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Abstract

In recent years, spectroscopic investigations of cold, biomolecular ions have started to provide

new, detailed information about the structures of biomolecules in the gas phase. The present

work comprises three major parts that describe the development of instrumentation for the

preparation and manipulation of cold ions as well as its application to the spectroscopic study

of a protonated amino acid dimer.

The first part describes the development of a tandem quadrupole mass spectrometer with a

22-pole ion trap, designed for the spectroscopic investigation of cold, biomolecular ions. Several

new features improve the performance of the instrument in comparison with the previous gen-

eration of the setup. The instrument is characterized in detail, and a vibrational temperature

of the ions of about 10 K is demonstrated.

In the second part, a novel multipole ion trap time-of-flight mass spectrometer is described,

a hybrid instrument that uses a planar multipole trap as the extraction region of a reflectron.

Its development is originally motivated in the context of the first part of the present work, as

a tool to obtain a time-of-flight spectrum of the ions stored in the 22-pole. However, it may

offer advantages for a range of different applications. The evolution of the mechanical design

and the electronics are described, as well as the different setups that were used to test the

instrument. Aided by numerical simulations, the characterization experiments shed light onto

several subtleties of the principle of operation.

The third and last part describes the infrared (IR) and ultraviolet (UV) spectroscopic in-

vestigation of the protonated phenylalanine/serine dimer, using the instrument detailed in the

first part. The isomer-specific IR spectra demonstrate that this small and apparently simple

system is more complex than could have been anticipated from previous investigations of related

systems. In particular, isotopic labeling experiments provide evidence for different protonation

sites in different isomers. Using a UV-pump/IR-probe scheme, it is demonstrated how the life-

times and the IR spectra of several excited state species can be obtained.

Keywords: cold ions, gas phase, buffer gas cooling, ion traps, time-of-flight mass spectrometry,

IR spectroscopy, UV spectroscopy, amino acid, cluster, excited states



Zusammenfassung

Spektroskopische Untersuchungen von kalten biomolekularen Ionen haben in den vergangenen

Jahren neue, detaillierte Informationen über die Struktur von Biomolekülen in der Gasphase

geliefert. Die vorliegen Arbeit besteht aus drei Hauptteilen, die die Entwicklung von Instru-

menten zur Herstellung und Manipulierung kalter Ionen und deren Anwendung für die Spek-

troskopie eines protonierten Aminosäure-Dimers beschreiben.

Der erste Teil erläuter die Entwicklung eines Tandem-Quadrupol-Massespektrometers mit

22-Pol-Falle für die spektroskopische Untersuchung von kalten, biomolekularen Ionen. Die Im-

plementierung verschiedener neuer Methoden verbessert die Leistung des Setups im Vergleich

mit der vorigen Generation. Das Instrument wird im Detail charakterisiert, und es wird gezeigt,

daß die Ionen eine Vibrationstemperatur von 10 K besitzen.

Der zweite Teil beschreibt ein neues Multipol-Ionen-Fallen-Flugzeit-Massenspektrometer, ein

Hybridinstrument, in dem eine planare Multipol-Falle als Extraktionsregion eine Reflektrons

benutzt wird. Ursprünglich ist die Entwicklung dieses Instruments aus dem Zusammenhang

des ersten Teils dieser Arbeit motiviert, als Hilfsmittel, um ein Flugzeitspektrum der im 22-Pol

gespeicherten Ionen zu erhalten. Es besitzt aber das Potential für eine breitere Anwendung

in ganz verschiedenen Gebieten. Sowohl die Evolution der Konstruktion und die Elektronik

werden beschrieben, als auch die verschiedenen Versuchsaufbauten, in denen das Gerät getestet

wurde. Numerische Simulationen begleiten die Experimente zur Charakterisierung und erhellen

verschiedene Details der Funktionsweise.

Der dritte und letzte Teil der voliegenden Arbeit behandelt die Infrarot- (IR-) und Ultraviolett-

(UV-)Spektroskopie des protonierten Phenylalanin/Serin-Dimers mit Hilfe des Instruments, das

im ersten Teil beschrieben wird. Die isomeren-selektiven IR-Spektren zeigen, daß dieses kleine

und scheinbar simple System komplexer ist, als man aus vorhergehenden Studien an verwandten

Systemen hätte vermuten können. Insbesondere belegen Isotopen-Substitutionsexperimente ver-

schiedene Protonierungsstellen in verschiedenen Isomeren. Es wird gezeigt, wie mit einer UV-

Pump/IR-Probe-Technik die Lebensdauern und IR-Spektren verschiedener angeregter Zustände

erhalten werden können.

Stichworte: kalte Ionen, Gasphase, Puffergaskühlung, Ionenfallen, Flugzeit-Massenspektrometrie,

IR-Spektroskopie, UV-Spektroskopie, Aminosäure, Cluster, angeregte Zustände
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“Laboratorium im Sinne des Mittelalters, weitläufige, unbehülfliche Apparate zu phantastischen

Zwecken” (Szenenüberschrift in Goethes Faust II)

“Laboratory in the style of the middle ages; scattered, clumsy apparatus for fantastic purposes”

(stage direction in Goethe’s Faust II)
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Chapter 1

Introduction

“The problem of chemistry” solved The interaction of electrons and nuclei is fully de-

scribed by quantum mechanics. It explains the structure of atoms, the nature of the chemical

bond, and the dynamics and interactions of molecules. In this sense, the Schrödinger equation

i~Ψ̇ = HΨ (1.1)

with the Hamiltonian operator H and the wave function Ψ solves “the problem of chemistry”.

Heitler, one of the founding fathers of quantum chemistry, expressed this with the words that

now, one could “eat chemistry with a spoon”.1

Dirac, who generalized the Schrödinger equation to incorporate relativistic effects, stated

the same idea in 1929, writing “The underlying physical laws necessary for the mathematical

theory of a large part of physics and the whole of chemistry are thus completely known. . . ”.

However, he added “. . . and the difficulty is only that the exact application of these laws leads

to equations much too complicated to be soluble.”2

Quantum chemistry is therefore based on the quest for suitable approximation methods for

the Schrödinger equation. In his Nobel lecture, John Pople gives an overview of the history

of quantum chemistry, starting in 1929, when Heitler and London first carried out quantum

mechanical calculations of molecular hydrogen.3 Landmarks include the Hartree-Fock theory

and the Roothaan equations; the introduction of approaches including electron correlation, like

the configuration interaction method and the Møller–Plesset perturbation theory; or density

functional theory (DFT),4 which has gained immense popularity in recent years. Thanks to the

development of these methods and the ever increasing speed of modern computers, quantum

chemical calculations have become a powerful tool to aid the interpretation of experimental

findings.

Structures of flexible biomolecules in the gas phase As will be discussed in greater detail

below, the larger aim of the present work is to determine the structures of flexible biomolecules

in the gas phase. To this end, we record infrared (IR) spectra of the species of interest. Their

corresponding structures can then be inferred by comparison with the results of quantum chem-
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ical calculations. This process, however, also implies that the interpretation of the spectra will

in most cases only be successful if the calculations would have given the right answer anyway.

One might ask more generally and maybe a little näıvely if there is any point at all in carrying

out the experiment if a complete theory exists that can predict all the measurable properties of

a molecular system and this theory has not been disproved to date?

Certainly, as any other scientific theory, the validity of quantum mechanics needs to be put to

a test. This is, for example, the goal of experiments testing whether entangled particles violate

the Bell inequalities as quantum mechanics predicts5 or experiments designed to demonstrate

the wave nature of ever bigger objects.6 The experimental method that forms the basis of the

present work, however, is hardly suitable to provide a stringent test of quantum mechanics.

The computational effort of current quantum chemistry methods scales exponentially with

the number of particles N (e.g. M4 for Hartree-Fock in the large system limit, where M repre-

sents the basis set size7 ) so that the limited computing power restricts accurate calculations to

small enough systems. (Another way of looking at this problem is that simulating a quantum

system on a classical computer puts quantum chemists at an inherent disadvantage, while quan-

tum simulation might in the future change the scaling laws.8) Therefore, one could argue that

the experiment can give access to systems too big or too complex to be accurately calculated.

However, in the special case of our experiment, successful modeling of the compound is essential

in order to obtain the molecular structure from the recorded IR spectrum. Studying a large,

complex system might then as well lead to results that cannot be interpreted or that give only

indirect or qualitative structural information.

In this situation, the experimentalist is faced with a dilemma. While it may be of little

interest to determine properties of molecules that can easily be calculated, so that the experiment

only gives the obvious answer, studying a complex system might not yield any answer at all.

Worse, a computational problem that can just be addressed with today’s capabilities might look

trivial in a couple of years if Moore’s law should continue to provide ever faster computing speeds

and if more powerful quantum chemical methods should be developed. One might ask why one

should measure anything today that could easily be calculated tomorrow, when computers are

bound to be faster?

The interplay of experiment and theory One reason is that experiments can be used to

verify and improve the results of quantum chemical calculations. To this end, the experiments

must provide a stringent test for the performance of different methods. As will be discussed

below, we are confident that our experiment can, indeed, deliver an unprecedented detail of

information, the accuracy of which presents a challenge for theoretical investigations, even of

small systems.9

Dispersive interactions, for example, play an important role in determining the conforma-

tional preferences of biomolecules. Determining their structures experimentally can therefore
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serve to evaluate different approaches for including dispersive corrections in DFT methods.10

Furthermore, flexible biomolecules frequently feature potential energy surfaces with a large

number of local minima, and different strategies have been developed to predict the relevant

conformations.11,12 Since our experiment can provide information about the global minimum

and connected local minima conformations, it can also serve to evaluate the performance of

different techniques to perform conformational searches.

Ideally, theory and experiment do not deliver redundant results but engage in a synergetic

process, in which experimental techniques and theoretical methods are iteratively refined. At

the end of the process, theory would be accurate enough to predict the properties of large

systems, so that, for example, the interactions of an enzyme with a drug could be studied and

novel drugs could be developed merely from calculations.

Extending the experimental toolbox and curiosity-driven research From the view-

point of an experimentalist, the prospect of doing experiments for the sole purpose of advancing

theory and finally rendering experiments superfluous might be little attractive.

