous in probability, i.e., for any convergent sequence
z, — =, we have B(z,) — B(z) (weak convergence). (continuity)
(Bs) E{B(z)- B(2)} = E{|B(c) - B(y)]*} + E{|B(y) - B(z)} for any
increasing triple z,y,z € R. (uncorrelated increments)

In mathematical modelling applications, the ‘derivative’ of B, which we may
imagine as a collection of infinitesimal independent increments or innov-
ations, provides an intuitive picture of white Gaussian noise (we shall
develop this idea more fully later on).

Putting aside for the moment the question of the well-definition of B (i.e. the
existence of a corresponding probability measure on some suitable function
space), from the above properties we see that for any n € Z and z € R,

E{|B(nz)[’} = E{|B(nz) — B(0)|} by [(B1)}
= E{|B(|n|z) - B(0)|*} by [(B3)}
= Z E{|B(kz + =) — B(kz)|*} by
0<k<|n|
= [n| E{|B(z) — B(0)|} by [(B3)}
= |n| E{|B(z)*} by [(B1)}
form where it follows that for rational z,
E{|B(z)]} = K (3.)

where k = IE{|B(0)|?}. Since, by [(B4), the above variance function is con-
tinuous, holds for all z € R. Using and we then obtain the
identity

E{|B(z) - B(y)[*} = klz — y| (32)
for all z,y € IR and some k € IR,. The last equation identifies the variogram
structure of B. It also shows that the process is mean-square continuous.

Turning things around, we may assume ([3.2]) together with [(B1)| and |(B2)|
and prove the other properties. Indeed, in view of , is trivial,

while follows from and the fact that the Gaussian process Dy, B
has constant variance k|h| and is completely determined by its second order
statistics. Finally, |[(B4)|is a consequence of the mean-square continuity of B.
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§3.1. A few characterizations of fractional Brownian motion

‘Fractional’ Brownian motion and other generalizations. The above characteriz-
ation of Brownian motion by means of its variogram lends itself to several
immediate generalizations. One may, following Lévy [L54, [L65|, take z,y in
to belong to IR? instead of IR in order to define Brownian fields. One
may also replace k|z — y| in by a fractional power function k|z — y|?#
(thus breaking in order to obtain fractional Brownian motion (fBm).
Another possibility is to relax Gaussianity and replace by incremental
independence, whence, in the non-fractional case, one recovers random en-
titities known as Lévy processes. Finally, of particular interest to us is the
generalization from a scalar-valued random field on IR to a vector-valued
one, by taking |B(z) — B(y)|? to denote the squared-magnitude of the vector
B(z) — B(y). Naturally, these generalizations may be combined as well.

Apart from the non-Gaussian extension, the other generalizations suggests
above can be combined in the following equation, which defines the variogram
of a speculative fractional Brownian field By:

E{|Bx(z) — Ba(v)|*} = k|lz — y|* (3.3)

(k is a normalization parameter). When consideration is given to vector-field
models, we may reasonably require that such vector generalization of fBm as
we develop here also be consistent with where |Bg(z) — By(y)| is to
be replaced by the magnitude of the d-dimensional vector By (z) — By (y)
(note, however, that this leaves the cross-correlation of the vector coordinates
unspecified).

Operator-based ‘innovation’ characterization of fBm using invariances. The pre-
vious description of fBm, while deductive and intuitive, does not directly
emphasize the invariance and self-similarity properties of the field; although
these properties (rotation invariance and homogeneity of order H in law) do
follow quite easily from the above definition.

For the above reason and, importantly, also in order to facilitate the applic-
ation of analytical and distribution-theoretic techniques (such as those used
freely in Chapter , in this thesis we take a different approach to charac-
terizing fBm and introducing its vectorial extensions. This approach, which
was adopted by Blu and Unser [BUQ07| and to which we refer as ‘innovation
modelling’ (Chapter , puts the invariances of fBm in evidence, and also
ensures that the corresponding probability measure is always well-defined.
These combined goals are achieved as follows: we define By as the image
of some spatially-independent rotation-invariant and homogeneous general-
ized random field W (called the ‘innovation’) under a rotation-invariant and
homogeneous operator U*:

By =U'W. (3.4)

65



3. Fractional Brownian Vector Fields and Some Non-Gaussian Extensions

66

3.e

To W is associated a ‘cylindrical’ probability measure, which is transformed
into a proper probability measure for By by the operator U* (see Chapter
for an overview and Appendix [A] for some of the more technical details).
By a suitable choice of W and the operator U* we may derive as a
property, thus proving consistency with the previous axiomatic description.
Moreover, by postulating the innovation W to be spatially independent, we
effectively separate the randomness of the model (corresponding to the dis-
tribution of W), from its structural aspect (captured in the ‘mixing’ operator
U*). This idea easily generalizes; for instance, in the vector setting, we shall
replace U* by an operator with the appropriate ‘vector’ invariances, and use
a vector innovation field for W. Replacing the Gaussian innovation W by a
non-Gaussian one yields a different generalization.

To remind the reader of how we shall implement the above idea, we repeat
the three steps involved in characterizing a random field in the innovation
framework from [L.omt

(IM1) Characterize the innovation W as a generalized random field over
some test function space & by specifying its (normalized, continuous,
and non-negative-definite) characteristic functional &y .

(IM2) Identify a continuous linear operator U : & — % with prescribed
properties, where the space & is nuclear.

(IM3) Define the random model By as the generalized random field with
characteristic functional
Pp,, = Py o U. (35)
The above functional uniquely identifies the sotchastic law (probab-
ility measure) &g, associated with By, to which it is related by the
identity

@H (8) = EBH{61<¢,F>} — ei<¢,f>gBH(df)_

g/
By can be interpreted as the transformation of W by the adjoint
U* : &' — &' of the operator (U) identified in the previous step, thus

giving sense to (3.4)).

In the next two sections, we shall consider the application of the operators
defined in Chapter |[2|to scalar and vector Gaussian innovations introduced in
[I.u} and study the properties of the random fields thus obtained in accordance
with innovation modelling formula . Later, in we generalize these
models in two ways by replacing Gaussian innovations with a-stable ones, and
considering the super-position of independent homogeneous random fields
belonging to different subspaces.
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§3.2 Fractional Brownian scalar fields

3.f As an example of the procedure outlined in the previous paragraph and de-
tailed in Chapter |1, we now give an innovation model corresponding to frac-
tional Brownian scalar fields. We note in passing, and without proof, that
the random field described subsequently is consistent with variogram formula
, as well as being rotation-invariant and homogeneous (self-similar) in
law. The reason we omit the proofs of these statements is that similar but
more complex properties will be proved later on for the vector field counter-
part of the scalar model considered here.

3.9 Step (IM1): The innovation. The standard Gaussian generalized random field
Wg on & = Lz(]Rd) is the cylindrical probability with characteristic func-
tional

Pwa(9) =319, ¢ € Lo(RY).
From the above characterization it is clear that W, is rotation-invariant and
(—%)-homogeneous (self-similar) in probability .

It is therefore possible to obtain a Gaussian random model that is rotation-
invariant and homogeneous of some given order H by transforming Wy using
d

an operator that is rotation-invariant and homogeneous of order —H — 7 in

the sense of (2.4). In order for the procedure described in (reproduced
above in steps [(IM1)H(IM3)| of to be applicable, this operator also needs
to be continuous from some nuclear space & into Ly (IR%).

3.h Step (IM2): The operator. In Corollary and Theorem we identified
an operator fulfilling the above requirements, with 2(IR?), the space of com-
pactly supported smooth test functions, serving as our nuclear space &. We
recall the definition of this operator:

bl A—d
U—> A-d 4 kPc _\k dy,
iem e 0 M [ (—ufoly) ay

k!
|k|<n

where — is the homogeneity order, ¢ is an arbitrary normalization, and we
must have n = |Re X + %J —d, ReX + % ¢ N, in order to have 2 — L,
continuity (recall also that p? is the homogeneous distribution defined in

(2.15)).
Consequently, in our case with Gaussian (— %)-homogeneous innovation in L,
(p = 2), in order to have an H-homogeneous model we need —A = —H — g

andn = |H|, H¢N.

_H_4
3.i Step (IM3): The random field. We use the operator U, fIHJ 2 to define the scalar
Gaussian fractional Brownian motion By as the generalized random field
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in 2'(R*%) with characteristic functional

d

Ppn.(8) = Pura (U, 110, )

_d b2) f_%
= exp —% pe 2*¢($)—kak7.(m)/d(—y)k¢(y) dy
K|<|H] ’ R 5
2
4 k
—exp————| [ @O TTE ) [(6) - D S aud(0) | dé
2(2m) 8 /IRd |k§mk! g .

The last equality uses Parseval’s identity.

The above construction is equivalent, in the sense of@, to defining By . by
the innovation equation

—g-—4
BH,c = UC,LHJQ*WG)

where U, ,* denotes the adjoint of U, formally identified in Remark

Remarks. In adopting the above innovation framework, we are following
more or less directly in the footsteps of Blu and Unser [BUQ7]. Also, for
0 < H < 1 and Gaussian innovations, the above characterizazion of fBm
is essentially the same as the so-called ‘harmonizable’ representation, a one-
dimensional version of which can be found for example in Samorodnitsky
and Taqqu [ST94]. In the general case (arbitrary H ¢ IN, Gaussian or
a-stable statistics), a similar characterization of the random fields using
regularized integral transforms of white noise appears in Benassi and Istas
[BI02|, which builds upon the characterization given in Benassi, Jaffard, and
Roux [BJR97] for the Gaussian case; the non-Gaussian variants were also
discussed in Benassi, Cohen, and Istas [BCIO2|. Earlier, Yaglom and Pin-
sker [YP53| [Pinb5] and Dobrushin [Dob79| had studied Gaussian self-similar
random fields with stationary n + 1st order increments including similar
characterizations, with non-Gaussian extensions also appearing in the last
reference. The name ‘fractional Brownian motion’ originates with Mandel-
brot and Van Ness [MV68|, who used it to refer to processes defined as
fractional derivatives or integrals of the Wiener process; Kolmogorov [Kol40]
had already considered the same processes many years earlier. Also among
the earlier works, in a more applied context, the British hydrologist Harold
Edwin Hurst had proposed essentially the same models to account for the
phenomenon of long-range dependence in reservoir capacities [Hur51].

The non-fractional counterpart of these processes is associated with the names
of Wiener [Wie24] (in 1D) and Paul Lévy |L54, [L65], among others.
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A notable extension of these models, which is of interest in applications, but
which we shall not discuss here, is the ‘multi-fractional’ Brownian motion,
in which the exponent H is no longer a constant but instead itself a func-
tion of the parameter of the process (the original reference is Peltier and
Lévy Véhel [PLV95]; for an overview of the applications of these models in
image processing see Pesquet-Popescu and Lévy Véhel [PPLO02]).

Naturally, to make use of these models in practice, it is important to be able
to estimate their parameters, most notably the self-similarity exponent H,
also known as the Hurst ezponent. Some of the earliest examples of re-
lated estimates appear in the work of the eponymous Hurst [Hur56]. Peltier
and Lévy Véhel [PLV94| proposed a strongly consistent estimator of H using
fractal dimension analysis (see also references therein for other earlier work).
In the context of time-scale and wavelet analysis of fBm and estimators de-
rived from such analyses, which leverage on the scaling properties of wavelets
and self-similar processes, we should cite the early papers of Flandrin [Fla89]
and Mallat [Mal89]. More refined and sophisticated wavelet estimators were
proposed some time later by Veitch and Abry [VA99] (see also our later paper
[TVUQ9| with a multi-dimensional wavelet-based estimator (reproduced in
Appendix , and references therein). Among other works on the connection
between wavelets and fractal processes (for analysis as well as synthesis) we
mention those of Flandrin [Fla92], Wornell and Oppenheim [WO92|, Masry
[Mas93|, Meyer, Sellan, and Tagqu [MST99], and the volume edited by Abry,
Gongalves, and Lévy Véhel [AGLVQ9].

83.3 Fractional Brownian vector fields

3.k Next, we replicate the previous construction in the vector field context, go-
ing into more detail and pointing out the differences (some of which are
fundamental).

3.1 Step (IM1): The innovation. We introduced the standard Gaussian vector
field W (note the underscore) in To remind the reader, W is the
generalized random field in L(IR%) (the dth Cartesian power of L;) whose
stochastic law is determined by the characteristic functional

—

Fw_(¢) =e 25 ¢ = (¢1,...,44) € LLRY),

where ||¢||2 now denotes the L% norm of the vector field ¢ defined thus:

6= [ ¢ @te) de = 3 [

1<i<d
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(¢ is the Hermitian conjugate of the column vector ¢). From the fact that
Pw, can be factorized into a product of characteristic functionals of scalar
Gaussian innovations per

Py (8)= ] Pws(¢),

1<i<d

it follows that each coordinate of W, is a standard Gaussian scalar field and
is independent from the other coordinates.

d

W is rotation-invariant and homogeneous of order -5

from the identity

in law, as is clear

P _(SoRuwd) = Pw_(9)

for arbitrary scale ¢ > 0 and any d X d orthogonal matrix w (Lemma .
Note that the vector rotation operator invoked here (R, ) is different from
the scalar rotation that we considered in the previous section. Specifically,
Ry, is defined so (2.n)):

Rw,v X w¢(wT')'

Step (IM2): The operator. In we introduced a parametric family of ho-
mogeneous and vector rotation-invariant operators that map @d(IRd) con-
tinuously into LZ(IR?) for some given p > 1 (note that the space 2¢(IR?),
being the product of d nuclear spaces, is itself nuclear). The continuous
dual of 2¢(IR?), i.e. the space (2%)(R%) = (2')4(IR?), defines the space of
(generalized) vector fields in which our random vector field models will be
characterized.

As seen in ([2.40]), these continuous operators are of the form

A Qi)\ _ Reg;)\ ’

where U, * is a convolution with the homogeneous matrix distribution P,;‘*d

introduced in with

7= ?1 o 1 A—1 1—-d 71
T\ A=d\ -1 A—d+1) \r

(using (2.36]) with —X instead of A), and is homogeneous of order —A, while
@;A is a ‘correction’ such that having n = |Re X + %J — d guarantees

the corrected operator to be 2¢ — LZ continuous for A + % ¢ IN. Thus,
in addition to the homogeneity index, we now have two new independent
parameters (r1,73) = r in the definition, which control the interaction of
U, f‘L with curl and divergence operators (see .



§3.4

3.p

§3.4. Some properties of fractional Brownian vector fields

As in the scalar case, in order to apply the operator to the Gaussian in-
novation recalled in the previous paragraph and obtain an H-homogeneous
random vector field, we need to choose —A = —H — % and n = |H|, H ¢ N.

Hence, in this case, our dual mixing operator will be Q;fH_J%. (We shall see
later that the homogeneity order H and A are related differently for a-stable
fields with a # 2; that is why we shall give most expressions in terms of A
instead of H.)

Step (IM3): The random field. Finally, we define the random vector field By .
in (2')¢(R*) as the probability measure on (2')? corresponding to the char-
acteristic functional

Fp,, (9) = Fw (U, n9), (3.6)

with A = H + % and n = |H|. We may interpret this random vector field as
the outcome of the innovation model

EH,I = Q:A*MGH (37)

71n

where Qﬁ_f‘l* denotes the adjoint of QE;\L

We shall refer to these random fields interchangeably as fractional Brownian
vector fields or vector fBms.

Remark. For a related vector extension of fBm based on second-order correl-
ation considerations see Yaglom [Yag87]. Other IR™-valued generalizations
of fractional Brownian fields, called by the name of ‘operator-self-similar’
Gaussian fields, are discussed in Mason and Xiao [MX01].

Some properties of fractional Brownian vector fields

In this section we shall establish some of the main properties of the random
fields defined in the previous section.

Self-similarity and rotation invariance. Fractional Brownian vector fields are
statistically self-similar (fractal) and rotation-invariant, meaning their prob-
ability law does not change under rotation or scaling (with proper re-normal-
ization). This can be proved quite easily by using the corresponding prop-
erties of the innovation W and the operator U, 2 to show that the charac-
teristic functional of By , is invariant under the noted transformations. To

wit, for M = R, , (a vector rotation) or M = crH“‘%SU, with R, and S, as
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defined in [2.n]

‘@?M*EHT)(‘FS) =Pg, (M) by definition,
= 2w, (U, 2 M ¢) also by definition,
¢) by

U 9) by [L.w}
=%Zg,.(¢) by definition,

with (again, for Gaussian fields) A = H + ¢ and n = |H]. This proves that
M* By, =By, inlaw
or, put more explicitly,
By,(w)=wBy,() and By,(0)=0"By,() inlaw,

for any orthogonal matrix w € IR**? and scalar o > 0.

Non-stationarity and stationary n + 1st-order increments. Vector fBms with H >
0 are non-stationary since the operator that defines them is not translation-
invariant. On the other hand, as a direct consequence of the stationarity
of the innovation W, and Lemma [2.bi, we can state the following: Let
Y = {yo0,..-,yn} be a set of n + 1 vectors in R, and let Dy denote, as
in [2.bi, the symmetric finite difference operator defined recursively by the
relations

Dy, f = f(-+ %yo) - f(-- %yo),
Dy f = Dy, Dy\{y,.}f

Then the random field Dy By - is stationary.

The variogram and correlation form of vector fBm. As we saw in the previ-
ous paragraph, for 0 < H < 1 the random field By, has stationary first-
order increments. In this case we may define its variogram (or second-order
structure function) as the correlation matrix of the stationary increment
By,(z) = By.(y) = Qz_yﬁH,l(z;ry) (cf. . More specifically, we shall
consider

27§H,1(x1 y) = ]E{[EH_(x) - EH,E(y)][QH,g(m) - EH,I(y)]H} (38)
= E{1(0)[1(0)]"},

with [ := D,_, By (- — t¥).
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We first obtain the correlation form of I from its characteristic functional
by identification, using the following general relationship between the char-
acteristic functional @ of the zero-mean Gaussian random field I and its
correlation form (¢, ¥); := E;{(¢, X){(¢, X)}, ¢,9 € &%

P (¢) = e 24091,

With I =D, By, (- — 21¥), and with the characteristic functional of B Hr
given by (3.6, we have:

:_ZIOg%V ( y—z r>‘¢( z—gy)) by@l
=[R2 xg(- - )—Pg Txg(-— o) by definition,

/ P?ReA Ys—1t) p(t —z) dsdt
]Rd><]Rd

/¢s— PQR“ YUs—t) p(t —y) ds dt

RIxR4
—2Re/ P2ReA Ys—t)p(t —y)dsdt by [2ba,
]Rd><]Rd
with
—)(Iﬂlz, 72[) (3.9)

and A= H + £.

We therefore see, by the kernel theorem (cf. foonote [6| on p. [21)), that the
random field I has the distributional covariance matrix

Ci(s,t) =2P3 (s —t) — 2P (s —t —z + ).
Thus, in particular,
218, (2,y) = E{L(0)L(0)]"} = —2P%"(y — z) = —2P5"(z - y)

(the negative sign is only apparent, and is cancelled by the negative sign of
the numerator of (3.g)) for 0 < H <1, the rest of the latter equation being
positive). We record this result as a

Proposition. The random field B g, With 0 < H < 1 has stationary incre-
ments and its variogram can be expressed as

275, (2,9) = —2P3(z —y),
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where the dependence of 7' = (r/y,7/3) on 7 = (71,72) is dictated by (B.g)
and 7, in turn, depends on r = (71, r2) by (2.36)).

By taking the trace of the above variogram, we obtain the following

Corollary. For 0 < H < 1 we have
E{|By,(2) — By, )’} o« |z — y**.

This shows that the random fields described herein are consistent with (3.3))
and it is therefore appropriate to call them fractional Brownian motions.

By developing (3.8) and applying the above theorem, and also using the
property that By , vanishes at 0, we can also arrive at the correlation matrix
of vector fBm for 0 < H < 1:
2ReB{By,,(2)Bx,(¥)"} = 275, (2,0) + 275, (¥,0) —27p, (29)
= 2P;27H($) + 2P;27H(y) — 2P;27H($ —v).

Helmholtz decomposition. Recall that the operator Qﬂ_f‘z can be decomposed
as

- Y Y

Urn = U6 0m T Yam)m:

Referring to Lemma [2.bq}, and taking adjoints, we may thus rely on (3.7) to
write:

Curl By, = Curl By (g,,) in law,
and also,
Div By, = Div By (,, 0) in law.

In particular, the above equations imply that a vector fBm B Hy(r1,ra) with
ro = 0 is curl-free, while one with r; = 0 has zero divergence, thus clarifying
the significance of the parameters r; and r,. For instance, a divergence-free
random vector field may be of interest in the modelling of incompressible
flow.

To illustrate the previous point, in Figurewe present realizations of By ,.
in two dimensions. These were generated in MATLAB (MathWorks, Natick,
US-MA) by Fourier-domain filtering of pseudo-random discrete white Gaus-
sian innovations, and visualized using Mathematica (Wolfram Research,
Champaign, US-IL). The visualization technique used to generate these fig-
ures is known as Line Integral Convolution [CL93|, and consists in local
directional smoothing of an underlying image (typically white noise) in the
direction of flow.
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§3.5. Fractional stable vector fields and subspace-independent extensions

We note, in passing, that analysis with kernels that incorporate Helmholtz
projections can be used to estimate parameters 7; and r5 (see references Tafti
and Unser [TU09] and Tafti & al.[TDGSU10| in Appendix [B).

Fractional stable vector fields and subspace-independent extensions

Fractional stable vector fields. We next turn to some non-Gaussian generaliza-
tions of the previously defined random fields. We obtain these generalizations
by replacing the Gaussian innovation W in by a non-Gaussian one.
Since our interest remains focused on self-similar random fields, we shall re-
strict ourselves to a subset of homogeneous innovations, more specifically to
the symmetric a-stable ones introduced in with o > 1 (technically, the
a-stable family includes the Gaussian innovation too, but in this section we
shall use the term a-stable to distinguish from Gaussian innovations). To go
through with the procedure outlined in[3.dland detailed in Chapter|[l} all that
is needed is to replace the Gaussian innovation in with an a-stable one
from and the 2¢(R%) — L3(IR?) continuous operator appearing therein
(in adjoint form) by one in the U, f‘z family of Theorem that is continuous
24(R?%) — LE(R%). We can represent these fractional stable vector fields
symbolically as

Ly, = Ui W = U Wy +Ugh Ws, (3.10)
with n = [A + g] —d. It follows from Lemma and the —A-homogeneity
of U, A that in order for Lj , to be homogeneous of order H, in this case we
need A = H+d— g; from where follows, in turn, that we must once again
have n = |H|.

Subspace-independent extensions. We shall go a step further and extend the
above construction by considering compound fields obtained by superpos-
ing independent random fields belonging to the above family, with different
values for the parameter vector r as well as o (we could also vary H, but
this would break self-similarity). The most interesting elementary example of
such a random field is perhaps the following one, which we call the subspace-
independent fractional stable vector field.

(a1,00) —H—d4 2L« —H—d+ 2L«
Ly = on1a1) Wsian Yo 1] Wssas-

Note that in spite of the superficial symbolic similarity, even when oy = oy =
Q, Lg?,;’%) still defers from Li‘,’z, since the latter uses the same innovation
for both components while the former uses two independent ones. Thus, by
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(e) H=0.6,72=0 (f) H=09,75=0

Figure 3.1: LIC visualization of synthesized fractional Brownian vector fields
(see text); local amplitudes are coded inversely by saturation levels. Smooth-
ness increases with increasing H, while 71, 7o determine directional behaviour
(ry = 0 imposes zero divergence, 7, = 0 characterizes irrotational models,
and r; = 7, defines fields with uncorrelated vector components).
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virtue of Lemma , ng’a” has independent curl and divergence (hence

the name subspace-independent).

*3.z To randomize even further, we might have, if we were so inclined, considered
the sequences of parameters a and (H,r) in a compound field, and even their
number, to be random, and viewed them as additional sources of innovation
in a hierarchical picture where the first innovation determines the number
of fields to be superimposed, the second set of innovations determine the
operator (H,r) and type of spatial innovation () for each of the constituent
independent random fields, and finally each of these component fields is itself
associated with a spatial innovation field W, independent from all others.
But we shall leave it at this.

3.aa Properties. Among the properties discussed in statistical homogeneity
and rotation-invariance clearly hold for fractional stable vector fields
as well, with essentially the same proofs. The stationary n + 1st-order in-
crement property also remains valid for the same reason as before. On
the other hand, since the variance of a-stable fields with a < 2 is not fi-
nite, we can no not define the variogram and correlation form of fractional
stable fields, as we did for their Gaussian counterparts in With regard
to the Helmholtz decomposition , as we saw in the previous paragraph,
the subspace-independent fields introduced therein are by construction de-
composable into a sum of independent irrotational and solenoidal random
vector fields, and the directional behaviour of the field can be controlled by
parameters r; and rs.

7
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Y

Variational Reconstruction of Vector Fields

In this chapter, we study the practical problem of recovering a vector field
from imperfect (and possibly indirect) measurements, and its refinement or
enhancement. We shall be guided by the same principles of invariance and
decoupling/innovation modelling as in the previous chapters, but this time
around, they will serve as heuristics that will direct us to practically useful
schemes. In the final part of this chapter we propose a practical vector
field denoising and enhancement algorithm, which is shown experimentally
to improve upon the state of the art.

Methodology

General considerations

We shall be dealing with methods for reconstructing an object from a multi-
tude of measurements or observations collectively denoted by Y.

Behind the previous, seemingly innocuous, statement hides a fundamental as-
sumption or hypothesis, namely that underneath the possibly distorted and
imperfect measurements referred to by Y, there exists a ‘true’ object (let’s
denote it by f*) that we strive to recover, or, failing that, approximate as
closely as possible. In essence, our aim is to simplify away processes (‘distor-
tions’) that are of less or no interest to us, while at the same time extracting
whatever information we can about f* from our measurements. We therefore
distinguish between two types of loss of information: the ‘systematic’ variety,
which is not helped by repeating the observations, and the ‘random’ kind,
the effect of which can be reduced (at least hypothetically) by repeating the
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measurements. ! To include both effects, we model our observation vector Y’
as

Y =e(f*,v), (4.2)

where f*, as already noted, is the ‘true’ object, v is a ‘random’ object of
sufficient complexity to account for modelling error due to simplifications or
unknown factors, and e is a deterministic map that models both the system-
atic ambiguity about f* and the way observations are influenced by v.

Another clarification is now in order. When it is said that we wish to recover
or reconstruct f*, this requires us to have a model of what f* can be, in the
form of (at least) a set & of possible answers.? This set is parametrized in
a fundamental sense by a minimal system of questions we can ask uniquely
to distinguish f* from every other element of &, although the number of
parameters may not be finite (or even countable). (Uniqueness here means
that what we cannot distinguish based on these questions, we consider to be
the same.) Naturally, the more restrictive the class of objects we consider,
and the better our understanding of them, the more we can get out of fewer
parameters. 3

Theoretically, it is imaginable that a kind of probabilistic model may be
assigned to f* as well, and when this is done (in the form of a probability
on &), this model is typically referred to as the ‘prior’. More generally,
instead of a probability measure in its standard mathematical sense, we may
concoct some other criterion for quantifying our preference for one answer
over another. We formalize this criterion as a non-negative functional fR :
Z — IR, such that R(f) < R(g) iff, all else being equal, f is considered
preferable to g (as is standard, we shall call R the regularity criterion,
although in our view stmplicity criterion might have been a better name,
hinting at an application of Occam’s razor or law of parsimony).

With regard to the above, it is important to bear in mind that, random
or not, in many practical problems we deal with observations made of a
single (hypothetical) object f* (or relatively few of them), rather than a
representative ensemble of such. Thus, in ascribing a probability model to
f*, we effectively invent our ensemble. (Even if it is not always admitted,
at a fundamental level, all science is tautological).

1. This is not the only possible interpretation of randomness. From a different perspect-
ive, we may say that whatever we do not model systematically and deterministically (i.e.
what we cannot or choose not to predict deterministically), we attribute to randomness.

2. This is not strictly true. In reality, when forming an opinion of the world, our set of
ideas may not be fixed beforehand.

3. John von Neumann is said to have observed that with four parameters he could fit
an elephant, and with five he could make him wiggle his trunk [Dys04].
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This fabrication can occur in a variety of ways. Let us illustrate this with a
simple example. Suppose that our true object f* is the painting ‘Mona Lisa’
by Leonardo Da Vinci (1452-1519). Now, depending on what we know in
advance about f*, we might take & to be one of the following:
— the set of paintings hanging on the walls of the Louvre in Paris on some
specific day;
— a parametric set of representations of human portraits as combinations of
simple geometric shapes;
— a matrix of numerical colour values at some specified resolution; &c.
We may then assign probabilities to each of the above sets in some imaginat-
ive fashion. For instance, in the first example, we may take these probabilities
to be proportional to the number of tourists visiting each of the paintings
hanging in the Louvre on that day. In the second case, we may assign prob-
ability distributions to the parameters of the portrait (position, elongation
and orientation of the head, &c.) in one way or another. Finally, in the
last example, we may create artificial diversity (randomness) by dividing
the single complex entity (the Mona Lisa) into an ensemble of less complex
elements (such as small neighbourhoods), and making further assumptions
about stationarity and/or interdependencies, in order to estimate the stat-
istical parameters of the model. (To an ant walking on the surface of the
Mona Lisa, it does indeed appear as a random distribution of colours; said
differently, the notion of randomness is not fundamental and inherent in the
picture itself, but lies instead in our way of looking at it.)

Among the above three models, the last is the least specific, i.e. the most
generic. For this reason, it is more likely to be useful if our image happens
to be something other than the Mona Lisa (or a portrait, or a painting at
all). At the same time, it gives us the least insight about the actual content
and meaning of the object.

The kinds of models we considered in the previous chapters, which involved
independent spatial innovations, are closest in spirit to the third of the above
examples. It is on this kind of idea that we shall base our solution methods in
this chapter as well. While guided by this quasi-principle, we shall, however,
refrain from making the statistical connection precise, that is, we shall not
try to relate our methods of solution (i.e. our choice of the regularity criterion
R introduced in to specific probabilistic models. Although finding this
connection is of interest and is something we hope eventually to do, we do
have some reasons for the omission.

For one thing, making such a connection would require adopting a paradigm
of statistical optimality, the choice of which is somewhat arbitrary.
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Moreover, supposing the former choice were somehow made, establishing a
theoretical connection would then mean one of two things: either we would
find a method first and then identify the probabilistic model for which it is
optimal, or first come up with a probabilistic model in some fashion and then
identify the method that is optimal for it. The latter approach might seem
more reasonable at first glance, until one is reminded that in practice, the
choice of method is dictated to a large extent by algorithmic and numerical
considerations regarding what can be implemented with relative efficiency.

At any rate, the actual sequence of events in our case was that we took in-
spiration from the stochastic models of the previous chapters and formulated
some algorithms that were seen to improve upon the state of the art in ex-
periments. In regard of this, going back to the first of the two approaches
sketched above, starting from a working method and reverse-engineering a
probability model seemed in itself logically circular and of uncertain value
(since we already knew, from experience, that the method would perform
relatively well). We do not mean to discount the possibility that the exer-
cise could potentially guide us somehow to modifications of the method that
might be found to perform better in practice. But we did not plan or have
the occasion to undertake such modifications and extensions in the present
thesis.

Also, with respect to the second of the above two approaches (i.e. start-
ing from a probabilistic model and deriving the scheme from it), in addi-
tion to the fact that practical considerations might and did limit our choice
of method, there exists the fundamental problem of how to validate the
stochastic model in the first place. Specifically, we were faced with the fact
that we had relatively few datasets available to us (some of which were syn-
thetic), and fitting the data with a probabilistic model which would later be
used for processing the same data did not constitute good practice, to say the
least, even though it would, automatically, produce self-confirmatory results.

Having said all this, we shall, nevertheless, refer freely to the principles
and models developed in the earlier chapters for motivation and guidance
in choosing our practical course.

Formulation of the problem

After the above philosophical prelude, let us now concentrate on the formal
presentation of the problem and our adopted framework for its resolution,
which consists in formulating the outcome as the solution of a mathematical
optimization problem.
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Observation model. We assume to have at our disposal a finite number of
observations of some phenomenon f*, i.e. a sequence Y = {Y[m]} (with m
in some finite index set which we denote by M).* It is supposed that beneath
each observation Y [m] hides a ‘true’ value Y*[m], which is corrupted by the
addition of some noise or distortion N[m], that is,

Y[m] =Y*[m]+ N[m], m e M.

We assume the values N[m] to be random, identically distributed, and mu-
tually independent for different m, and further suppose that they do not
depend on Y either.

Additionally (and independently of the previous probabilistic assumptions),
we suppose that Y* depends linearly and continuously on the ‘true’ object
(f*), that is,

Y*=9f"

for some continuous linear map ® : & — RM (the sampling operator).
Equivalently, for each m € M, the sample Y [m] (the mth coordinate of & f*)
is the result of the application of a continuous linear functional ¢,, to f*:

Y*[m] = (¢m, f*)-

Thus we arrive at the following specialization of , with N taking the
place of v:
Y =&f"+N.

The measurement fidelity/error criterion. It is typically supposed that Y* lies
at some ‘distance’ u of Y as measured by some fidelity or error criterion
(optimistic vs pessimistic naming) which we denote by dist(Y*;Y) (despite
the notation, dist(+;-) need not be a metric). Thus we write

dist(Y*;Y) = p. (4.2)
If the criterion is taken to be the square error,

dist(Y*;Y) := Z [Y[m] — Y*[m]|?,

(4.2) then corresponds to fixing the sample noise variance. Note that in
practice u may not be known, at least precisely, in which case it can be

4. Enclosing the index in square brackets as in Y[m] instead of subscripting or paren-
thesizing it like Yy, or Y/ (m) is standard in signal processing for discrete signals (i.e. where
m comes from a discrete set).
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seen as a parameter that permits us systematically to search and explore the
solution space. If instead of Y* we seek the f* from which it originates, we
may rewrite the criterion as

dist(®f*;Y) = p. (4.3)

Choosing a solution: The ‘regularity’ criterion. Since in any non-trivial problem
there exist many (even an infinity of) candidate solutions f* € & that fulfil
, we need some additional criterion to choose among them. This criterion
may be thought of as a non-negative functional R : & — IR with the property
that in the absence of any other distinguishing factor, R(f) < R(g) iff f is
preferable to g as a solution. We may then formulate the task of choosing
a solution (or a class of them) in the set defined by as a minimization
problem. The set of solutions is then defined as the argument f* of (cf.
s *

JR R(f). (4.4)
We emphasize that f*, hitherto used to denote the true but unknown object
of interest, now (and henceforth) plays the role of the optimization variable
that runs through the space of candidate solutions.

As we already noted in fR is traditionally referred to as a regularization
functional or criterion.

In the event, instead of , we may solve the following Lagrange-like re-
laxation of it, which, under some assumptions, is equivalent to the original
problem for a suitable choice of r, but which may also be seen, more pragmat-
ically, as a parametric scheme with o as its tuning parameter that permits
us to search the solution space for a more ‘desirable’ solution.

n}in dist(®f*;Y) + aR(f*). (4.5)

The place of invariances. The choice of R in a specific problem is guided by
practical considerations (unicity of the solution, ease of computation and
optimization on a computer, &c.), as well as what prior assumptions we
might have about the kind of solution we are seeking. In particular, if, in
the absence of observations, we have no reason to prefer some solution f*
to its transformation T f* by a map T, this lack of bias can be built into the
criterion by choosing an R that is tnvariant under T:

R(Tf) = R().

We may relax the above strict form of invariance somewhat by choosing,
instead of a single functional %R, a parametric family R, (a being a finite
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vector), and requiring that there exist, for any a, an o' such that
Ry (Tf) = R () (4.6)
independently of f*.

Ultimately, whatever the considerations for choosing the form of R, any such
choice needs to be vindicated by producing ‘high-quality’ (or at least ‘ac-
ceptable’) solutions with respect to some other, independently derived, per-
formance criterion or figure of merit. The choice of such secondary criteria
is itself somewhat (but not entirely) subjective and arbitrary. In academic
and engineering contexts, it is common to use general-purpose metrics (such
as the mean square error) that can be transposed easily from one problem to
another, are easy to compute, and fulfil convenient mathematical properties.
In contrast, in specific real-world applications, a solution may be deemed
‘better’ if it facilitates some practical task that would have been difficult (or
even impossible) using some other solution method.®

As a heuristic to guide our conception of formulae for R, we interpret R as
some sort of energy functional. This interpretation involves decomposing R
into two maps:

R(f) =ERS),

5. To give a concrete example, among two solutions for the problem of constructing
a medical image from measurements, one may be considered better than another in a
specific context if it simplifies the detection of certain features or defects that are hard
to detect (or even missed) in the second reconstruction. On the other hand, in academic
publications, different image construction methods are habitually compared in terms of
their quadratic error (or some other simple metric) with respect to a known ground truth,
since qualitative assessments such as the previous one are typically difficult to quantify
and highly application-specific.

In the latter context, how the ground truth is ‘known’ is a further point of distinction.
To continue with our example, one might actually acquire an image of a physical phantom
which has been made to specifications and whose characteristics have been independently
measured, and use these measurements for reference (quite good). Alternatively, the pro-
cess of measurement and corruption by noise may be simulated on a computer, by using a
more precise model of the measurement process than the one used in finding the solution
(less good). Note that this extra precision can be in more accurate representation of sys-
tematic, as well as stochastic, characteristics of the measurement apparatus. Finally, it is
common to see the same model being used for simulation and solution, in which case the
numerical computer model is audaciously assumed to be perfect (some call this ‘criminal’
[Wir04]; although it is necessary as a ‘sanity check’: the method should work at least when
all of its assumptions about the model are fulfilled!).

The problems considered in the experimental section of this chapter involve the
simplest of all measurement models, consisting solely of corruption by independent addit-
ive noise. Our assessment of the methods presented therein relies on the first (qualitative,
real-world) and last (perfect measurement model) kinds of experiments. To the extent
that it concerns the systematic part of the model (represented here by the operator & in
), the consequences of assuming a perfect model are less severe when ® is close to the
identity (as in our case) or otherwise well-conditioned.

85



4. Variational Reconstruction of Vector Fields

86

where:

— =2 is a ‘potential’ functional with the property of being additive with re-
spect to independent arguments. Mathematically, this is achieved by
considering the argument of = (let’s call it g) as a function over some ‘fun-
damental domain’ 2 such that the values of g inside an arbitrary set Q; C Q
do not influence those inside any other disjoint set 2, C Q, Q; N Qy = @.
= is then conceived as an integral

2(g) = /Q (o)) u(du) (4.7)

involving an elementary potential ¢ and a measure p that determines the
relative importance of different subsets of the domain Q.

In circumstances where a natural equivalence relation can be defined in €,
the measure p is required to be invariant with respect to this equivalence
relation. For instance, if the fundamental domain 2 is taken to be (a subset
of) R? and translates of a subset of Q are considered equivalent to it in
terms of their contribution to =, then u is necessarily a multiple of the
Lebesgue measure (when possible, it is convenient to normalize u so as to
have [, 1u(du) = 1).

Note that the above integral becomes a sum if the domain 2 is finite
or countable, i.e. if R separates f* into a finite or countable number of
independent constituents. In this case u reduces to a collection of weights
associated with each term of the sum. When all contributions are assumed
to be equally important, u disappears altogether or is reduced to an overall
normalization factor (1 over the total number of contributions).

— R plays the role of a ‘decoupling operator’ that removes (or reduces) the
redundancy in f*, so that the overall energy functional, R(f*) = Z(Rf™),
will also be (approximately) additive with respect to independent ‘con-
tributions’. It is helpful to keep in mind that R can be anything from a
differential operator on IR* (mapping f* to supposedly independent point-
wise contributions), to a projection of f* to its coefficients in some basis
(such as a wavelet or Fourier basis), where they are assumed to be inde-
pendent. ©

6. The ‘contributions’ mentioned here can be compared intuitively to the innovations
of Chapter [1| The answer to the question of whether or how this intuitive connection can
be made a formal one by relating R to a probability measure for f* depends on the choice
of probabilistic/statistical paradigm (typical examples: maximum a posteriori (MAP),
minimum risk, &c.).
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4.0 In seeming more generality, one may consider compound potentials of the
form

W= X R = 5 [ GRS ).

1<i<N 1<i<N

The generalization, however, is only apparent since we may re-express the
above sum as a single integral of the form given in (4.7 on the larger space

Q={(%)}

by defining
u= Z 0 X Wi,
i
Rf* = (le*)"'7RNf*)7
and (g1, 9n) = ) &)
(6; in the above denotes the Dirac measure on {1,..., N} concentrated at z).

84.1.3 Specialization to vector fields

4.p In our applications, f* is a vector field. When the domain of definition of
f* is a continuum, to have the same kind of invariance to scaling and vector
rotation as we studied in Chapter [2] we might consider curls and divergences,
as well as the homogeneous and rotation-invariant operators Qi‘* defined in
Chapter |2 as our decoupling operators R;. B

4.9 Matrix L, norms. In addition, we may take the elementary potentials &;(g)
(where, we recall, g may be scalar-, vector-, or tensor-valued) to be of the
form

&i(9) = Tr((9"9) %),

in which case the corresponding =; defines a rotation-invariant L,(£2;) norm
for (scalar-, vector-, or tensor-valued) g per

1
Tr((g%g)2 du)p; p < 00,
19: Lo ()l = llgllp,c2 == (fQ’H (E )
llp(9"9)2 oo p=00
with p denoting the spectral radius (we have taken the p;s to be the Lebesgue

measure on 2 C R?; we shall, moreover, drop the Q index from the norm
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4.t

when the domain is all of R%).”

The general form of energy functionals on IR%. The previous combination of
rotation- and scale-invariant operators and matrix L, norms leads us to en-
ergy functionals of the form

Ra(f*) = acl| Curl f*||be + aql| Div fY[[Bd + >~ aul|U) 15
1<i<N

with multiplicative parameters o, ag4,@1,-..,ay, which are translation-,
scale-, and rotation-invariant in the sense of (4.6)).

Discretization. In practice, either f* is assumed to be discrete from the very
beginning, in which case the previous operators are replaced by some form
of discrete equivalents (most simply by replacing derivatives with finite dif-
ferences), or, otherwise, we discretize R; by writing it as

R; = II'UM

where U is a continuously-defined operator and IT and I’ are finite-dimen-
sional projections. In addition, the above integral L, norms are replaced by
finite sums in the obvious way.

Discrete notation. In our implementation we adopted an elementary approach
and simply discretized the operators by replacing partial derivatives by finite
differences, as explained below. Regarding notation, we shall henceforth
replace f* by F* = (FY,...,F}) so as to be consistent in using capital
letters for discrete quantities in the rest of this chapter, and we shall also
drop the x as it has become an unnecessary ornament for some time now.
All of our quantities (F, Y, and the like), will henceforth be defined on a
centred hyper-rectangular Cartesian grid in IR%. For simplicity, we shall take
the grid to be uniform (with the same unit length in all principal directions),
although the scheme can be generalized quite easily to non-uniform grids. In
this way we can identify the grid with a subset M of Z<.

Thus, to take an example, F>[m] denotes the 2nd coordinate of the discrete
vector field F' at a point m € M.

Discretization of the basic operators of vector calculus. To begin with, we assume
as given the shift operators sf, and their corresponding adjoints s;‘*, 1< <

7. The above definition of L, norms is motivated by a matrix Young inequality due to
Ando [And95]:

1 B 2

Tr((Y'x"xY)2) < 21r((X"X)2) + L ((v"Y) )

where % + i =1, which can be used to prove Holder’s inequality for these L, spaces.
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§4.2. Denoising and enhancement of vector fields with Div-Curl regularization

d, ke z% sf is to be compared to the shift operator
F— F[- — kej],

where €; is the unit vector in direction 2, but it also takes into account
the relevant beoundary conditions for the problem (s¥* then implements the
adjoint boundary conditions).® We drop the k superscript when it equals 1.

We can then define the backward finite difference operators
6; : F— F —s;F,
and their corresponding adjoints
8] F— F—siF, 1<:1<d.
With the above definitions, a simple discretization of vector differential op-

erators is obtained by replacing partial derivatives with finite differences:

[Grads F|; = 6;F,
Divs F = —Grad; F = §} F;,
[Curls Fli; = 5 (8:F; — 6; Fy),
and [Curly fl; = %5}‘(&1‘ - Fji)

(we are again using Einstein’s convention as introduced in [2.bk]).

Denoising and enhancement of vector fields with Div-Curl
regularization

Formulation

To demonstrate the general method described above in an application, we
now specialize to the problem of regularizing a discrete vector field ¥ =
(Y1,...,Y) of measurements, using the L, norms of the discrete curl and
divergence of the solution as regularization energies. We shall compare the
solutions for p = 1,2. Our two cost functions corresponding to p = 1,2 will
thus be of the form

Ipaeaa(FY) = IF = Y5 + acl Curls FI[f + aal|Divs FIf.  (4.8)

8. These so-called ‘boundary conditions’ may in fact consist of other kinds of linear
constraints of appropriate dimensionality, and need not be associated with the boundaries.
We call them boundary conditions for the lack of a better term. One of the most useful
choices in image processing is the reflexive one.
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Our computational task is to find the minimizer over F € RM of the above
costs numerically. In the above problem, F’ and Y are defined on the same
grid M and the final solution can be interpreted as a ‘corrected’ or ‘enhanced’
version of Y with more regularity.

Bibliographical note. For p = 2, the above form of regularization with Div and
Curl functionals has been considered by Amodei and Benbourhim [AB91],
Dodu and Rabut [DR04], and Arigovindan & al.[Ari05, IASJT07]. Suter
and Chen [Sut94), [SC00] also considered quadratic regularization with other
types of differential operators for vector fields. Separately, regularization with
scalar L; norms has come largely to replace L, regularization in many applic-
ations in scalar image processing, were it was initially proposed on account of
its better edge-preserving properties compared to the latter [ROF92) [GR92],
but we are not aware of its application to vector fields.

Let us begin by writing J,(F;Y") explicitly as

3P(FY) = Z|F Y[m]? + o y_ (/] Cutls Fm]|?)"
+aqgy _(v/|Divs F[m]|?)?,

where we have the following relations for the point-wise magnitudes of Curls F
and Div; F":

|Curls Flm]|* = > (8:F;[m] — §; Fi[m])*;
1<i<j<d

| Divs Flm]|> = Y &,Fi[m]6;Fy[m].

1<1,5<d

Numerical resolution

For p = 2, the quadratic cost defined in can be minimized quite effi-
ciently by using an iterative linear solver to find the F' for which its gradient
vanishes (our implementation uses the conjugate gradient method). The min-
imization problem remains convex for p = 1, which suggests that it should
still be solvable with relative efficiency, although not necessarily as easily
as in the previous case. To minimize for p = 1 we follow Figueiredo
& al. [FDONO6], and form a sequence of quadratic upper bounds (majorizers)
of the cost function, which we then minimize (or only reduce) in sequence.

Specifically, we can use the inequality \/|a| < /|a’| + (|a| — |a'[)//|a/| to
define the following tight upper bound (up to a constant term in F') on the
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cost at a fixed F':

QEFF;Y) = > > FEmP->_ > 2Fm]Ym]

m 1<i<d m 1<i<d

+a. Z ¢} Curls F[m]|?
m

+ag y _ d,}!| Divs Fm][?,
m

with

cm = /| Curls F'[m]|? and d,, :=+/|Divs F'[m]|?.
Next, consider the sequence

ﬁ’(n) = arg mFinQ(F, ﬁ’(nfl); Y),

defined recursively with some initialization such as 13’(0) = 0. For a given
ﬁ’(n,l) (corresponding to the intermediate solution obtained at the end of
the n — 1st outer iteration), the above minimization falls in the category of
quadratic re-weighted least square problems, and is therefore solvable using
a linear solver. Note that minimizing Q(F, F';Y') is equivalent to minimizing
JIp,ac,aq(F;Y). Furthermore, we have

Q(Fny, Fny V) < Q(F ), Finm1); Y) < Q(Fnoy, Fin-1);Y)

which shows that, with increasing n, the 3551)(ﬁ'(n); Y)’s form a decreasing

sequence. (This is not a strict proof of convergence, but we have made so
many approximations and heuristic arguments already that one more would
not matter! In fact, in practice, we may not even want strictly to minimize
the cost function, since stopping at an intermediate stage might produce a
sufficiently good solution for a smaller computational budget, and there is no
practical reason that this intermediate solution might not even be preferable
to the strict minimizer of the cost according to our quality criterion.)

The final procedure for p = 1 is given in Algorithm [1} In actual implement-
ation the local minimization in the last step of the loop is performed using
an iterative linear solver such as conjugate gradient, which may however be
stopped before full convergence while still reducing the global cost.
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Algorithm 1: Algorithm for L; regularization

input: Y;
ﬁ'(o) «— 0;
repeat
n<n+1;
for all data coordinates m do
| em « /| Cutls F'[m][%; dp, /| Divs F'Im]|%;
end
ﬁ’(n) + argming Q(F, ﬁ’(n,l); Y);
until stopping criteria are met;
return F’(n).

Experiments

Simulated denoising experiments

4.aa We implemented the scheme described previously for p = 1 and a linear solver

92

for the quadratic (p = 2) case in MATLAB (MathWorks, Natick, US-MA) for
denoising and enhancement in two and three dimensions. To test the method,
we first used it to denoise simulated phantoms corrupted by different levels
of additive white Gaussian noise, optimizing the algorithm parameters o,
and a4 for best mean squared error (MSE) performance.

In computer simulations, the true MSE can be calculated since the ground
truth is known. In real-world applications, the ground truth is typically
not accessible, although, depending on the circumstances, it might still be
possible to estimate the MSE for the purpose of optimizing algorithm para-
meters. For example, if the distortion in the measurements can realistic-
ally be modelled as independent additive white Gaussian noise, then the
Monte Carlo techniques proposed by Ramani € al. [RBUOS| produce reli-
able estimates (see also Girard [Gir95]).

However, the noted assumptions about measurement noise can frequently fail
in practice, and/or the computational cost of running the algorithm many
times with different sets of parameters for optimization may become prohib-
iting. Other than that, the MSE might simply not be a suitable indicator of
the usefulness of the reconstruction in the application of interest. In these
cases choosing suitable values for the parameters becomes a matter of trial
and error (usually not too many, due to the computational cost), and inspired
guessing, guided by the physical significance of the curl and divergence regu-



4.ab

4.ac

§4.3. Experiments

larization terms (for instance, using a relatively large value for oy pushes the
solution towards being more-or-less divergence-free, which is a key property
of homogeneous incompressible flow).

Phantoms. The first of our two 3D phantoms, presented in Figure con-
sists of the gradient field of the potential

_ 2
¢3D($1,1‘2,1’3) = T1Z2€ l=|

over a 41 x 41 x 41 grid. The second 3D phantom, pictured in Figure
is a model of fully-developed laminar flow (with a parabolic profile) inside a
tube, which is encircled by a constant flow in a torus. It is defined on a grid
of size 26 x 26 x 26.

Each of these phantoms was corrupted by different levels of additive Gaussian
noise, so as to have a signal-to-noise ratio (SNR) of 0, 10, or 20 decibels (dBs).
The SNR for a given signal F' compared to the ground truth Fi,ye is computed
according to the formula below:

SNR(F; Fyrue) = 101°€1o(||Ftrue||§) — 101ogy, (|| F — Ftrue”%)

Experiments. In order to compare the performance of L; and I, regularization
per , we used the conjugate gradient method to solve the quadratic (Ls)
problem until convergence. For the L; problem, we used Algorithm (1| with
8 external cycles and 600 internal conjugate gradient iterations per cycle to
minimize the local quadratic bounds. Some results are shown graphically in
Figures[4.1]and [4.2] (amplitude cross-sections) and also in Figures[4.3|and
(3D ‘glyph’ visualization generated using ParaView 3.8.0 [AGL05]). Quant-
itative comparisons in terms of SNR improvement (equiv. to MSE improve-
ment) in dB are given in Table In the same table, we also provide mean
angular error figures. The latter performance measure, which we have adop-
ted from Barron, Fleet, and Beauchemin [BFB94|, is defined as the average
point-wise angle between the ground truth and the output of the method.

As suggested earlier, in each instance, we used a bracketing search method to
optimize the algorithm parameters (o, ag) for best MSE performance (but
not taking into account the mean angular error). It should be noted that,
in practice, the L; algorithm is terminated before full convergence in order
to limit the amount of computation. The time or criterion for stopping the
iterations can in fact be seen as an additional parameter of the algorithm,
which we fixed in advance as indicated above. As a result of the different
states of convergence in different trials with variable a., @y, the numerical
value of the performance criterion (the MSE) can fluctuate as a function of
parameters o, ag around its optimum, and a bracketing search may therefore

93



4. Variational Reconstruction of Vector Fields

4.ad

94

yield sub-optimal values for a.,ay. This does not invalidate the results
(even the opposite), since it shows that the method performs well even with
potentially sub-optimal parameter values.

Results and discussion. Both quantitative and qualitative results suggest that
L; regularization performs better than its quadratic counterpart for the second
phantom, which exhibits discontinuities in the flow, while the results of the
two kinds of regularization are comparable for the first phantom (quadratic
regularization performs slightly better in MSE terms in this case, which is
not unexpected given that the first phantom is smooth and free of discon-
tinuities; but L; regularization still produces favourable results in terms of
mean angular error). In addition, visual inspection indicates that L; regular-
ization is better at preserving small details and sharp discontinuities at flow
boundaries, which are smoothed when using quadratic regularization.

Table 4.1: Comparison of L; and L, regularization for denoising.

gradient field

input SNR [dB] SNR improvement [dB]
angular error [deg.] angular error (mean + stdev) [deg.]
Ll L2
0 11.70 11.04
(59.12° £ 39.93°) (28.61° + 31.46°) (31.84° + 33.95°)
10 7.50 7.78
(37.81° £ 36.74°) | (16.90° +23.05°)  (20.87° + 28.31°)
20 4.49 4.89

(20.22° +28.11°) (10.03° + 15.80°) (12.40° £ 21.25°)
tube and torus

input SNR [dB] SNR improvement [dB]
angular error [deg.] angular error (mean + stdev) [deg.]
Ly Lo
0 8.03 6.37
(12.11° + 7.29°) (5.97° + 4.04°) (5.95° + 3.93°)
10 7.96 2.55
(3.82° £ 2.21°) (2.58° + 1.82°) (3.16° & 2.42°)
20 6.67 0.51
(1.21° + 0.70°) (0.99° + 0.71°) (1.25° + 0.85°)
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(a) Original (b) Noisy (0 dB (c) Li denoised (d) Lz denoised
SNR) (11.70 dB im- (11.04 dB im-
provement) provement)

Figure 4.1: Amplitude cross-sections, ‘gradient’ phantom, comparing L; and
L, denoising.

(a) Original (b) Noisy (10 dB (c¢) L; denoised (d) Lz denoised
SNR) (7.96 dB improve- (2.55 dB improve-
ment) ment)

Figure 4.2: Amplitude cross-sections, ‘tube and torus’ phantom, comparing
L; and L, denoising.

Enhancement of flow-sensitive MRI

Experiment. In a more realistic application of the method, we used it to
enhance directional features of measurements of blood flow in the thoracic
aorta of a healthy human subject. These measurements were obtained using
flow-sensitive Magnetic Resonance Imaging (MRI) in three dimensions plus
time with ECG and respiratory gating, as described in Stalder [Sta09], Markl
& al.[MHBT07], and Frydrychowicz & al.[FAHT08]. A brief description of
the parameters of the MRI apparatus used in the experiment and stand-
ard systematic corrections applied to the measurements can be found in our

conference paper [TDGSUI0].

We applied the proposed L; algorithm to this dataset. Since the Gaussianity
and independence of additive measurement error were not realistic assump-
tions, and also because our performance criterion was qualitative (namely,
better expression of certain features of the flow), we adjusted the parameters
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of the algorithm manually (in about two trials), with Ay ~ 150), to enforce
small divergence.

Results and discussion. Evaluation of the effectiveness of the scheme was in
this experiment judged on the basis of the quality and informativeness of flow
visualizations that were produced using the enhanced dataset, compared to
those generated from the original set. The difference is clearly visible in
the pair of ‘before/after’ pathline visualizations given in Figure The
pathlines visible in this Figure are meant computationally to approximate
the trajectory of massless particles inside the flow (data and visualizations
are courtesy of Dr Aurélien F. Stalder; the visualizations were produced using
the commercial software package EnSight (CEI, US-NC)). In particular,
after applying the correction, many more pathlines remain within the lumen
volume (the inside space of the artery) and complete their trajectory to the
descending aorta.
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v

(b) Denoised field, using L; regularization (11.70 dB SNR)

Figure 4.3: ‘Gradient’ phantom; see text for a description of the experiment. 97
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(a) Noisy field (0 dB SNR)

i

(b) Denoised field, using L; regularization (9.01 dB SNR)

98 Figure 4.4: ‘Tube and torus’ phantom; see text for a description of the ex-
periment.
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Velocity [m/s]

1.00
0.75
0.50
0.25
0.00

(a) Original pathlines

Velocity [m/s]

1.00
0.75
0.50
0.25
0.00

(b) Pathlines after enhancement with L; regularization

Figure 4.5: Flow-sensitive MRI recordings of blood flow in the aorta be-
fore and after denoising; data and visualizations courtesy of Dr Aurélien F.

Stalder.
99
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Conclusion and Outlook

In this thesis we presented new stochastic models for vector fields that are
statistically self-similar and rotation-invariant in the sense that is appropriate
for physical vectors. We defined these models using a powerful distribution-
theoretic formalism that enabled us to characterize the application of cer-
tain singular integral operators to different categories of innovations (white
noises). The noted stochastic models, introduced in Chapter extend scalar
models known as fractional Brownian motions (in the Gaussian case) and
fractional stable motions (in the more general a-stable case), of which we
also gave a new characterization amenable to such extension. At the same
time, our proposed vector models permit us to take account of, and repres-
ent, specific directional properties of vector fields (such as irrotational and
solenoidal tendencies), which have no counterpart in the scalar case.

For the purpose of formulating the mentioned characterizations, we put for-
ward a general framework for stochastic modelling (outlined in Chapter |1
that builds upon, extends, and gives rigour to the idea of innovation mod-
elling employed in signal processing. Using this framework, constructing a
stochastic model becomes a relatively simple matter of choosing a probability
model for independent innovations, and an operator that combines them and
produces the specific dependency structure that is relevant for the modelling
application of interest.

Next, in Chapter 2| we presented a novel family of matrix-valued (tensor)
distributions that can be considered the equivalents of homogeneous isotropic
distributions in 2’', and which share their properties of being closed under
scaling, rotation, the Fourier transform, and multiplication and convolution
(the latter two when permitted). We also emphasized certain directional
properties of these distributions, important in applications and related to
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their interaction with Helmholtz-type decompositions of vector fields into
curl- and divergence-free components, which are unique to the vector setting.

In the same chapter, we investigated singular integral operators that arise
from convolutions with the said distributions and their scalar parallels, em-
ploying techniques from complex analysis and distribution theory going back
to Schwartz and Gel'fand & al. We then introduced the so-called L,-con-
tinuous modifications of these convolution operators, which we later used in
the characterization of the random vector fields noted in the first paragraph.

Complementing the theoretical development described above, in Chapter
we took inspiration from the same principles of invariance and innovation
modelling in order to formulate a general framework and method of solution
for the problem of reconstructing a vector field from imperfect observations.
Once the general framework was put in place, we specialized to the problem
of vector field denoising and enhancement, for which purpose we presented an
algorithm that defines the present state of the art in its area of application.
We concluded the chapter with experimental validation of the algorithm on
synthetic numerical phantoms as well as real-world data from flow-sensitive
magnetic resonance imaging (MRI) of blood flow in the thoracic aorta.

Finally, in two appendices, we included some thoughts on probability theory
and, separately, reproduced some of our related publications that were not
covered in the thesis, or whose presentation differed noticeably from the one
given in the main text. In particular, the reader can find there an account
of our work on the theory of splines and wavelets that go along with and
approximate the operators of Chapter 2] and their applications in estimating
the parameters of the models.

While the development in each of the above areas appears to us to have
reached a satisfactory state, there exist nevertheless many possibilities for
future work, both theoretical and applied. We enumerate a few of these.

It would be desirable, in principle, that the theory of probability on topo-
logical vector spaces that we employed in this thesis be developed and re-
fined further in order to permit one to study probabilistic questions that are
not countably-determined (such as continuity, boundedness, €c.). Although
some work in this connection exists (see, for instance, Kénig [K6n97, [Kon06c|
and also Schwartz [Sch73| [Sch8&1]), this, nevertheless, is a major undertaking
for which we did not feel fully qualified. (On a related note, the author has
a vaguely-suppressed affinity for more ‘constructive’ theories of probability,
logic, and topology based on algebraic and order-theoretic structures such
as lattices but also more elementary partially-ordered sets, which he sees as
alternatives to the set-theoretic foundations of topology and measure theory.)



Following up on the previous point, in this thesis we limited ourselves to
random models defined by linear transformation of innovations affected by
continuous linear operators. A more general theory of non-linear transform-
ations would offer many more possibilities, but the convenient and powerful
linear techniques of the theories of topological vector spaces and distributions
would no longer apply.

Separately, it would be of interest to find the connection between the op-
erators and distributions introduced in Chapter [2| (in what concerns their
invariance properties, more specifically rotation-invariance) and differential
forms, which would allow us to extend the theory from the scalar and vector
cases considered here to tensors of arbitrary order. We did not have the
necessary technical background for doing so.

Finally, it would be desirable to formalize the link(s) between the applied
schemes introduced in Chapter |4 and stochastic models in the spirit of
those introduced in Chapter More practically, the framework presented
in Chapter [4]is fairly general, and many engineering problems can be formu-
lated in it, of which the ones we considered there (vector field denoising and
enhancement), are only examples. Other applications, such as more complex
forms of vector field reconstruction from indirect measurements, optical flow
estimation, resolution refinement, and the like, could easily be conceived and
implemented in the same framework. For the numerical implementation of
such methods, other algorithms beside the one we presented in Chapter
(for instance those utilizing primal-dual methods and advanced techniques
of convex analysis), could also be employed.
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A Probability Calculus

One cannot inquire into the foundations
and nature of mathematics without delving
into the question of the operations by
which the mathematical activity of the
mand s conducted. If one failed to take
that into account, then one would be left
studying only the language in which
mathematics is represented rather than the
essence of mathematics.

—L.E.J. Brouwer

This chapter serves to outline the basic probabilistic reasoning and results
used in the thesis (mostly presented without proof). To be specific, the
results referenced directly in the main text take up no more than a few
pages and are all to be found in §A.6] The rest of this chapter consists
mostly of digressions and occasional pseudo-philosophical musings, in which
we have permitted ourselves to indulge on account of the auxiliary nature of
the chapter and its relegation to the appendix. We intend, in particular, to
draw attention to the justification (sometimes uncertain) of some of the basic
tenets and constructions of probability theory in connection with quantifying
our knowledge about the physical world.

We emphasize that in this chapter, we plan merely to rewvisit already fa-
miliar notions, occasionally from a slightly different perspective, and not to
develop them from scratch. Fremlin [FreO4al [Fre03| [Fre04b, [Fre06) [Fre08| and
Bogachev [Bog07] achieve the latter purpose remarkably (and exhaustively).
Other important references include Schwartz [Sch73|, where the general the-
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ory of Radon measures on arbitrary topological spaces is developed, and
Konig [K6n08], which takes an unconventional approach aimed to be more
naturally adapted to uncountable probability theory. The previous references
notwithstanding, in an essential way, all of the probabilistic/measure theor-
etical results that we depend on in the rest of this thesis (specifically, those
of were already developed and exposed systematically by Gel’fand and
Vilenkin in their 1961 volume (English trans. 1964) [GV64].

Probability in the language of set theory

We adopt a view of probability theory as the deductive calculus of observation-
based (experimental) science, in the same fashion that logic can be viewed
as the deductive calculus of mathematical proofs. Thus, in the same man-
ner that logic is concerned with computing the truth values of compound
statements based on an initial set of known facts, in probability theory we
resolve to compute the probabilities of derived statements starting from a
collection of probabilistic assumptions. We shall not dwell upon the meaning
of probability; different schools of thought have emerged in this connection,
which favour objective vs subjective interpretations and all, but the question
is ultimately not mathematical. We shall therefore simply suppose that we
are dealing with a model of incomplete knowledge as described below (and
let philosophers debate the meaning and means of acquisition of knowledge).