However, to speak with Asher Peres, “. . . quantum phenomena do not occur in a Hilbert

space, they occur in a laboratory.”8 Trying to do ever more detailed and more sophisticated

experiments will help to extend our experimental toolbox and our capabilities to investigate and

manipulate molecular systems. This includes the development of novel spectroscopic techniques

and new kinds of scientific instruments. In fact, a large part of the present work has been

devoted to the latter goal.

In his essay “The future of chemical physics”13 Ahmed Zewail illustrates this point with the

example of the laser. Starting out as a mere intellectual curiosity and “a solution looking for a

problem”, the laser has enabled technological breakthroughs in a variety of fields in the past 50

years and continues to have a profound impact on our society.

Figure 1.1: The merits of curiosity-driven research (from Theodor Hänsch’s Nobel lecture in 200514).

Ahmed Zewail argues that the primary objective of chemical physics is “to provide the

fundamental concepts and the new tools that enable understanding and control of the systems
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behavior, from molecules to cells” and thereby underlines the fruitful interplay of theory and

experiments. He concludes by advising chemical physicists to continue to “look ahead with

intellectual curiosity to examine the fundamentals of nature”.

Seeking a detailed understanding of proteins Proteins perform a large variety of tasks in

living organisms, including the catalysis of chemical transformations, the transport of chemical

species through membranes, cell signaling, gene transcription, and structural functions.15 They

constitute the molecular machinery of the cell that carries out the tasks encoded in the DNA.

The plethora of different functions is seemingly contrasted by the fact that proteins are initially

synthesized in the ribosomes as a simple linear polymer of 20 standard amino acids (that may

afterwards undergo posttranslational modifications). However, the protein is inactive until it

folds into the three-dimensional structure that determines its functions. Misfolded proteins, on

the other hand, have been found to be involved in the formation of aggregates that are, for

example, at the origin of Alzheimer’s and Parkinson’s diseases.16

The folding is a spontaneous process, in which most proteins “self-assemble” into their correct

shape. This process is driven by the hydrophobic effect, which favors conformations in which

amino acids with hydrophobic side chains are placed in the inside of the protein; the formation

of intramolecular hydrogen bonds; and the weaker van der Waals interactions. However, it is not

understood in detail and on the molecular level how these interactions determine the structure.

These weak interactions also govern molecular recognition and determine, for example, how

an enzyme recognizes its specific substrate, how antibodies bind to a pathogen, or how a cel-

lular receptor recognizes a chemical signal. Understanding these processes on a fundamental

level could allow one, for example, to design artificial proteins to catalyze specific reactions.

While molecular nano-machines are an active field of research,17 it has not been possible so far

to harness the power of proteins. Similarly, for the development of novel drugs, pharmaceutical

companies still largely rely on the tedious process of screening large libraries of chemical com-

pounds. A better understanding of intermolecular interactions, however, could pave the way

towards the successful in silico design of novel drugs.

Peptides in the gas phase X-ray crystallography and NMR spectroscopy are currently the

most powerful tools to investigate the structure of proteins. NMR spectroscopy probes the

structure of proteins directly in solution and can deliver dynamic information.18 Under the

premise that a protein can be crystallized and its structure is not altered by the crystal packing,

X-ray crystallography gives access to even larger systems.19

However, most proteins are far too large to be amenable to high-level ab initio quantum

chemical calculations, which are required to accurately describe intramolecular interactions.

The necessity to model the interaction with the solvent further aggravates the problem. In

order to arrive at a greater detail of understanding, one is therefore forced to drastically reduce
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the size and complexity of the system, which is the motivation for studies on (microsolvated)

amino acids and small peptides in the gas phase.

While NMR spectroscopy is not sensitive enough for gas phase studies because of the low

number densities in gases, diffraction techniques have so far been limited to smaller systems.20–25

Structural information on gas-phase ions can also be obtained with mass spectrometric tech-

niques. However, different dissociation rates in blackbody infrared radiative dissociation (BIRD)

experiments,26–29 different H/D exchange rates,30–38 or different collision induced dissociation

(CID) behavior can only yield indirect information about the structures involved.30,39–41 Ion

mobility measurements provide a more direct probe of the conformation of an ion by determin-

ing its collision cross section in collisions with an inert gas, usually helium.33,42–46 Due to their

different cross sections, helical and globular structures of polyalanine containing peptides can,

for example, be distinguished with this technique, so that it has been possible to deduce different

parameters that influence the propensity for helix formation in the gas phase.47–49 However, in

ion mobility measurements, the detail of structural information that can be obtained is neces-

sarily limited, since all the information is essentially contained in a single observable.

Spectroscopy of neutral peptides in the gas phase Optical spectra on the other hand

can provide a more direct link to the molecular structure and are therefore better suited to

study the conformations of small peptides in the gas phase, as will be argued in the following.

The history of the study of gas-phase biomolecules (see also reference 50 and references

therein) begins with the ultraviolet (UV) spectroscopy of the neutral amino acid tryptophan.51–54

In these experiments, tryptophan was volatilized by heating and entrained in a molecular beam.

Resonance enhanced two photon ionization (R2PI) spectra showed a different saturation behav-

ior of different UV transitions, indicating the presence of several ground state conformations

of tryptophan in the molecular beam. Furthermore, different dispersed fluorescence spectra

obtained by pumping the different conformers provided evidence that several distinct confor-

mations are also present in the excited state, which do not interconvert on the time scale of the

fluorescence lifetime.

In order to extend studies to larger systems that possess insufficient vapor pressure and

cannot be volatilized by heating without significant decomposition, laser desorption (LD) in

combination with cooling in a molecular beam55 was introduced.56–58 The largest systems

investigated with this technique possess up to 15 amino acids.59,60

Several multi-resonance techniques have been developed to gain additional spectral infor-

mation. With UV/UV and IR/UV hole burning, different UV transitions can be more easily

assigned to different conformers, and the UV spectrum of a single species can be obtained.61–64

IR/UV depletion experiments yield conformer-selective IR spectra,59,60,62,63,65,66,66–72 and even

an IR/IR/UV scheme has been employed to achieve conformer-selectivity despite overlapping

UV transitions.73 IR spectra offer valuable structural information, since they are a sensitive
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probe for the conformation of a peptide. The hydrogen bonding pattern, which largely deter-

mines the three-dimensional structure, is encoded in the characteristic shifts of NH and OH

stretch vibrations, which, fortunately, also possess large transition dipole moments. Further-

more, NH bending and C=O stretch vibrations can serve as fingerprints of the structure of a

peptide. IR spectra of excited states have been recorded using the excited-state fluorescence dip

technique.74,75

As one further addition to the spectroscopic toolbox, Zwier and co-workers introduced IR

and UV population transfer spectroscopy,76–78 in which the high gas densities at an early point

in a molecular beam expansion are used to recool molecules after absorption of an IR or UV

photon, respectively. With this technique, the transfer of population between different conforma-

tions could be observed. Barrier heights for the interconversion could also be determined when

stimulated emission pumping (SEP) was used in the initial excitation step of the scheme.79,80

IR spectroscopy of protonated peptides at room temperature With the advent of

matrix assisted laser desorption ionization (MALDI)81 and electrospray ionization (ESI),82–84

the soft ionization and transfer into the gas phase of large biomolecules has become possible.

While the spectroscopy of ions suffers from lower number densities, it offers the advantage that

the species of interest can be mass-selected, so that, for example, decomposition products can

be eliminated. (Moreover, ion mobility experiments allow for the preselection of conformational

families.85) Furthermore, protonated or metalated species, as they are typically generated with

MALDI or ESI, resemble the in vivo state of peptides, since many biomolecules exist as ions

under physiological conditions.15

ESI and its variants are currently the preferred approach for the mild ionization of the largest

biomolecules and biomolecular complexes accessible.86 Moreover, with ESI, peptide molecular

ions can be sampled from their native environment. Together with the fact that ESI usually

shows smaller shot-to-shot signal fluctuations than MALDI, this has made ESI generated peptide

ions a popular target for spectroscopic investigations.

IR spectroscopic studies of a wide range of electro-sprayed systems, ranging from single pro-

tonated amino acids and their clusters87–91 to peptides92–95 and even entire proteins,96,97 have

been carried out that had previously not been accessible. Two action-spectroscopic schemes

have been employed. While some small, weakly-bound clusters already dissociate upon absorp-

tion of a single IR photon (IR photodissociation, IRPD),29 several IR photons are required to

fragment larger and covalently-bound systems (IR multiple photon dissociation, IRMPD).98,99

In particular the advent of IR free electron lasers (FELs),100,101 capable of delivering high pho-

ton fluxes, has fuelled numerous IRMPD studies in the fingerprint region. Different tandem

mass spectrometers have been employed in these experiments, including 3D Paul traps,102,103

Fourier transform ion cyclotron resonance mass spectrometers (FT-ICRs),98,104 and tandem

quadrupole mass spectrometers.29
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In these setups, the ion internal temperature is usually close to room temperature. Under

these conditions, IR transitions typically show a width of about 30 cm−1, so that in small

systems, resolved spectral features are obtained that can yield structural information. The

interpretation of IRMPD spectra by means of quantum chemical calculations is complicated

by the intricate dynamics and nonlinearity of the IRMPD process, which can, for example,

lead to shifts of the band positions or largely different relative band intensities compared with

linear spectra.105 Moreover, the room-temperature UV spectra of peptides with aromatic side

chains are usually broad,106 so that IR/UV double-resonance methods cannot be applied to

obtain conformer-selective spectra. If several conformers are present, the obtained IR spectrum

consequently represents a thermal average, which renders the assignment of structures difficult.

Spectroscopy of cold protonated peptides in the gas phase At the origin of the broad

UV spectra of peptides at room temperature is a statistical effect. Especially for large systems,

many states are populated at ∼300 K, so that the UV spectrum is the sum of the different

spectra of a large number of eigenstates. In order to obtain a resolved UV spectrum and

render conformer-selective techniques possible, one would have to force the ensemble into a

small number of states, which is most easily achieved by cooling.