There exists, in our model of reality, a fundamental set Q of binary ! (true or
false), mutually ezclusive statements (atoms), such that any other binary
statement we might be inclined to consider can be construed as the logical
“or” 2 of a number of fundamental statements, i.e. as a subset of Q. (You
can think of these fundamental statements as enumerating distinct states of
the system under investigation.) B(Q2), the power set of Q, is therefore the
set of all (compound) statements one is able to evaluate based on the truth
values of the fundamental ones.® We have incomplete knowledge, in the
sense that we do not know the truth values of all statements with certainty,
but, instead, for only some (compound) statements S € & C PB(R2), we have
at our disposal a number #(S) in the range [0, 1], which we interpret as the
probability that S is true (the question of where this number comes from
and what it means is a source of debates and divisions among statisticians;

1. We could imagine nominally more general n-ary statements but the outcome would
be equivalent.

2. An equivalent dual formulation with logical “and” is also possible.

3. The set of all statements has cardinality 2!9!. This simple observation is fundamental
in information theory.
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we address the question by ignoring it). A theory of probability can then be
defined as a system of procedures and rules of computation (a calculus) that
allow us to assign, in an unambiguous way, a numerical value (probability)
2 (T) to (some) statements T not in the original set system &. These rules
of computation are the azioms of our theory.

A probability is therefore a special kind of real-valued set function, defined
on a set system and satisfying a number of axioms.

Set systems. A set system in Q is a non-empty subset of P(2). PB(Q2), which
is itself a set system, is an example of a Boolean algebra with distributive,
binary, meet and join operations N and U, a unary complement operation
C: 7T — T a bottom @, a top €2, and a partial order C. Accordingly,
most set systems that we shall encounter have some order-theoretic structure.
Examples of set systems we shall see and use include lattices, algebras, and
o-algebras of sets (all defined below), as well as systems of open, closed,
and compact sets in a topological space 2, which we denote respectively as
Open(2), Closed(2), and Comp(2).

Maps between set systems. Given two spaces Q,T, a map f: 2 — T defines
a set map P(2) — P(T) (also denoted by f) thus:

f:S={flw)eT:we S}
The above map has an inverse PB(T) — P(Q) given by
T {weQ: fw) e T}

f(S), S C Q,and f~}(T), T C 7T, are called, respectively, the image and
wnverse image (or pre-image) of S and T under f.

Given set systems & C P(Q) and T C P(7T), we say that f is forward-
compatible (&,%) iff
Se6 = f(S)ex

and inverse-compatible (S,%) iff
f(SYex = Se6.

Clearly, f is forward-compatible (&, ¥) iff its inverse f ! is inverse-compatible
(%,6). f is said to preserve or be fully-compatible (&,%) iff it is both
forward- and inverse-compatible (&, %) or, what is the same, iff

Se6 & f(S)ex.

In particular, a map f : Q@ — Q is said to preserve & C B(Q) iff it is
fully-compatible (&, S) (compare with structure-preserving maps in and
measurable maps below).
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Some examples of questionable relevance. In a topological space €2, a map that
is inverse-compatible with either Open(2) or Closed(f2) is precisely a con-
tinuous map. A map that is forward-compatible Closed(f2) is called a closed
map, and one similarly defines an open map as being forward-compatible
Open(R2). A homeomorphism on  is a bijection that preserves Open((),
or, equivalently, a bijection that preserves Closed(f2). Similarly, we define
a k-homeomorphism as a bijection that preserves Comp(2). Every homeo-
morphism is also a k-homeomorphism (the continuous image of a compact set
is compact), and if Q is a Hausdorff k-space, * then every k-homeomorphism
on {2 is a homeomorphism, as we show below.

We shall later define a measurable map € — 7T as one that is inverse-
compatible with the pair of o-algebras at hand.

Proposition. A bijection h on a Hausdorff k-space is a homeomorphism if and
only if for any set K C €,

K € Comp(Q2) & h(K) € Comp(Q).

Proof. The ‘only if’ part is clear (continuous maps preserve compact sets).
To prove the ‘if’ part, take any compactum K C Q. Then h(K) is compact
by assumption. Thus any closed set C C h(K) is also compact, being a
closed subset of a compactum. Therefore A~ 1(C) is compact by assumption,
and hence closed (2 is Hausdorff). Thus the inverse image of any closed set
C under the restriction h|x is closed, i.e. h|x is continuous. It is known that
a map on a Hausdorff k-space is continuous iff its restriction to an arbitrary
compactum is continuous. It therefore follows from the continuity of h|x
that h itself is continuous. Similarly, one shows that A~! is continuous,
completing the proof. |

Finitely additive probability measures

Elementary axioms. We produce below a basic system of axioms based on
logical intuition.

(P1) (SUT)+2(SNT)=2(58)+2(T); (modularity)

4. A Hausdorff space is a space in which any two distinct points are separated by disjoint
neighbourhoods. Compacta of a Hausdorff space are closed. A k-space is a topological
space verifying the condition

S € Closed(Q2) & VK € Comp(2) SN K € Closed(f2).

A map f:Q — T, where Q is a k-space, is continuous iff its restriction to every compact
set of  is continuous [Bro64].
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(P2) SCT = 2(5)<2(T), (isotonity)
(P3) 2(2)=0; (neutral element)
(Pg) 2(Q)=1. (normalization)

The latter two axioms indicate our belief that some (usu. unknown) state-
ment in 2 is true, and set the convention to assign the numerical values 0
and 1 to almost surely false and true statements respectively (it goes without
saying that an axiom is a prior: meaningful only if & is defined for the sets
appearing in the axiom formula).

It is of course necessary for our initial set of probabilities on & to be consist-
ent with respect to the system of axioms, meaning that applying the axioms
to the probabilities does not lead to contradictions or different probabilities
for the same statement.

The probability assignment & is therefore a function with values in [0, 1]
initially defined on some set system & C () and satisfying the axioms;
the object of the calculus of probabilities is consistently to extend the domain
of & to some larger set system T O &, in such a way that the axioms remain
true for the extension. In practice, one usually fixes the domain & of the
function & : & — [0,1] and the set of axioms it is required to satisfy, and
then seeks larger set systems © D S to which & admits a unique extension
consistent with the axioms.

Lattices and algebras of sets. We shall take as our minimum set of axioms the
above four. It is assumed in probability theory that the domain & has, as a
minimum, the structure of a bounded lattice, that is, it is closed under NU
(finite intersection and union) and has a top (2) and a bottom (&). This
assumption is not always valid in practice: depending on the nature of our
experimental data we may be able to assign empirical probabilities to two
statements S, T separately, but not to their co-occurence SNT. In fact, even
Q € 6 may be doubtful, since we cannot always be sure to have identified
the entire set of fundamental statements (possibilities); hence we cannot al-
ways know the negation (Q complement) of statements in & (it is interesting
to compare this last situation with the state of affairs in intuitionistic logic,
where one disallows proofs based on the principle of excluded middle). Nev-
ertheless, the bounded lattice assumption is virtually universally adopted by
measure theorists and probability theorists alike, and we shall adopt it too,
because it is convenient if unrealistic.

Once we suppose that & is a lattice (or, at least, closed under intersection),
and that & is consistent with the axioms on &, we can then extend &
consistently and uniquely to the algebra generated by &, in symbols Alg(S),
defined as the N UL closure of & (C stands for taking complements in ).
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This extension is obtained by iterative application of the following formulae
(derived from the axioms) to assign the left-hand side probabilities:

PSUT)=2(S)+2(T)-2(SNnT),
P(SH=1-2(9),
PS'NT)=2(SUT) - P(S) =P (T)—2(SNT).

This proves consistency and uniqueness, if the original system is consistent,
because the above formulae are propositions when restricted to & and they
allow us to compute the probability of any set in Alg(&) in a finite number
of steps (one should also verify that the values thus obtained lie in [0, 1], but
this is an easy consequence of Axioms|(P2)H(P4)} in particular, it is only here
that Axiom is needed); for the full construction see Hausdorff [Haul4,
pp. 451, 452] or Pettis [Pet51], Theorem 1.2].

We record this result as a small

Finite extension theorem. A function 2 : & — [0, 1] satisfying Axioms
where & is a bounded lattice, has a unique extension Alg(&) — [0, 1]
that fulfils Axioms on Alg(6).

Since, by the above theorem, an extension of & from a bounded lattice to an
algebra is always available and unique, we shall henceforth always assume
that the initial set & over which & is defined is an algebra. This motivates
the

Definition. A set function & — [0, 1] where & is an algebra of sets is called an
elementary (or finitely-additive) probability measure iff it satisfies Axioms
(P1)H(P4)l We shall also use the term elementary stochastic model to refer
to the same. The set Q = (Jgcs S equipped with the algebra & C B(Q) is
called an elementary probability space.

More definitions. Let &, 2 be two elementary probabilities with respective
domains &,% and with Qp = Ugeg S = UpesT = Qo. £, 2 are then
comparable on & N T (note that the intersection is again an algebra, and
the restrictions of #,2 to it are elementary probabilities). £ is said to
be (strictly) richer than £ iff T C & (it is a richer model because it can
evaluate more statements). A probability # : & — [0, 1] that is richer than
some £ : ¥ — [0, 1] is said to be an extension of £ (and £ a restriction of
@) it #(T)=2(T) for all T € T C &. Note that, trivially, the restriction
of an elementary probability & to any sub-algebra € C G4 is always a
well-defined elementary probability in its own right.

Given U € & with (U) > 0,let T ={S € 6: S C U}. T is then an algebra
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in U. For T € ¥ define
2(TWU) = ——

and extend Z(-|U) to all S € & by
P(S|U) :=2(SNUU).

One can then directly verify that & (-|U) satisfies Axioms |[(P1)H(P4)[on T
and by extension on &, meaning that & (-|U) is a valid elementary stochastic
model on & (the conditioning of the probability & on U).

Countably-additive probability measures

In models with a finite number of fundamental statements (and, consequently,
a finite number of compound statements), the above ‘finitary’ axioms and
rules of computation seem quite adequate, and using them we can essen-
tially reduce probability theory to combinatorics and counting;® including,
perhaps, combinatorial asymptotics if we wish to study the large-scale beha-
viour of systems (where by large-scale we mean statements concerning a great
many fundamental statements at the same time). It is unclear to the author
if such a finite theory should not suffice in practice (or even if anything but
a finite theory should be accepted on logical and philosophical, as well as
practical, grounds), but, at any rate, due to the commonly perceived need
for a formalism that can deal with infinite—even uncountable—cardinalities
arising out of axiomatic set theory, we shall very soon (pretend to) put our
philosophical doubts and misgivings aside, switch hats, and become well-
mannered formalists happy to play the game of infinity for the better part
of this thesis.

But before quite doing so, let us warn the reader that the current state of
the theory of probability, in its application to uncountable infinite systems of
mathematical interest, is not entirely satisfactory (and we shall not attempt
to improve it). In what concerns us, the difficulty is essentially this. There
exist two mathematical theories, namely measure theory and point-set topo-
logy, that deal with set systems and maps between them. On the surface,
the two theories look very similar: both start from the notion of a set system
that is closed under some specific set-theoretical operations (o-algebras vs

5. The careful reader might ask if there is even a need for an infinitum, much less a
continuum, of probability values in [0,1] in the finitist picture. Indeed there is none; a
finite set of probability values would have sufficed. But we do not wish additionally to
complicate the presentation by following up on this point.
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topologies), and study maps that are compatible with this structure (meas-
urable functions vs continuous functions). Quite naturally, therefore, one
wonders if sets that appear in topology can be measured by measure theory.
In attempting to answer this seemingly innocent question, all hell breaks
loose. The fundamental problem is that the basic methods and procedures
of abstract measure theory are sequential (countable), while topological sets
are frequently defined by way of non-sequential (uncountable) procedures. é
There exist some partial solutions, but they typically require us to restrict
the class of topological spaces and set systems we work with.

Limit axioms. The first and most commonly referenced axiomatization of
probability theory was put forward by Kolmogorov [Kol33| using the lan-
guage of measure and integration, and the previous observations therefore
apply to its interaction with uncountable procedures and topology. In order
to introduce infinite procedures (meaning limits) in his theory, Kolmogorov
extended the set of axioms given previously 7 by introducing an axiom of con-
tinuity. Let us present here two such axioms for a probability & : & — [0, 1]:

5) For any countable increasing sequence (Sy) of sets in & with limi
P F table i i S f sets in & with limit
Uk Sk =S € 6, limy_,00 Z(Sk) = 2(9). (upward o-continuity)

(Ps’) For any countable decreasing sequence (Si) of sets in & with limit
NSk =S €6, limg_00 Z(Sk) = 2(S). (downward o-continuity)

In the appellation of the above axioms, o stands for sequential or count-
able. Similar notions can be defined in the non-sequential or uncountable
case (typically referred to using the letter 7), by replacing sequences with
arbitrary directed set systems. We shall not bother the reader with these
generalizations.

With regard to the practical relevance and empirical justification of these
additional axioms we quote Kolmogorov himself [Kol56]:

Since the new axiom is essential for infinite fields of probability
only, it is almost impossible to elucidate its empirical meaning [as
has been done for previous axioms]. For, in describing any observ-
able random process we can obtain only finite fields of probabil-
ity. Infinite fields of probability occur only as idealized models of
real random processes. We limit ourselves, arbitrarily, to only

6. Konig [K6n97, [Kén06c| candidly identifies these imperfections better than we can
hope to have done here, and goes on to propose a new (but compatible) measure theory
that attempts to overcome these limitations. We shall, however, restrict ourselves to
standard measure theory.

7. His set of axioms was in fact equivalent but not exactly the same.
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those models which satisfy [the continuity aziom/. This limit-
ation has been found expedient in researches of the most diverse
sort.

It is straightforward to verify that, given the previous axioms, the new axioms

and are in effect equivalent:
Lemma. Let & : & — [0, 1] satisfy Axioms |(P1)H(P4)l Then

[®s) < [Ps7}

Proof. We show the forward direction. The other direction is proved simil-
arly. Let (Si) be any decreasing sequence with limit S. Then (S%) is increas-
ing with limit S°, and from 2 (S;) = 1 — 2 (S%) and upward o-continuity we
have limg_, 0o 2 (S) = 1 — limg 00 P (S%) = 1 — 2 (S%) = P(S); hence P is
downward o-continuous. |

The principal utility of the above axioms lies in that they allow us to extend
the calculus of probabilities to countably-constructed set systems. Let us
denote by o Alg(S) the o-algebra generated by & (where, we recall, & is an
algebra); by this we mean that o Alg(&) is the smallest set system in ()
that includes G and is closed under countable unions and intersections, as
well as taking complements in . In this case we have the following

Countable extension theorem (Hahn-Kolmogorov). Let & : & — [0,1] be a
finitely-additive probability measure on an algebra & and assume that &
additionally fulfils Axiom Then & can be extended to the o-algebra

generated by & while retaining Axioms (P5), and this extension is
unique.

We shall not give a proof of the above well-known theorem as such a proof can
be found in most standard references on measure theory. Instead, once again
we quote Kolmogorov [Kol56] on the empirical significance and relevance of
this extension:

Even if the sets (events) [S of &] can be interpreted as actual
and (perhaps only approximately) observable events, it does not,
of course, follow from this that the sets of the extended field
[0 Alg(&)] reasonably admit of such an interpretation.

Thus there is the possibility that while a field of probability [S]
may be regarded as the image (idealized, however) of actual ran-
dom events, the extended field of probability [o Alg(S)] will still
remain merely a mathematical structure.

Thus sets of [0 Alg(&)] are generally merely ideal events to which
nothing corresponds in the outside world. However, if reason-
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ing which utilizes the probabilities of such ideal events leads us
to a determination of the probability of an actual event of [&],
then, from an empirical point of view also, this determination will
automatically fail to be contradictory.

By the previous theorem, we can always extend a real set function defined
on an algebra and satisfying Axioms [(P1)H(P5)| to the o-algebra generated
by & in a unique fashion, while maintaining consistency with the Axioms.
This motivates the next

Definition. A set function & — [0, 1] satisfying Axioms |(P1)H(P5), where
G is now a o-algebra, is called a non-elementary, or countably-additive,

probability measure or stochastic model. In the absence of indications to the
contrary, the unqualified term probability measure is henceforth understood
to refer to a non-elementary probability.

Note that this new definition is a specialization of the previous one given
in [Al} any probability in the sense just described is automatically also an
elementary probability (since every o-algebra is also an algebra).

Non-elementary equivalents of the notions introduced in are defined sim-
ilarly.

Having answered the question of extending a probability measure from an
algebra & to the o-algebra o Alg(S) generated by it with the aid of Axioms

(P5)} [(P5)] and Theorem let us now entertain extensions of (countably-

additive) probability measures to larger o-algebras. The next theorem, which
we cite from Bogachev [Bog07, Theorem 1.12.14] without proof, provides im-
portant insight into the questions of existence and uniqueness of such exten-
sions. We shall need two definitions first.

Definition. Given a finitely-additive probability measure & : G — [0, 1] on
a set system & with (Jg.s S = 2, we define set functions &,,2* : B(Q) —
[0, 1] by the identities

P (T) =sup{P(S): 655 CT}
P*(T) = inf{P(S): 655 DT}

More generally, given a set system 9t C & we define

Pon(T) =sup{P(S) : M>S CT}
P*(T) = inf {P(S) : M > S DT}

The former two set functions are related by the following well-known formula.
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Lemma (duality formula). With the same notation as in the above definition,

Z.(T)+@*(TY =1, forall T C Q.

Proof. #.(T) =sup{#?(S): 638 CT}=sup{l-2(S"):655CT}=
1-inf{®(sY): 658 >T}=1-2*T). N
We also have the following rather obvious lemma.

Lemma. Let & be a finitely-additive probability measure on some algebra

G and let 9,91 C &. Then,
M CN = Peom < P and P > P

Theorem (existence of extensions). Given a probability measure & with do-
main & and a set T ¢ &, there exists probability measure &' on ¢ Alg(6G U
{T}) extending # with
2'(T) =,
for any < such that
P.(T) <y < P*(T).
Conversely, any extension &' of & to ¢ Alg(& U {T'}) must satisfy

2.(T) < 2'(T) < 2*(T).

The converse part does not appear in Bogachev [Bog07, Theorem 1.12.14]
but it is easy enough to show: we have ! > &,, #'* < @#* and @] < @' <
@'* (the last relation being meaningful only on the domain of &’ which is
= o Alg(6 U {T'})), from where the desired result immediately follows. We
now look at some of the consequences of the above theorem.

Corollary. With 2,6, T as in the above theorem, £ has a unique extension
to o Alg(6G U {T7}) iff
2.(T) = 2*(T).
In this case, the extension satisfies & (T') = Z.(T) = 2*(T).
Corollary. Given a probability measure & on & and a set system ¥ such that
2(T) = 2*(T)
for all T € ¥, there exists at most a unique extension of & to o Alg(& U X).
This extension, if it exists, satisfles #(T) = &, (T) = 2*(T) for all T € %.

If the family ¥ is well-ordered (which it always is if we admit choice), it is
possible to show that the extension hypothesized in the last corollary always
exists provided that the sets in ¥ are disjoint.

The above results motivate the following
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Definition. After Konig [K6n97], given a finitely-additive probability measure
% on G (where G is an algebra but not necessarily a o-algebra), and set
systems 9, T C &, the probability & is said to be inner regular M at T iff

P(T)=Pom(T) foralSecz.
Similarly, & is said to be outer regular 9t at T iff
P (T)=2*™(T) forall S€T.

In the usual case of T = & we call & simply inner/outer reqular 9. Note
that a (finitely- or countably-additive) probability measure on & is always
inner and outer regular &.

The next lemma is obvious.
Lemma. Let 91 C 91 C S. Then,

2 inner/outer regular M = & inner/outer regular M.

In addition, the same reasoning applied in the proof of also proves the

Lemma. Let (90 denote the set system {M® : M € 9} (note that CCOM = o).
Then,
2 inner regular M & % outer regular (ON.

Corollary. Assume 91,0 C &, 9 D (9. Then,

% inner regular MM = £ outer regular ;
2 outer regular 9 = & inner regular N.

The following examples are important.

Borel and Radon measures. Let Q2 be a Hausdorff topological space with topo-
logy © = Open(f2). We define the Borel o-algebra on Q as

Borel(Q2) = o Alg(O).

A probability measure defined on Borel(Q2) is in turn called Borel. A Borel
probability measure is Radon iff it is inner regular & = Comp(f2), where
Comp(f2) denotes the system of compact sets in the topological space Q. It
follows from the previous corollary that a Radon measure is outer regular
9, since in a Hausdorff space every compactum is closed. If, in addition,
the space Q is second-countable and locally compact, or, more generally,
Polish (separable and completely metrizable), then every Borel probability
measure on {2 is automatically Radon. This is a consequence of the fact that
in such a space the Borel o-algebra is identical to the o-algebra generated
by compact sets (in particular, Borel measures on R"™ are Radon). Further
generalizations of this result are possible but we shall omit them.
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Some additional topics

Transformation of measures by mappings. We now describe an important mech-
anism for using existing probability measures to define new ones. Given a
probability measure # on & C #(Q2) and amap f : Q2 — T, one may wish to
evaluate statements of the form {f(w) € T} for subsets T" of T on the basis
of the probabilities assigned to statements in &. This is possible for any T
whose inverse image under f,

AT ={weq: fw) €T}

belongs to &. The probability of such a statement T is given by % o f~(T)).
This motivates the following

Definition. Let
T={T e P(T): / (T) € &}
be the set system of all statements in T whose inverse images under f belong
to & (note that ¥ is a (o-) algebra if & is one). The push-forward of the
measure & through f is the probability measure f(£?) on T defined by the
identity
f@)NT)=2 o f7H(T) =2 (fH(T)).

Somewhat differently, one may be given the algebras & C PB(Q) and T C
#(T) in advance, in which case a function f : Q@ — 7T is said (&,%)-
measurable iff for any T € T we have f }(T) € &. The push-forward
f(2) of a probability # on G is then well-defined as a probability measure
on ¥. The previous notions are defined similarly for elementary measures.

The above notions appear, for instance, in the definition of

Marginals and product measures. Assume given two o-algebras 6;, S, with
US€61 S = Q; and U5662 S = Q,. Let G be a o-algebra on 27 X Q5 such
that each canonical projection

i Q1 X Q2 = Q0 (w1, ws) = wi,

1 = 1,2, is (&, 6;)-measurable. The smallest such o-algebra on Q; x Qs
is called the product of &; and S, and denoted as &; ® G,. Let & be a
probability measure on & D 6&; ® &;. The push-forward of & through =,
1= 1,2, is then the marginal of & on Q;.

Given the measures &, %, respectively on &; and S,, one can always con-
struct a measure &, ® #,, called the product measure, with &, %, as its
marginals, thus:

P Q@ P(S1 X S3) = P1(51)%(S2), for any pair S; € &;,1=1,2.
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As a minimum, &, ® % can be extended to &; ® G2 (Hahn-Kolmogorov).

Note that, as a general rule, the product measure is simply one among a
multitude of measures that can be defined on & D &; ® G, so as to have
P, 2 as their marginals.

Conversely, if for some measure & on & C PB(Q; x Q) one can find measures
P, ., respectively on §2; and 2, such that

9(51 X Sg) = :@1(31)92(52)

for any pair S; € &; © = 1,2, then the marginals #, %, of & are said to be
independent.

The above definitions generalize trivially to finite product spaces. Later,
in [§Als| and §A.6] we shall revisit some of them in the context of infinite-
dimensional spaces.

Mathematical expectations. Integrals with respect to probability measures
can be defined in the usual manner of measure theory (i.e. by means of
limits of integrals of simple functions), and the basic theorems of integration
theory also apply here. Details can be found in any text on measure the-
ory.® We simply recall the basic definitions here. Given a o-algebra & with
Uses S = Q, for any finite set system T C & we define the class of T-simple
functions as

SFs = {ZsT]lT :s7 € R for each T € ‘I} C ]RQ,
TeT

where 17 denotes the indicator function of the set T'. The integral of a
T-simple function s = ZTEQ splp € SF5 with respect to a measure & on
G is defined as
/s(w)y(dw) =Y spP(T).
Q

TeT

8. The reader may—rightfully—be wondering why we have discussed the elementary
axioms of probability theory in some detail, but made at best only brief mention of import-
ant notions such as expectations and conditioning. The reasons are two-fold. First, and
more innocently, our interest in this thesis is primarily in constructing and characterizing
probability measures; our overview of probability theory is therefore limited to describing
and motivating some of the schemes and procedures that are useful for the purpose of ex-
tending elementary definitions of probabilities to full-fledged probability measures, while
those aspects of the classical theory that are omitted here are covered in any textbook on
the subject. Secondly, we intend at least to raise, in the reader’s mind, the question of
how relevant these assumptions and basic axioms are for the purpose of modelling phys-
ical reality, especially when one moves from finite to infinite constructions. Mechanical
re-derivation of standard results did not seem to us to contribute essentially towards this
purpose.
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Next, for any non-negative G-measurable function f : @ — R we define its
integral w.r.t. 2 as

| 1) #(dw) = sup{ [ stw)(@w)

SF< 3 s < f for some finite T C 6}.

For signed f, we define [, f = [, f+ — [, f— where f} := fly0 and f_:=
—fl¢<o. In probability theory, the integral of f w.r.t. a probability measure
@ is often referred to as its expectation and denoted as Eg{f} (we shall
normally drop the subscript where no ambiguity should arise).

Transformation of measures by integration. Integration provides another means
of constructing new measures from existing ones. To wit, given a non-
negative G-measurable function f with IEs{f} = 1, the identity

2(S) = Ep{lsf} = / Q5(w) f ()P (dw)

defines a new probability measure 2 on & (continuity follows from Lebesgue’s
monotone convergence theorem).

Definition. Let &, 2 be probability measures (more generally, two o-finite
positive measures) on a o-algebra &. We say that 2 is absolutely continuous
with respect to &2, in symbols & < &, iff for any S € &

#(8)=0 = 2(3)=0.

In contrast, £ is said to be singular with respect to &, in symbols £ | &,
iff there exists S € & such that

#(8)=2(5% =o.

The following results, which we shall not prove, point to a number of possib-
ilities for characterizing measures using integrals.

Theorem (Lebesgue decomposition). Given probability measures &2, 2 on the
same o-algebra &, there exist unique measures 2,., 25 on S such that £ =
Qi+ Qs and 2, K &, Qs 1 &. Furthermore, 2, | 2.

Theorem (Radon-Nikodym). With &, 2,S as above, 2 < & precisely when
there exists a non-negative (&, Borel(IR))-measurable function f such that

2(5) = Ep{1sf} = /Q 15 (w) () (dw).
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The function f is unique modulo & (i.e. any two such functions defer only
on a set of #-measure 0). Members of the equivalence class of functions
thus identified are referred to as Radon-Nikodym derivatives of 2 w.r.t.
2. In practice, we often work with some representative of this class, which
we (abusively but harmlessly) call the Radon-Nykodym derivative.

Corollary. For any pair of probability measures &, 2 defined on some o-
algebra &, there exists a non-negative (S, Borel(IR))-measurable function fac
and a set S5 € & with #(S) = 0 such that for any S € G,

2(8) = /Q facl@)® (dw) + 2(S 11 ).

The function f,. and the set S; are unique modulo #.

The above results generalize directly to the case of & being a o-finite (rather
than finite) measure, and admit various other generalizations as well, but
the only place we shall make direct use of any such generalization is in the
following example. The reader seeking the details or wishing to go further is
referred to the treatises by Fremlin [Fre03] and Bogachev [Bog07] as well as
the research monograph and papers by Konig [K6n97, [Kon06a), (Kon06b|.

Probability measures on the Euclidean space. Let us end this section by discuss-
ing two ways of characterizing Borel probability measures on the Euclidean
space. In this case we have 2 = R™, and the domain of the probability
measure & is taken to be the Borel o-algebra of R™, denoted Borel(R™),
which (we recall) is defined as the smallest o-algebra C P3(IR™) that includes
all open sets of the topology of R™. Probability measures on Borel(IR™) are
characterized by Lebesgue’s Decomposition Theorem: given any Borel prob-
ability measure & on R™, there exists a non-negative function f5 € L;(IR™),
called the distribution of (the continuous part of) &, with ||fs |1 < 1, and
a smallest (possibly empty) set S € Borel(R™) with 2(S) > 0, called the
singularity set of &, such that for any B € Borel(IR™) we have

,@(B):/Bfg(m) Mdz)+ #(BNS) and /S/\(d:r)zo,

where A denotes the Lebesgue measure in R™ (see, e.g., Pinsker [Pin64,
§1.3]).

Characteristic functions. In the previous paragraph, we described how a Borel
probability measure on IR™ can be identified by its singular part and its
distribution with respect to the Lebesgue measure on IR™. We now look at
another way of characterizing Borel (and hence Radon) probabilities on IR™.
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Given a probability measure & on IR™, its characteristic function is defined
as

1) = / O (da) = Bo{e ), EeR™ (A1)

It should be noted that & is essentially nothing but the Fourier transform
of the measure #. It is necessarily continuous, in particular continuous at
¢ = 0, and positive-definite (more precisely non-negative definite) in the
sense that

Y CGPE &) >0
i

for all finite vectors ((1,...,¢:) € C" and (&1, ...,&,) € R™ of any arbitrary
length n € IN. The latter property follows easily from the positivity of
2. We also have @\(O) = 1, corresponding to the fact that the probability
measure of the entire domain, i.e. R™, is 1.

Conversely, we have

A.am Bochner’s Theorem. Any positive-definite function # : R™ — C that is
continuously equal to 1 at 0 uniquely identifies a (Radon) probability measure

% on R™ by identity (A.1).

Hence, Bochner’s theorem suggests another way of characterizing Borel prob-
ability measures on R™, by identifying them with continuous positive-definite
functions R™ — C.

The next theorem relates convergence of sequences of characteristic functions
to the convergence of the corresponding probability measures. To state it,
we first state a

A.an Definition. A sequence {#,}, of Borel probability measures on a metrizable
space 2 is said to converge weakly to some measure &, in symbols

2, L p,  iff /Q¢(m)9>u(dm)—>/g¢(m)9(d:c)

for any bounded continuous function ¢ : 2 — R.

A.ao Lévy’'s continuity theorem. Let %, be a sequence of Borel measures on IR™,
and suppose that there exists a function # :R™ — C such that

33: —ya point-wise.

Then & itself is the characteristic function of some Borel probability measure
% on R™ iff # is continuous at 0.
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Probabilities on infinite-dimensional product spaces

The theory of stochastic processes is a branch of probability theory that
concerns itself with probabilities depending on a parameter, which most often
represents time or spatial position, or a combination thereof. What sets this
theory apart from the one developed thus far is the assumption that the
parameter can take on infinitely many different values. We are consequently
faced with the task of defining probabilities on infinite-dimensional spaces.
This notion is clarified below.

Algebraic and topological preliminaries

By saying that a certain space (2 is infinite-dimensional we mean the follow-
ing.

There exists a set .# (the indez set), and, for every m € IN and any finite
subset [ of .# with |I| = m, there exists a canontcal projection m; : Q — Qg
where Q; is an m-dimensional space, which, for concreteness, we take to
be R’ (we shall write ¢ instead of {¢} where no ambiguity should arise).
Furthermore, for finite I;, I, C .#, the axioms below are required.

(TI1) I, CI; = my,f is completely determined by 7y, f, i.e. there exists a
map 7,1, : 25, = Qy, such that

T, = M1, © T, . (projection)
(TI2) f € Q is uniquely determined by its projections =;f, I C .# finite.
Put slightly differently, the evaluation map

foilmf)e st

is an injection. m,f is more familiarly denoted as f(¢). (separation)

It is both empirically sensible and mathematically expedient to limit oneself
to finite projections, as we have done above. It is empirically sensible because,
in reality, we can never make more than a finite number of observations of any
phenomenon. It is mathematically expedient because we can make consistent
deductions and computations on the basis of the above axioms.

The above axioms imply that every m; is completely determined by the one-
dimensional projections 7, : Q@ — Q,, ¢ € I. Moreover, by the second axiom,
Q2 can be identified with a subspace of the product space [] .cs §2, and we may
then identify 7; with (the restriction to Q of) the canonical projection from

the infinite product space onto 2; = ]_[LEI Q,. Similarly, 7, 1,, I C I1, is
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identified with the canonical projection from [] ., €. onto [],c;, .. If the
Q,s are topological spaces, Q C [],c, Q. can be equipped with the projective
topology with respect to the maps m; : Q — Qj, as defined below.

Definition. Given a space & and a family of functions f, : & = &4, @ €
A, where the &, are topological spaces, the projective topology on & with
respect to the family {ftaca is defined as the coarsest (smallest) topology
on & with respect to which all f,s are continuous.

As noted, in this section we have assumed 2, = R and Q; = R’ with its
standard topology, from where Q C [[,.; Q2. = R’.

Cylindrical probabilities and their extension to measures

We now consider the question of defining probability measures on the infinite-
dimensional space 2. As is always the case with infinities, the construction
should involve taking limits in some way. In this instance, these will be the
projective limits of families of finite-dimensional probability measures.

Let us for a moment imagine that a Borel probability measure & on the
infinite-dimensional space 2 is already given. In this case, any finite-dimen-
sional projection of & through some 7;, I C .# finite, defines a Borel measure
on R! which is the push-forward m;(#) = @ o 7w, *. We thus define,

#1(B) = m(2)(B) = @(n;'B)

for any B € Borel(€2). In view of and in analogy with Axiom the follow-
ing consistency property holds for the family of all such finite-dimensional
marginals.

(C1) Given finite I, I, C £,
L Ch = 912:71-[112(911):911077-1_1112'

Going in the other direction, to find some sort of a probabilistic equivalent of
Axiom one may consider the situation where the probability measure
% on (2 is not given a priort, but instead one is provided only with a family
P;, I C £ finite, of Borel probability measures satisfying Under these
circumstances, one then wishes to know if the said family of finite-dimensional
marginals uniquely identifies a probability measure & on Q (i.e., informally
speaking, if the ‘limit’ of the &;s as I goes to the entire set .# exists).

With regard to the above converse, one first notes that the collection of all
sets of the form
CB,[ = 71'1_1.87 B e Borel(QI)
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(called Borel cylinder sets because Cg,; corresponds to the cylinder in Q
with base B C Q; = R'), forms an algebra

C€q:={Cp : I C 4 finite, B € Borel(Q)} (A.2)

in P(Q2), named the algebra of Borel cylinder sets (it is straightforward
to verify that complements and finite unions/intersections of sets in €q also
belong in €q). On this algebra, one may then define an elementary (finitely-
additive) probability measure & by means of the identity

e@(CB’I) = QI(B) (A3)

Turning things around, we may now look at the &;s as the finite-dimensional
marginals of the elementary probability . By assumption, & has o-additive
finite-dimensional marginals. On the other hand, it is not given that & itself
should be (or extend to) a o-additive probability measure.

Definition. A finitely-additive probability measure & on € whose finite-
dimensional marginals &; := 71;(#) =P o 7r1_1, I C ¢ finite, are o-additive,
is called a cylindrical probability (measure). The said marginals then neces-
sarily fulfil the consistency condition|[(C1)] We may also refer to the family of
probability measures {#;} fulfilling[(C1)|as a cylindrical probability measure,
knowing that & can then be recovered from the marginals by (A.3).

In view of the above, the fundamental question of the theory of stochastic
processes boils down to this:

Question. Given a cylindrical probability measure & on €q, is it possible
(and under what conditions) uniquely to extend & to a o-additive probability
measure on some o-algebra D €7

Definition. The o-additive extension of & to o Alg(€gq), if it exists, is called
the projective limit of the cylindrical probability & (or of the family {#;}).

The usual course taken in standard textbooks on stochastic theory to answer
the above question is to invoke Kolmogorov's extension theorem, which takes
the space Q to be equal to the product space [ [, 2, and then gives a number
of mild conditions for the o-additive extension of & to exist and be unique.
In the context of Radon measures, an alternative if not entirely unrelated
approach involves using Prokhorov’s theorem to define Radon probability
measures on spaces {2 that can be smaller than the product space [], Q,. We
state a version of each of these theorems below (the respective references for
the following versions are Bogachev [Bog07] and Schwartz [Sch73]).

The statement of Kolmogorov’s theorem we shall give below is somewhat
more general than Kolmogorov’s original version. It uses the following
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Definition. A set system £y is said to have the finite intersection property
iff the intersection of any finite number of its elements is non-empty. We call
a set system 8 a sequentially compact class iff for any countable subset £g
of g,
R has the finite intersection property < ﬂ K=o
KcR

(c.f. Bogachev [Bog07, Definition 1.4.1]).
Note that the « direction of the above definition is always true.

The definition is motivated by the observation that, in a Hausdorff topolo-
gical space, a subfamily of topologically compact sets is sequentially compact.

Kolmogorov's Extension Theorem. Let & be a cylindrical probability measure
on the algebra € defined in , with the additional property that for each
finite set I C .# there exists a sequentially compact class &7 in Q; (see,
such that the finite-dimensional marginal &7 is inner regular £; in the sense
of Then & extends uniquely to a probability measure on o Alg(€q) (also
denoted as #).

Corollary. A cylindrical probability measure on € whose finite-dimension-
al marginals are all Borel-Radon extends uniquely to a countably-additive
probability measure on o Alg(€q).

Since, by any Borel measure on R’, I finite, is Radon, by the above
corollary we find that a consistent family of finite-dimensional Borel probab-
ility measures on the spaces IR, I C .# finite, uniquely defines a countably-
additive probability measure on (the o-algebra of Borel cylinder sets in) R”.
This latter form corresponds to Kolmogorov’s original statement of the the-
orem [Kol33].

As noted, it may be of interest in some applications to define a probability
measure on a space £ that is smaller than the product space [, ©2,. The
following theorem, originally due to Prokhorov, suggests a way to verify if
this is possible for a particular choice of Q (the version given here is adapted
from Schwartz [Sch73|, Ch. I, Theorem 22]; see also Fremlin [Fre04bl Theorem
418M]).

Theorem (Prokhorov). The projective limit of a consistent family {#;} of
finite-dimensional Radon probability measures as defined above exists and is
Radon iff the following condition is fulfilled:

(K) For every € > 0 there exists a compactum K. C Q such that for all
finite I C &, Z(71K:) > 1 — €.

We do not duel any longer on the above results since we shall not use any of
them directly.
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Probabilities on infinite-dimensional topological vector spaces

Next, we turn our attention to the question of defining probability meas-
ures on an infinite-dimensional topological vector space. We shall adapt the
definitions of the previous section to this new context.

Algebraic and topological preliminaries

In this scenario, we have a dual system (&, ) consisting of two topological
vector spaces & and & and a bilinear mapping

ExF 5 R:(e,f) = (e, f) = 7f,

called the scalar product, which fulfils the following separation azioms:
(8) (esfi)=(e fo) forallee & &  fi=fo

(S’) <81,f>:<€2,f> for allfeg = €1 = €s.

We shall take & as the space on which to construct probabilities. By the
above axioms, we can identify each element f of & with a linear map on
&, as any such f is completely determined by its scalar products (e, f) with
elements e € &.

Compatible topologies. The spaces &, % are given topologies. We say (and
henceforth require) the topology of & to be compatible with the bilinear
form (-,-) (or with the dual system (&, %)). Compatibility here means two
things. First, that the maps

F 3 fr (e f)eR, ecé, (A.4)

are continuous in the topology of &. Secondly, that any continuous linear
map & — IR is identified with a projection of the form given in . In
other words, the topologies of &, % are such that the continuous dual of &
is equal to & (as a set), no more and no less.

Similar conditions may be formulated for the topology of & to be compat-
ible with the dual system, in which case &, as a set, may be identified the
continuous dual of &.

Weak and Mackey topologies. We may, in general, define a range of topologies
on & that are compatible with the bilinear form (similarly for £). The range
is determined by the smallest and largest topologies on & that are compatible
with (&, ). By definition, the lower bound (smallest topology) of the range
is precisely the projective topology on & with respect to the family {7 }ece
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(cf. . This topology, which is in this case called the weak topology and
denoted as 0(Z, &), is immediately seen to be locally convex, as it is induced
by the family of semi-norms |7, - |, e € &.° Moreover, as a result of the first
separation axiom above, the weak topology is automatically Hausdorff.

The upper end of the range is determined by the finest (richest) locally
convex topology one can assign to & without enlarging the family of all
continuous linear functionals & — IR beyond the set {7, }.ce; in other words,
the largest topology with respect to which every linear functional & — R
that is discontinuous w.r.t. o(F, &) remains discontinuous. This topology is
known as the Mackey topology on & and is denoted as 7(Z, &§).

Clearly, any locally convex topology on & that is compatible with (&, F) is
no coarser than o(, &) and no finer than 7(Z, &).

We see therefore that, as a result of the separation axioms and the compat-
ibility condition given above, to every finite linearly-independent (filz) set
E C & there corresponds a linear map

mg:F > RY: f{(e (e f):ec E}

that is continuous and surjective. Conversely, all real finite-dimensional
linear projections of & that are continuous and surjective can be constructed
in the above fashion. We define a partial order < on fili subsets of & thus:

(II1’) E, < E, iff there exists a (unique) continuous linear operator 7 g, g,
such that

7'('E2 :7TE1E2°7TE1-

Moreover, by the separation axioms, the following analogue of holds:
(II2’) f € & is uniquely determined by its projections ngf, E C & fili.

Cylindrical probability measures on topological vector spaces

Having formulated the equivalents [(II1”)| and [(II2’) of Axioms |(II1)|and |(II2)|
for linear spaces(cf. [A.ap]), we shall now entertain adapted definitions of cyl-

inder sets and cylindtrical measures in this new setting.

9. A topology © on the space & is locally convez iff it is the projective topology on Z
with respect to some family (finite or infinite) of semi-norms on #. In turn, a semi-norm
on an IF-vector space % is a non-negative function p : & — R with the following two
properties: p(cf) = |e|p(f) for all ¢ € [F (positive homogeneity), and p(f+g) < p(f)+pr(g)
(sub-additivity a.k.a. the triangle inequality).
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Definition. Borel cylinder sets on & are sets of the form
Cer = wng,

where E is a fili subset of & and B € Borel(IR?).

Once again, Borel cylinder sets define an algebra,
¢z :={Cpr : EC &fili, B € Borel(RF)},

known as the algebra of Borel cylinder sets in &.

Definition. A family of Borel (hence Radon) probability measures %5 on R,
E C & fili, is collectively called a cylindrical probability on &, provided
the following consistency condition is fulfilled for all fili sets Eq, By C &

(compare with [(C1)):
(C1’) Given fili sets By, B> C &,

E;=E = Pg,=Pg o 7T}511E2. (consistency)

As before, we can identify the family {Zg}, E C & fili, with a finitely-additive
probability # on €. This identification is achieved by the identities

P (Cp,r) = Pr(B) and Pg(B) =P oﬂél(B).

%, while being only finitely-additive (at least initially), has o-additive finite-
dimensional marginals, which are precisely the measures &g, E C & fili. In
view of the above identification of & with the family {#g}, we may refer to
2 itself as the cylindrical probability.

Continuous cylindrical measures. 'We shall later consider situations in which the
topology of the space & (the first item of the dual pair) is already given. At
least in the case of the spaces we shall be working with, it will be convenient
and useful to limit our consideration to cylindrical measures 4 that are
continuous in the sense of the following axiom:

(C2’) Given a convergent sequence of fili sets £, € £ with limit £ € §™,
m € N,
Pg, 2 pg (continuity)

where — indicates weak convergence as defined in 10

In view of Lévy’s continuity theorem, the above property is equivalent to the
point-wise convergence of the sequence {@V }» of characteristic functions to

—

Py.

10. The topologically-inclined reader will note that the above definition is based on
sequential continuity irrespective of whether & is first-countable or not.
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Characteristic functionals and the extension of cylindrical probabilities to
measures

The question of whether a cylindrical probability # on & extends to a o-
additive probability measure is not entirely topological. Nevertheless, it is
possible in some important cases to formulate topological conditions that are
sufficient for such an extension to exist and be unique. In the setting that
will be of interest to us, the said conditions turn out to be necessary as well.

We shall formulate the said topological conditions in terms of the continu-
ity of a certain functional associated with the cylindrical probability measure.
This functional, related to the one originally introduced by Kolmogorov [Kol35|

as the Laplace transform of the probability, is essentially the infinite-dimensional

equivalent of the characteristic function of a Borel measure on the Euclidean
space R™ (see (A.1))). For this reason it is dubbed the characteristic func-
tional of the cylindrical measure.

The utility of the characteristic functional in defining measures is due to an
infinite-dimensional analogue of Bochner’s theorem , which outlines
sufficient (and sometimes necessary) conditions for the characteristic func-
tional uniquely to define a o-additive probability measure on & extending
Z.

Definition. Given the dual system (&, %) as discussed above, we define the
characteristic functional of a cylindrical measure & on & as the functional

P.6-C: e / e™f @ (df) = / eeH g (df) = / e, (dt).
z z R
The significance of the above definition lies in the fact that we can obtain the

chracteristic function @ of any finite marginal @5, E = {e1,...,em} C &
fili, from P as follows:

z@(fl,...,fm) — Rmeizk Ertr WE(dt)

:/ eizk £k<ek,f>g(df)

F

:/ ei<zk Erer,f) g(df) = ﬁ(zgkek)
F k

Furthermore, if the characteristic functional is continuous in the topology
of &, so will be all @s, hence by Lévy’s continuity theorem the cylindrical
measure & will satisfy continuity axiom of The converse is also
true, viz. if a cylindrical measure & is continuous in the sense of then
its characteristic functional & will be continuous in the topology of &.
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Definition. We call a functional & : & — C non-negative definite (or, more
loosely, positive definite) iff

> (iGPlei—e5) >0
0

for all finite vectors ({1,...,(n) € C™ and (ey,...,e,) € &™ of arbitrary
length n € IN.

The characteristic functional of a cylindrical probability & is non-negative
definite in the above sense, since we have

S GG Pe—ey) /(Za TR )@ (df),
4,7

which is non-negative because the integrand is of the form ufAu for some
vector u and the non-negative definite matrix A = [1];;, hence non-negative,
and it is being integrated w.r.t. a positive cylindrical measure.

Going in the other direction, given an otherwise arbitrary functional P -
& — C that is non-negative definite in the above sense, the functionals @,
E ={e1,...,em} C & fili, derived from it by defining

Pp(é1, ... &m) = ﬁ(zgkek)

k
(cf. are non-negative definite in the sense of

Putting the above observations together with those of [A.bl and the two the-
orems of we obtain the

Proposition. Given a compatible dual pair (&, %), a functional @ : & — C
is the characteristic functional of some continuous cylindrical probability
measure & on & iff it is non-negative definite and continuous at 0 in the
topology of & with 9/2\’(0) =

Extension of cylindrical probabilities to measures. The previous proposition al-
lows us to identify cylindrical probabilities with their characteristic function-
als. It is therefore foreseeable that, at least in some cases, the question of
extending a cylindrical measure & on & to a true (i.e. o-dditive) probability
measure can be answered by way of studying its characteristic functional.
We conclude this chapter by citing a number of results that clarify this con-
nection in some important special cases, including probabilities on the spaces
we deal with in the present thesis.

Before we state the main result, we shall need to introduce a few topological
notions. These may however be skipped as, to apply the main result, it
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suffices simply to know that the spaces @(]Rd) and & (IRd) of, respectively,
compactly-supported and Schwartz test functions are nuclear (whatever that
term means), as are their finite Cartesian powers. The reader is therefore
encouraged to go directly to the final result (Corollary [A.bv)).

*A.bp Definition. A Hilbert-Schmidt operator T : 5, — s, where ¢, 5% are
Hilbert spaces, is a continuous linear operator s# — % such that for some
orthonormal basis {ex}xcx of 54,

I Tlles == ) [ITexlle < oo
kCK

It can then be shown that the above value, called the Hilbert-Schmidt norm
of T, is indepdendent of the choice of the orthonormal basis {eg}rck-

*A.bq Definition. An operator N : 58, — 5% is called nuclear or trace class iff it
can be factorized as
T Ay 2 A

where 5% is some Hilbert space and Ty, T, are Hilbert-Schmidt operators.
The definition generalizes to arbitrary locally convex spaces, but we shall
not need this generalization.

The following definition of the Sazonov topology is taken from Smolyanov
and Fomin [SE76, §4] (see also Kolmogorov [Kol59], Prokhorov [Pro61l, §5],
Schwartz [Sch73, Part II, §IV.3], and Bogachev [Bog07, §7.13]).

*A.br Definition. Let & be a locally convex space whose topology is determined by
a countable family of Hilbert norms

lelln = V/(e,€)n, nEN

(such a space is called countably Hilbert) and let &, denote the completion
of & with respect to || - ||n. Without loss of generality (for instance, by
redefining the nth inner product as the sum of the first n inner products),
we may assume the norms || - ||, » € N, to be increasing in the sense that

llelln+1 > |le]|ln, foralle e &, ne N.

Let & be a locally convex space with topology . The Sazonov topology
associated with the topology of the space &, denoted as 7x (&) or v (D), is
the locally convex topology associated with the family of all semi-norms p
satisfying the following properties:

(Tw1) p is continuous with respect to the original topology of &.

(tw2) p is derived from a Hilbert semi-inner-product, i.e. there exists a
semi-inner-product (-,-), on & x & with p(e) = (e, e)p.
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(7w3) There exists a semi-norm g on & also fulfilling (7x1)| and |(7y2)| and
with g(e) > p(e) for all e € &, such that the injection &, — &,
is Hilbert-Schmidt. Here &,, &, denote the completions of & with
respect to p and gq.

Definition. We call a locally convex space & nuclear iff its Sazonov topology
(&) coincides with its original topology.

Remark. The following spaces are nuclear [Pie72) [Sch73|: the space @(le)
of compactly supported smooth test functions with its standard topology;
the space & (]Rd) of rapidly-decaying Schwartz test functions; spaces of the
form &%, k € IN, where & is nuclear; closed subspaces of a nuclear space; the
quotient of a nuclear space with respect to a closed subspace.

After these preliminaries, an infinite-dimensional generalization of Bochner’s
theorem, credited to Minlos and Sazonov, can be stated as follows.

Theorem. Let (&, Z) be a dual system satisfying the separation axioms
and Denote by 7(&, %) the Mackey topology on &, i.e. the strongest to-
pology on & which is compatible with the duality (&, Z) in the sense of
Let # : & — C be a non-negative definite functional satisfying 3/?\(0) =1,
and assume, in addition, that P is continuous at 0 in the Sazonov topology
™(7(&, F)) associated with the Mackey topology on &. P is then the char-
acteristic functional of a cylindrical measure on & that extends uniquely to
a o-additive probability measure on the o-algebra of Borel cylinder sets in
ZF.

Note that if # is continuous w.r.t. any Sazonov topology mn(9) where O
is some topology on & that is compatible with (&, &), then it is also con-
tinuous w.r.t. the (stronger) topology T (7(&,Z)), therefore the continuity
requirement of the theorem is fulfilled in this case.

The above theorem was proved by Minlos [Min63] in the case of & being nuc-
lear (confirming a conjecture of Gel'fand) and separately by Sazonov [Saz58|
in the case where & is a Hilbert space. Kolmogorov clarified the connection
between the two [Kol69]. Prokhorov [Pro56] had previously underlined the
important role of nuclear operators in this context. The version of the result
we have given above is taken from Smolyanov and Fomin [SE76| §4, Theorem
2].

By we obtain the following important

Corollary (Minlos’s Theorem). Let & be a nuclear space and & = &'. A con-
tinuous non-negative definite functional % : & — € with 2(0) = 1 defines a
unique o-additive probability measure & on the o-algebra of Borel cylinder
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sets in & such that
Fle) = / N (df).
é”l

The above corollary is about the only advanced probabilistic result that is
used directly in the main text of the thesis.
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Some Related Publications

For the purpose of reference and comparison, in this appendix we have re-
produced some of our related publications that were either not incorporated
in the thesis or whose presentation differs significantly from the one given
therein due to extensions and refinements subsequent to their publication.
We have excluded other publications that were more directly assimilated in
the main text.
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Invariances, Laplacian-Like Wavelet Bases, and the
Whitening of Fractal Processes

Pouya Dehghani Tafti, Member, IEEE, Dimitri Van De Ville, Member, IEEE, and Michael Unser, Fellow, IEEE

Abstract—In this contribution, we study the notion of affine in-
variance (specifically, invariance to the shifting, scaling, and ro-
tation of the coordinate system) as a starting point for the devel-
opment of mathematical tools and approaches useful in the char-
acterization and analysis of multivariate fractional Brownian mo-
tion (fBm) fields. In particular, using a rigorous and powerful dis-
tribution theoretic formulation, we extend previous results of Blu
and Unser (2006) to the multivariate case, showing that polyhar-
monic splines and fBm processes can be seen as the (determin-
istic vs hastic) solutions to an i ical fractional partial differ-
ential equation that involves a fractional Laplacian operator. We
then show that wavelets derived from polyharmonic splines have
a behavior similar to the fractional Laplacian, which also turns
out to be the whitening operator for fBm fields. This fact allows
us to study the probabilistic properties of the wavelet transform
coefficients of fBm-like processes, leading for instance to ways of
estimating the Hurst exponent of a multiparameter process from
its wavelet transform coefficients. We provide theoretical and ex-
perimental verification of these results. To complement the toolbox
available for multiresolution processing of stochastic fractals, we
also introduce an extended family of multidimensional multireso-
lution spaces for a large class of (separable and nonseparable) lat-
tices of arbitrary dimensionality.

Index Terms—Affine invariance, fractional Brownian motion
(fBm), fractional partial differential equations, Hurst exponent,
lattices, multidi ional lets, operator , polyhar-
monic splines, whitening.

I. INTRODUCTION

HE notion of invariance plays a significant role in math-
T ematical modeling. The development of fractals, for in-
stance, is entirely based on the idea of self-similarity (i.e., scale-
invariance up to a scalar factor) [1], [2]. This self-similarity
can be deterministic—in which case we are led to determin-
istic fractals such as the famous Koch snowflake, or the elab-
orate Mandelbrot set—but it can also be understood in a statis-
tical sense—leading to stochastic fractals, the prime examples
of which are fractional Brownian motion (fBm) processes [3]
(see also Chainais et al. [4] for a generalization based on the
notion of scaling).
Fractional Brownian motion models generalize Lévy’s
Brownian motion [5] of Gaussian type. These processes have

Manuscript received October 09, 2007; revised October 20, 2008. Current
version published March 13, 2009. This work was supported in part by the Swiss
Science Foundation. This work was supported by the Swiss Science Foundation.
The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Minh N. Do.
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Switzerland (e-mail: p-d.tafti@ieee.org; dimitri.vandeville@epfl.ch;
michael.unser@epfl.ch).

Digital Object Identifier 10.1109/TIP.2008.2011451

long been associated with the phenomenon of long-range de-
pendence and 1/ f*-like power spectra that frequently appear
in areas as diverse as hydrology, financial mathematics, net-
work traffic analysis, terrain modeling, and image processing
[1], [6]-[8]. In the case of the latter, the relevance of fBm
processes in modeling images has been claimed on the basis of
observations of scale-invariance and the associated power-law
spectra in natural images [9]-[11].

A multivariate fBm field By is a nonstationary Gaussian
process! identified by a single parameter 0 < H < l1—the
Hurst parameter, after Harold Edwin Hurst (1880-1978), for his
seminal contribution to the study of such processes in the con-
text of hydrology [2], [12]—that characterizes its covariance up
to a scalar normalization factor

E{By(2)Bx(z)} o< Il + /17 - Iz — 2'||>".

Estimation of the Hurst parameter is important in practical ap-
plications, and is, e.g., used in image processing to classify dif-
ferent types of texture based on their second order statistics [13],
[14].

Multiresolution analysis [15], [16] was identified early on
in its development as a decidedly effective tool for the study
of self-similarity [17]-[26]. Its utility in the estimation of pa-
rameters of self-similar processes (especially in the 1-D setting
and for estimating the Hurst parameter) is, therefore, well docu-
mented [20], [27]-[29]. The essential observation in this regard
is that the logarithm of the wavelet energy of an fBm process
varies linearly with scale, with a slope that depends on the Hurst
parameter H.

Intuitively, the above observation appears deceptively
simple. After all, this would seem to be a straightforward
consequence of the 1/f“-like power spectrum of fBm and
the logarithmic spectral partitioning afforded by the wavelet
transform. A rigorous derivation of this result is, however,
subtler, as fBm—being nonstationary—does not, in fact, have
a power spectrum in the classical sense.

On account of this, one of our main motivations in writing this
paper has been to propose a rigorous interpretation of the spec-
tral characterization of multivariate isotropic fBm, in the sense
of a whitening/innovation model (Section V). This distributional
framework, which is deduced from basic invariance principles
(Section III), provides a powerful formalism for defining and
analysing fBm and similar processes. Our results here gener-
alize those of Blu and Unser [30] who studied the single-variable
case. Operator models for self-similar fields were also studied

IIn this paper, we do not distinguish between random processes and random

fields, using both terms interchangeably to refer to multivariate random func-
tions.

1057-7149/$25.00 © 2009 IEEE
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by Benassi et al. [31], [32], who focused on the link between
operators and multivariate random fields and their relation to
wavelets. The 1-D analysis of Wyss [33] is also relevant.

The said formulation also links the study of fBm processes
to spline theory via providing a convenient and unifying inter-
pretation of fBm processes and polyharmonic splines as sto-
chastic vs deterministic solutions to the same (fractional) par-
tial differential equation [34]. This, in the light of the funda-
mental relation between splines and wavelets (Section 1V), al-
lows us to derive interesting and general results concerning the
wavelet analysis of fractional Brownian motion (Section V). We
for instance show the quasi-whitening effect of a polyharmonic
wavelet transform on fBm processes.

To complement the mathematical toolset for the analysis of
multivariate fBm, we have included a comprehensive account
of a general construction scheme for multidimensional polyhar-
monic spline multiresolution spaces, proving all essential prop-
erties for forming a multiresolution analysis. The generality of
our construction (which extends the works of Rabut and Bac-
chelli er al. [35], [36] and Van De Ville er al. [37]) makes it
suitable for multiresolution approximation in any number of di-
mensions and on virtually all sampling lattices of interest that
display some form of isotropy.

The organization of the remainder of the paper, in brief, is as
follows. In Section II, we review some mathematical prelimi-
naries. We formalize the idea of isotropic affine invariance in
Section IIT and use it to identify a family of fractional partial
differential operators that appear in the characterization of both
polyharmonic splines and fBm processes. The theory of multidi-
mensional polyharmonic spline multiresolution is developed in
Section IV. Next, in Section V, we provide a characterization of
fBm based on an innovation model. We then exploit the link be-
tween splines and fBm processes in Section VI, to derive some
characteristic results concerning polyharmonic wavelet analysis
of fBm. Based on these results, estimation of the Hurst param-
eter is also discussed and a few experimental results are pro-
vided in Section VI-B. Some final remarks conclude the paper.

II. MATHEMATICAL PRELIMINARIES AND NOTATION

The theory of generalized random processes utilized in this
paper is exposited in the works of Gel’fand et al. [38], [39]. For
reference, some of the main definitions are summarized in this
section. This section shall also serve to fix our basic notation and
to recall some facts and definitions from the theory of lattices.

A. Some Notational Conventions

We use the MATLAB notation for row and column vectors
and also follow the multi-index convention, according to which,

given a vector £ = [zy;...;24] € R? and a multi-index k =

[k1;.. .5 kq] € 24 (d always denotes the dimensionality of the

domain) -

K o, R [ kK oand RS
1<i<d 1<i<d 1<i<d

Other notation is defined where first used.
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B. Generalized Functions

A regular function u of a variable z € R? is characterized by
the value it assigns to its argument z (i.e., u(z) for z € R%). In
contrast, a generalized function or distribution f is specified in
terms of inner-products? ( f, u) with test functions u belonging
to some inner-product space K. Intuitively, these inner-products
can be interpreted as linear observations or measurements of f.
The advantage is that in this framework we can conceive of en-
tities that need no longer be defined point-wise. The space of all
generalized functions defined by their (bounded) inner-products
with elements of K is identified with X', the continuous dual of
K.

Given an operator A with adjoint A*, both defined on our
space of test functions, we may extend the domain of A to the
corresponding space of generalized functions (K') using the fol-
lowing defining identity

def

(Af,u) = (f,A%u).

Thus, e.g., for the shift operator we shall have

(F(-=h),ul)) € (F(), ul- + h)), forall u € K.

The Fourier transform defines a one-to-one mapping between
a suitably chosen space K of test functions and the space K of
their Fourier transforms. With Parseval’s identity in mind, the
Fourier transform of a generalized function f(z) € K’ can be
defined as the generalized function f(w) € K' that satisfies the
identity

(f(w), a(w)) = 2m)"(f(z), u(z)), forall u € K.

If we choose K to be the Schwartz space of d-variate rapidly
decaying smooth functions (denoted here by S (R?) or simply
by S), K and K (and, therefore, K’ and K’) coincide. A familiar
example of a generalized function defined over S is Dirac’s delta

def

(8,u) = u(0).

The Fourier transform of §(z) is the constant 1, since (1, %) =
Jdw li(w) = (27)%u(0) = (2m)4(8, u).

C. Generalized Random Processes and Random Fields

To generalize the notion of a random process a similar ap-
proach may be used, where one replaces point values by inner
products. Accordingly, in the stochastic analysis of Gel’fand and
Vilenkin [39], a generalized random process X is defined as a
random generalized function, which is to say that it corresponds
to a family of random variables

X, (X, wek
characterized by the consistent specification of a joint proba-
bility measure for all finite sets of test functions w. This should

2What we shall here refer to as an inner-product is in more accurate (but
perhaps less familiar) terms a duality pairing.
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be compared with the definition of classical random processes,
where point-wise random variables X(z) replace the X,s.

Characteristic Functional: A (real-valued) generalized
random process X can also be described by its characteristic
functional

Zz(u) & B}

(where E denotes the expectation functional). The characteristic
functional is continuous and positive-definite, and is equal to 1
for w = 0. It provides a complete description of the random
process X. This is due to the fact that

Zx Z W

1<k<N

is a continuous and positive-definite function of wy.s and, hence,
by Bochner’s theorem, corresponds to the Fourier transform of a
probability measure—specifically, the joint probability measure
of Xy ooy Xuy [39, ch. TI1, §2.6].

(In comparison, in the classical theory E o 2 X(@e)
provides the Fourier transform of the joint probability measure
of X(z1),...,%X(zy). Informally, this would correspond to
choosing Y7, .« y Wkd(- — Z) as the “test” function).

Correlation Form: The correlation form {(u, v)) x of the (real)
random process X is defined as

def
{u,v)x = E{X. X0}
The following relationship exists between the generalized corre-
lation form ((u,v))x and the (generalized) correlation function
cx(z,x’) of a generalized random process

{(u,v)x = /dzdz’ cx(z, ' )u(z)v(z). 1

In addition, for a Gaussian random process, the characteristic
functional and the correlation form are related by the equation

Zx(u) = o~ (/D (w)z

This shows that, as expected, a Gaussian process is fully char-
acterized by its correlation form.

D. Lattices

A lattice £ in R? is the set of all integer linear combinations
of d linearly independent vectors gy, . . ., g4; that is

£o=Qz*

with Q = [gy, ..., ¢q4][40], [41]. In general, there exist several
generator matrices Q that lead to the same lattice. Yet, they
all have the same absolute determinant |Q| (known as the sam-
pling density). For simplicity, we shall assume the normalization
QI =1

A multidimensional lattice may be partitioned into so-called
cosets that are translates of one another. This is a generalization
of the concept of dividing the set of integers Z into even and odd
numbers, or, more generally, into k equivalence classes modulo
k. In the case of lattices in R?, such a partitioning is achieved

by means of a subsampling matrix D, which plays the role of
the integer k in the 1-D case. D is an integer d x d matrix with
all eigenvalues strictly greater than 1 in the absolute. It is used
to define a subsampling relation for lattices

£ni1=QDQ 1L, Do £, @)

From there
£, =QD"Z% = Dy £o.

Similar to the partitioning of the integers modulo %, we find
a two-scale relationship for the decomposition of £,, into |D|
cosets, which are translated versions of the lower resolution lat-
tice £,,41

£o=| J £n1+QD"¢G | UL B

1<i<|D|

Here, the multiinteger vectors {;—taken to be of minimum
length and dubbed principal coset representatives—are speci-
fied uniquely modulo DZ4.