However, there is no obvious way how electrosprayed ions could be cooled in a molecular

beam without losing a majority of them in the expansion. Moreover, large systems, which possess

higher internal energies at room temperature, cannot be sufficiently cooled in a molecular beam

due to the limited number of collisions with the carrier gas. This ultimately also limits the size

of laser-desorbed neutrals which can be studied with double-resonance techniques.60

The development of methods for the generation of cold molecules is an active field of research.

Applications range from ultracold chemistry, high precision measurements, and fundamental

tests of physics to quantum information processing.107 However, the only method available to

date to internally cool large, gas-phase ions is buffer gas cooling. (Electrosprayed ions have

also been captured in helium droplets, which makes even lower temperatures accessible than

is currently possible with buffer gas cooling.108,109 However, with this technique, it is not

possible so far to prepare isolated cold species.) For the purpose of buffer gas cooling, ions

are stored in an ion trap and translationally and internally cooled in collisions with a bath

gas. Weinkauf and co-workers first applied this technique to the spectroscopy of a biomolecular

ion, when they stored protonated tryptophan in a liquid nitrogen-cooled Paul trap.110 The

recorded UV photofragment spectrum was broad and showed little structure. However, as could

be demonstrated later, the broadening is not due to insufficient cooling of the ions, but rather to

the ultrafast dissociation dynamics following electronic excitation in protonated tryptophan.111

Using a cryogenic 22-pole ion trap,112 Rizzo and co-workers demonstrated in the following

the cooling of protonated tyrosine to ∼12 K, so that a sharp UV spectrum with transitions as

narrow as 2.7 cm−1 could be recorded.106 Well-resolved electronic spectra laid the basis for
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conformer-selective IR/UV double-resonance spectroscopy, which was demonstrated in the fol-

lowing for protonated tyrosine and phenylalanine113 as well as protonated dipeptides containing

tyrosine.114 These experiments showed how detailed structural information could be obtained

about the lowest lying minima of the potential energy surface (PES), when the conformer-

selective IR spectra were compared with the predictions of quantum chemical calculations.

Subsequent studies on the propensity of polyalanine containing peptides to form helices in the

gas phase demonstrated that the technique can be extended to larger peptides.115,116

The more recent work on the cyclic decapeptide Gramicidin S can serve to illustrate the power

of the experimental approach for the study of larger systems.9,117 IR depletion spectra of laser-

desorbed neutral Gramicidin peptides in a molecular beam had previously been reported. For

molecules of this size, broad UV spectra were obtained, most probably due to insufficient cooling,

so that no conformer selectivity could be achieved.60 The fingerprint IRMPD spectrum of doubly

protonated Gramicidin S at room temperature had also been recorded.92 It features broad,

overlapping absorptions, assigned to amide I and amide II vibrations. Although some qualitative

structural information could be obtained, it could, for example, not be determined how many

conformations contribute to the observed spectrum. When Gramicidin S ions were cooled to

∼12 K in a 22-pole ion trap, a resolved UV spectrum could be obtained, which allowed for

the identification of at least four different conformers. Conformer-selective IR depletion spectra

could be recorded in the mid-IR region, which show distinctly different features. However, it

was noted at the same time that the interpretation of the detailed information contained in the

spectra is a formidable challenge with the currently available quantum chemical methods.9

Two further developments should also be noted here. Although proteins undergo conforma-

tional changes during folding or as part of their function, the determination of the structure

of a peptide can only give a static view. However, it could be demonstrated that population

transfer spectroscopy, which uses conformational isomerization to reveal connections between

different minima of the PES, can also be performed with ions stored in a 22-pole trap, although

the lower number densities and reduced sensitivity render the experiment challenging.118

The complex behavior of peptides is also linked to their size. In our current experimental

approach, however, the investigation of large systems is hampered by their lower UV fragmenta-

tion yield. It was demonstrated that this problem can be alleviated by using a scheme termed IR

laser assisted photofragmentation spectroscopy (IRLAPS). By irradiating the ions with a CO2

laser pulse following UV excitation, the photofragmentation yield was shown to increase by as

much as two orders of magnitude. With this technique, it was possible to obtain well-resolved

UV and IR spectra of a 17 amino acid peptide.119,120

Summary The goal set out above, to gain a more detailed understanding of the fundamental

interactions that govern proteins, and the experimental strategy proposed in the following might

appear incompatible. An unsolvated, short peptide fragment in the gas phase at 10 K certainly
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bears little resemblance to a large in vivo protein at body temperature. Did we get side-tracked?

We have certainly fallen prey to our initial goal, to gain detailed and fundamental insights

into the properties of proteins. Especially the requirement to study systems that are tractable

with current quantum chemical methods made a number of simplifications necessary. The higher

level of detail comes at the expense of the complexity of the investigated system. Conversely,

the complex behavior of proteins arises only from the interplay of a large number of these

fundamental interactions. Complexity should be easier to grasp once the elementary steps are

understood.

The experiments summarized above on the spectroscopy of cold, biomolecular ions are surely

exciting from the point of view of molecular spectroscopy. But do they possess any relevance

at all for the understanding of a living system? A peptide at 10 K is certainly a bad model

for the same molecule in solution at room temperature.42,49,117 This, however, would mean

to misunderstand the idea of the experiment. Rather, the low temperature is an experimental

prerequisite for mapping out the PES of the system, which is a fundamental property of the

molecule and also applies to the system at higher temperature. Moreover, the lowest energy

minima and the connecting pathways between them are likely also going to be most relevant at

physiological temperatures.

With an improvement of the tools of quantum chemistry, larger and more complex systems

will lend themselves to high level ab initio calculations. At the same time, the insights into

the challenges and the limitations of the current experiments will lead to new and improved

methods. To resume a thought from the beginning of this chapter — with a fruitful interplay

of theory and experiment, it will be possible to gradually understand the complex behavior of

proteins.

Outline This document has the following structure. While chapters 2 and 3 describe the de-

velopment of instrumentation for the spectroscopy of cold, biomolecular ions, chapter 4 discusses

the spectroscopic findings for a simple system, a protonated cluster containing one serine and

phenylalanine molecule. Chapter 5 summarizes and concludes.

Chapter 2 describes the development of a tandem quadrupole mass spectrometer featuring

a 22-pole ion trap, designed for the spectroscopic investigation of cold, biomolecular ions. After

laying out the various design goals and giving an overview of the system, the most important

components of the setup are described in more detail, including the ion source, the various radio

frequency (RF) devices, the ion detectors, the electronics, and the data acquisition software. A

special emphasis is put on the theory and principle of operation of the RF devices, since two

of them play a central role: The 22-pole is the heart of the instrument, while the ion funnel is

crucial in obtaining a high ion transmission in the source. Subsequently, the characterization

of the instrument is described, and most importantly, the vibrational temperature of the ions



10

is determined. The chapter closes with a summary and an outlook for possible future develop-

ments of the system.

Chapter 3 describes a novel multipole ion trap time-of-flight mass spectrometer. Its devel-

opment was originally motivated in the context of chapter 2 by the goal of detecting the ions

stored in the 22-pole with a time-of-flight method. First, different existing approaches for this

technical challenge are summarized, and their advantages and drawbacks are discussed. Sub-

sequently, the theory of reflectron time-of-flight mass spectrometers and of planar multipole

ion traps is laid out. The concept of a multipole ion trap time-of-flight mass spectrometer is

described, a hybrid instrument that uses a planar trap as the extraction region of a reflectron;

and its possible advantages for the purpose of obtaining a time-of-flight spectrum of the ions

stored in the 22-pole are outlined.

Different considerations for the design of such an instrument are then discussed, and its

experimental realization is described. Two generations of the trap were developed and tested,

using ions generated by laser ionization inside the trap volume. Subsequently, the trap was

coupled to the tandem quadrupole mass spectrometer described in chapter 2 to explore the

injection of externally generated ions.

The characterization of this novel instrument in combination with numerical simulations of

ion trajectories refines the understanding of its principle of operation. Finally, the results of this

chapter are summarized, remaining challenges are outlined, and future directions are suggested.

To conclude, possible applications of the instrument, quite independent of its original purpose,

are discussed.

Chapter 4 describes the IR and UV spectroscopic investigation of the protonated phenylala-

nine/serine heterodimer, 1 using the instrument detailed in chapter 2. Isomer-specific IR spectra

demonstrate the presence of at least five different species, whose spectral signatures point to

structures that are dominated by several intermolecular hydrogen bonds with the ammonium

group. Isotopic labeling experiments show that serine, the less basic amino acid, carries the

excess proton in two of the five isomers.

In order to assign structures to these species, quantum chemical calculations were carried

out, following the established strategy of exploring the PES on the force field level and refining

the obtained structures in DFT calculations. Unfortunately, this approach fails for the present

system. A detailed analysis reveals that the employed search algorithm does not sample the

PES efficiently. Nevertheless, some additional, qualitative structural information is gained.

Initial investigations of the spectroscopic properties and dynamics of the excited states of

the dimers are presented. Finally, the results of this chapter are summarized, and further ex-

1Strictly speaking, a complex consisting of two different subunits, here phenylalanine and serine, is not a dimer.
However, in the field of gas phase spectroscopy, the designations “heterodimer” and “dimer” are frequently used
to denote this kind of cluster.
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periments are suggested to answer several open questions. The importance of the findings for

the gas-phase spectroscopy of protonated amino acid dimers and larger biomolecular ions is

discussed.

Finally, chapter 5 summarizes the results of the present work and makes an attempt to draw

conclusions for the broader context of the research field.



Chapter 2

Construction of a Tandem
Quadrupole Mass Spectrometer
with Cold 22-Pole Ion Trap

2.1 Motivation and State of the Art

The broader context of the present work is the spectroscopy of molecular ions and ionic clusters

in the gas phase. The early experiments by Y. T. Lee, whose influence on the development of

the field has been reviewed,121 may serve to illustrate the basic experimental approach that is

used here. His breakthrough idea was to combine mass spectrometry and IR spectroscopy with

narrow-band lasers to obtain action spectra of mass-selected ionic clusters.122–124 In his original

setup, ionic clusters are generated in a corona discharge source. The parent ions are selected

in a magnetic sector and stored in an octopole trap, where the ions interact with the IR laser.

Fragments generated by vibrational predissociation are then selected in a quadrupole filter. By

monitoring the fragment intensity as a function of the IR wavelength, a spectrum is obtained.

A variety of different tandem mass spectrometer setups have since been employed for the

spectroscopic study of ions, including tandem time-of-flight (TOF) mass spectrometers,125–127

Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers,128–130 Paul traps,110

and hybrid Paul trap/TOF instruments.105

The introduction of the 22-pole ion trap by D. Gerlich added a new dimension to the field,131

since it allowed for the study of ions with their translational and internal degrees of freedom

cooled to cryogenic temperatures. Especially for large systems, the ability to prepare the ion

in a very limited number of quantum states facilitates its spectroscopy and gives access to new

kinds of information.50 Although a tandem TOF configuration has also been developed,132 most

instruments with cold 22-pole ion traps use a tandem quadrupole configuration.106,133–135

This is also the case for the instrument described in the present work.136 It builds upon the

experience of our research group gained with the first generation setup,106 but was conceived

with the goal in mind to implement a number of distinct improvements that would allow new

kinds of experiments.
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In comparison with neutrals, molecular ions offer the advantage that they can be selected

by their mass over charge ratio, filtered according to their ion mobility,43 and trapped in order

to cool them to cryogenic temperatures. However, the spectroscopy of ions always faces the

complication of lower number densities, which are limited by space charge to about 105 −

106 ions/cm3. For population transfer experiments76,79 in a 22-pole ion trap, for example,

achieving a good signal to noise ratio is a formidable challenge.118 It was therefore one of the

goals to increase the number of ions stored in the 22-pole during one experimental cycle (the

length of which is determined by the laser repetition rate). To this end, an ion funnel137 was

incorporated into the ion source to replace the skimmer in the previous setup. Ion funnels had

been shown to improve the transfer efficiency of the ions into the vacuum chamber by an order

of magnitude (see section 2.7.5).

A prerequisite for obtaining conformer-selective IR spectra of peptides by means of IR/UV

double resonance experiments113 are well-separated transitions in the UV spectrum. However,

with the size of the peptide, the number of possible conformations increases, which frequently

leads to spectral congestion and overlapping bands.120 Adding an ion mobility stage to the

instrument could solve this problem, as drift tube ion mobility measurements have been shown

to be able to resolve different conformational families according to their different collisional cross

sections.42 As a first step in this direction, the instrument was designed with a front end that

would be able to accommodate a high-field asymmetric waveform ion mobility spectrometer138

(FAIMS) by Thermo Fisher (usually operated with a conventional ESI source instead of a nano-

spray source).

A number of smaller changes were also introduced. The machine was designed with a shorter

laser axis to facilitate laser alignment in multiple laser experiments. A flexible structure of the

machine was envisioned that would allow the addition of further instruments later on (see chap-

ter 3). With the new helium cryostat specified to reach temperatures as low as 4 K (previously

6 K), we also expected to obtain slightly colder ions. Finally, the electronics of the system and

the computer interface were completely redesigned in order to provide better stability and a

greater ease of operation.

2.2 Outline

Figure 2.1 shows a horizontal cross section of the mass spectrometer, which features a tandem

quadrupole configuration with a cold 22-pole ion trap. Ions are produced by nano-electrospray

(nano-ESI) and enter the vacuum chamber via the transfer capillary (section 2.6). An ion funnel

(section 2.7.5) refocusses the ions exiting the capillary and guides them into a hexapole ion guide

(section 2.7.4). In the following quadrupole analyzer (section 2.7.1) the parent mass/charge ratio

is selected and transmitted to a quadrupole bender, where the ion beam is turned by 90◦ and

enters an octopole guide (section 2.7.4). After a second quadrupole bender the ions are focused

by a lens stack and injected into a cryogenically cooled 22-pole ion trap (section 2.7.4). After
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the interaction with the laser(s), the ions are ejected from the trap, pass another lens stack and

a third quadrupole bender, and enter the second analyzing quadrupole, which selects the mass

over charge ratio of the fragment ions. These are finally detected by a channeltron detector

(section 2.8).

nano-spray

laser axis

capillary

ion funnel

hexapole
gate valve

quadrupole

channeltron

bender

octopole

bender quadrupole

channeltron

channeltron

bender

22-pole

Figure 2.1: Overview of the tandem mass spectrometer with 22-pole ion trap.

The setup owes its zigzag shape to the three quadrupole benders. The first one (which

follows the first quadrupole) serves to separate the ion beam from any directed flow of neutral

gas that passes through the bender in a straight line and strikes a turbomolecular pump. The

other two benders surround the 22-pole and thus reduce the length of the optical axis of the

machine. This facilitates laser alignment through the laser ports, especially in multiple laser

experiments.

Two further channeltron detectors are placed at the first and second bender. With the

polarity of the poles of these benders reversed, ions can be detected with these additional

detectors, which is useful for analytical purposes. The benders also render the design of the

machine more flexible for the purpose of future extensions. The unoccupied sides of the second

and third bender could, for example, be used to extend the instrument by a further ion trap or

a time-of-flight analyzer.



CHAPTER 2. TANDEM MASS SPECTROMETER WITH 22-POLE ION TRAP 15

2.3 Time sequence of a typical experiment

The time sequence of a typical experiment is schematically depicted in Fig. 2.2. For experiments

with a pulsed UV or IR laser, the continuous ion beam produced by the nanospray source has to

be converted into discrete packages. To this end, ions are stored in the hexapole by raising the

potential on the hexapole exit lens. They are periodically released by pulsing the exit lens to

a lower voltage and injected into the 22-pole. Alternatively, the ions can be pretrapped in the

octopole by leaking helium into this section (raising the pressure to ∼1e-4 mbar) and switching

the octopole exit lens in the same fashion. About 1 ms before the arrival of the ions, helium

is pulsed into the 22-pole, which serves to decelerate the injected ions and cool them to the

(cryogenic) temperature of the walls of the trap. Several ms later, the lasers are fired. The ions

are subsequently ejected from the trap by lowering the voltage on the 22-pole exit lens, mass

selected in the second quadrupole, and detected with the channeltron detector.

helium pulse

hexapole/octopole open

laser pulse(s)

22-pole open, detection

Figure 2.2: Time sequence of a typical experiment.

2.4 Overview of the ion source

A considerable effort was devoted to the design and construction of the ion source, which

houses the capillary, ion funnel, and hexapole. Three differential pumping stages (the ion funnel

comprising one and the hexapole spanning two stages, see section 2.5) had to be accomodated in

one chamber. Furthermore, we sought a design that would allow one to easily clean and service

the RF devices and ion optics. Figure 2.3 shows a section view of our design.

The source is housed in a six-way cross and terminated by a gate valve, which is based on a

design by O’Conner and co-workers.139 It allows one to evacuate the machine while the source is

at atmospheric pressure and thus facilitates the work with the instrument and decreases pump-

out times. The gate valve blade can be moved by a linear manipulator that protrudes from the

top of the flange on which the gate valve is mounted (Fig. 2.3). In its closed state, the blade

presses against an o-ring and thus seals off the remainder of the machine from the source, while

in its open state, it functions as an electrostatic lens, to which a DC potential is applied. The
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gate valve

ion funnel

hexapole

capillary

Figure 2.3: The ion source. (Only every fourth plate of the ion funnel is shown.)

housing of the first quadrupole (not shown) inserts into the gate valve flange from the other

side. This way, the distance is kept short in which the ion beam is only guided by the potential

of the blade.

The capillary, ion funnel, and hexapole are mounted on a separate assembly that can easily

be removed from the vacuum chamber for cleaning purposes. It inserts into the front flange of

the machine and a cylindrical inner chamber, which houses the first two vacuum stages. The end

of the hexapole is enclosed in a cylindrical structure, which fits into a counter piece in the gate

valve, so that the relative alignment is ensured. In Fig. 2.3, the tubes are visible that connect

the two sections of the inner chamber to pump ports on the flanges of the six-way cross. The

third stage (the second half of the hexapole) is pumped from a turbomolecular pump on the

flange below the chamber. None of the RF and DC voltages for the ion funnel and hexapole have

to be connected or disconnected manually. Pins on the source assembly push onto spring-loaded

counter pieces on the inner chamber that carry the electrical signals.

Figure 2.3 also shows two concentric cones that surround the capillary entrance. They direct

the counter-flow gas and are designed to match a high-field asymmetric waveform ion mobility

spectrometer138 (FAIMS) by Thermo Fisher, which can be connected to the front end of the

machine to additionally select ions by their differential cross section.
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2.5 Differential Pumping Stages

The instrument comprises seven differential pumping stages, which are illustrated in Fig. 2.4

and listed in table 2.1 together with the corresponding pressures and the pumps that are being

used. In brief, the ion funnel constitutes the first pumping stage, with its exit electrode forming

Figure 2.4: Illustration of
the pumping stages of the
tandem quadrupole mass
spectrometer.

the conductance limiting orifice. The hexapole spans the following two stages. Its rods are

mounted on three ceramic collars. By enclosing the first two collars in a cylinder, the gas load

in the third stage could be reduced (see Fig. 2.3). In the fourth stage, which contains the first

quadrupole and the first bender, the pressure is already decreased to 2e-7 mbar. The octopole

and 22-pole (together with the last two benders) are each placed in a pumping stage of their own,

where pressures of 1e-8 mbar and 2e-9 mbar are reached, respectively. If ions are trapped in the

octopole, a helium pressure of ∼1e-4 mbar is maintained in this section. For efficient trapping

and cooling, helium is pulsed into the 22-pole which raises the pressure to ∼1e-5 mbar in the

corresponding stage. The second quadrupole mass analyzer finally occupies the last pumping

stage together with the detector.

2.6 The Electrospray Source

Principle of operation The studies on cold biomolecular ions by Rizzo and co-workers50

have received considerable attention. Their appeal is to no small extent due to the size of the

peptides under investigation for which detailed spectroscopic information could be obtained.

Peptides of up to 20 amino acids are still far smaller than most naturally occuring enzymes.

However, they were shown to exhibit features of secondary structure that occur in much larger

systems.