For a given lattice hierarchy £,,, n € Z, the dual (or recip-
rocal) lattice hierarchy £*  is defined by the relation

plgel, forall g € £,, pe £5,.

It follows that this hierarchy can be constructed using the matrix
pair of QT def (QT)~* and DT. Accordingly, we also define
Dy ¥ Q- TDTQ".

‘We define the lattice convolution operator or lattice filter cor-
responding to a sequence v[k], k € Z¢, as the operator

Vo:f() = Y v[klf(-— Qk).

kez!

Its Fourier expression is

Vo(w) = Z 'n[k]o’jkTQT“’.
kez4

Conversely, those and only those operators with Fourier expres-
sions that can be written in the above form represent lattice con-
volutions. These Fourier expressions are in effect those that are
27 £§-periodic (i.e., 2mp-periodic for any p € £7).

We also have a lattice version of the Poisson formula

(2r)’
Ql

FOY Sz —Qk)p =

kez

> fw-27Q7 k). (4

kezd

Remark 1: The families of multiscale lattices that we shall
consider in this work are restricted in two ways.

LAT-1. First, for our multiresolution construction we are
interested in self-similar multiscale lattices. This means
that the lattice coarsening matrix Dq—and, consequently,
its dual Dg—should correspond to similarity transforms.
LAT-2. Second, we require the existence of a d x NV integer
matrix Y % [Y1,....yx] (N > d), such that the lattice

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 17, 2009 at 13:05 from IEEE Xplore. Restrictions apply.
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vectors Qy,, . .., Qyy generate £, and constitute a tight
frame for R?. The latter is equivalent to requiring that

QYYTQT= Y QuyQT =2 ®)

1<i<N

for some scalar p. We furthermore assume {Qy,} to be
simple, i.e., not to contain any pair of linearly dependent
vectors.

‘We note that for any lattice, there exist infinitely many sub-
sampling schemes that satisfy the first requirement. In addition,
the second requirement is satisfied by virtually all lattices that
are typically used in multidimensional multiresolution signal
processing (such as the Cartesian, quincunx, and hexagonal lat-
tices in R2, and the Cartesian, FCC, and BCC lattices in R3).
For instance, for the Cartesian and quincunx lattices in R? (both
with Q = [1,0;0, 1]), the matrices

_J1 0 ,_J1 o1 -1
Y*[o 1] a“dY*[()ll 1]

provide two examples of such systems. A similar system for the
hexagonal lattice (with Q o [1, 0.5; 0, v/3/2]) uses the matrix

s 10 1
Y‘[o 1 71}

III. OPERATORS AND INVARIANCES

The fundamental observation that underlies this work is that
we can characterize specific classes of splines and stochastic
processes as solutions to a fractional partial differential equation
of the form

U{solution} = driving term

where U is a fractional partial differential operator with certain
properties, and the driving term is either a sum of Dirac deltas (in
the deterministic formulation, leading to U-splines) or a white
Gaussian noise process (in the stochastic formulation, leading
to random processes whitened by U).

In this section we shall use invariance principles to define a
particular family of such fractional partial differential operators
that produce polyharmonic splines (Section IV) as deterministic
solutions and also characterize isotropic multidimensional frac-
tional Brownian motion (Section V) in the stochastic setting.

The link between the deterministic and stochastic formu-
lations is later explored in Section VI, where we investigate
the properties of polyharmonic wavelet analysis of fractional
Brownian motion.

A. Scale- and Rotation-Invariant Operators

The invariances we shall consider are those under the scaling,
shifts, and rotations of the coordinate system [1], with the first
leading to self-similar fractal structures, and the latter two re-
lieving us from the—uncomfortable and often arbitrary—choice
of an origin and a set of preferred directions.

Specifically, we shall study a family of convolution opera-
tors with continuous Fourier expressions, which, in addition to

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 4, APRIL 2009

shift-invariance (intrinsic to convolution), have the following in-
variance properties.
INV-1. Scale-invariance: The operators of interest com-
mute with scaling operators (up to a constant that may vary
continuously with scale) in order to allow multiscale con-
structions. In mathematical notation, we want

UoS,=afa)S,0U

where S, : f(z) — f(a™'z),a > 0, represents the scaling
operator and a(a) is a strictly positive continuous function.
INV-2. Rotation-invariance: The operators are in addi-
tion invariant under rotations of the coordinate system and,
therefore, lead to isotropic models. In other words, the op-
erators commute with rotations about the origin

UoRg=RgoU.

The following is a known result in the context of rotation-
and scale-invariant quadratic functionals (in this case, Q(f) def
U£113) [42]-[44].

Theorem 1: The (per assumption continuous) Fourier expres-
sion of a real operator U fulfilling requirements INV-1 and
INV-2 has the following form for some v > 0

Uw) = clw|*". ©

The normalized version of such an operator (with ¢ = 1),
which we denote by A7, can be considered the ~th real (frac-
tional) iterate of the Laplacian (albeit discarding a factor of
(=1)7). The following are easy to check

A® = identity; ATAY = AT (7

The fractional Laplacian has a nontrivial null-space and, as a
result, infinitely many inverses differing in terms from the null-
space.

Remark 2: The null-space includes, for instance, certain
functions with (generalized) Fourier transforms concentrated at
the origin (i.e., at w = 0). Since any such generalized Fourier
symbol can be written as a finite sum of derivatives of §(w)[45,
ch. II, §4.5, p. 119, Theorem], the corresponding members
of the null-space are polynomial functions up to a certain
degree. This, however, is not a complete characterization of the
null-space in general.

B. Inverse Operators

Looking back at (7), one may be tempted to define the inverse
of A7 as the operator A~ with the Fourier expression

-2
flwl[ ==
It is immediately noticed, however, that this Fourier form has a

nonsummable singularity at the origin for 2+ > d; therefore, in
general, the integral

A7) = @) [ dw ool W) ®
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needs to be properly interpreted, i.e., regularized.? Since regu-
larization can be done in more than one way, A~7 in fact repre-
sents a family of inverses rather than a single one.

Different regularizations essentially correspond to different
(boundary or other) linear constraints on the solution of a frac-
tional differential equation of the form

Ap(z) = f(=).

These constraints may be satisfied by adding an appropriate
term from the null-space of A to a particular solution.

One of the possible inverse operators is the left inverse (intro-
duced by Blu and Unser in the single-variable setting [30]; de-
noted by A~7 here), which is obtained by removing a sufficient
number of lower order terms from the Taylor series expansion
of f(w) at the origin

AT (@) 2m) ™

N y k
Flw) - f® )%
x / dwel®w kisizo—d/2) ©)
R llwl>
It can be checked that
A-arp =g

for any f € S, hence the name left inverse.
The adjoint of A~7 over § is the operator A~ defined by

A7 1) < (2m)

ejITw _ M
x /R dw ‘k'gﬁjll’;/ = fw). a0
It satisfies
ANATf=f

forall f € S and is called the right inverse. We can extend A~
to a subset of S’ by duality

def

(A7 u) = (f, A7)

wherever the r.h.s. is meaningful for all u € S.

While the above definitions may look arbitrary at first glance,
they have intuitive interpretations. For example, supposing f(z)
to be a well-behaved test function whose moments vanish up to
degree |2y — d/2], (9) simply corresponds to a shift-invariant
inverse (all the terms in the sum will be zero in this case), while
(10) defines an inverse with all derivatives up to order | 2y—d /2]
forced to be zero at the origin. This latter property is significant
in the characterization of fractional Brownian motion as there,
by definition, the process should equal zero at z = 0.

It also bears mentioning that, unlike the fractional Laplacian,
these inverse operators are in general not shift-invariant when

3“Regularization” here stands for a general way of assigning a value to an in-
tegral with a singular kernel, in a manner that would be consistent with what one

would expect when evaluating the integral for a smooth function that vanishes in
a neighborhood of the singularity (and for which the integral can be evaluated).

applied to members of S (they are, however, scale- and rotation-
invariant in the previously defined sense).

IV. POLYHARMONIC SPLINES AND WAVELETS

A. Splines and Operators

By differentiating a polynomial spline a sufficient number of
times, one procures a sum of Dirac deltas located at the knots.
This observation underlies a conceptual framework in which
splines are defined as functions that are mapped to a sum of
Dirac deltas by some suitably chosen operator U. This approach
leads to interesting generalizations: one may for example use
fractional derivatives to obtain splines of fractional order [34],
[46].

Formally, in this framework, given a shift invariant operator
U, we define a lattice U-spline as a function s(z) for which

Us(z) =Y clklo(z — Qk) 11

kez4

with ¢ € £+ (Z?) and where the points Qk belong to a lattice.
One may try to solve the equation

Uo(z) = é(x) (12)

for o(z) (Green’s function) by finding an inverse operator. s(z)
can then be expressed in terms of o(x) and its lattice shifts, plus
a term from the null-space of U; that is

s(@) =Y clklo(@ — Qk) + so(x)

kezd

with Usg = 0.

In practice, it is often of interest to limit oneself to splines
s(z) € Lo(R?), in which case we consider a modified version of
the above problem, where we introduce a localization operator
(filter) Vq and study the equation

Ud(z) = Vob(z) = Y v[k|s(z — Qk) 13)

kez+

in place of (12). B-splines, which form spatially localized bases
for square-integrable spline spaces, are in fact solutions to such
equations [34], [37].

In the remainder of this section, we first introduce such local-
ized (B-spline) bases for spaces of square-integrable polyhar-
monic splines, for which the operator U is a fractional Lapla-
cian, and Vq is its discretization over any one of the lattices
introduced in Remark 1. Next, in Section IV-C, we show how
these B-splines can act as scaling functions for a multiresolution
analysis (Theorem 2). We follow this by the investigation of one
of the main properties of wavelets derived from these B-splines,
namely that polyharmonic wavelet kernels behave like low-fre-
quency approximations of the fractional Laplacian (Theorem 3).

B. Polyharmonic B-Splines

If we take the operator U of the previous subsection to be the
fractional Laplacian A”, solutions to (11) (which in this case is
a polyharmonic equation) are called polyharmonic splines [56].
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As noted in Section III-B, when the function f(w) has suf-
ficiently many zeros at the origin, the fractional Laplacian can
be inverted via (8) without difficulty. Indeed, one of the ways to
deal with singular integrals is to multiply the integration kernel
by a function that vanishes at the singularity.

It is, therefore, reasonable in our problem to first choose an
appropriate localization filter Vq whose Fourier symbol VQ(w)
approximates that of AY at its zero at the origin, thus cancelling
the singularity of A~ and permitting us to solve the spline
equation

AThay (2) = Voi(a) (14)

in the Fourier domain, for the B-spline ¢ (z). Different
choices of such an operator Vq lead to different families of
polyharmonic B-splines (quasi-isotropic, orthogonal, ezc.) [37].
In the simplest case, the elementary localization filter Vq cor-
responds (up to a factor of (—1)7) to the ~th fractional iteration
of an elementary discretization of the Laplacian. Specifically,
for v = 1 we define the elementary localization operator, Aq,
in the spatial domain as follows.
def 1

Aof = — 3 2f() = f(- - Qu) - f(- +Qyy)

2
|
M &N

(see LAT-2 for the definition of y;s). Note also its Fourier
symbol

N 4
Aq(w) = e

TOT,
3 sin? ("’QT“’) (15)

1<i<N

For other values of v > 0, we simply define
A def [ 2 v
Aglw) = [Aow)] -

This choice of the localization operator leads to a fractional
generalization of Rabut’s elementary -harmonic B-splines,
here denoted 2,1 [35], [37].

More generally, the localization operator VQ used in (14) can
be any one with a Fourier symbol factorizable as

Vo(w) = Ag(w) Tg(w)
where Ta(w) wf [Tq(w)]™ is the continuous Fourier expres-
sion of some lattice operator (filter), and is bounded from above
and below with a strictly positive lower bound. We shall assume
Tq(w) to be normalized with Tq(0) = 1.

Remark 3: The choice of T{(w), apart from these con-
straints, is essentially arbitrary in so far as it corresponds to
a discrete (lattice) filter, as all such choices lead to the same
multiresolution subsPaces. However, as will be seen shortly,
different choices of Tq do lead to different B-spline functions
spanning the same spaces, and T'q may be specifically selected
so as to give these functions a desired correlation structure.

The solution to (14) can now be written explicitly in the
Fourier domain as
Ag(w)
Tl

Volw) -

oy (w) = Tl = T3(w) = T3(w)day.a(w) (16)
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where ‘]’21 el(w) et 3?)((0)/“1‘1““' is the Fourier transform of
the elementary «-harmonic B-spline ¢ .| that was mentioned
before.

In order for the polyharmonic B-spline function ¢ (z) thus
defined to be square-integrable we need to have

v> % (17)
The following proposition summarizes the smoothness and
integrability properties of ¢y ().
Proposition 1: ¢, with 4 > d/4, belongs to the Sobolev
space H* for any s < 2y — d/2.
Proof: Using the Taylor expansion of Az)(w), we can im-
mediately see that (/;2.:781(w) tends to 1 as ||w|| — 0

S T W 1Y
> #% sin? (w)
Hm  $oye(w) = lim | F—ae——

T
lwll—0 lwl—0 [lew][?

i

TAT v
o (¥ e )w

= lim =1

lwl—0 wlw

[cf. (5)]. In addition, both Ag(w) and Ta(w) are by definition
continuous and bounded. What all this means is that ¢ (w) is
continuous and bounded everywhere and decays like ||w||?" [cf.
(16)]. It then follows from the Fourier-domain definition of the
Sobolev space H* that ¢2, € H* forall s < 2y — d/2. 1

As was already mentioned, the trivial choice of To(w) = 1
in (16) leads to elementary fractional polyharmonic B-splines.
Among other possibilities, one can, e.g., opt for the orthogonal
polyharmonic B-spline ¢>2l1 (z). In effect, starting from any lo-
calization operator Vq and its corresponding B-spline ¢~ (x),
one can define the orthogonal localization operator Vé as

where we have introduced the autocorrelation filter

Aqw) & Aq{gar}w) = Y

kez

B (w0 + 21rQ’Tk)|2 18)

defined as the lattice Fourier transform of a[k] def (o (- —

QK), 2+ (-)). Division by the square root of Aq{¢2- }(w) guar-
antees that (¢3- (- — Qk), ¢3;(-)) = 6. The above orthogo-
nalization depends on the positivity and boundedness of AQ
The demonstration of these properties is included in the proof
of Theorem 2.

C. Polyharmonic Multiresolution Analysis

The following theorem allows us to form a multiresolution
analysis based on polyharmonic B-splines (in their different fla-
VOrs).

Theorem 2: The polyharmonic B-splines defined in (16) have
the following properties.

MRA-1. They form a partition of unity.
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MRA-2. They fulfil a two-scale relation of the following
form:

¢2,(Dg'z) = Y hlklgo,(x — Qk) (19)

kezd

with h € £1(2%).
MRA-3. They generate a Riesz basis for their £ span.
Proofs are given in Appendix I.
Properties MRA-1-3 are those necessary to form a Mallat-
type multiresolution analysis [15], [16], [47]. The basic spline
approximation subspace is defined as

i { 32 lblon, (- Qb

kezd

c€ly (Zd)} .
More generally, the nth level multiresolution spline space is
def —n
Ve = {1067 | 1) € Vara}.

Note that because Tg (w) is bounded away from zero, the defini-
tion of the above spaces is independent of its particular choice.
As a consequence of Theorem 2, these spaces are nested

{0} C-+- CVay1 CVoygCVoy 1 C--ClLy

and the closure of their union is Lo.

The next result concerns the fractional derivatives and inte-
grals of polyharmonic splines, which are polyharmonic splines
in their own right, but of a different order (see Appendix I for
the proof).

Proposition 2:

1. The 7pth fractional Laplacian of a polyharmonic spline of
order 2+ belonging to Vs o, With y > 7o, is a lower order
spline in Va(y ) 0-

2. If A" s(z) is a polyharmonic spline of order 2, then s(z)
is a polyharmonic spline of order 27 + 2.

Polyharmonic Wavelets: Polyharmonic wavelets can be de-
fined as basis functions that span the orthogonal complements
in the series of nested approximation spaces. For a given mul-
tiresolution hierarchy, there will in general be |D| — 1 distinct
mother-wavelets 5, 1 < i < |D| (we shall subsequently drop
the index ¢ as all argilments apply equally to all wavelets).

The semi-orthogonality condition imposed on the wavelet
spaces forces the wavelets to have a behavior similar to the
operator A” at low frequencies. This quality is encapsulated in
the next theorem (a proof is given in Appendix I).

Theorem 3: A semi-orthogonal polyharmonic wavelet of
order 2 can be written as

P2y(z) = AVn(z)

where 7(z) (the smoothing kernel) is a polyharmonic spline of
order 4+ that belongs to the Sobolev space H* for any s <
4y — d/2.

A special case of the general multiresolution construction
studied in this section can be found in a previous paper [37],

where an explicit construction scheme for the 2-D quincunx lat-
tice (requiring the design of only one mother wavelet) was pro-
vided.
V. CHARACTERIZATION OF FRACTIONAL
BROWNIAN RANDOM FIELDS

A random field is said to be self-similar when applying a sim-
ilarity transform to its domain does not change its stochastic
behavior (apart from a possible renormalization factor). For a
review of self-similar random fractals we refer the reader to Be-
nassi and Istas [32]. Gaussian self-similar processes were also
studied by Dobrushin in his 1979 paper [48].

Fractional Brownian motions form a subset of (continuous)
self-similar fields distinguished by their Gaussian statistics
and stationary increments [3]. Stochastic self-similarity and
stationary increments in particular force the fields to have ho-
mogeneous (self-similar) variance functions. Given that fBms
are Gaussian and, hence, are fully defined by their second-order
statistics, one traditional way of characterizing them is by
specifying their variogram, which, for a normalized fBm of
Hurst exponent 4, has the following form [49, ch. 18]:

E{|Bx() - Br(@)P} = 2|e - «/|P.

B p is additionally postulated to have zero mean and to be zero
at z = 0 almost surely. One remarks that the derived variance
function is indeed homogeneous

E{|Bn ()"} = 2zl

Some of the other definitions of fBm fields are in terms of
integrals of white noise [50] and by their spectral harmonizable
representation [31], [51]. (The latter formulation is closely re-
lated to what we present in the sequel. See Remark 4).

An important approach to characterization often used in the
analysis and synthesis of stationary random processes relies
on the notion of whitening. In this formulation, an operator is
sought after which whitens the process in question, i.e., maps
it to white noise. Next, a suitable inverse operator needs to be
identified, which can then be applied to white noise in order
to recreate instances of the desired random process. While
standard in the study of stationary processes, this scheme can
be extended to certain nonstationary cases, and in particular
to the definition of fBm, by adopting a distribution theoretic
formalism. This will be demonstrated in this section.

In effect, in the sequel we will show that fractional Laplacians
introduced previously whiten multivariate fBm fields of corre-
sponding H exponent (as also discussed by Benassi ef al. [31]);

that is W)
A4S — 0

where 20 is normalized white Gaussian noise and € is a con-
stant. We also show that an fBm field may be obtained by ap-
plying the right inverse (cf. Section 1II-B) to white Gaussian
noise, which is to say that

By = ey AH/2—d/4qy

In addition to being conceptually interesting, the above char-
acterization of multivariate fractional Brownian motion leads to
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Fig. 1. Innovation model for multivariate fractional Brownian motion.

a natural generalization of the definition to values of H outside
the (0, 1) range.

Furthermore, fractal properties of the process find their cor-
respondent in the operator: the scale-invariance property im-
posed on the operator induces the statistical self-similarity of the
process, while rotation-invariance entails its statistical isotropy.

These results all follow from a multivariate generalization of
Theorem 1 of Blu and Unser [30], which provides a spectral
characterization of fBm through its characteristic functional (cf.
Section II-C).

Theorem 4: Let 0 < H < 1. An fBm field with Hurst pa-
rameter F and variogram 2||z — z'||*¥ has the following char-
acteristic functional:

€2 i(w) — @(0)]?
Zs,, (u) = exp (— Z(Zfr)d /dw | (Iru);||2H+(d)| > (20)

where

_g2H+d d/2 T(H+4) )
T

H) @

& =

Proof: A complete proof can be found in Appendix II. The

main step of the demonstration consists in showing that (20) de-

fines a Gaussian process whose correlation function ¢, (z, z’)

is that of an isotropic fractional Brownian motion with Hurst
parameter H, that is, the function

ew, (@,7) = [l + ||| ~ Iz — /|
1
‘We recall the characteristic functional of the unit random field

20 (a.k.a. white Gaussian noise)

exp (-% /dx |u(z)\2)
o (=507 [awliw)?).

From comparing this with (20) and by applying a duality argu-
ment, we can deduce that

Zyy(u)

Zy, (u) = Zm(fHAJ‘“u) = Ze"i*”‘o‘m(“)

with 79 = H/2 + d/4. This means that the random field ob-
tained by applying the right inverse A= to the unit (general-
ized) random field 20 is a multivariate fBm with Hurst param-
eter H, i.e.,

By = eg AH2-d/4qy, (22)

Equation (22) is an alternative characterization of fractional
Brownian motion, and can be used to extend the definition to
noninteger // > 1. The covariance function of these extensions
can be obtained with the aid of Lemma 1 of Appendix II.

It also follows that fractional Brownian motion is whitened
by the fractional Laplacian operator

AH/ZHA/AR ooy

a fact that leads to the innovation model depicted in Fig. 1.

Remark 4: For 0 < H < 1, arelated characterization of real
fractional Brownian fields is by their harmonizable representa-
tion as the stochastic integral

. eiIT“’ 1~
——W(d
e o @)

where W is a (Hermitian symmetric) complex random measure
corresponding to the Fourier transform of real-valued white
Gaussian noise (see Samorodnitsky and Taqqu [51] for an
in-depth discussion of the single-parameter case). The inte-
grand ("% — 1)/||w||Z+%/2 is comparable to the spectral
representation of the right inverse in (10), which reduces to
the said integrand for 0 < H < 1. The treatment of Benassi
et al. [31] is also of direct pertinency, and includes similar
extensions.

VI. POLYHARMONIC WAVELET ANALYSIS OF
MULTIVARIATE FBM

Considering the inherent link between polyharmonic splines
and fBms that has been emphasized throughout this article, it
should not come as a surprise that a wavelet analysis of multi-
variate fBm would have interesting properties. We study some
of these in the first part of this section. Next, we complement
and verify our derivations through some experimental results.

A. Probability Distribution of Wavelet Coefficients
Proposition 3: The polyharmonic spline wavelet transform of
order 27y > 27y, withyg ot H/2+ d/4, maps the nonstationary
process By into a series of stationary (discrete) Gaussian pro-
cesses.
Proof: We canrely on Theorem 3 and the innovation model
to see that, e.g., the wavelet coefficients at level n = 0 are
stationary Gaussian processes obtained by filtering white noise

wolk] = (B, oy (- — Qk)) = (AT By, AYn(- — Qk))
= (en 2, A7 (- — Qk)).

(Note that even though the polyharmonic spline A~ 7(-—Qk)
is not a Schwartz test function, its inner-product with the white
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noise process is nonetheless well-defined as it is continuous and
belongs to H?® for some s > 0; cf. Theorem 3). The demonstra-
tion for an arbitrary level n is similar, except that a scale-depen-
dent normalization factor also appears. 1

What this property means is that the wo|k|s correspond to
the lattice samples of a stationary process with power spectrum
€% ||lw||**=27|5(w)|? (which is well-defined in the Ly sense
since n € H* for all s < 4y — d/2). This relation is essen-
tially scale-invariant up to a proportionality factor.

Proposition 4: The variance of the polyharmonic wavelet co-
efficients depends exponentially on the Hurst exponent and the
scale n as per

E{w?[k]} = ID|®" " 'E{wd[k]}.

Proof: This property can be shown using the correlation

form (-, ), . One has [cf. (28)]
E{w,zl[k]}
= (D" *92,(Dg "z~ Qk), ID| ™" *4ho, (D3 "z~ Q) s
e faw [z (@)
(27r) |[Q-TD-"TQTw||2H+d

N 2
D/ EH+) e /dw P2+ (w)]
e 2y’ ] P

=D VD (s (), by (@) e
= D[/ DCHIIE L 2(k]}. 1
More generally, we have the following result.

Proposition 5: The covariance of intrascale wavelet coeffi-
cients is given by the relation

E{w,[kw,[k]}
|D‘(n/d)(2H+d)

2
n [z, (@ (’ i(k—k)D""Q"w
= dw ———— | [1+¢€
2(2r)* / Twl?#+d

= E{wo[D"kJwo[D" K]}

)
Proof: At scale 0 we have
E{wo[kJwo[K]} = 7[ Vo o T Vo ks Yoy o+ Vo, k)

(g ks Vo kDB

The proposition is then proved using (28) and with a change of
variables as in the previous proof. 1

Remark 5: The above result can be compared with those ob-
tained by Meyer et al. [23] in the 1-D setting. The wavelets pro-
posed by Meyer et al. depend on the Hurst parameter H that is
matched to the Hurst exponent of the 1-D fBm process in con-
sideration (which should be known a priori). Independence of
the wavelet coefficients (true whitening) is a consequence of this
perfect match. This in fact corresponds to the wavelets being or-
thogonal in terms of the positive-definite form ((-, ), . Since
this design depends on the Hurst exponent being known, in the
problem of estimating H a parameter higher than the true un-
known value must be used, in which case the wavelet coeffi-
cients will again be correlated. Also note that the results pro-

= (Vo ks Vo g N |-

vided in the present paper are general and concern any family
of semi-orthogonal polyharmonic wavelets. In the actual imple-
mentation of wavelets for a given lattice, there is some room
for incorporating certain desired behaviors in the design of the
wavelet filter, which will in turn affect the smoothing function
of Theorem 3.

As a demonstration of potential, the above results (Proposi-
tions 3 and 4 in particular) allow us to extend 1-D wavelet es-
timators of the Hurst exponent reported in the literature [18],
[20], [27]-[29] to the multidimensional setting. In its simplest
form, estimation can be based on the identity

log 4 (E {wi[k]}) = (2H +d)n + C (23)
where C' = log ‘\'/W(E {w[K]}) is a computable constant
that depends on the choice of the wavelet (Proposition 4). This
means that a linear regression of the estimates of the variance
in each sub-band in the log scale provides an estimate of H.

An improved estimate may be obtained using a maximum-
likelihood (ML) formulation. This is essentially a multidimen-
sional adaptation of the ML-estimator of Wornell [27], [29].4
The estimate is defined as the minimizer of a negative log-like-
lihood approximate (lcaving out the constant term)

l(w|f) = Z N, loga2(6) + 24)

2 Z0)

In the above formula 8 “<F (H, C")—with C’ a normalization
factor—is the set of parameters to estimate; AV is the set of levels
used for estimation; N,, denotes the number of coefficients at
level n

o2(6) < E{wl[k]} = ¢'|D|*H+Dm/1

is the theoretical variance of level n wavelet coefficients (cf.
Proposition 4); and, finally, £,, is the observed wavelet energy
(i.e., the sum of coefficients squared) at level n. In the imple-
mentation we have used the previous regression estimate as an
initial guess and applied Newton’s method to the derivative of
£. This provides a fast (essentially real-time) way of producing
an improved estimate of H.

MATLAB implementations of the above estimators are
available via our website (http://bigwww.epfl.ch/demo/frac-
taldimension/).

B. Experimental Results

The estimation procedure outlined previously was applied to
instances of (periodic, due to discretization) 2-D fBm, gener-
ated via Fourier domain filtering as per Section III-B [cf. (22)
and Remark 4]. The wavelets used for analysis were isotropic
polyharmonic wavelets of Van De Ville et al. [37], which have
afast FFT-based implementation. The order of the wavelets was
chosen to exceed H +d /2 in order to satisfy the requirements of
Proposition 3. We used a quincunx subsampling scheme, which

4Note that, as is the case for the cited estimators, the ML formulation is ap-
proximate where the wavelet is not specifically designed to exactly match the
process, as the correlation between wavelet coefficients is not taken into consid-
eration. We have provided formulae for the covariances, which could in principle
be used to improve the estimate. This, however, would substantially complicate
the estimator.
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Fig. 2. (a)-(c) Regression plots for the estimation of Hurst exponent of discretized bivariate fBm for various values of the Hurst parameter, all generated from the
same instance of pseudo-random noise; (d) regression plot for an fMRI image (original images are given as insets).

TABLE I
WAVELET-BASED ESTIMATION OF H (100 REALIZATIONS)
true value | log-regression estimate ML estimate
mean stdev mean stdev
0.3 0.290 0.007 0.293  0.004
0.6 0.590 0.008 0.004
0.9 0.890 0.008 0.005

offers a more gradual scale progression, thus furnishing more
regression points for the estimation. Another advantage is that
the quincunx design involves only a single mother-wavelet.

Hurst parameter estimation was performed on 100 instances
of 512 x 512 fBm images for three different values of H (0.3,
0.6, and 0.9). Decomposition levels 2 to 8 were used for esti-
mation. Examples of fBm images and corresponding regression
curves can be seen in Fig. 2. The average and standard deviation
of the estimated values, obtained by regression and ML estima-
tion are given in Table I. In experiments we noticed very good
fits and small standard deviations, which underline the robust-
ness of the process.

Results of the same analysis applied to a single axial slice of
a functional magnetic resonance image (fMRI) of the brain are
also shown in Fig. 2. Boundary and background wavelet coeffi-
cients were discarded for the analysis in order to avoid boundary
effects. The corresponding fractal dimension according to the
improved estimate is d + 1 — H = 2.66.

It has been suggested that anatomical growth processes lead
to fractal-like structures. In the case of the brain, Bullmore et
al. [52] have argued that the boundary between the white matter
and the cerebral cortex has a fractal-like shape. Additionally,
based on recently made possible 3-D high-resolution imaging

of the vasculature [53], the branching of the tree structure of
the arteries appears to constitute a fractal organization in space.
As fMR imaging of brain tissue indirectly measures the flow of
oxygenated blood, these arguments can in a way account for the
fractal behavior evidenced in Fig. 2(d).

VII. CONCLUSION

Our approach in this paper was based on the observation that
certain families of splines and random processes can be charac-
terized as deterministic vs stochastic solutions of the same frac-
tional partial differential equation.

Motivated by the works of Duchon [43], Arigovindan [44],
and Kybic er al. [42] on invariances, in this paper we focused
on a particular class of such equations that is singled out by im-
posing certain fundamental invariance properties on the oper-
ator involved. This pointed us to a family of fractional differen-
tial operators that are invariant to the translation, rotation, and
scaling of the coordinate system. We substantiated the following
points.

¢ These operators (which turn out to be fractional iterations
of the Laplacian) lead naturally to the definition of poly-
harmonic B-splines and multiresolution spline spaces over
a large family of multidimensional lattices.

The same operators whiten multivariate fractional
Brownian motion, and can thus be used to rigorously
characterize this important family of random fields.

The relation between deterministic and stochastic formula-
tions provides a natural framework for the analysis of fBm.
In particular, a polyharmonic multiresolution analysis of
fractional Brownian motion has interesting properties that
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can be deduced from the parallelism between the two for-
mulations. As an example, we showed an application of
this observtion in the estimation of the Hurst parameter as-
sociated with fBm processes.

Our results relate, generalize, and formalize previous results
of multiple authors, including those of Rabut et al. [35], [36] and
Van De Ville et al. [37] (on polyharmonic splines and wavelets),
Blu and Unser [30], [34] (on the distributional characterization
of 1-D fBm), and Flandrin, Wornell, and Veitch and Abry [20],
[27], [28] (on the wavelet analysis of 1-D fBm). In addition,
given the generality of the approach, it opens an interesting av-
enue of research for the future investigation of any of these sub-
jects.

APPENDIX I
PROOFS OF THEOREMS 2 AND 3 AND OF PROPOSITION 2

Proof of Theorem 2: R

Proof of MRA—1: By (16), the zeros of ¢y (w) are the same
as those of Aa(w), with the exception of the zero at w = 0
which disappears (see the proof of Proposition 1). From (15)
we can see that A7 o(w) is zero iff

QT e Z forall i.

Since the vectors Qy; generate £, by the definition of the dual
lattice, the above condition is equivalent to

w *

P € £g.