The study of large molecules in the gas phase encounters the challenge that they possess

low vapor pressures and decompose upon heating. In 2002, the Nobel Prize was awarded for
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two soft ionization techniques, electrospray ionization (ESI)82 and matrix assisted laser desorp-

tion/ionization (MALDI),81 that made it possible to transfer large molecules to the gas phase

and ionize them without significant decomposition.

The previous setup of our group as well as the setup which is being described here both use

ESI82–84 to generate a continuous beam of gaseous ions. The process140 is illustrated in Fig.

2.5. High voltage is applied between a sampling orifice (usually the transfer capillary which

high voltage

spray needle

sampling orifice

Taylor cone

satellite droplets

jet break-up

fission and progeny droplets

Figure 2.5: The ESI process.

constitutes the entrance to the vacuum system) and the ESI needle, which contains a (slightly

pressurized) solution of the analyte. In case of a positive high voltage, the solution is oxidized

and due to the action of the electric field forms a cone-shaped liquid meniscus at the capillary

exit, a so-called Taylor cone. Because of charge repulsion, a highly charged liquid jet is emitted,

no section pressure pump forepump

1 ion funnel 1.5 mbar 60 m3/h rotary vane (Alcatel)

2 hexapole (1) 7e-3 mbar 60 l/s turbomolecular pump
(Pfeiffer, TMU 071 P)

5 m3/h rotary vane pump
(Pfeiffer, DUO 5)

3 hexapole (2) 1e-5 mbar 500 l/s turbomolecular pump
(Pfeiffer TMU 521 P)

0.9 m3/h membrane pump
(Pfeiffer, MVP 015-4)

4 quadrupole 1 2e-7 mbar 500 l/s turbomolecular pump
(Pfeiffer, TMU 521 P)

0.9 m3/h membrane pump
(Pfeiffer, MVP 015-4)

5 octopole 1e-8 mbar 500 l/s turbomolecular pump
(Pfeiffer, TMU 521 P)

0.9 m3/h membrane pump
(Pfeiffer, MVP 015-4)

6 22-pole 2e-9 mbar 500 l/s turbomolecular pump
(Pfeiffer, TMU 521 P)

5 m3/h scroll pump
(Edwards, XDS5)

7 quadrupole 2 2e-9 mbar 260 l/s turbomolecular pump
(Pfeiffer TMU 261 P)

5 m3/h scroll pump
(Edwards, XDS5)

Table 2.1: Differential pumping stages of the tandem mass spectrometer with 22-pole ion trap. If helium
is pulsed into the 22-pole, the pressure in sections 6 and 7 will rise to ∼1e-5 mbar and ∼1e-8 mbar,
respectively. Similarly, if ions are pretrapped in the octopole, the helium pressure is maintained at
∼1e-4 mbar in this part.
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which subsequently breaks up into the larger primary droplets and smaller satellite droplets,

which occupy the periphery of the spray.

Because of the electric field, the droplets move to the sampling orifice and finally enter the

mass spectrometer. Due to collisions with gas, they continuously evaporate neutral solvent

molecules. While they shrink in size, the charge repulsion in the droplets approaches the mag-

nitude of their surface tension, so that they become unstable. The critical limit at which both

forces become equal in a spherical droplet is called the Rayleigh limit. Different mechanism have

been proposed how the analyte molecules are subsequently liberated from these droplets.141

According to the ion evaporation model, single ions are detached from the surface of the

droplet as the Coulomb repulsion overcomes the surface tension. In this process, the analyte

ions are directly liberated and can be sampled.

The charged residue model, on the other hand, assumes that asymmetric droplet fission

occurs at about 70% of the Rayleigh limit, in which the primary droplet emits a number of

smaller droplets. These progeny droplets were found to carry about 2% of the mass and 15%

of the parent droplet charge. Microphotographs of these events showed that emission occurred

from one or two conical protrusions in the primary droplet in a direction orthogonal to the

electric field, and aerodynamic effects have been suggested to explain these observations.142

However, it is not clear how many fission cycles the droplets undergo before single analyte ions

are liberated. It is also conceivable that smaller progeny droplets could rather detach ions in

agreement with the ion evaporation model than undergo further fissions.

Depending on the spray conditions, different processes can lead to the formation of charged

analyte ions. In the case of peptides and operation in positive ESI mode, protonation predom-

inates. If metal ions are present in the sample, the formation of adducts can also be observed.

In both cases, closed-shell species are produced.

In our setup, ions are generated by nano-ESI,143,144 an ESI-variant that uses spray needles

whose orifice has a diameter of several µm only. Under these conditions, the liquid ionizes by

the sole action of the applied electric field. Without the need to pressurize the solution, very low

flow rates of 20-50 nl/min can be achieved, which renders the method sensitive for the analysis

of picomolar amounts of sample. The low sample consumption is particularly advantageous

for our application, since we frequently work on expensive synthetic peptides. Furthermore,

pure water solutions can be sprayed, which is difficult with conventional ESI due to the high

surface tension of the solvent. Since nano-ESI produces smaller primary droplets (typical 150

nm diameter as compared with 1.5 µm for conventional ESI), fewer fission cycles are required, so

that more analyte ions are finally available for mass anaylsis. This leads to a further sensitivity

gain, especially for hydrophilic molecules that tend to be suppressed in ESI.

Realization The nano-ESI source (Proxeon, ES070) uses metalized borosilicate needles (1 µm

inner diameter of the tip) that are mounted on a microtranslational stage and connected to a
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programmable high voltage power supply (1-1000 V, EMCO High Voltage Corporation). For

precise positioning of the needle with respect to the transfer capillary and monitoring of the

spray, two cameras are used.

The stainless-steel transfer capillary is 11.5 cm long and possesses an inner and outer diameter

of 0.5 mm and 2 mm, respectively. It is surrounded by a copper block, which can be heated

to 250 ◦C by two 100 W cartridge heaters (Prang+Partner AG). Its potential is defined with a

programmable DC power supply (Spectrum Solutions, TD 1400).

2.7 RF Devices

The principal purpose of the experimental setup that is being described in this chapter is the

study of the interaction of cold, gaseous ions with laser radiation. To this end, ions are cooled

in collisions with a cold buffer gas, which requires the manipulation and storage of slow ions (on

the order of a few eV). This is generally difficult to achieve with electrostatic potentials, which

only allow for the creation of saddle points in space, but no true minima. This is a consequence

of Laplace’s equation

∆Φ = −4πρ (2.1)

(with the the electrical potential Φ, and the charge density ρ), which in the absence of space

charge becomes

∆Φ = 0. (2.2)

Space charge and the presence of a buffer gas will generally render the problem more difficult.

However, slow ions can be guided and trapped by means of inhomogenous RF fields. The

experimental setup makes use of several of these RF devices: the ion funnel, hexapole and

octopole, the mass analyzing quadrupoles, and the 22-pole. The following sections explain their

principle of operation and give details on their experimental realization.

2.7.1 The Quadrupole Mass Analyzers

Principle of Operation Among the earliest realizations of RF devices are linear quadrupoles,

which can be used for ion guiding, storage, and mass selection.145 Four hyperbolic or circular

electrodes are used to approximate the ideal potential Φ(x, y) of an infinitely long quadrupole

Φ(x, y) =
Φ0

r2
0

(x2 − y2), (2.3)

with Φ(r0, 0) = Φ0. Φ0 = U+V0 cos Ωt is composed of a DC component U and a RF component

V cos Ωt with amplitude V and angular frequency Ω. These are applied as illustrated in Fig. 2.6.

The resulting equation of motion of a charged particle of mass m and charge q can be separated

for the coordinates x and y to give

mẍ = −2q
(U + V cos Ωt)

r2
0

x (2.4)

mÿ = −2q
−(U + V cos Ωt)

r2
0

y. (2.5)
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Figure 2.6: Waveforms and wiring diagram for a quadrupole mass filter.

These are special cases of the Mathieu Equation

d2u

dξ2
+ (au − 2qu cos 2ξ)u = 0. (2.6)

Comparison with Eqn. 2.4 yields

u = x, (2.7)

ξ =
Ωt

2
, (2.8)

qx =
−4qV

mr2
0Ω2

, (2.9)

and ax =
8qU

mr2
0Ω2

. (2.10)

For the purposes of ion transmission and mass filtering, it is of interest to identify combina-

tions of qx and ax (qy = −qx and ay = −ax) for which ion trajectories are simultaneously stable

in the x and y directions, i.e. for which ions of a given mass are transmitted rather than ejected.

Several such regions of stability exist. Figure 2.7 displays the region in which quadrupoles are

usually operated. For a given ratio of the DC and AC voltages U/V different masses lie on a

straight line, with the heavier masses at lower (qu, au) values. In Fig. 2.7, the mass m2 lies

within the stability region and is transmitted while the heavier mass m1 and the lighter mass

m3 are ejected.

By simultaneously increasing U and V while keeping U/V is constant (i.e. scanning the

quadrupole), the different m/z ratios shift along the straight line to higher (qu, au) values, so

that m2 will leave the stable region and at a later point, m1 will enter. This way, a mass

spectrum can be obtained. It is obvious that by increasing the slope of the straight line in Fig.

2.7 (i.e. increasing U/V ), the mass resolution is being increased while sacrificing sensitivity.

Realization The two quadrupole analyzers that are used to select parent and fragment ion

m/z ratios were purchased from Extrel. They possess 20 cm long, 9.27 mm diameter rods on a

8.2 mm inscribed diameter and are equipped with entrance and exit lenses. They are driven at

1.2 MHz by an Extrel power supply and provide a scan range of 2-2000 amu (for singly charged

ions). Analog control voltages are used to set the mass command, resolution and pole bias.
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Figure 2.7: Stability diagram for the operation of a quadrupole, with the Mathieu parameters au and
qu. For a given ratio U/V different masses (m1 > m2 > m3) lie on a straight line.

2.7.2 The Adiabatic Approximation and the Effective Potential

For higher order multipoles1 and other geometries and arrangements of the RF electrodes, the

resulting equations of motion

mr̈ = qE0(r) cos Ωt (2.11)

(with particle mass m, position vector r, particle charge q, electric field amplitude E0, the an-

gular frequency Ω of the RF, and time t) are generally nonlinear and coupled, so that analytical

solutions are not available. In this sense, the quadrupole potential represents a special case.

Many properties of RF devices can nevertheless be understood within the adiabatic approxima-

tion (D. Gerlich),112 which will be elaborated in the following.

Figure 2.8 shows the simulated trajectory of an ion that is trapped in an RF only octopole.

The ion trajectory apparently consists of a slow drift motion superimposed by a fast wiggling

motion, which increases in amplitude close to the electrodes.

For this kind of trajectory, it therefore appears sensible to describe the ion motion r(t) as a

sum of a smooth drift R0(t) and a fast oscillation R1(t)

r(t) = R0(t) + R1(t), (2.12)

with

R1(t) = −a(t) cos Ωt, (2.13)

1This also holds for “lower order multipoles”, i.e. tripoles, which have been theoretically explored.146,147
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Figure 2.8: Simulated ion trajectory in an ideal, two-dimensional octopole RF field.

where a(t) is the amplitude of the micro-oscillations.

This will certainly be a good approximation if E0 changes only slightly during one micro-

oscillation. This is the case if E0 varies smoothly and the amplitude of the wiggling motion is

small (the latter holds for high Ω, see below). Under these conditions, it is justified to keep only

the first two terms of the expansion of E0

E0(R0 − a(t) cos Ωt) = E0(R0)− (a(t) · ∇)E0(R0) cos Ωt+ . . . . (2.14)

If one substitutes Eqns. 2.12 and 2.14 into Eqn. 2.11 and assumes a slow time variation of

a(t), so that ȧ(t) can be neglected, one obtains

mR̈0 +mΩ2a(t) cos Ωt = qE0(R0) cos Ωt− q(a(t) · ∇)E0(R0) cos2 Ωt. (2.15)

One can assume that the wiggling amplitude a(t) changes only as a function of R0 and can

therefore be replaced by a(R0). A particle in a homogeneous field E0 cos Ωt oscillates with an

amplitude a = qE0

mΩ2 . For a small wiggling motion in a slowly varying electric field, the amplitude

a(R0) can therefore be approximated by

a(R0) =
qE0(R0)

mΩ2
(2.16)

so that one obtains

mR̈0 = − q2

mΩ2
(E0(R0) · ∇)E0(R0) cos2 Ωt. (2.17)

Using a vector analysis identity and ∇×E0 = 0

(E0 · ∇)E0 =
1

2
∇E0

2 −E0 × (∇×E0) =
1

2
∇E2

0 , (2.18)
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so that

mR̈0 = − q2

2mΩ2
∇E0(R0)2 cos2 Ωt. (2.19)

By replacing cos2 Ωt by its average 1
2 , one obtains a differential equation for the slow drift motion

R0

mR̈0 = − q2

4mΩ2
∇E0(R0)2. (2.20)

The motion occurs in a pseudo potential q2

4mΩ2E0(R0)2, which is created by the time-averaged

action of the oscillating electric field. This pseudo potential is proportional to the square of

charge and the square of the electric field, so that particles experience a field gradient force,

which accelerates them towards lower fields.

Taking into account an electrostatic field

Es(R0) = −∇Φs(R0) (2.21)

that can be superimposed on the oscillating electric field, one can define an effective potential

V ∗(R0) =
q2E0(R0)2

4mΩ2
+ qΦs(R0) (2.22)

so that the equation of motion becomes

mR̈0 = −∇V ∗(R0). (2.23)

It is instructive to consider the total energy Etot of the system

Etot =
1

2
mṘ2

0 +
q2E0(R0)2

4mΩ2
+ qΦs(R0). (2.24)

The total energy Etot is an adiabatic constant of the drift motion R0, so that kinetic energy

1
2mṘ2

0 is transferred into effective potential energy q2E0(R0)2

4mΩ2 and electrostatic energy qΦs(R0)

during the ion motion. The nature of the effective potential energy term is further elucidated

by realizing that it is identical to the average kinetic energy of the wiggling motion.

<
1

2
mṘ2

1 >=
q2E0(R0)2

4mΩ2
(2.25)

The properties of RF devices can now be interpreted in terms of the effective potential, as will

be done in the following sections for ion funnels and linear multipoles.

2.7.3 Adiabaticity and Stability

The derivation of the effective potential in the previous section assumes a fast, small-amplitude

oscillatory motion of the ion around an average position within a slowly varying electric field.

The wiggling motion can thus be separated from the drift motion and treated as if it took place

in a homogeneous electric field, whose magnitude only varies slowly as a function of the average

position of the ion. Under these conditions, the total average ion energy is an adiabatic constant

of the ion motion.
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It is, however, obvious that non-adiabatic conditions can exist, under which the oscillating

electric field continuously increases the total energy of the ion, so that unstable trajectories

result. Such an example is presented in Fig. 2.9 where the amplitude of the oscillations of the

ion in the trap is increased by the RF field until the ion is lost on an electrode. It is therefore
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Figure 2.9: Simulated ion trajectory in an ideal, two-dimensional octopole RF field. Non-adiabatic
behavior leads to the loss of the ion on the electrode surface.

desirable to find a strict mathematical criterion for adiabaticity.

D. Gerlich defines an adiabaticity parameter η, based on the idea that the change of the

electric field during a full micro-oscillation, i.e. over 2a, should be small compared with the

electric field at the average position

|2(a · ∇)E0(R0)| < |E0(R0)|. (2.26)

The adiabaticity parameter η is then given as the ratio of both quantities

η =
|2(a · ∇)E0(R0)|
|E0(R0)|

, (2.27)

which with Eqns. 2.16 and 2.18 becomes

η =
2q|∇E0(R0)|

mΩ2
. (2.28)

The adiabaticity parameter η represents a scalar field and is proportional to the gradient of the

electric field. No mathematical procedure is available to determine the maximum allowed value

of η along the ion trajectory. However, Gerlich and co-workers determined an empirical rule for

safe operation of RF devices within the adiabatic approximation based on numerical simulations
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of ion trajectories in several RF devices. It requires that the maximum value of the adiabaticity

parameter along an ion trajectory ηmax should be smaller than 0.3

ηmax < 0.3. (2.29)

For ηmax > 0.3, non-adiabatic behavior is observed, i.e. the average total ion energy fluctuates

or increases continuously over time, leading to ion loss. From investigations of the evaporation

of chlorine anions from a 22-pole ion trap, Wester and co-workers experimentally determined

the effective trapping volume, within which adiabatic ion motion is preserved, and deduced

ηmax < 0.36± 0.02.132

Under conditions for which the adiabatic approximation holds, the volume that is accessible

to a trapped ion is limited by the condition that its effective potential energy V ∗(r) cannot

exceed its total average energy Etot

V ∗(r) =
q2E0(r)2

4mΩ2
+ qΦs(r) ≤ Etot. (2.30)

Stable trapping can thus be achieved if this volume does not exceed the physical limits of the

device and ηmax < 0.3 within this volume. Within the limits of the adiabatic approximation, this

represent a sufficient condition for stable confinement of the ion. However, this does not exclude

that stable ion motion exists outside of this limit, and, indeed, stable orbits with ηmax > 0.3

can be demonstrated in numerical simulations.

2.7.4 Hexapole, Octopole and 22-Pole

In the experimental setup, a hexapole and octopole are used to guide, thermalize, and pretrap

ions, while the 22-pole trap constitutes the heart of the instrument, where ions are stored,

cooled, and interact with laser radiation. The potential of an ideal, infinitely long multipole

V (r, φ) of order n is described by

V (r, φ) = V0r̂
n cosnφ, (2.31)

with the cylindrical coordinates r and φ, the reduced variable r̂ = r
r0

and V (r0, φ) = V0 cosnφ.

The effective potential (Eqn. 2.22) in the absence of static electric fields is obtained as112

V ∗ =
n2q2V 2

0

4mΩ2r2
0

r̂2n−2. (2.32)

Figure 2.10 displays the effective potentials of quadrupoles, hexapoles, octopoles, and 22-poles.

Instead of hyperbolic electrodes that follow the equipotential lines of the ideal multipole poten-

tial, circular rods are frequently used, which are more readily available. This leads to higher

order multipole terms in the potential, which, however, do not have any negative influence on

the performance of RF-only devices.

Realization of the hexapole and octopole The 17 cm long hexapole with 2 mm diameter

rods on an inscribed radius of 2 mm is purchased from Analytica of Branford. It is driven by a
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Figure 2.10: Effective potentials V ∗ for quadrupoles, hexapoles, octopoles, and 22-poles.

4 MHz RF power supply (CGC instruments, RFG50-10) that is based on a design by Cermak

et al.148 but does not use an air coil to couple the RF onto the rods. The ends of the secondary

coil of the transformer are directly connected to the load, which simplifies the instrument and

drastically reduces its power consumption, while maintaining sufficient purity of the waveforms.

The RF amplitude (usually 100–200 V0−p) is determined by an external computer controlled

DC power supply (FuG Elektronik GmbH, NTN 35-35), while the pole bias is supplied through

a programmable DC voltage (Spectrum Solutions, TD 1400).

The 40 cm long octopole with 3.18 mm diameter rods on a 9.52 mm inscribed diameter,

equipped with an exit and entrance lens, is driven by a 2.1 MHz power supply (all Extrel). The

RF amplitude and pole bias are controlled by analog programming voltages.

Buffer gas cooling of ions and the 22-pole The only known method to date to generate

translationally as well as the internally cold gas phase molecules is buffer gas cooling. With

the technology of current cryostats, a bath gas (mostly helium) can be cooled to temperatures

as low as 4 K. Given sufficient interaction time, a molecule or molecular ion will thermalize to

the buffer gas temperature. Simulations showed that only about five collisions are necessary

to translationally cool a 4 amu ion starting from an initial temperature of 300 K to a helium

bath temperature of 18 K. The number increases with the ion mass, so that around 60 collisions

are necessary for a 150 amu ion.149 Since the cross section for inelastic collisions is frequently

smaller than that for elastic collisions, it is estimated that 10–10′000 collisions are necessary to

cool the internal degrees of freedom of a molecular ion.150

Ions offer the advantage over neutrals that they can easily be stored using RF traps so that
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sufficiently long cooling times can be realized. However, while under adiabatic operating condi-

tions no net transfer of energy from the RF trapping field to the ion occurs the additional pres-

ence of buffer gas can lead to so-called RF heating. While the ion undergoes micro-oscillations

energetic collisions with the buffer gas can occur which increase the translational and the inter-

nal temperature of the ions. In a quadrupole ion trap operated at room temperature the ion

translational temperature was, for example, shown to be in the range of 1180 – 1690 K.151

However, simulations show how the ion temperature successively approaches the bath gas

temperature when the number of poles of the trap is increased.149,150,152 This behavior can be

understood in terms of the larger field-free region of the higher order multipoles (see Fig. 2.10),

where the ions do not exhibit micromotion and can be successfully cooled. RF heating is limited

to a narrow region close to the steep reflecting walls of the effective potential.