Removing the zero at w = 0 produces 2m.£\ {0} as the set of
zeros of ¢o(w).

Property MRA-1 is then a consequence of the Poisson sum-
mation formula [cf. (4); also of direct relevance is Kolountzakis
[54, Eqn (5)]]. 1

Proof of MRA-2: Property MRA-2 can be verified by
writing the Fourier expression of the refinement filter & as

i (Og) _ o Tl Va(0g)

. o Dowl®™ _ovaVQ

Ho(w)= |D‘A D] \3 : —pyi—>1 YW
Py (w) HS\(\‘;’ Va(w)

(The last step results from Dg, being, per definition, a similarity
transform matrix; cf. LAT-1). We observe that (i) the numer-
ator and denominator of the last expression are, respectively,
27£* |- and 27 £§-periodic; that (ii) the zeros of the numerator
and the denominator happen respectively over the sets 27w £* |
and 27 £{ and are all of order 2+; and finally, that (iii) both the
numerator and the denominator are bounded.

We know from (3) that 2z £5 C 27.£* . Therefore, first,
from (i) it follows that Hg (w) is 27 £5-periodic. Secondly, from
(ii) and (iii) one concludes that ﬁQ(w) is bounded, with its set
of zeros being

{w] Ho(w) = 0} =2m (£7,\£})
=2 |J (£+Q7D7C).25)
1<i<|D|

These observations establish that flg(w) is the lattice Fourier
transform of a sequence h € /;. The two-scale relation therefore
holds. 1

Proof of MRA-3: Proving the existence of lower and upper
Riesz bounds is equivalent to showing that the Fourier transform
of the autocorrelation filter (18) is bounded away from zero.

Since Aq (w) is 2w £} -periodic, we can restrict our attention
to the unit cell corresponding to the Voronoi region of 0 with
respect to 27 £. Within this region, we rewrite (18), replacing
(;2-, from (16) and noting the periodicity and boundedness of
V(@) to obtain

Z Vs
lw +27Q~ Tk\"‘

_ M + Vv (w) z

Ay
twl kez\{o}

Aq(w) =

lw+27Q Tk~

The existence of a positive lower bound is then evident as
Aq(w) is bounded from below by ¢4ﬂ,( w) = VQ any(w)/|w|*7,
which is strictly positive in the noted region.

Also, since we assumed v > d/4, the second sum converges
for all w in the unit cell, and is bounded from above (with both
ﬁaclors being bounded). This, in addition to the boundedness of
¢4 (w), confirms the existence of an upper bound and completes
the proof of the Riesz property. 1

Proof of Proposition 2:
Proof of 1: Any element f(z) of Vs, o can be expressed in
the Fourier domain as
. Ad(w)
o

where the 27 £ -periodic and locally square integrable function
Cq(w) is the lattice Fourier transform of a sequence ¢ € 5. By
applying A" to f we shall have

R A(” “n)( w)

F{ar [} =Cow)Ag (W)lelz(—.,m

= Co(@) AL (W)Pa(y—rg).e1(@)-

Since Cq (w)AaD (w) is also a 2 £ §-periodic and locally square
integrable function (due to the periodicity and boundedness of
the second factor), it corresponds to the Fourier transform of
some ¢ sequence ¢’. A" f can, therefore, be written in the form

> lkldai—an(- — QR)

kez¢
whereby A f € V(y_4,).0- 1
Proof of 2: From the assumption, by the definition of poly-
harmonic splines [see (11)], we have
ATAs(z) =Y c[k]5(z — Q).
kezt

Using (7), we can write

As(z) = Y c[klé(z — Qk)

kez:

which, per definition, establishes s(z) as a polyharmonic spline
of order 27 + 27o. 1
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Proof of Theorem 3:
Proof: The semi-orthogonality condition is equivalent to
stating that

(¢2,(Dg'®). 2, (Dg 'z — QR)) =0.  (26)

We replace the B-spline ¢, and the wavelet 1., in the above
equality by their higher resolution B-spline expansions, given in
(19) for ¢, and below for ¢,
v, (D3'2) = 3 glKlon, (z — Qk)
kezd
where g € ¢ is the stable wavelet filter. The autocorrelation

filter alk] def (2 (- — QE), ¢2+(-)) appears in the resulting

equation. Using its symmetry, we can restate (26) as follows:
(h+axg)[Dk]=0
with 2[k] < h[—k].
Let us define b % foxa g. The above relation then finds the
following Fourier domain expression (cf. Viscito and Allebach
(55D

Bo(w) + Y Balw-27QTD7T¢,) =0.

1<i<|D|

From the definition of b, we have

Bo(w) = Ho(w)Aq(w)Go(w). (e))
Therefore
Y. Bo(w—27Q7 D7)
GQ(m) _ _I<i<ip|

Ho(w)Aq(w)

‘We see from (25) and (27) that the numerator has an uncancelled
(and isotropic) zero of degree 2+ at the origin. Since G(w) is by
definition bounded (as g € /1), this means that we can extract
the symbol ||w||*” (corresponding to A7) from the Fourier trans-
form of the wavelet filter, and consequently from the Fourier
transform of the wavelet itself. In other words, the function

(w) = ]| 70 (w)
will be continuous at 0.

‘We also note that the wavelet, by construction, has the same
Sobolev regularity as the B-splines; i.e., its Fourier transform
decays like ||w|| =27, leading to a ||w||~*-like decay for 7)(w).
From this we deduce that 7)(z) is of the claimed Sobolev regu-
larity. That it is also a polyharmonic spline of order 47 follows
from the second part of Proposition 2. 1

APPENDIX 1T
PROOF OF THEOREM 4

As was mentioned in the introduction, the characteristic func-
tional of a Gaussian field X satisfies (see Gel’fand et al. [39, ch.
111, §2.6])

Zxu) = exp (5 () )-
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Therefore, in our case, we need to show that for 0 < H < 1
2 7 ks 2
€ U —u(0
b [ ) 10)
(2m)“ .

lw|2E+d
This correlation form is related to the (generalized) correla-
tion function ¢, (z, ') thus [ibid., ch. 111, §2.1]

(s u)m, = (28)

(u, o), = /dzdz' ey, (z, 2 u(z)v(z').  (29)

The correlation function of a normalized fractional Brownian
field with parameter H,0 < H < 1, derived from its variogram,
is

emy (@.2) = (el + |l |77~ Jlz — «'P7) . 30)

To show (28), we plug (30) into (29), and break the integral
at the additions to get (after replacing z in the first, ’ in the
second, and &’ — z in the last integral, all by z)

(s, = (Jlall>, 7~ {a(0)a(w)})
+(Jlal?, 7= {aw)i(0) } )
— (=, 7 {aw)i(w) })
= — (=P, F H{iw)}) @1

where

b(w) Ea(0Yi(w) + a(w)i(0) — a(w)i(w)
\

= la(w) — a(0)* - [a(0)?

is a linear combination of test functions and is, therefore, a valid
test function itself.

The inner product in (31) can be evaluated in the Fourier do-
main by applying the Parseval equivalence

(=), F=Ho(w)}) = —(2m) e} Rllw]| 77, i (w))
(32

valid for 2H # —d, —d—2,...[38,p. 363]. Here R|jw|| 2% ~*
is a generalized function (distribution) that corresponds to a par-
ticular (canonical) regularization of the function |jwl|| =274,
The canonical regularization is to be conducted according to
the recipe given in Gel’fand and Shilov [38, §3.3], as detailed
below.

‘We restate (32) in (hyper)spherical coordinates as

(fu, u)m, = (21) g Qa(Rp™> 1, S5 (p))

where p Lot [[w]], Q4 L' the area of the hypersphere in R?,
and S;(p) denotes the average of o(w) over the hypersphere
of radius p centered at the origin. Also, Rp~2#~! denotes the
particular regularization of p~2~! invoked in (33).

Sa(p) is a smooth and even function of p with rapid decay,
with a Taylor series expansion of the form

Si(p) = 9(0) + azp® + asp* + -+ + asp* + o(p**).
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For0 < H < 1, we have —3 < —2H — 1 < 0 and from there,
by the definition of the generalized function Rp~2H#~1 (see [38,
p. 3631)

R 53(0)) = [ oy i) - 5(0)] 59)
0
(where the right-hand integral should be interpreted as a limit).

By expanding S;(p) and returning to Cartesian coordinates, we
can now write

(wl =24, 5w) = [ duw [l 2~ i(w) - i(0)]

(o)

(using the definition of #(w)). From combining this with (32),
we arrive at the desired result, i.e., (28). [ ]

Remark 6: The following lemma allows us to generalize
the results given here for 0 < H < 1 to the case of noninteger
H > 1. The proof is technical and is not reproduced here.

Lemma 1: Let v(z) be a test function and H > 0 be non-
integer. Then, in the sense of generalized functions of Gel’fand
and Shilov

(el v(o) = = [ ol 2

ks 2k
N - IO
22k 1T (l\': + 5)

0<2k<|2H]
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Self-similar Random Vector Fields and Their Wavelet Analysis
Pouya Dehghani Tafti and Michael Unser

ABSTRACT

This paper is concerned with the mathematical characterization and wavelet analysis of self-similar random
vector fields. The study consists of two main parts: the construction of random vector models on the basis of
their invariance under coordinate transformations, and a study of the consequences of conducting a wavelet
analysis of such random models. In the latter part, after briefly examining the effects of standard wavelets on
the proposed random fields, we go on to introduce a new family of Laplacian-like vector wavelets that in a
way duplicate the covariant-structure and whitening relations governing our random models.

1. INTRODUCTION

Self-similar or fractal random processes and fields have been used for modelling a wide range of man-made
and natural phenomena.! This is to a large extent due to their special form of scale-invariant behaviour
(self-similarity) that is either strictly or approximately obeyed by the phenomena in question. This form
of scale-invariance is also central to the definition of wavelets. Wavelets therefore come across as natural
tools for the analysis of data obtained from the observation of fractal phenomena and for quantifying their
correspondence to the said models.””

The most prominent example of self-similar random fields is fractional Brownian motion (fBm).> While classical
fractional Brownian fields typically correspond to physical scalars, a vectorial extension of such models can be
envisioned by bringing in certain laws of coordinate transformation that govern vector quantities in physics.
In the present work we first introduce such a vector extension of fractional Brownian fields, and then review
the analysis of these random models using existing, as well as novel, wavelets.

To obtain a physically relevant stochastic vector model, we shall focus on two important categories of coordinate
transformations—namely rotations and scalings—and study R¢-valued self-similar random fields that rotate
according to the laws of coordinate transformation that hold true for vector fields. The desired properties are
found in a pseudo-differential operator (an extension of the vector Laplacian), which is used to define the
vector fBm field B ¢ via a whitening equation:

Hid
(-A)¢ " Bug=enW @

(20 is a vector of independent and normalized white noise fields and ey is a constant).

The above equation is interpreted in Gel’fand and Vilenkin’s framework for distribution-theoretical stochastic
analysis.” In this formalism, random fields are defined by specifying the joint probability measures of their
‘inner-products” with test functions. This process can also be understood as taking the random field to be a
generalized function (distribution) chosen at random from a generalized function space.

In the following sections we first briefly review the definition of the extended fractional Laplacian operators
mentioned above, and then use them to define vector fBm fields. Wavelet analysis of vector fBm takes up the
remainder of the paper, and is divided in two parts: an analysis using standard wavelets comes first; this is
then followed by a novel vector wavelet construction that is also used to analyze the random fields in question.

2. FRACTIONAL LAPLACIANS AND THEIR INVERSES

The Laplacian operator (—A)/ that appears in (1) is linked to the matrix-valued function

T T
3, . (x):=|z|> [C@—” +e (lf—" )] @
6 ER ER
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via the equation
(~A)f = (zﬂ)*d/wdw =B (w) f(w),

for v € Ry and eft,cf € R.

To gain a better understanding of the action of the extended fractional Laplacian let us introduce the auxiliary
operator

E:f— (277)7(1/ dw &®'

whereby
(—A)] =¥ (—A)JE + e (—A)j(ld - E).

E and its complement (Id — E) project their argument onto the curl-free, and divergence-free, subspaces of
(L?)? respectively. This observation clarifies the action of the extended Laplacian (—A)g, which can thus be
said to consists of an ordinary fractional vector Laplacian—operating independently on each component of
the field—combined with a Helmholtz-like decomposition and weighted recombination, with the weights
depending directly on & = (£1,&).

It can therefore be seen that the parameters &; and &, govern the vectorial behaviour of the solution to (1). As
important special cases, in addition to the classical fractional Brownian motion obtained by choosing & = &3,
divergence-free (solenoidal) and curl-free (irrotational) solutions to (1) can be produced by letting &; — oo and
& — oo respectively.

Our interest in extended fractional Laplacians is rooted in the fact that they interact with coordinate trans-
formations in a specific way: given the transformation operators

So: f(o) = f(o™"e) (scaling)
and
Rg : f(s) — Qf(Qe), (vector-field rotation)
one can verify that the following ‘quasi-invariances” hold.
(—A){Sof = 0™"S,(-A)Lf (self-similarity)
and
(-A){Raf =Ro(-A){f. (rotation-invariance)
(2 denotes an arbitrary rotation or reflection matrix.)

2.1 Inverse Operators
To solve (1) for a self-similar solution one needs to invert (—A); subject to zero boundary conditions at = 0.
This process gives rise to the inverse operator

) . (| gk b .
(fA):E:fH@(GW> - Y ) etlw)f(w) de.

|k|<|2v—§
As already mentioned in the introduction, in our distribution-theoretical formalism the self-similar solution

to (1), that is, the random field i
Be = en(—A) 723,
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is defined in terms of ‘inner products’ (¢ H(fA,):gQJJ, g) with test functions g. We shall demonstrate in the
next section that an exact meaning can be attached to these inner products by transposing the operator to the
right side. For this purpose, it is necessary to identify the dual of the above inverse operator; i.e., the operator
FA):% satisfying

(=A)Z¢f9) = (f.(-A) z9)

for all test functions f and g. This dual operator is given by the integral
(D)7 fe (27\')_d/ dw &~ (w)[R" f](w)
Rd

with the regularizer RY defined by
R f(o) = flo) = 30 Telfl®)"

[k|<[2v—4]
where Tx[f] denotes the (vector) coefficient of ()* in the Taylor series expansion of f(e) around 0.

3. VECTOR FRACTIONAL BROWNIAN MOTION

The properties of statistical self-similarity and invariance to domain rotations are at the heart of the various
definitions of vector fractional Brownian motion we shall now consider.

3.1 Vector Fractional Brownian Motion

Fractional Brownian motions (fBm’s) are defined as specific types of non-stationary zero-mean Gaussian fields.
As a result of their Gaussian probability law, knowledge of their second-order statistics suffices for their full
characterization. A vector fBm By with Hurst exponent H, 0 < H < 1 is classically defined via its variogram,
i.e., the expectation

E {81 (2) - Bu)|’} o |z - ]

Self-similarity and rotation-invariance of B ¢ can be directly verified in the above formula.

The above definition leaves the cross-correlation of vector components unspecified. These components are
normally assumed to be independent, in which case vector fBm becomes nothing but a vector of scalar
fBm’s.)® When considering specific forms of vector behaviour (such as divergence-free flow), this independence
assumption proves to be too restrictive and, consequently, a broader definition is to be sought.

Such a broad definition of vector fBm was given in the introduction by means of a whitening equation (Eqn (1)),
that is, a stochastic fractional PDE of the form

H.,d
(-A)F By = ey,

where € is a constant, 253 is a vector of normalized white noise fields, and B ¢ denotes the desired solution.
The extended Laplacian operator (—A)z defined in the previous section accounts for the self-similarity and
rotation-invariance of B ¢. To give an explicit definition of By ¢ the operator needs to be inverted with
attention to the special boundary conditions imposed on the solution (zero boundary conditions at « = 0).
This is achieved using the first of the particular inverse operators introduced in §2.1:

2H+d
T

B =en(—A) T W ®)
One has command over the order of self-similarity of the resulting random models via the parameter H
(the Hurst exponent). Directional behaviour (i.e., solenoidal vs irrotational tendencies) can also be controlled

by adjusting £, as noted in §2. These models can therefore be adapted to the directional structure of the
phenomenon under investigation.
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3.2 Mathematical Interpretation

We shall at this point elaborate briefly on the mathematical interpretation of Eqn (3). In Gel’fand and Vilenkin’s
theory of stochastic analysis, one takes a random function such as 25 to be an entity whose ‘inner products’
(28, g) with test functions g in some function space are ordinary random variables. 28 is then fully defined
once the joint probability measure of any finite number of such inner products is given in a consistent manner.

, 2
If an operator such as (—A)_, *

duality, yielding the equality

acts on 20, this operator is carried over to the side of the test function by

2H+d 2H+d
1

(~A) ¢ am,g) = (W (-A) T g)
that holds by definition.

As noted previously, when dealing with zero-mean Gaussian random functions (as in the present case),
knowledge of second-order statistics suffices. For the vector fBm 2B ¢ this information is captured by the
correlation form defined by the equation

(£.9) w0 = E{(Bue, /) (Buc.g)}.

This quantity can be computed as follows:

B{[ e 71Bn.o)} =B {len(-4) 7" w1 en(-4)¢ 200}

~ e m{ (2. A P A )}

_2H+d . _2H+d
I

=lenl((-A) ¢ T £ (D) ¢ T g)aw

= lenPU-A) (T R (-A) T g)

_ ‘(H|2 i Rzurd ATH (I),H,% Rzu;dA . P 1
~ i [ R A e )R gl (Parseval)

where we have used the following fact/definition regarding the correlation form of white Gaussian noise:
(f.ghas = (£, 9)-

4. WAVELET ANALYSIS OF VECTOR FBM

As a consequence of the whitening relation dictated by (1), vector fBm fields can (in loose terms) be regarded
as combinations of (non-stationary) fractional integrals of white noise, with fractional integration appearing in
the inversion of (—A)7.

For the purpose of analyzing these fields, it is desirable to undo the integration process, in order to produce
a stationarized random field. This can be achieved by the application of a wavelet transform to the field,
as wavelets—owing to their vanishing moments—behave like smoothed differentiators. Another important
property of such an analysis follows from the self-similarity of both the wavelets and the random fields under
consideration, which results in a simple relation between the probability distributions of wavelet coefficients
at different scales. Consequently, wavelet analysis offers an advantageous way of verifying the introduced
models and estimating their parameters in practice.>%%7/11-14

Stationarizing the models in the manner we have just described can be seen as an attempt to construct a
multi-resolution approximation of the operator (—A){ by using wavelets that have the operator embedded
in them. Since in this process we are dealing with vector quantities and operators, the said wavelets are in
general represented as matrices (or equivalently as groups of vector-valued functions).
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4.1 Scalar Wavelet Analysis of Vector fBm

In a biorthogonal wavelet system the basis elements can be represented as v, » € L2 with dual elements
Yok € L? (where n denotes the resolution and k indexes a lattice in R?), so that the i-th component of B ¢
finds the representation

[(Bue], = Z([%Hd,, Vo) e = Z(%H@ €U 1e)tn k-

n.k nk
In standard constructions, wavelets in a given sub-band at a given resolution n are lattice shifts of one another:
U k() = Y o(x — k).
Consider the discrete random process w, ; defined by
Wnilk] == (B e, e0r).
Then

2H+d N 2H+d -

wnilk] = (e (—A) ¢ T W, etbn i) = (enW,(~A) T éithug). @

Assuming that 1, ;, has sufficiently many vanishing moments (Fourier-domain zeros at w = 0) so that
2H4d |, = AT
T €itnk = €iihnk, We have

N 2H4d 4
(A b= en [

R

. _2H+d 2 .
ddw e’ [~ (w)}jwn,k(w) eL2

It therefore becomes clear that the above inverse operator is shift-invariant over this particular subspace of
functions (in contrast to the general case of functions with non-vanishing moments for which it is not, due to
the space-dependent operation of R2H4vd). But then, since 25 is stationary, the last argument and (4) together
prove that in this case the discrete random process w,, ; is stationary.

In other words, a wavelet analysis of vector fractional Brownian motion with wavelets whose moments of
degrees up to | H | vanish yields stationary coefficients at each resolution.
4.2 Extension to Vector Wavelets

Instead of using ordinary scalar wavelets to analyze vector fBm, it is possible to define vector wavelets that
provide a multi-resolution approximation of the fractional Laplacian operator (7A)2 (in comparison, scalar
wavelets approximate differentiators of some order). This purpose is achieved by constructing a multi-resolution
hierarchy of vector splines and defining wavelets via the application of a fractional Laplacian to interpolating
spline basis functions.

4.2.1 Vector Splines

In a manner similar to that in which polyharmonic splines and wavelets are defined,'* we construct a multi-
resolution analysis of (L?)? by first finding a localized version of the Green’s function of (7A)g‘ Towards this
end, we first recall that the said Green’s function satisfies

(~A)T =4,

which yields the equation
d>2(w)f‘(u) =1, almost everywhere.

Given that the matrix inverse of @g(w) for w # 0 is simply @:g(w), we can conclude that the desired Green’s
function has the Fourier transform
@ /(w) almost everywhere.
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Much in the same way as in scalar wavelet theory, a localized and interpolating version of the Green’s function
can be obtained via dividing its Fourier expression by its periodization. A Fourier-domain definition of the
Lagrange basis function L] is therefore

L{(w) =8 (@)Y # (w - 27k)] ",
keZd

which ensures that
Li(k) =6l for k ez’
(with ¢, denoting Kronecker’s delta function).

With basis elements (multi-integer shifts of Lg) given as matrix-valued functions in the vector setting, linear
expansions take vectors as coefficients. The approximation space V), is therefore defined thus:

Vo ={> Li(s - k)clk]|c € (¢)"}.

keZd

One can verify that L;’ is indeed refinable, with the Fourier transform of the refinement filter given by*

[LY(w)] 'L 2w) =272 [ 3 @ 2(e —2nk)] [ Y @7y (20 —27k)] ',
kez? kezZ?

which is a 27Z%-periodic function over R%. Nested multi-resolution spaces are then defined by the relation
Vi = {F(270)| £(o) € Vo).

4.2.2 Vector Wavelets

Our intention in this subsection is to introduce wavelets that can be used to analyze a vector field f(e) in
such a way that analysis coefficients together can be seen as a multi-resolution representation of the fractional
Laplacian of the field in question. In other words, a given wavelet coefficient wy k] (with n encoding the
resolution and k the position) is to represent the quantity

/]Rdda: K(2"z — k)(-A) f(z)

where K is a localized matrix-valued function. The above integral can then be interpreted as a local measure
of (~A){ f(), the locality or resolution of which depends on n. One typically imposes the additional
requirements on the wavelets that they be orthogonal to lower resolution approximation spaces and span their
orthogonal complements in spaces of higher resolutions.

*

The two-scale relation in this case takes the form
L{(27'e) = > Li(e —k)R[K],
kezd

which is to say that the refinement filter h corresponds to a sequence of vectors. The Fourier transform h of a vector
filter h is given by the relation

hw) = 3 *“hik].

kezd
A 277Z%periodic vector-valued function over R? can be taken to be the Fourier transform of a vector filter. As such, to
P!

show that L is refinable, we need to show that the refinement filter obtained by dividing the Fourier transform of
L(27'e) by that of L](e) is 27Z"-periodic.
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It turns out that the requirements sketched above can be satisfied by defining 2¢ — 1 mother wavelets
(corresponding to the usual 2¢ — 1 Cartesian cosets) as follows.
vy 2
Wz,m<°) = (*A%Lglg ®—Gn),
with ¢, 1 < m < 2¢ -1, denoting the m-th coset identifier (i.e. the vector corresponding to the binary
representation of m). A Fourier-domain characterization of these wavelets is given by the relation

37 o - 2 T
W, (w) = @ (w)Lg g(w)e s

- s “1 e
= éiz(w)[kz;té_g_*_g)(w —27k)| e i ism,
e

4.2.3 Vector Wavelet Analysis of Vector fBm

Let us now assume a v > & + ¢ and consider the vector wavelet coefficients of a vector fBm field %

w ol = [ de (W@ "Brele)

—H_

ZEH/MM [(—a) 1LY, (2) (@)

which, similar to the previous analysis with scalar wavelets, shows that these wavelet analysis coefficients
constitute a stationary vector-valued random field (defined over Z?) corresponding to filtered white noise.

5. CONCLUSION

We defined a broad family of fractional Brownian random vector fields by introducing a pseudo-differential
operator that extends the fractional vector Laplacian, and positing it as the whitening operator of the said
random fields. A wavelet analysis of the introduced random fields using standard wavelets was then studied,
with emphasis put on the stationarizing effect of a wavelet transform on vector fBm.

Next, we turned our attention to the construction of multi-resolution approximation spaces and wavelets that
are directly linked to the extended fractional Laplacian operator, in the sense that an analysis based on the
said wavelets provides in effect a multi-resolution representation of the fractional Laplacian of the vector field
under investigation. This property was used to demonstrate the stationarizing effect of these novel vector
wavelets on fractional Brownian vector fields.

These newly introduced wavelets, and the random fields to which they are inherently related, have many
interesting properties which we have not examined in this brief overview. These properties, and their interplay
will be the subject of our future investigations. Moreover, in the present study, we have not addressed the
practical implementation of the proposed wavelet analysis on a digital computer. Nevertheless, we are aware
of an interesting connection between these wavelets and an important special function (namely the Epstein
zeta function) for which fast evaluation algorithms have been proposed in the literature.
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ABSTRACT

We introduce stochastic models for flow fields with parameters that
dictate the scale-dependent (self-similar) character of the field and
control the balance between its rotational vs compressive behaviour.
The development of our models is motivated by the availability of
imaging modalities that measure flow vector fields (flow-sensitive
MRI and Doppler ultrasound). To study such data, we formulate
estimators of the model parameters, and use them to quantify the
Hurst exponent and directional properties of synthetic and real-world
flow fields (measured by means of phase-contrast MRI) in 3D.

Index Terms— vector fractional Brownian motion, flow-sensitive
MRI, wavelets, vector fields, Hurst exponent, curl, divergence.

1. INTRODUCTION

Stochastic fractal models are commonly used in a range of ap-
plications where some form of self-similarity or scale-invariance
is observed (examples include image processing, seismology, and
the study of growth processes [1,2]). The quintessential stochastic
fractal is the fractional Brownian motion (fBm)—so named by Man-
delbrot and Van Ness [3] but already considered by Kolmogorov [4]
and others before them—which can be defined by means of the
structure of its variogram (variance of increments) [5]:

E{|Bx(e) — Bu(y)|*} o< & — y||*

In the above equation [E denotes the mathematical expectation oper-
ator; H is the Hurst exponent, named after H.E. Hurst who first used
estimates of its value in the context of hydrology. The definition is
not complete unless we also mention that By is a Gaussian process
with zero mean which almost surely takes the value 0 at z = 0.

Fractal behaviour is also observed in the study of flow and tur-
bulence [6]. With the availability of new biomedical imaging tech-
niques that allow of measurement of flow fields (e.g. Doppler ultra-
sound or flow-sensitive MRI [7, 8]), the question of the applicability
of fractal models to these measured phenomena naturally arises. In
order to address this question, it is necessary first to generalize the
classical scalar fractal models to the vector setting, and then use stat-
istical methods to compare these models against simulated and real-
world data. In this paper we take steps in the mentioned directions.

To define the vector counterpart of fBm, we rely on the obser-
vation (also classical) that fBm may be regarded as the solution of a
fractional differential equation involving fractional Laplacians, sub-
ject to zero boundary conditions at = 0 [9,10]:

(~A) By = eqW )

This work was funded by the Swiss Science Foundation under grant
200020-121763.
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(d is the dimension of the domain; W is a normalized white Gaus-
sian noise process; and ey is a proportionality constant). A vec-
tor generalization is then obtained by replacing the scalar Laplacian
in (1) with a(n extended) vector Laplacian (Section 2). In addition
to the Hurst exponent, the new random model is indexed by two
(dependent) additional parameters that control the balance between
rotational and divergent or convergent tendencies in the field.

‘We shall employ wavelets to address the second aspect (statist-
ical study of the models). Wavelet-based techniques have been used
with efficacy in the past in the statistical analysis of fBm and, in
particular, in the estimation of the Hurst exponent [2, 10-14]. The
effectiveness of wavelet analysis for this purpose relies on two facts:
First, wavelets essentially behave as low-frequency differentiators,
and this, by virtue of Eqn (1), means that a wavelets analysis of
fBm (which is non-stationary) yields coefficients that correspond to
(stationary) filtered white noise. Second, the multi-scale nature of a
wavelet analysis captures the self-similar structure of fBm.

Consequently, in order to move towards understanding the con-
nection between vector fBm models and biomedical data, in Sec-
tion 3 we develop a wavelet estimator of the parameters of the model,
which we then apply to synthetic fields and measured phase-contrast
MRI data (Section 4). A few remarks and observations conclude the
paper (Section 5).

2. VECTOR FRACTIONAL BROWNIAN MOTIONS

The vector extension of Fractional Brownian Motion (fBm) we shall
consider spans a new' family of random vector field models that
are singled out by their special invariance and self-similarity proper-
ties with respect to changes of scale and rotations of the coordinate
system. These random fields can be defined as solutions of the para-
metric fractional differential equation (a.k.a. whitening equation)

g4
(=2)2 "Bue=enW 0))

where: W is a vector of independent white Gaussian noises; (—A)Z
is an extended fractional Laplacian we shall define below; H denotes
the Hurst exponent that is a measure of the dependence of the values
of the random field at different locations; d is the number of spa-
tial dimensions; € = (&1, &2) is a vector of (dependent) parameters
that, as we shall see, capture the directional behaviour of the vector
field; and ey is a special constant. The equation is to be solved by
imposing zero boundary conditions at the origin.

The fractional vector Laplacian that appears in Eqn (2) is a
combination of the fractional Laplacian (Riesz derivative) (—A)7,
defined in the Fourier domain by the symbol |jwl[|*?, and a re-
balancing of the divergence-free and curl-free components of the

! To the best of the authors’ knowledge.
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operand, achieved by means of an operator E that projects its
operand onto its curl-free component® and has Fourier symbol
ww /[|w||. In symbols:

(—A){ = [ E+¢%(Id - E)](-A)"
with
A L
E —

T
| ww

w' 5
ol +e®2(1- L)} = ®(w)

F 2v[ €
Ay e
¢ fll*
(note the definition of the matrix valued function 7 also note that,
at least for v > 0, the operators (—A)” and E commute).
The inverse of (—A)f/ #H4/1 taking into account the zero
boundary conditions at = 0, is given by the integral operator

— . 1 (2 w) j'k‘zkuk
CAZE e o /Rd(eJ Py )

Iki<LH)
P (W) f(w) dw

( f denotes the distributional Fourier transform of f). The following
identity is easy to establish.

(-A) 7 =(-A), [e “E+e (ld - E)]. 3)

The inverse operator that we just introduced has the following
self-similarity properties with respect to changes of scale and rota-
tions:

(=A)"H{fle ')} =0 ((—A){f) (0 o)

(scale-invariance)

(—A)"H{Qf(QTe)} = Q((—A){f)(Q"s)

(rotation-invariance)

(2 denotes an arbitrary rotation matrix in RY).
Using the above inverse operator, we shall now give a direct
definition of the extended vector fBm with parameters H and &:*
_H_d
Bug =cu(-A)_& "W. “)
The scale- and rotation-invariance of the operator (—A) —H/2-d/4
and the statistical invariance of the white noise field W with respect
to changes of scale and rotations together mean that the vector
fBm By ¢ is also statistically invariant with respect to scalings and
rotations of the system of coordinates. One may also note that,
as a consequence of the factorization relation (3), B¢ becomes
divergence-free (respectively curl-free) as {1 — &2 (resp. {2 — &1)
approaches +o0o.
A few examples of computer-generated two-dimensional vector
fBm are given in Figure 1.
2 The complement, Id — E, is a projection onto the divergence-free com-
ponent
The action of an operator on a random field finds a rigorous interpreta-
tion in the framework of the theory of generalized random processes of
Gelfand and Vilenkin [15].

3
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(b) H = 0.60, & =0, & = 100

(¢) H = 0.60,&; = 100, & = 0

Fig. 1: Simulated vector fBm with H = 0.6 and variable &, and
&2, visualized using Mathematica’s implementation of line integral
convolution (LIC).