Based upon this insight D. Gerlich introduced the now widely used 22-pole ion trap131 in

which translational, rotational and vibrational temperatures of the stored ions were shown to

approach the bath gas temperature.50,133,135 The choice of the exact number of poles has

technical reasons. A multipole potential can be approximated with circular electrodes when

their diameter d and the the inscribed trap radius r0 are related by

r0 = (n− 1)d/2 (2.33)

where n is the order of the multipole.112 With 1 mm diameter rods one therefore obtains a

convenient inscribed diameter of 10 mm for a 22-pole ion trap.

The understanding of the mechanisms that can lead to RF heating in 22-poles has been

improved in a number of experiments and accompanying simulations. It was found that a mass-

mismatch, i.e. a light ion and a heavy buffer gas, leads to increased RF heating.149 For H3
+ ions

stored in a 22-pole at 55 K with argon as buffer gas a translational temperature of 170 K and a

rotational temperature of 140-150 K was determined.153 Furthermore, space charge or excessive

end cap potentials heat the ions by forcing them into the RF walls. While field distortions can

have a similar effect misalignments of the trap only seem to play a minor role.149 Finally, the

ion temperature was found to be largely independent of the buffer gas density, RF frequency

and amplitude within the usual operating ranges.149,150

Realization of the 22-pole The 22-pole is the central element and the heart of the setup

presented here. Its design (Fig. 2.11) closely follows the original design of D. Gerlich.131,154

The copper housing of the 22-pole is mounted onto the second stage of a closed cycle helium

refrigerator (Sumitomo Heavy Industries, SRDK-408D-W71D) and is enclosed by an aluminum

heat shield, connected to the first stage. A solenoid valve (Parker Hannifin, General Valve)

is used to pulse helium into the 22-pole through a teflon tube (not drawn), connected to the

copper housing and reaching through the heat shield. The temperature of the 22-pole housing

can be adjusted between 4 and 320 K. It is controlled by means of a silicon diode and a 50 W
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Figure 2.11: Drawing of the 22-pole mounted on the cold head.

cartridge heater (Lakeshore, DT-670B-CU and HTR-50), which are attached to the outside of

the housing and connected to a Lakeshore Model 331S temperature controller.

The 22-pole is constructed from 1 mm diameter, 41 mm long stainless-steel rods and has

an inscribed diameter of 10 mm. They are held in place by a circular hole pattern in the front

and the end plate of the housing to which the two RF phases are applied. Ceramic sleeves

insulate the rods from either the front or the end plate so that neighboring poles carry opposite

RF phases. The plates are electrically insulated from the remainder of the housing while good

thermal contact is provided through 1 mm thick sapphire plates. In order to further improve

the thermal conductance 0.1 mm thick indium foils are inserted in between the sapphire plates

and copper parts. Similarly, an indium foil ensures a good contact between the cold head and

the base plate of the 22-pole housing.

On the outside of the housing, the end plates carry two electrostatic lenses each. The inner

two lenses protrude in between the rods and serve as trapping electrodes. On the inside, the

end plates are used to mount an assembly of five 0.15 mm thick ring electrodes of 13 mm inner

diameter, spaced at a distance of 6 mm, which surround the rods of the 22-pole and can be used

to shape the ion cloud along the trap axis. All electrical connections are tied to the heat shield

in order to reduce the heat load on the 22-pole.

2.7.5 The Ion Funnel

Principle of operation The ion funnel155 addresses a problem that arises when ions created

in a high pressure source have to be introduced into the vacuum region of a mass spectrometer.

This is the case for ESI, which is normally performed at atmospheric pressure. Ions then

usually enter the mass spectrometer through a capillary, which serves to limit the gas flow
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into the system, and subsequently pass further conductance limiting orifices that separate the

differential pumping stages. The first pumping stage is usually held at several mbar, and the

gas exits the capillary in the form of a mild molecular beam expansion. A divergent ion beam

results that is hard to refocus, since it is entrained in the jet of neutrals.

In many setups, including the one that has previously been used in our group,106 a skimmer

follows the capillary, which limits the gas flow to the following stage and only transmits the

central, less divergent part of the expansion. It is obvious that important ion losses result.

In 1997, Smith and co-workers presented the first design of an ion funnel,156 a device designed

to replace the skimmer and refocus the expanding ion beam to a small aperture, thus improving

ion transmission by an order of magnitude. Figure 2.12 illustrates their latest design.137

jet disrupter

DC exit electrode

Figure 2.12: Schematic representation of an ion funnel with ring electrodes (grey), jet disrupter, and
DC exit electrode.

It uses a stack of ring electrodes in which alternating electrodes are connected to the two

phases of a RF. In this basic feature, it resembles D. Gerlich’s design of a ring electrode trap

(RET).112 In the design shown in Fig. 2.12, ions first enter a section of ring electrodes with

constant inner diameter. A second section follows in which the inner diameter of the electrodes

slowly decreases, so that the ions are focussed to the exit aperture. Ion funnels are usually

operated in the range of 1-30 mbar, where gas-dynamic effects play an important role. A DC

gradient is therefore superimposed on the RF that actively drags the ions to the exit. (Similarly,

in their design of a RET, Asmis and co-workers use a pulsed gradient to efficiently extract

ions.157)

Figure 2.13 displays a SIMION158 simulation of the effective potential V ∗ (Eqn. 2.22) of

an ion funnel with 27 electrodes; only the contribution from the RF field is shown, while the

DC gradient is omitted for clarity. In the first section, the effective potential closely resembles

that of a RET: A large field free space in the center is surrounded by steep RF walls. As in a

RET, the effective potential is approximately proportional to ∼ er.112,159 Closer to the walls,

it is furthermore modulated with a period that equals the spacing of the ring electrodes. In

the section of decreasing inner diameter, the RF walls close in on the central axis, making the

effective potential indeed appear like a funnel. If one adds the DC gradient that is applied across
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Figure 2.13: Simulation of the effective potential V ∗ of an ion funnel with 27 electrodes. Contributions
from the DC gradient are omitted.

the electrodes, one obtains a funnel-shaped potential that is steeply pointing down towards the

exit. By analyzing the effective potential, the principle of operation of ion funnels thus becomes

immediately evident in a qualitative fashion. However, some important modifications to this

simple picture have to be taken into account.

Due to the cylindrical symmetry of the ion funnel, the angular momentum of the ions with

respect to axis is conserved.112 Without the presence of gas and the resulting damping of the

motion through collisions, ions would simply be reflected. Ion funnels are usually operated at

elevated pressures, where a high collision frequency generally leads to an effective reduction

of the confining potential. At even higher pressures, where ion funnels can still be operated

efficiently, the ions experience drag forces from the bath gas and move in phase with the RF

field, while the adiabatic approximation assumes out-of-phase oscillations and thus breaks down

under these conditions. Furthermore, space charge effects will occur especially at the exit of

the ion funnel and modify the behavior of the device. Detailed simulations that took these

effects into account improved the understanding of the operation of the ion funnel and led to

improvements of the design.159

An early design of the ion funnel exhibited a discrimination of low masses and a mass-

dependent optimum of the RF amplitude.160 This behavior was shown to result from axial

potential wells at the funnel exit, which are created if the inner diameter of the electrodes

becomes comparable to the electrode spacing. The simulated funnel potential in Fig. 2.13

clearly demonstrates this behavior. Since the effective potential V ∗ (Eqn. 2.22) is inversely

proportional to the mass over charge ratio, the effect is more pronounced for ions with low m/z

ratio. They will be trapped and accumulated in these wells, until space charge forces them

towards the electrodes. This effect is aggravated by the fact that for regions of comparable
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inner diameter and electrode spacing a high adiabaticity parameter η results, which is again

inversely proportional to the ion mass over charge ratio (Eqn. 2.28). Ions with low m/z ratio

are therefore likely to have unstable trajectories.

An obvious solution to this problem is to increase the inner diameter at the funnel exit. This,

however, leads to a higher gas load in the following differential pumping sections. Therefore, in

subsequent designs of the ion funnel, the electrode spacing was instead reduced, which improved

the low mass transmission and reduced the dependence of the optimum transmission efficiency of

different masses on the RF amplitude.161 Further improvements can be obtained by increasing

the RF angular frequency Ω because of the inverse dependence of the adiabaticity parameter η

on the square of Ω (Eqn. 2.28).

Figure 2.12 also shows a so-called jet disrupter.162 It is a small conductive plate that is

suspended in the center of the ion funnel, about 2 cm away from the capillary. It is biased such

that ions will flow around it while the directed jet of neutrals hits it and is disrupted. The jet

disrupter thus reduces the gas load on subsequent pumping stages.

The DC exit electrode (Fig. 2.12) terminates the ion funnel and represents the conductance

limit. With an appropriate bias voltage applied, it can be used as a low-mass filter.163

Realization The design of our ion funnel closely follows that of Smith and co-workers.137

The funnel consists of a stack of 100 stainless steel electrodes mounted on four ceramic rods.

They are 0.5 mm thick and 0.5 mm apart. Four teflon spacers ensure the right distance between

adjacent plates. The first section comprises 57 ring electrodes with a constant inner diameter

of 25.4 mm. The 20th plate is used as the jet disrupter and features a 6.5 mm diameter disc

in its center, which is held in place by four 0.5 mm thick rods. In the second section of 42

electrodes, the inner diameter is linearly reduced to 2.5 mm. The 100th and last plate is the DC

exit electrode, which constitutes the conductance limit with an inner diameter of 1.5 mm.