3. ESTIMATION OF VECTOR FBM PARAMETERS USING
WAVELETS

It is a well-known fact that wavelet transform coefficients can be
used to estimate the Hurst exponent of scalar fBm processes and
fields [2, 10-14, 16]. This property of wavelets holds true also in
the vector setting, in the following manner: A wavelet transform
applied independently to each of the vectorial components of a frac-
tional Brownian vector field can be used, in almost exactly the same
fashion as in the scalar setting, to estimate H. We refer the reader to
Tafti & al. [10] for the details of two such estimators.

As in the scalar case, in order for the wavelet to stationarize the
random field, it has to incorporate a fractional Laplacian of sufficient
order so as to cancel out the (non-shift-invariant) inverse operator in
(4); which is to say that it is necessary that the mother wavelet can
be written as (—A)7O, with v > % + %, where © is a (matrix-
valued) smoothing kernel. The component-wise analysis of a vector
field described in the previous paragraph corresponds to the special
case of © being a scalar matrix (i.e. a multiple of identity).

We shall now observe that such a diagonal wavelet transform
is not sufficient for our purpose of estimating all parameters of a
vector fBm. Indeed, while an independent component-wise analysis
can provide estimates of H, such an analysis cannot differentiate
between different choices of the directional parameters &; and &2 in
a statistically meaningful way, for the reason that it does not measure
the interdependence of the vector components.

In order to estimate the directional characteristics of the field it
is therefore appropriate to consider full matrix wavelets that capture
the inter-component structure of the field. Such wavelets can be con-
structed by decomposing a scalar matrix wavelet U = (—A)"0—
where © = 6l is a scalar matrix function with diagonal —in the
following fashion:

U= (-A)0=(-A)[E+(d-E)|©
=(-A)"EO +(-A)"(Id - E)O.
—_— —
Wy 2
Convolving ¥ and W2 with By ¢ then yields

Uy Bue =c S[(—A) T IBO s W =0 Wy

sk Bue = 2[(—A) 4 1(1d - E)O] + W = 0 @ Wy,
The random fields on the right-hand side of the above equations are
stationary filtered-white-noise-type processes.

It is possible to construct a very simple estimator of the quantity
(é1—&2) if one notes that the mathematical expectations E{ || W1}
and E{||W>||?} are constant functions of the spatial coordinates that
depend solely on the choice of the smoothing kernel ©.* The ratio

_E(wW?)
E{[W2*}
can therefore be pre-computed or, alternatively, estimated before-
hand in a calibration step. Subsequently, for a realization of B ¢
with unknown £ we may estimate the ratio

2
E{ll9: * Brel"} _ 2e-ep
E{|[W2 « Bue|*}
between the mean values of the energies of the two wavelet trans-
forms; from where an estimate of £; — £ can be trivially obtained.

4 Note that it is the difference of the parameters £; and £&2—and not their
individual values as such—that determines the directional behaviour of
the field.
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Table 1: Estimation of the H parameter of synthesized vector fBm.

True value | average of local estimates | their variance
0.3 0.30 0.0074
0.6 0.58 0.0107
0.9 0.87 0.0140

4. EXPERIMENTS

To verify the correctness of the estimation mechanism sketched in
the previous section, 64 x 64 x 64 volumes of discretized vector fBm
were generated in MATLAB in accordance with the synthetic model
of Section 2. Estimation of the Hurst exponent was performed over
local neighbourhoods, using the first of the two estimation methods
described in Tafti & al. [10]. To obtain a finer scale progression we
replaced the discrete wavelet transform of Tafti & al. by a Laplacian
of Gaussian continuous wavelet transform with the o parameter of
the Gaussian spanning the range 0.5 to 2 with steps of size 0.25. The
results are summarized in Table 1.

Next, an estimation of §&; — &> was performed using, as input,
pseudo-random realizations of vector fBm with varying £; —&2. The
estimates were fairly accurate, with the correlation coefficient being
virtually equal to 1 over the range —30 to 30 with step size 2.

A similar analysis was applied to measured MRI data obtained
from a phantom. We shall now briefly describe the set-up. The
flow model—based on a rigid PVC tube with an inner diameter of
3.4cm—was connected to a clinical blood-pump system to produce
a constant (non-pulsatile) fully developed flow. The fluid used was
a solution of a Gadolinium chelate contrast agent in distilled water
at 37°C. The flow model was imaged on a 3T MRI system using a
3D phase-contrast sequence [7]. The sequence relies on the differ-
ence of phase of spins moving along the direction of a magnetic field
gradient to determine their velocities. The sequence, typically used
for blood flow measurements in vivo [7, 8], allows the acquisition of
three-directional velocities with a three-dimensional coverage. The
MRI acquisition parameters were: voxel size [mm®]: 0.4x0.4x0.6,
velocity encoding factor (venc) [cm/s]: 50, TE/ T R [ms]: 4.62/8,
bandwidth [Hz/pixel]: 440, flip angle («) [degrees]: 13.

Phase-contrast MRI can assess flow velocities without restric-
tion in anatomic coverage or direction but is limited by its relatively
long imaging times, limited spatial and temporal resolutions, or lim-
ited signal to noise ratio (SNR). Errors limiting the SNR can be in-
duced by intrinsic measurement errors, eddy currents, gradient field
inhomogeneities, concomitant gradients, or acceleration errors [17].

Figure 2 schematically shows the imaging set-up, along with a
colour-coded cross-section of local directional parameters ({1 — £2);
the cross-section was taken perpendicular to the direction of flow.
(The significant part of the image is the circular disc on the left;
the background—apart from some static structures—does not cor-
respond to any flow and should be discarded.) A positive §; — &a,
as observed inside the tube (Figure 2b), indicates a divergence-free
tendency, which is consistent with the incompressible nature of the
fluid used in the experiment. Due to the non-turbulent (and essen-
tially predictable) nature of this example, estimation of the Hurst ex-
ponent is not particularly meaningful in this case. Such an analysis
would however be of great interest in studying flow fields of a more
random and turbulent character. Further experiments and studies in
this direction are still needed and will be the subject of our future
research.
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(a) Flow model (figure taken from Stalder [18])

(b) Local estimates of £&; — &2

Fig. 2: Differential analysis of a 3D flow (see text for details).
5. CONCLUSION

In this paper we proposed a model for stochastic fractal vector fields
in the spirit of fractional Brownian motion models that was motiv-
ated by the wish to study biomedical flow-field measurements (in
particular flow-sensitive MRI data). In addition to the usual Hurst
exponent that quantify the fractality of the field, the vector models
we introduced also have parameters to control the balance between
the extremities of irrotational and solenoidal behaviour. Next, in
order to study the relevance of these models in the analysis of meas-
ured data, we developed estimators of the different parameters of
these models. We verified these estimators by applying them to syn-
thesized vector fBm, and then used them to analyze 3D flow meas-
urements obtained using phase-contrast MRI. The outcome of the
analsyis was consistent with the known properties of the flow (i.e.
incompressibility). Additional experiments will be directed at a bet-
ter understanding of the significance of the estimated parameters and
the study of flow fields with different structures.
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FRACTIONAL BROWNIAN VECTOR FIELDS*

POUYA DEHGHANI TAFTI" AND MICHAEL UNSER!

Abstract. This work puts forward an extended definition of vector fractional Brownian motion
(fBm) using a distribution theoretic formulation in the spirit of Gel'fand and Vilenkin’s stochas-
tic analysis. We introduce random vector fields that share the statistical invariances of standard
vector fBm (self-similarity and rotation invariance) but which, in contrast, have dependent vector
components in the general case. These random vector fields result from the transformation of white
noise by a special operator whose invariance properties the random field inherits. The said operator
combines an inverse fractional Laplacian with a Helmholtz-like decomposition and weighted recom-
bination. Classical fBm’s can be obtained by balancing the weights of the Helmholtz components.
The introduced random fields exhibit several important properties that are discussed in this paper.
In addition, the proposed scheme yields a natural extension of the definition to Hurst exponents
greater than one.

Key words. fractional Brownian motion, random vector fields, self-similarity, invariance, Helm-
holtz decomposition, generalized random processes, Gel’fand—Vilenkin stochastic analysis

AMS subject classifications. 60G18, 60G20, 60G60, 60H40, 60H20, 35530, 42B20

DOI. 10.1137/090752638

1. Introduction. A one-dimensional fractional Brownian motion (fBm) By (),
x € R, is a nonstationary zero-mean Gaussian random process satisfying By (0) = 0,
with the characteristic property that for any fixed step size |x — y| the increment
Bp(z) — Bu(y) is a stationary Gaussian process with a variance proportional to the
step size:!

E{|Br(z) - Br(y)I’} = 2ale —y*".

The parameter H € (0, 1) is known as the Hurst exponent, after Harold Edwin Hurst,
a pioneer in the study of long-range statistical dependence [21, 53] (« is an arbitrary
positive constant).

The above definition can be extended to the multivariate setting in the style of
Lévy’s characterization of multiparameter Brownian motion [29, 30], by making the
parameter x a vector in R? and defining multidimensional fBm as a Gaussian random
field with a variogram of the form

E{|Bu(x) - Bu(y)l’} = 2]z — y|*"

(we shall use bold symbols to denote vector quantities).

FBm’s are important examples of stochastic fractals: They are statistically self-
similar in the sense that an fBm Bg(-) and its scaled version o By (o) have the
same statistics. FBm processes have been used to model natural and man-made phe-
nomena in different areas of application including optics, fluid mechanics, seismology,

*Received by the editors March 13, 2009; accepted for publication (in revised form) June 10,
2010; published electronically September 16, 2010. This work was supported by Swiss National
Science Foundation grant 200020-121763.

http://www.siam.org/journals/mms/8-5/75263.html

TEcole Polytechnique Fédérale de Lausanne (EPFL), Biomedical Imaging Group, EPFL-STI-
IMT-LIB, Batiment BM, Station 17, Lausanne VD CH-1015, Switzerland (pouya.tafti@a3.epfl.ch,
michael.unser@epfl.ch).

1The second moment of the increment of a process, defined in the above fashion, is also known
as its variogram or structure function.
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financial mathematics, network traffic analysis, and image processing, among oth-
ers [13, 14, 15, 24, 27, 33, 39, 40, 48, 54]. Since the notion of invariance that inspires
the definition of fractals is also fundamental in physics, it is natural to expect that
the scope of applications of such models will further expand with time. For the same
reason, investigation of physical invariances and stochastic models characterized by
them seems worthwhile.

Our goal in the present paper is to extend the definition of fBm to the vector
(multicomponent) field setting. In this undertaking we draw our inspiration from two
sources. One is the usual consideration of self-similarity. The second influence comes
from physics, as we shall impose on the model a special form of rotation invariance
that is compatible with the effect of rotations on coordinates of physical vector fields.

‘We remark that a trivial vectorial extension of scalar fBm satisfying the conditions
of homogeneity and vector rotation invariance can be readily constructed by taking
the components of the d-dimensional vector to be independent scalar fBm’s. This
extension is consistent with the variogram relation [22]

(L1 E{|Bu(z) - Bu(y)|*} = 2o/ |« - y|I*"

(note that the absolute value has been replaced by a Euclidean norm in the argument
of the expectation operator). But it should be emphasized that (1.1) in itself does
not specify the cross-correlation structure of the components of By, and the clas-
sical assumption of independent components is not exhaustive. Hence, in this paper
we shall consider more general families of fractal vector fields satisfying (1.1) whose
vector components can be correlated in ways that lead to a full range of vectorial
comportment from fully solenoidal to completely irrotational.

This paper continues the line of reasoning adopted in Tafti, Van De Ville, and
Unser [51] (where we considered scalar fBm fields) and more originally in Blu and
Unser [4] (where one-dimensional fBm processes were studied). In keeping with these
previous works, we shall characterize fBm vector fields as particular solutions of a
stochastic fractional differential equation

(1.2) UBy =W

subject to zero boundary conditions at @ = 0, where W denotes a vector of normal-
ized and independent white noise fields (defined in subsection 3.1). The “whitening”
operator U is chosen based on its specific invariance properties that carry over to the
random vector field By . U will turn out to be a generalization of the fractional vector
Laplacian (—A)”, with additional parameters that control the solenoidal versus irro-
tational tendencies of the solution. Rigorous interpretation and inversion of (1.2) are
conducted in the framework of Gel’fand and Vilenkin’s theory of generalized random
processes and distributional stochastic analysis [18]. Some aspects of this theory that
are relevant to our work are summarized in subsection 3.1.

Our characterization by means of a whitening equation gives mathematical mean-
ing to inverse power-law spectra that are traditionally associated with self-similar
processes, by providing the mechanics for resolving the singularity of the said spectra
at w = 0 (the noted processes, being nonstationary, do not have power spectra in the
classical sense). We should, however, note that in a different approach to the mathe-
matical modeling and simulation of self-similar physical phenomena, the introduction
of a cut-off length can provide an alternative way of dealing with the frequency-domain
singularity.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Previous related work in the direction of the present paper has appeared, for
instance, in Yaglom [62], where a second-order analysis of random vector fields with
similar invariance properties was given. Yaglom and others also considered, albeit
separately, scalar random processes with stationary nth-order increments [11, 42, 63].
In addition to differences in formulation and approach—for example, in our consider-
ation of singular operators and our focus on characteristic functionals—in the present
paper we bring together these separate generalizations (cf. subsection 4.4). Further-
more, our approach is not limited, in essence, to the study of second-order statistics
(even though this would have sufficed for the Gaussian fields considered here). This
means that by using a similar approach it is possible, without too much difficulty, to
construct and completely characterize other—non-Gaussian—models satisfying simi-
lar invariance properties, by driving (1.2) with different types of non-Gaussian white
noise.

On the applied side, consideration of models in line with (1.1) and their rel-
atives has a long history in fluid dynamics and specifically in the study of turbu-
lence, although the emphasis and methodology are frequently different from ours
(see, e.g., Monin and Yaglom [37, Chapter 8], Avellaneda and Majda [2], Carmona [7],
Orszag [38], or Klyatskin, Woyczynski, and Gurarie [25]).

In the remainder of this paper we first turn our attention to the search for an
operator U satisfying the required invariances (section 2). There, the question of in-
verting U—which is necessary for solving (1.2)—requires us to consider a particular
regularization of singular Fourier integrals. Next, in section 3, we solve (1.2) and give
a complete stochastic characterization of generalized vector fBm fields as particular
solutions of this equation. A list of the main properties of these random fields is
given in section 4. This is followed by computer simulations (section 5) and conclu-
sions (section 6). Proofs of some intermediate results have been deferred until the
appendices.

2. Vector operators invariant under rotation and scaling.

2.1. Generalized fractional Laplacians. Let f(u), u € R? represent a vec-
tor field in terms of the standard coordinates uw = (u1,...,uq). Consider a second
coordinate system @ related to u by means of a smooth invertible map ¢ : R* — R¢

as per

z = ¢(u).
The coordinates of f in the second system are then given by the formula
Folw) = 52w (w)

(this can be seen as a consequence of identifying vector fields with differential one-
forms and applying the chain rule of differentiation; cf. Rudin [44, paragraphs 10.21,
10.42)).

In particular, for a linear coordinate transformation £ = Mu, where M is an
invertible d x d matrix, one has

fru(z) = Mf(M ™ '2).
It follows that if M = €2 is orthogonal (in particular, a rotation matrix), then

fa(z) = Qf(Q x);

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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and if M = oI with 0 > 0 (a scaling), then
folx) = of(o™ ).

We shall consider certain convolution operators acting on vector fields, as well as
their inverses. By the former we mean those operators which can be written in terms
of an inverse Fourier integral as per

(2.1) U:f— (27r)7d/ﬂédej<m"">f](w)f(w) dw,

where U is the (matrix-valued) Fourier expression for the operator U and f is the
Fourier transform of f.
Operators of the above type appear in equations of the form

(2.2) UBy =W,

which we shall use to model statistically self-similar (homogeneous) and rotation-
invariant (isotropic) vector fields. These properties are imposed on the solution By
of the above equation by requiring that the right inverse of U interact in a particular
way with rotations and scalings of the coordinate system.?

The “invariance” properties the operator U is required to satisfy are the following:

(2.3) Ufa = (Uf)a (rotation invariance);
(2.4) Uf, =02 (Uf)s (degree 2y homogeneity)

(y relates to one of the main parameters of the family of the random solutions, namely
the Hurst exponent, by the relation H = 2y — d/2). Note that we shall assume
invariance with respect to improper rotations (with det 2 = —1) as well as proper
rotations (with det Q = 1).

The above properties translate, respectively, to the following conditions on the
Fourier expression of the operator U:

(2.5) U(Qw) = QU(w)Q" (rotation invariance);
(2.6) U(ow) = 62 U(w) (homogeneity).

The following theorem was proved by Arigovindan for d = 2,3 [1]. It can be shown
more generally to hold in any number of dimensions.

THEOREM 2.1 (Arigovindan [1]). A vector convolution operator satisfying prop-
erties (2.3) and (2.4) has a Fourier expression of the form

. ww’ ww’
(2.7 <I>7(w) = w2 |t + efsol <I _ )]
¢ [lw? lwl2/]”

with & = (&irrs &so1) € C2.

It is easy to verify that the converse of the theorem is also true for arbitrary
dimension d. Since we shall be considering real operators, in what follows we shall
implicitly assume eéir, efs! € R without further mention.

2We shall have to consider a right inverse of U that—unlike U—is not shift invariant and does
not correspond to a convolution; hence the solution By will not be stationary (more on this later).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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The operators introduced in Theorem 2.1 generalize vector Laplacians in two
senses (fractional orders and reweighting of solenoidal and irrotational components).
We shall therefore refer to them as fractional (vector) Laplacians and use the symbol
(7A)g to denote the operator with Fourier expression <i>g To gain a better under-
standing of the action of fractional vector Laplacians, it is instructive at this point
to recall the Fourier expressions (in standard Cartesian coordinates) of some related
vector differential operators:®

F .
grad > jw;
div PN (jw)T;
F [ 0 —jws sz]
curl D jws 0 —jwr
—jwz  jw1 0
(2.8) graddiv 2> —ww’;
curleurl <+ lw|l’T — wwT;
A T —lw|1;
F T
E — o
F = T T
(A7 D gw) = w7 b g b (1 )]

The penultimate operator (E) and its complement (Id — E) project a vector field
onto its curl-free and divergence-free components, respectively. In other words, to-
gether they afford a Helmholtz decomposition of the vector field on which they act
(these operators appear prominently in fluid dynamics literature (8, 9, 10, 46]). This
is because

div(Id—E)=0 and curl E=0.
In addition, one has
E grad =grad and E curl =0.

(Id — E) is known as the Leray projector in turbulence literature.
Our notation for the fractional vector Laplacian (*A)g is motivated by the ob-
servation that it can be factorized as

(—A)] = (—A)} [ E+c* (Id - E)] .

In view of the properties of the operator E, this factorization means that the operator
(—A)z combines a coordinatewise fractional Laplacian with a reweighting of the curl-
and divergence-free components of the operand.

2.2. Some properties of <i>z Let us now take a closer look at the family of
matrix-valued functions <i>z, 7, efir el € R. They, of course, satisfy the required
invariances:

£y =Y T

P, () = QP (W)
2 2y 27

D (ow) = 077 Py (w).

3Note that, while the curl operator is classically defined in three dimensions, the equivalents of
graddiv, curlcurl, and A = graddiv — curlcurl can be defined in any number of dimensions,
for instance by their Fourier symbols. In fact, for arbitrary d, the equivalents of — curlcurl and
—graddiv that appear in the definition of the vector Laplacian correspond, respectively, to the
product of d-dimensional curl and divergence with their adjoints.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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But they exhibit, in addition, the following properties.
(®1) Closedness under multiplication. We have

= 71 272 2 Y1472
q)il (w)‘l)ﬁ'z (w) - (I)€1+52 (w)’

which belongs to the same family. To see this, note that the matrix
T

A ww
Bw) = o

which appears in the definition of <i>g is a projection, and therefore
E?’=E and E@-E)=o0.

($2) Closedness under matriz inversion. The inverse of the matrix @Z(w), for

w # 0, is equal to é:z (w), which is again in the same family. This follows from the
L0

previous property and the observation that ®,(w) is the identity matrix for w # 0.

(®3) Closedness under Fourier transformation. The family is closed under el-
ementwise Fourier transforms in the particular fashion indicated by the following

lemma.
LEMMA 2.2. Let
. 277 .,
SR S )
Ty+3%)
where I' denotes the Gamma function. The elementwise inverse Fourier transform of
\Il;Y (in the sense of generalized functions [17]) is given by the formula

FUBY) = @n)teF

where C = (Cirn Csol) is related to e = (éirrvésol) by
el — 2“{;‘:*16&” _ d?;legsol and €% = 7%65”" + 2’;::1855:;1.
A proof can be found in Appendix A.
In particular, observe that if efirr = efsel, then eSirr = elsol = efirr = gfsor,

2.3. Inverse fractional Laplacians. The purpose of inverting the fractional
Laplacian operator introduced in the previous subsection is to allow us to solve an
equation of the form

(2.9) (—A);Zg =h.
This equation is understood in the sense of the identity
((*A)g.% f) = <h7 f>

which must hold for all test functions f in some appropriate space.* In other words,
the sides of the former equation are viewed as generalized functions belonging to the
dual of the space of test functions f.

4More precisely, the action of (*A)g on g itself is defined by the duality relation
(=A){g, ) = (g. (=A){"f),
where (*A)g* is the adjoint of the fractional Laplacian. With some abuse of notation, we shall denote
(=A){" by (7A)%, as the two operators share the same Fourier expression (they are, however, defined

on different spaces). Also note that g and h need not belong to the same space, which in turn means
that the test functions applied to them may come from different function spaces.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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The solution to (2.9) is sought in some generalized function space (e.g., a subspace
of (8')%). Solving (2.9) for general h is made possible by finding a right inverse of
(7A);Y which injects h into the said space of solutions. Let us denote the desired
right inverse by (fA/):gA We shall define its action on h by the action of its adjoint

(_A):% on test functions:

(2.10) g=(-A)"¢h & (g, f)=(h(-A)zf)

The adjoint operator is a left inverse of the dual Laplacian over the test function
space since

(b (~A) LA = (~A)U-A) gh, f) = (b, f).

We hinted previously that in order to use (2.2) with U = (7A)Z, v > 0, to
define self-similar and isotropic random fields we would be seeking a particular right
inverse of (—A)] that retains its properties of homogeneity and rotation invariance.
Equivalently, the adjoint (i.e., the left inverse) must be homogeneous and rotation
invariant. Furthermore, it will be found necessary for our characterization that the
range of the left inverse be a subspace of (L2)? (cf. subsection 3.1).

In connection with the fractional Laplacian we make the following observation.
Let us first consider test functions belonging to the subspace S§ of S? consisting
of Schwartz functions with vanishing moments (i.e., zero derivatives of all orders
at the origin of the Fourier space). (7A)g is a bijection on this space, and hence
also on its dual (S§)’, which can be identified with the quotient space of tempered
distributions modulo polynomials, denoted by (S¢)’/II. The left and right inverses of
(—A)g therefore coincide on S¢ and on (S§)’. On either space, they are both given
by the integral

(2.11) (2m)— /R @S () f(w) de.

However, from the identification of (S¢)" with (S?)’/II one sees that the extension
of the right inverse to (S%)’ is not unique. This is precisely because (7A)2 has a
nontrivial null space in (S?)’ due to the zero of its symbol at w = 0. Correspondingly,
the action of the left inverse on an arbitrary test function in S¢ is not a priori well-

defined, as its Fourier expression (@:g) is singular at w = 0.

The problem of finding inverse operators that satisfy the desired properties (in-
variances and L2-boundedness of the left inverse) can therefore be reformulated as
that of choosing a particular regularization of the singular Fourier integral of (2.11)
consistent with the said requirements. This will be the subject of the remainder of
this subsection.

By a regularization of the singular Fourier integral operator of (2.11) we mean the
following. Assume f € S to be a function with vanishing moments; f then satisfies
Ok f(O) = 0 for all nonnegative multi-integers k. As was already noted, the above
Fourier integral converges for such f. Consequently, the restriction of (7A):g to this
subspace of 8¢ is well-defined and inverts (—A);Y (and, by duality, the adjoint inverse
can be applied to the dual of the image of this subspace). A regularization of (—A):;Y
is an extension of it to a larger class of functions, in our case S¢.
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There exists a canonical regularization of the above singular integral, which is ho-
mogeneous and rotation and shift invariant. It can be shown that the canonical regu-
larization, which is the one considered by Gel’fand and Shilov [17] and Hérmander [20],
corresponds to a convolution with a homogeneous generalized function. Unfortunately,
this regularization fails the third of our requirements, namely L2-boundedness. We
shall therefore have to consider a different regularization of (2.11).

In what follows, we shall always limit our consideration to values of 7 such that

(2.12) 2y—4¢7.

It will be seen later that this condition is equivalent to requiring that the Hurst
exponent H ¢ Z in the definition of fBm (see the discussion following Theorem 3.2).

To extend the definition of the (left) inverse from functions with vanishing mo-
ments to arbitrary test functions f € S¢ let us introduce the regularization operator

(2.13) RY:f() e £O) = Do TwlflO)",
ki< (29—4

where T [f] denotes the (vector) coefficient of ()k in the Taylor series expansion of
f(-) around 0 (we use multiindex notation). Next, consider the operator

(214) (A2 smen [

@9 d " (w)[R7 f](w) dw
Rd

(defined in the sense of the L? Fourier transform). This operator essentially removes
sufficiently many terms from the Taylor expansion of f (w) at w = 0 so as to make the
singularity of i;w(w) square integrable. Of key importance is the fact that (7A):Z
maps Schwartz test functions in S¢ to square-integrable functions (assuming, as we
already stated, that 2y — ’Ei ¢ 7).

PROPOSITION 2.3. The operator (—A):g maps 8% into (L?)? on the condition
that 2y — d/2 € Z.
Proof. By Parseval’s identity,
I(=2)=2F11” = 2m) =@ ¢[R" fl(w)]?
_ ; £ —27 ;
=) [ IR F1 ) ok )[R Flw) o

= (2m) / S R @) [ e ¢(@)], R fo () e,

4 1<mon<d
We may consider the behavior of the integrand separately about w = 0 and at infinity.
First, note that R7 f,,,(w)R7 f, (w) has a zero of order at least 2|2y —d/2|+2at w = 0
(cf. the definition of R in (2.13)). Since the singularity of [@:;Ke 5(“‘")] n &b W =0
is of order —4~ and
2|12y —d/2]+2 -4y > —d
for 2y — d/2 ¢ Z, the integral converges about w = 0.
At infinity, R f;n (w)R? f, (w) is dominated by the polynomial term and grows at
most like [[w][212779/2), while [$ 5%, ¢(w)],

202y —d/2| — 4y < —d,

decays like [|w||=*7. We have
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from where it follows that the integral also converges at infinity. The (L?)? norm of
(fA):g f is therefore bounded. 0O

The Hermitian adjoint® of (7A):z is the operator

i ) elghek | Ly
(2.15) (fm:g;fa(%)*d/w e - 3 TE T 67 0)f(w) du

|k|<[2v—%

(see Appendix B).
As was suggested, (7A):g and (7A):;f are named, respectively, the left and
right inverses of (7A)g. They satisfy

(2.16) (-A)Z(-A)=1d and (-A)(-A)7=1d

over S?. We may further extend the domain of (7A)_% to a subset of generalized

functions (distributions)® on S¢, using as definition the duality relation
(~A)39.F) = (g, (-A){S)

wherever the right-hand side (r.h.s.) is meaningful and continuous for all f € S?.

It is easily verified that (—A):g and, by duality, (—A):g are rotation invariant
and homogeneous. This fact is captured in our next proposition, which we shall prove
with the aid of the following lemma.

LEMMA 2.4, RY[f(M™1)](z) = [R*F()](M ™ z).

Proof. By the uniqueness of the Taylor series expansion,

rhs.= fM'z) - 3 Tu[fIM '2)" =lhs. O
Jk|< 27— 4

PROPOSITION 2.5. The operators (—A):g and (—A):g are rotation invariant

and homogeneous in the sense of (2.3) and (2.4).
Proof. For a nonsingular real matrix M,

(—A) I fu(x) = (2m) /[R |det M| /@) &_{ (w)[R'Mf|(M"w) dw
=) [ MO M T MR Fp) dp

by Lemma 2.4 and with the change of variables p = M'w. Equations (2.5) and (2.6)
can now be used to verify the rotation invariance and homogeneity of (—A):Z (and,

by duality, of (—A):g) O

5This adjoint is with respect to the S% scalar product

(o0 = [ FMelg@) dz = 3 (0.

1<i<d

6By these we mean members of the dual (Sd)/ of S%. As a matter of fact, (Sd)/ can be identified
with (8)%.
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Finally, we note that the scalar counterparts of the vector left and right inverses
were defined in our previous paper [51] (as generalizations of the one-dimensional
definitions of Blu and Unser [4]) as follows:

. . R (k) k
O R M " R SRE S - oA

k|<[2v—2
(2.17) [klI<[2v—%]

O R B i wi e W PP

]
e Kl
|k|<[2v—%

They share the conjugacy and inversion properties of the vector inverses (cf. (2.10),
(2.16)). Notice that the operand, f, is now scalar valued. Also, the vectorial parame-
ters irr, &sol have no equivalent in the scalar case.

DIGRESSION 2.6. The reader may be wondering why we should bother at all about
singular integrals and distinct left and right inverses when we could have—as indicated
in the introduction to this subsection—conveniently characterized the solution as an
element of the space (S)' /11 of Schwartz distributions modulo polynomials, on which
space the fractional Laplacian is bijective and therefore uniquely invertible. This would
indeed be possible, since the space S, being a subspace of a nuclear space, is again
nuclear [41, Chapter 5); therefore the theorems of Minlos (see [26, 36]) which we shall
use in subsection 3.1 apply to it. By following this approach, one can characterize
fractional Brownian vector fields as random elements of (S?)'/IL (i.e., as random
equivalence classes of tempered distributions modulo polynomials). One could in fact
do even better by considering test functions with a finite number of vanishing moments
and their dual spaces (Schwartz distributions modulo polynomials of some finite order),
as was done by Dobrushin [11] in the scalar setting. (On a related note, the reader
might also wish to consult the work of Vedel on the wavelet analysis of the Mumford
process [59]; see also Bourdaud [5].)

Howewver, the latter approach—although more straightforward from a technical
point of view—does not provide us, at least immediately, with as complete a char-
acterization of the stochastic solutions to (2.2) as the one we shall see in the following
sections.

As far as the spaces of solutions are concerned, another possibility would be to
use fractional Sobolev spaces, as proposed by Ruiz-Medina, Anh, and Angulo [45]
and Kelbert, Leonenko, and Ruiz-Medina [23]. It appears that this approach would
work especially well when considering Gaussian self-similar vector fields. Working
with spaces of generalized functions, on the other hand, allows us to use the method
of characteristic functionals (26, 36, 43], which shows its versatility when extending
the work to the study of non-Gaussian random models.

3. Vector fBm. A classical definition of the scalar isotropic fractional Brownian
motion field with Hurst exponent H (denoted By, with 0 < H < 1) goes as follows:
By is a zero-mean Gaussian field satisfying By (0) = 0, with stationary (Gaussian)
increments whose variance depends on the step size as per

(3.1) E{|Bu(z) - Bu(y)]’} = 2oz — y|*".

This is a generalization of Lévy’s characterization of multiparameter Brownian mo-
tion [30], to which it reduces for H = 1. The above expectation, as a function of @ and
y, is also known as the variogram of the field By (denoted here by Vario[By](x,y)).
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A straightforward extension of the above definition to the multicomponent (vec-
tor) setting is obtained by requiring the vector-valued field By to satisfy

(3.2) E{|Br(z) - Bu(y)|I*} = 2o/ [l — y|*",

where one now considers the Euclidean norm of the increments instead of their abso-
lute values [22]. This definition leaves the cross-correlation structure of the components
of By unspecified; these are typically assumed to be independent, in which case the
components become scalar fBm’s of exponent H; i.e., the generalization is trivial.
More generally, for a vector-valued random field, one may define a variogram matrix

Vario[Bp|(z,y) := E{[By(x) - By (y)|[Bu(z) — Bu(y)]"}.

The scalar function given in (3.2) corresponds to the trace of this matrix.

A different approach to defining fBm consists in characterizing it as a linear
transformation (essentially a fractional integral) of white noise. In this approach, one
starts with a white noise measure on some suitable space and proceeds to derive the
probabilistic law (probability measure on a certain space”) of fBm from there, showing
that it is consistent with the definition given in (3.1) and (3.2). One advantage of this
approach is that it is not, in its essence, limited to second-order statistical analysis;
this means that one is in principle free to consider non-Gaussian white noises within
the same framework.

In the scalar setting, it has been indicated previously in one way or another
that the linear transformation of white noise which produces fBm corresponds, in
effect, to the right inverse of the scalar fractional Laplacian introduced in (2.17)
(see, for instance, Tafti, Van De Ville, and Unser [51], Benassi, Jaffard, and Roux [3],
Leonenko (28], and Kelbert, Leonenko, and Ruiz-Medina [23] for the multidimensional
case and Samorodnitsky and Taqqu [47] and Blu and Unser [4] for the unidimensional
one). One may therefore say that the scalar fractional Brownian field By solves—we
shall elaborate on this—the fractional Poisson equation

(33) N L
subject to boundary conditions imposed by the right inverse (zero at the origin); i.e.,
By = GH(—A)iHmid/[lW.

In the above formula W denotes a Gaussian white noise field (defined in subsection 3.1)
and ey is a special constant related to o in (3.1) by

\/ o 22H+A/2T(H + %)
€ = T

[T(=H)|

Given that the only essential limitation on H values in the above characterization is
the exclusion of integer H (as a consequence of (2.12)), it can also serve as a natural
generalization of the definition of fBm to H > 1 [4, 51].

So far in this section we have identified two approaches towards defining scalar
fBm’s: first by means of the variogram and then through a transformation of white

7The space of tempered distributions is standard [19], although other choices are also possible
(cf. the monographs by Vakhania [58] and Talagrand [52] and the papers by Ruiz-Medina, Anh, and
Angulo [45] and Kelbert, Leonenko, and Ruiz-Medina [23]).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



1656 POUYA DEHGHANI TAFTI AND MICHAEL UNSER

noise. Early on in this section we also highlighted what may be considered a fun-
damental property of any reasonable vector generalization of fBm (see (3.2)). We
noted that a relatively trivial random vector field with the said property could be
constructed by grouping together d independent scalar fBm’s.

Next, we shall propose a more general definition of vector fBm consistent with
the trace structure of (3.2). We shall not, however, approach the problem by imposing
this requirement directly. Instead, following the line of reasoning sketched in the pre-
vious paragraph, our characterization relies on solving a stochastic fractional partial
differential equation similar to (3.3). From there, we shall then proceed to derive the
variogram of the model in section 4 and show that it has the desired trace property.

3.1. The whitening model. As hinted above, we shall take generalized vector
fBm to be the solution of the fractional Poisson equation

(3.4) (~2)* By e = eyw
defined using the right inverse as per
(3.5) B = en(-A) (> 'w,

where W is a white noise vector field, to be defined shortly. The first identity is known
as a whitening equation in signal processing parlance (although there it is applied only
to stationary processes). We shall limit our consideration to real random fields.

Equations (3.4) and (3.5) may be understood as equivalences in law in a sense
we shall now describe. The main reference for the underlying theory of generalized
random fields is Gel’fand and Vilenkin [18].

By¢ and W are taken to be generalized random fields, i.e., random elements of
the continuous duals of certain spaces of test functions. Let us use X to denote one
such random element. Under some reasonable consistency conditions, by a generaliza-
tion of Kolmogorov’s extension theorem [36], the stochastic law (infinite-dimensional
o-additive probability measure) of X is fully specified—in the sense of a o-additive
measure on the o-algebra of Borel cylinder sets—by way of indicating all finite joint
distributions of its “scalar products” with test functions. These products are classical
random variables denoted as (X, f), with f belonging to the desired test function
space.

By Minlos’s infinite-dimensional generalization of Bochner’s theorem [26, 36], it
is also possible to uniquely specify the stochastic law of a real random field X by its
characteristic functional, defined as the expectation

Lx(f) = E{X}

provided the test functions belong to a nuclear space. More precisely, a probability
measure on a dual nuclear space gives rise to a positive-definite and continuous char-
acteristic functional, and, conversely, any positive-definite and continuous functional
on a nuclear space that evaluates to 1 at f = 0 uniquely determines a probability
measure on the dual space.

The characteristic functional serves as an infinite-dimensional equivalent of the
characteristic function of a random variable. In particular, for any finite number of
test functions f1,..., fy (N arbitrary), the N-variable function

P, ,wn)=Lx | > wif;

1<i<N
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is the joint characteristic function of the random variables (X, f;), 1 <4 < N, which
is in one-to-one correspondence with their finite-dimensional joint measure by the
finite-dimensional version of Bochner’s theorem. Characteristic functionals have an
entire theory of their own on which we shall not elaborate here, referring instead to
Gel'fand and Vilenkin [18] and the survey article by Prohorov [43].

Another useful functional that one may consider is the correlation form of X,
defined as

(f.9)x =E{X.FiX.9} for fges"

For real Gaussian fields, it can be shown that the correlation form and character-
istic functional are related by

(3.6) Lx(f) = exp[=3{(f, £)x],

which is consistent with the understanding that a Gaussian field is completely specified
by its second-order statistics.

A reasonable definition of scalar white noise can be given as a random field W
that has independent values at every point in the sense that for any two test functions
f,g with disjoint supports (W, f) and (W, g) are independent. With the additional
assumption that the field has Gaussian statistics, one is led to the standard definition
of scalar white Gaussian noise as the field with characteristic functional

Lw (f) = exp[- L[ £113]

(]| - l2 denotes the L? norm). This random field exists as a random element of S’
(i.e., it corresponds to a unique probability measure on &), as Minlos [36] has shown.
The above characteristic functional also defines a cylinder probability measure on
subspaces of L2.

We shall define the standard white Gaussian noise vector W as the field with
characteristic functional

Lw(f) = exp[-5 [ fI3] = exp | =3 > lfull3

1<k<d

It is clear that W corresponds to a vector of independent scalar white noise fields. Its
correlation form is given by the relation

(3.7) (£.90w=(F.9)= D (.98

1<k<d

DIGRESSION 3.1. The general form of the characteristic functional of a (not nec-
essarily Gaussian) one-dimensional white noise process can be found in Gel’fand and
Vilenkin [18]. In the multivariate setting, we note here in particular the characteristic
functional of a Poisson white noise field P consisting of Dirac impulses with indepen-
dent and identically distributed amplitudes with probability measure P, and a spatial
Poisson distribution with parameter \:

Lo(f) = exp {/\ / /W(eiafm ~ 1) da Py(da)
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Poisson white noise can be used to define non-Gaussian stochastic fractals that agree
with fractional Brownian models in their second-order statistics [57].

With our framework set as it is, all we now need is a means to derive the law of
By ¢ from that of W, i.e., to give probabilistic meaning to (3.5). This we shall do as
follows.

By definition, the action of an operator on a generalized function (random or
deterministic) is described by the action of its adjoint on test functions. In particular,
we have (cf. (2.10))

(38) Bre=cn(-A)"'W & (Bue f) = (Wam(-A) )

for all test functions f € S?. One may interpret the right-hand equality as an equiv-
alence in joint law for all finite collections of test functions f.

We shall now make use of (3.8), (3.7), and (2.14) to find the correlation form of
vector fBm:

(£.9)5 = E{(Bue F)(Bre.g)}

=B {(en(-A8) "W ) en(-A2) W g))

= lenPE{ (W, (-A) 1>y w (- A) 1 g) |

3
= len((=A)F/ (A g hw
= |5H|2<(_A):?/z—d/z;f7 (_A):g/Q—d/4g>

2 r N W —H—2
- é’fr;d [RAVH ) w)d G (@) [R5 (@) do.
Rd

In view of the above identity and (3.6) we have the following theorem.
THEOREM 3.2. The characteristic functional of the vector fBm By ¢ is given by

P 2H4d 4

A _ ‘6}1‘2 2H+d opy A*H,% 1
(3.9) LBu,g(f)—LXP 2(27r)d /Rd[R T f] (w)@szcg(w)[R T f](w) dwl|,

d
with @:;{ei(w) and the regularization operator R*5 defined as in (2.7) and (2.13),
respectively.

We remark that the positive-definiteness and continuity of Lg, , follow from
the positive-definiteness of Ly and the continuity of Ly and (—A):?/Q_d/z{ These
imply the existence of a probability measure corresponding to the given characteristic
form, also for H > 1, thus extending the definition of fBm outside the usual range of
0 to 1 (however, by (2.12), integer Hurst exponents are once again excluded).

4. Some properties of vector fBm. In this section we shall establish some of
the main properties of the random fields defined in the previous section.

4.1. Self-similarity. Vector fBm fields are statistically self-similar (fractal) in
the sense that the random field By ¢(o-) has the same statistical character as the
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field o By ¢. This can be shown as follows:

(Birglo). £0)) = {enl(-A) ¢ W), £0)) by (3.4),
= (oM en(-A)L T (W(0)).F() by (24),
= (0" EeqW (o), (-A) 5 T F()) by duality,
— (Mo ey W), (—A):E)Hﬂf(.)) by the homogeneity of W,
—(o"en(-A) ¢ T {(WOLF() by duality,
= (c" Bue(), F()) by (3.4).

4.2. Rotation invariance. For any orthogonal transformation matrix €, the
random fields By ¢ and QBH@(QTJ follow the same stochastic law. The demonstra-
tion is similar to the previous one.

| _2H+td

4.3. Nonstationarity. Vector {Bm is nonstationary. The operator (—A)_, *

is not translation invariant, and consequently the random variables

(Bie, F0)) = (W, (-A) " {£()))

and

(Big. £+ ) = (enW, (-A) ;" (f + )

are not identically distributed in general.

4.4. Stationary nth-order increments. We shall now show that the incre-
ments of order |H | + 1 of the field By ¢ are stationary. In particular, for 0 < H < 1,
By ¢ has stationary first-order increments, as is the case for standard fBm [53]. To
show this, let us first define the nth-order symmetric difference operator Dy, .. .,
recursively by the relations

Di, : £() = £+ 1) = £ = 1),
b = Dn,Dny h,_ys

with hy,..., h, € RY\{0}. The above operator is represented in the Fourier domain
by the expression

H 2sin —<h12’w> .

1<i<n

We have the following theorem.
THEOREM 4.1. The vector fBm field B¢ has stationary increments of order
|H | + 1; that is, the random field
Dhy,. by Big

withn = |H| + 1 is stationary, irrespective of the lengths and directions of the steps
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Proof. We proceed to show that the characteristic functional of the increment field
I, :=Dp,,...h, Bp¢ is shift invariant, i.e.,

L, (f( = h)) = Lr,(f),
which then directly implies the stationarity of I,,.
Indeed, one may write
L1, (f(- = h)) = E{expli{La, (- — h))]}
= E{exp[i(Dh,.....n, Big, F(- — )]}
= E{exp[j(B¢; Doh,,...—t F(- — h))]}
= LBU,s (D_hn-,---q_hl{f(. - h)})

H
\6H|2/ 2H3d ) g —j(h,w) : (hiw)
=exp| — o R flw)e 2sin =5
[ 2(2m)? Jpa 1§];£[Hj+1 :
. _H-d . :
. @7§Re2€(w) |:R,2H4+d {j"(w)(f-””‘"> H 2sin ij }:| dw:| .
1<i<|H]+1

Next, note that the partial derivatives at w = 0 of the function

Flw)emihw) H 2sin %, wERY,
1<i<[H|+1

T in the integral,
all vanish up to order |H| + 1 at least; this means that the first [H] + 1 terms of
its Taylor expansion around the origin are dl] zcro As a result, the said function is a
fixed point of the regularization operator R* % (cf (2.13)).

All this means that we have

H
2
L, (f(—h)) = exp [ e [ e i) T 2sin —%W}

27T d
) e 1<i< | H|+1

L H-d )
_;{e e(w [ Yo Ihw) H 2sin —(hg“’)} dw:|

1<i<|H|+1
€H H H— A . w
(41) = e [ sty [ e ) [ s 252 dw}
R? 1<i<|H|+1
=Ly, (f),
which is what we set out to prove. 0

4.5. The variogram and correlation form of vector fBm. As was seen in
the previous paragraph, for 0 < H < 1 the random field By ¢ has stationary first-
order increments. In this case we may define its variogram (or second-order structure
function) as the correlation matrix of the stationary increment By ¢(x) — Bue(y) =
Dg—yBm, 5( ¥). Formally, this is to say

Vario[ By ] (. y) := E{I(0)[I(0)]"},

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

181



B. Some Related Publications

182

FRACTIONAL BROWNIAN VECTOR FIELDS 1661

with I := Dg_yBp¢(- — 21%).

We shall proceed as follows to evaluate the above expression. First, we shall
find the cross correlation of the (stationary) scalar random fields [I]; and [I]; that
constitute the components of the vector I. The ijth element of the variogram matrix
then corresponds to the value of the said correlation function at 0.

We first obtain the correlation form of I from its characteristic functional (derived
from (4.1) by setting n = 1) by identification (cf. (3.6)):

_ enl? < —H—4

(o) = 5hg [ asin® (252 @) f)" 8 i b )la)] dw

Next, let f = é;¢ and g = €;1, where é; and é; denote standard unit vectors in
R? and ¢ and ) are scalar test functions. We have

BT 11,40} = (F.9)r
=)t [ asind (252 ) en 8 i ()], i) do

By the kernel theorem, this last expression can be written in the spatial domain
as

(2m)~¢ /H;d c(t — T)p(t)(T) dtdT,

where ¢(t) is the generalized cross-correlation function of the random fields [I]; and
[I];. ¢(t) is given by the inverse Fourier transform of

~—H-4 . . ~—H-4
4sin”® (Z2Y | w) [|6H\2<I>,2Rez£(w)]i]. = (@YW g 4 eily—aw)) [|€H\2<I>,2Re2£(w)]ij,
which, by Lemma 2.2, is equal to
A H L H L H
(4.2) al®, t+z- y)]ij - 2a[®, (t)]” +al®, (t+y— m)]I]

with 1 = (1)irr, Nsol) given by

Mie _ 2H+1 —2Re & d—1 _,—2Re &1,
(4.3) e = SEra® "+ 2E+a® 5
: ol = 1 o=2Re&n | 2H+d—1,—2Re &l
2H+d® 2H+d :

In particular, we find the ijth element of the variogram matrix by evaluating (4.2)

- H
at t = 0. This, along with the even symmetry of @, , yields

2 [é‘f(w - y)]

k)

as the ijth element of the variogram. We have thus proved the following theorem.
THEOREM 4.2. The variogram of a normalized vector fBm with parameters H €
(Ov 1) and 5 = (girragsol) s

. o H
(4.4) Vario[Bp ¢](z,y) = 2a®, . (T —y),

where the dependence of (MivrsNso1) 0N (Sirrs Esol)s H, and d is dictated by (4.3).
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COROLLARY 4.3. For 0 < H < 1 we have
E{|Bue(®) - Bue)l*} = |l — y|*"
with
of =[e"Rebim 4 (d —1)e 2R bol]q,

The proof is immediate, once it is observed that the above expectation is nothing
but the trace of (4.4). We have thus shown that the new definition of {Bm is consistent
with (3.2).

We further remark that, by (4.3), efr = el implies e = e! (and vice versa).
Consequently, in the case of classical fBm (where &,y = &o1) the variogram matrix is
diagonal and the vector components are uncorrelated (and hence independent, due to
Gaussianity).

4.6. Wavelet analysis and stationarity. The utility of wavelet analysis in
studying fractal processes and turbulent flow has been noted frequently since the
early days of wavelet theory, and the stationarizing effect of wavelet transforms on
fBm has been widely documented [13, 16, 31, 34, 35, 60]. In this connection, an
interesting observation can be made with regard to the scalar products of By ¢ with
test functions that have sufficiently many vanishing moments and, in particular, with
respect to the representation of B ¢ in a biorthogonal wavelet system.®

Let ¢, € L? and 1,7),,,,;6 € L? symbolize the primal and dual basis functions of a
biorthogonal wavelet system, with n denoting the resolution and k indicating position
on a refinable lattice in RY.

By construction, all wavelets at a given resolution n are lattice shifts of one
another (k € Z? indexes the refinable lattice QD™ "Z% with dilation matrix D € Z4*¢,
|[det D| > 1):

Yo k(@) = Yno(x — QD k).
Consider the discrete random field wy, ; defined by
wni[k] = (B g, ér).

_2H+d H+d

(45)  wnilk) = (en(-A) ¢ T W, ethnn) = (W, (-A) " ).

Assuming that @nk has vanishing moments (Fourier-domain zeros at w = 0) up to
2H+d . 7 ~ T
degree | H | so that R™7 &;9), k = €9k, we have

. __2H+d ~ 2H+d
4

(~A) " edr = 20 / SN [T ()] p(w) dw € L2
]Rd

8See Mallat [32] for detailed definitions and properties of wavelet systems. For an account of
fractional-order splines and wavelets that are derived from fractional derivative operators see Unser
and Blu [55]. A fundamental link between splines and fBm processes was studied in two papers by
the same authors [4, 56] and extended to the multiparameter setting by Tafti, Van De Ville, and
Unser [51]. The last reference also provides a detailed account of polyharmonic cardinal fractional
splines in arbitrary dimensions and their connection with the wavelet analysis of scalar fBm fields.
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and it becomes clear that the left inverse is shift invariant over this particular subspace
of functions (in contrast to the general case of functions with nonvanishing moments
for which it is not, due to the space-dependent operation of R¥H ). But then, since
W is stationary, by (4.5) we may conclude that in this case the discrete random
process wy, ;-] is stationary.

In other words, a wavelet analysis of vector fBm with wavelets whose moments
of degrees up to | H| vanish yields stationary coefficients at each resolution.

For an overview of how matrix-valued wavelets can be used to estimate the pa-
rameters of vector fBm we refer the reader to Tafti et al. [49] and Tafti and Unser [50].

4.7. Link with the Helmholtz decomposition of vector fields. It is pos-
sible to study the divergence and curl of vector fBm (the latter for d = 3, where it is
defined) using adjoint operators.

Taking an arbitrary scalar test function ¢, for the divergence we have

(div BH,f, ¢> = —<BH,£, grad (D>
H d

=-(W,(-A) 2 "gradg)
_ . _H_d
=—(W,e % (=A), 2 ¥ gradg)
_ H_d
(4.6) =—e S (W, (-A), 2 T grado),

where the penultimate step can be verified easily in the Fourier domain as follows:

_H_d

()¢ grado(e) = (2 [ o] R
Rd

—£
= wol | e (x “"”Tﬂ () (w) du

flwl? llwl?

) dr
— (2m)d /Rdol<m=w>(jw)||wu-ﬂ-z [e5 +0] dw

d

_ _H
=e Sm(—-A), 2 1gradg.

Similarly, one can take an arbitrary vector test function f and write the following
with regard to the curl:

(curl By g, f) = (Bp, curl

ST

ol

= (W,(-A) 2 1curlf)

, _H_d

= (W,e % (=A)y 2 curl f)
JZI curl f).

vl

(4.7) = e S, (—A),

The derivation is comparable to that of the previous result, with the difference that
one needs to use the Fourier matrix of the curl operator (cf. (2.8)).

We may then deduce from (4.6) that as |exp(—&ir)] — 0, Bp,e assumes a
divergence-free nature. It follows likewise from (4.7) that as |exp(—&sol)| — 0, B¢
becomes curl-free.
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5. Simulation. The random vector fields that we have described can be simu-
lated on a digital computer in several ways. A simple approach is to take the definition
(3.4) in conjunction with (2.15) and apply the operator to simulated white Gaussian
noise in the Fourier domain.

A more complex scheme can be set up by considering the scalar products of
the vector field with measurement test functions and deriving the joint probability
distributions of the resulting Gaussian samples, which can then be simulated using
standard techniques. For example, a localized test function of the form é;1) would
measure the ith component of the field about a certain location. In implementing this
scheme, one may for instance take these measurement functions to be wavelets and
simulate the field in keeping with subsection 4.6, taking advantage of the fact that
wavelet transform coefficients of vector fBm are stationary (cf. subsection 4.6). (In this
connection, see also Elliott and Majda [12]. A Fourier-based technique for simulating
processes with power-law spectra was presented in Viecelli and Canfield [61].)

The reader can find examples of simulated two-dimensional vector fBm in Figures
1 and 2. These figures were generated from a single 512 x 512 pseudorandom noise
sequence with different values for the parameters H, &, and &; they are available
in color only in the online version.

In each instance, we have provided two complementary visualizations. Images on
the left were produced by a visualization technique known as line integral convolution
(LIC), which consists of local directional smoothing of a noise image in the direction
of flow [6] (we used Mathematica’s implementation). In these images, more neutral
tones indicate larger magnitudes. Arrows are superimposed in white.

In the images on the right, the hue angle encodes local direction, while the local
amplitude of the field is indicated by the saturation level (smaller amplitudes are
washed out).

The change in smoothness with increasing H is visible in these images, as is
the clear effect of the parameters &, and &, on the directional behavior of the
field, exhibiting nearly divergence-free and nearly rotation-free extremes as well as
the middle ground.

More examples can be found online at http://bigwww.epfl.ch/tafti/gal/v{Bm/.

6. Conclusion. In this paper we introduced a family of random vector fields that
extend fBm models by providing a means of correlating vector coordinates, which are
independent in classical vector fBm models.

The first step in our investigation was to identify vector operators that are invari-
ant under rotations and scalings of the coordinate system and can therefore be used
to define random fields that are self-similar (fractal) and rotation invariant. The spe-
cific formulation of rotation invariance considered in the present work was inspired by
the way physical vector fields transform under changes of coordinates. The operators
identified in this step turned out to be generalizations of the vector Laplacian.

Our study of the said operators was aimed at characterizing random vector field
models with the desired invariances as solutions of a whitening equation with the said
generalized fractional Laplacians acting as whitening operators. To this end, we next
addressed the problem of inverting the fractional Laplacian operators. This required us
to introduce a new way of regularizing singular integrals, in order to define continuous
inverse fractional Laplacian operators that are homogeneous and rotation invariant.

Once these inverse operators were identified, we were able to set the problem of
characterizing the random models in the framework of Gel’fand and Vilenkin’s theory
of stochastic analysis. Specifically, we used the method of characteristic functionals to
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i

(¢) H =0.60, &y =0, &o1 = 100

(&) H = 0.60, & = 100, £go1 =0

(b) H =0.60, &irr = &so1 =0

(d) H =0.60, &y =0, &so1 = 100

& 4

(f) H = 0.60, &irr = 100, o1 =0

Fia. 1. Simulated vector fBm with H = 0.6 and varying &y and Eso1. Left column: LIC visu-
alization with arrows superimposed in white. Right column: directional behavior with local direction
coded by the hue angle (see inset) and local amplitude represented by color saturation level (smaller

amplitudes are bleached out).

186 Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



1666 POUYA DEHGHANI TAFTI AND MICHAEL UNSER

(b) H =0.90, &irr = &s01 =0

(d) H =0.90, &rr = 0, £t = 100

(€) H = 0.90, &x = 100, &1 = 0 (£) H =090, &x = 100, 501 =0

Fia. 2. Simulated vector fBm with H = 0.9 and varying &y and Eso1. See the caption of Figure 1
for a description of the different visualizations.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 187



B. Some Related Publications

188

FRACTIONAL BROWNIAN VECTOR FIELDS 1667

provide a complete probabilistic characterization of the new random vector fields. Us-
ing this methodology, we were also able to extend the definition of fractional Brownian
fields to Hurst exponents beyond the usual range of 0 < H < 1.

Similar to classical fBm, the fractional Brownian vector fields introduced in the
present work are nonstationary but have stationary nth-order increments and can also
be stationarized by means of wavelet analysis. In addition, in accordance with classi-
cal fBm models, these random fields exhibit statistical self-similarity (fractality) and
rotation invariance, which are in fact properties they inherit from inverse fractional
Laplacian operators. On the other hand, the directional properties of these new models
have no scalar counterpart. Significantly, these models can exhibit a range of vectorial
behavior, from completely irrotational (curl-free) to fully solenoidal (divergence-free).

Considering the versatility of these stochastic vector field models, potential sto-
chastic modeling applications can exist in different disciplines such as fluid mechanics
and turbulence physics, field theory, and image processing.

Appendix A. Proof of Lemma 2.2. Let

[lwll

Ty

We note the following facts concerning the above function:
4.
FHAW)} = (2n)7 % foasa(e);
Nw) 1

= mf)\—Q(w)i,

flwll?

010, 1>(w) = s fr2(@) [5,;] +(A-2) \(\Uw‘T\]Z] :

where ¢;; is Kronecker’s delta.
The ijth element of \ilg is

Ay | wiw;
[‘IIE (“))L]‘ = fZ’Y(“’) |:efsnl($ij - (e&ml - efm) Hw||J2:| .

Using the cited properties of f) we can write

FH# W)} = @m) [0 f0y-a(@) + S5 0,0, 20 as2(@)]

= )y a(o) [ o601+ S (5 2+ ) )|

[l

_d o+ Li%j < Tilj
= (2m)72 f_g,_a(®) [eC.n 4+ Sso (5.. — _)]
! ll]? =)

with
e(in — Z’Yzfjile&" _ 112;1 eﬁsol and e(sol — _%e&u 4 2’;¢1e5501. I

Appendix B. Conjugacy of (—A):g and (—A):g. We proceed to show that
for all test functions f and g € S¢,

(A)3f.9) = (£.(-A){g).
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Using Parseval’s identity and the definition of (7A):Z in (2.14) we can write
A\ — - P 2 =Y ~
(.-8)29) = m ™ [ )87 w)R0g)(w) de

(B.1) =en [ F@e i) |gw) = Y Tt | de.

|kl<|2v—4]

Moreover,

Ti[g] = B

By combining this and (B.1) we get

it

(.8 30) = 207 [ [fl) '8 )

fw)

- [ I8 @) g(a) da

Hp
e

s k, k
Heer % G tu? J)ka,c Y g@) de| dw
Ikl <[2v— ¢ )

where the last step follows from exchanging the order of integration and using the
definition of the right inverse given in (2.15), together with the identity [‘i’:z(w)} H_
@:g(w) The last integral is equal to the scalar product ((75):%)",9) by defini-
tion. |
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Partial List of Symbols

The following is a partial list of some of the more volatile and/or mysterious
notations used in the thesis (the majority are from Chapter . To comple-
ment this list, we remind the reader that in the thesis we have made free use
of the multi-index notation (see the entry for U;?‘L below) and also employed
a loose form of Einstein’s tensor notation from time to time (see [2.bk).

1x Indicator function of the set X: 1x(z) =1if ¢ € X and
= 0 otherwise.

XY Product set/space: X¥ = [[,cy X ={f:Y = X}.

T XY = X! Projection operator mapping f : Y — X to its restriction
tolI CY.

Pr Finitely- or countably-additive probability law associated
with some model/process/field F.

P Characteristic function(al) of the law Zg.

= Convergence in probability law/measure.

R Reals.

Ry Positive reals.

C Complex numbers.

N Natural numbers: N = {1,2,3,...}.

Ny No=Nu{0}=1{0,1,2,3,...}.

Y/ Integers.

d Dimension of the domain.
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Rd

T,, 7T =R?

SU,UEE:R+

Ry,s, w € O(d)

Ry v, w € O(d)

Punctured Euclidean domain 1} R = R\ {0}.
Translation by 7 (2.n):
TT:f'_)f('_T)'

Scaling by o (2.n):

Se:fr— a_%f(a_1~).

Scalar rotation by the orthogonal matrix w (2.n)):

Rus:fr f(wT~).

Vector rotation by the orthogonal matrix w (2.n)):

Rov:fr wf(w™).

Inversion with respect to the origin in Il.{d 1'

T

O: f(z) = |z f( )

|z[?
Real orthogonal group of degree n; identified with the
group of orthogonal matrices in IR**?.

Fourier transform of ¢:

36 = ¢ = mE [ e 0g(z) da.

Space of compactly-supported smooth test functions with
its standard topology.

Schwartz space of rapidly decaying smooth functions
with its standard topology.

Place-holder for 2 and % (and occasionally also for other
nuclear spaces).



Space of functions ¢ € &(IR%) such that O¢ € &(R?) as

well (2.0).

Space of functions whose Fourier transform belongs to
8(RY) (2.0).

Dirac’s delta distribution.

Kronecker’s delta: §;; = 1if ¢+ = 7 and = 0 otherwise.

Scalar homogeneous and rotation-invariant distributions

Py, A, ceC

Homogeneous isotropic distributions in &(IR?) (2.aa)):
A
A ||
pa) = e
22T(*9)
For A = —d — 2m, m € IN, we have

pcfd72m —c (277.)5 . (_A)m5
2m+11"(m + 5)

In addition, the following identities hold 2.af)):

S,ph = a_%_Api‘; (homogeneity)

Ry sph = p2; (scalar rotation-invariance)

(02)" =pc 4 =p2,  withXi=—d—X
(Fourier transform)

(X +2)8:p2(2) = —Azip) > (2);
(First-order derivatives)

Apd = Ap) 2 (Laplacian)
X A _
8o = =5 — S0P " o 2$i33j)0(>;\ ?

___* 5 M2 A (3, ,p3\\+2)A.
A 42 W Fe ’A\—f- 2 tIFc
(Second-order derivatives)

Additional formulae for products and convolutions can

be found in
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Partial List of Symbols

Tensor homogeneous and rotation-invariant distributions

PMeC Various parametrizations of homogeneous vector-
N rotation-invariant tensor distributions in (&')%*¢(R%)
(2.av), with e a place-holder for one of three different
parametrizations, by s = (s1,52) € C?, r = (r1,72), or

E = (kl, kz)Z

[P}ij = 83|20}, + iz A ),
= — Aawp§+2 + Amimij_Q

= — %002 2 (000t 2)

TiT5
2

= — XA +2)8;; A7) — AX+2)

[Pz‘]ij = 0y AL pi‘l + (5ij -0 A ) p”

1 Py
= 51]:07‘2 + )\ + 261]p'r1+2r2;
A1 . TiZ5 A ZiZj; \ A
[PE]‘LJ e |$|2 pk1 + (521 - |$|2 ) pk2

A A-2
= 0ij P, — Ao 1Bl ks

with X = —d — ) as before.

Different parametrizations of the same distribution are
related thus:

i\ (XA +2) A+1)(A+2)
75 - 0 X+2 So
_ -A-1
B —1
A+ 1)(A+2) X

-l )
HEGE)

The following properties are fulfilled:

S,,P!’\ = a_%_APL’\; (homogeneity)
RW,UP;‘ = P;‘w; (vector rotation-invariance)
(Plysn)” = Plsssn)- (Fourier transform)
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Formulae for the Fourier transform of the other para-
metrizations are given in Product and convolution
formulae can be found in For results concerning
the vector derivatives and Helmholtz decomposition of
P}, see the corresponding properties of the associated

[ 1)

convolution operator in

Operators associated with homogeneous and rotation-invariant
distributions

ul Scalar homogeneous and translation- and rotation-
invariant convolution operator associated with p2 (2.ac):

5 _d il >
Wi gapl = (2mf [ 09 20 Bl de.
R
U, Lp-continuous homogeneous and rotation-invariant modi-
fication of the previous operator ((§2.2.2)):
U, =U.* — Reg_

withn = |[ReA+ 2] —d, ReA + £ ¢ N, and with Reg_,

defined as
A 3kP§ k
Regc,n : ¢ = Z k! d(_y) ¢(y) dy)
kl<n TR
where k is a multi-index in N with |k| = 3, ki,

(—y)* := T1,(—y:)*, and k! := []. k;!, and the sum is
zero when empty (2.ai).

The n+ 1st finite differences of U, are the same as those
of the unmodified operator U;* .

u) Vector homogeneous and translation- and rotation-
invariant convolution operator associated with P;‘ {)

~

W ¢ o px (B = (2m) / 08 PX(€) B€) de.

R
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Partial List of Symbols

U Lp-continuous homogeneous and rotation-invariant modi-

fication of Q;)‘ 1)
U;5 =U;* —Reg

with n related to p as in the scalar case and %;A defined
in [2.bgl B

The n + 1st finite difference of Q,‘i‘l (in any combination
of directions) is the same as that of the unmodified op-
erator U, 5 .

Other properties of Q:f‘z in connection with vector deriv-
atives and the Helmholtz decomposition are discussed in

32.4
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