To ensure precise alignment, the electrodes of each section were simultaneously cut out of

a stack of stainless steel plates by electrical discharge machining. In the same process, the

electrode surface was reduced as much as possible in order to lower the capacitance of the ion

funnel. The jet disrupter and exit electrode were cut separately. Before mounting, the sharp

edges in the conical section of the funnel were removed to prevent discharges.

Pins on the RF electrodes insert into a custom zero-insertion-force (ZIF) connector, which

connects the electrodes to a printed circuit board (PCB) (Fig. 2.14). In order to accommodate

the circuit on a single PCB, the electrodes of each RF phase are connected to a separate resistor

chain of 1 MΩ resistors, which determines the bias of the electrodes and establishes the DC

gradient across the funnel. The DC potentials at the funnel entrance and exit (DCentrance and

DCexit) are connected to the ends of the resistor chains. The RF (RF(+) and RF(-)) is coupled

onto the plates by means of 10 nF capacitors. The DC potentials on the jet disrupter and on

the exit electrode are supplied separately.
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Figure 2.14: Circuit diagram of the in-vacuum PCB of the ion funnel.

The total ion funnel capacitance of 1.77 nF is driven by a 500 kHz RF power supply (CGC

instruments) with the same design as for the hexapole (section 2.7.4).148 The RF amplitude

(usually 30–90 V0−p) is determined by an external computer-controlled DC power supply (FuG

Elektronik GmbH, NTN 35-35); the voltages at the funnel entrance and exit, on the jet dis-

rupter and the DC exit electrode are delivered by a programmable DC power supply (Spectrum

Solutions, TD 1400).

2.8 Ion Detection

Ions are detected with a channel electron multiplier (DeTech, 402-A-H). Positive ions first im-

pinge on the conversion dynode which is usually held at -5 kV. The resulting secondary electrons

are attracted to the entrance of the channeltron which is biased to -1.7 kV. In a cascade of im-

pacts, secondary electrons move to the grounded end of the channeltron, where the amplified

current is collected.

The high voltages (for positive and negative mode ion detection) are provided from three

programmable power supplies (Applied Kilovolts, AK0072 and AK0002). A fast preamplifier

(Advanced Research Instruments, COMBO-100) is used that combines a pulse preamplifier with

a current amplifier and thus allows for simultaneous analog and counting mode detection.

2.9 Electronics and Data Acquisition

The instrument control/data acquisition system was designed with the objective to computer-

control as many parameters and instrument features as possible and make them accessible over

a simple user interface. In an experiment with over 100 instrument parameters, this would

simplify and speed up the work, ensure the repeatability and reproducibility of experiments and

allow for the automation of time-consuming tasks.
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Table 2.2 lists the instrument control and data acquisition hardware that is being used.

It comprises a PXI (“PCI eXtensions for Instrumentation”) chassis with real time controller

and data acquisition cards (National Instruments) and an external delay generator (Berkeley

Nucleonics 565), which provides the master clock of the experiment and is used to trigger the

lasers.

instrument function

NI PXI-1044 12-slot PXI chassis

NI PXI-8145 RT real time controller

NI PXI-6602 8 timers/CTRs (80 MHz), 8 DI/DO

NI PXI-6052E 16 multiplexed AI (16 bit, 333 kS/s), 2 AO (16 bit, 333 kS/s)

NI PXI-6711 4 AO (12 bit, 1 MS/s/channel)

NI PXI-6723 (2x) 32 AO (13 bit, static)

NI PXI-6704 16 AO (16 bit, static)

NI PXI-8430/8 8 serial ports

NI PXI-6132 4 AI (14 bit, 2.5 MS/s/channel)

BNC 565 8 channel delay generator (500 ps resolution)

Table 2.2: Hardware for instrument control and data acquisition, comprising a PXI chassis with real
time controller and data acquisition cards and an external delay generator. For multi-purpose data
acquisition cards only the main functions are listed. AO (analog output), AI (analog input), DO
(digital output), DI (digital input), CTR (counter).

The large number of data acquisition cards alone made it necessary to use the PXI platform,

the 12-slot chassis leaving room for future extensions. The real time controller is a dedicated,

separate computer that carries out the data acquisition and transfers the data to the host PC,

which provides the graphical user interface and displays and stores the data.

The real time operating system on the remote target allows for deterministic code execution.

This means that time critical tasks (such as reading out an analog trace before it is overwritten

in the following experimental cycle) are carried out with accurate timing, so that, for example,

no loss of data can occur. Other tasks (like data transfer or reading back voltages) are then

carried out once the time critical tasks have completed. For this purpose, the tasks are assigned

priorities, and the real time operating system ensures immediate execution of the task with the

highest priority. The programmer then has to make sure that in between the execution of time

critical tasks, sufficient time is available to complete the remaining tasks.

The structure of the software, written in LabView 8 (National Instruments), is illustrated in

Fig. 2.15. The white boxes in the top row represent programs running on the host PC. They

communicate with programs that are executed on the real time controller (grey boxes), which in

turn control the hardware resources and perform various tasks for instrument control and data

acquisition.

The program is subdivided into several modules that carry out independent tasks. Three

separate programs on the host computer provide a graphical user interface for setting static
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parameters and delays and running different kinds of experiments. A fourth program records

and displays the acquired data.

Static parameters All static instrument parameters are controlled from a single window.

These include 60 static voltages (delivered by three programmable DC power supplies, Spectrum

Solutions, TD 1400), the programmable high voltages for the spray needle and the detectors,

the quadrupole and octopole parameters, the RF amplitudes of the ion funnel, hexapole and

22-pole, and the settings for the 22-pole temperature controller (references for the instruments

in the corresponding sections). Readbacks are available for most of these parameters as well as

for the pressures in the different pumping stages.

Delays All timing parameters are set in a second window, which also provides a graphical

representation of the time structure of the experiment. The parameters of the external delay

generator are fully controlled over the user interface and transmitted via serial communication.

It triggers the lasers and provides the master clock of the experiment. The parameters of the

PXI timers are accessible from the same window. They are synchronized to the delay generator

and are used for tasks that do not require more accurate timing. These include the switching of

voltages on the exit lenses of the hexapole, octopole, and 22-pole with home-built metal-oxide-

semiconductor field-effect transistor (MOSFET) switches in push-pull configuration; the helium

pulse for the 22-pole; the gates for ion counting and analog detection; and the quenching of the

RF on the 22-pole at the end of the machine cycle.

Experiments Four different operation modes of the instrument are currently implemented,

which are accessible via the tabs of a third window. A fifth tab serves to display the analog

traces of the ion signal and pyroelectric detector (normalization on laser power) for the purpose

of testing and adjusting the analog acquisition parameters. It controls a program on the real

time controller that accesses the fast analog inputs (AI) of the PXI-6132 card.

The first tab allows the user to record “continuous” mass spectra (i.e. no trapping in either

of the multipoles) of the ion beam exiting the source. Once the acquisition is started, a program

on the controller repeatedly scans the first quadrupole, simultaneously counts the ions arriving

on the detector, and transfers the data to the host PC, where the resulting mass spectra are

recorded and displayed.

Three further data acquisition modes are designed for experiments with trapped ions. In the

simplest and most general case, the ion signal that results for a given set of instrument param-

eters (and laser settings) is recorded and displayed. This mode is used to optimize operating

conditions (e.g. optimum static parameters and delays, laser wavelength and beam overlap) and

to obtain statistics for a given set of parameters.

In order to determine the fragmentation patterns that result from collision induced dissoci-

ation (CID) or laser induced dissociation (LID), a CID/LID scan is performed. While the first
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quadrupole selects the mass of the parent ions, the second quadrupole probes a fragment mass

and is slowly scanned across a specified mass range in subsequent experiments.

A laser spectrum can be recorded in the laser scan mode. Here, the ion signal is monitored

as a function of the laser wavelength with fixed parent and fragment masses.

In these three modes, the data acquisition cycle is synchronized to the master clock (usually

10 or 20 Hz). The ion signal is simultaneously measured by counting and analog detection, and

the laser power can be recorded by the integrating the signal of a pyroelectric detector. A shot-

to-shot normalization on the number of parent ions can be performed by switching the second

quadrupole between fragment mass (“on cycle”) and parent mass (“off cycle”) in alternating

experiments. A digital input (DI) uses a signal from the external delay generator to determine

the cycle, and the mass command of the second quadrupole (as given by an analog output, AO)

is changed accordingly. The communication with the lasers is performed via serial ports and

digital lines. At the end of each experiment, the user is prompted to save the acquired data

together with the various experimental parameters.

2.10 Characterization

2.10.1 Determining the Number of Trapped Ions – Detector Satura-
tion

One of the major differences between the first-generation tandem mass spectrometer setup of

our research group50 and the instrument, which is described in this chapter, is the incorporation

of an ion funnel (see section 2.7.5). The expected improvement in ion transmission by an order

of magnitude would render the experiment more sensitive and make studies possible that were

previously not feasible due to the limited signal to noise. One of our first goals was therefore to

establish the number of ions that could be trapped in the 22-pole within a 10 or 20 Hz cycle,

which corresponds to the repetition rate of our lasers.

On the other hand, an increased number of ions in the 22-pole could potentially cause space

charge to push ions into the outer regions of the trap, where RF heating occurs, leading to a

higher ion temperature.149 Determining the number of ions in the 22-pole was therefore also

necessary in order to verify if these effects could be relevant in our setup.

The amino acid tyrosine was used for test experiments, and the protonated species (m/z =

182) was monitored. With the previous setup, 10′000 to 20′000 ions could typically be counted

in a 50 ms cycle. However, with the new setup, only ∼ 12′000 counts were obtained in the initial

experiments, despite extensive efforts to optimize ion transmission.

We subsequently switched to a preamplifier (Advanced Research Instruments, COMBO-

100, section 2.8) that allows for simultaneous analog detection and counting in order to verify

whether detector saturation could be playing a role. Figure 2.16 shows a scatter plot of the

integrated analog signal versus the counts per ms that were simultaneously measured on the

second detector for a continuous ion beam and various ion currents. In this experiment, ions
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Figure 2.16: Analog ion signal versus ion counts per ms for a continuous ion beam.

were not trapped in either the hexapole or octopole, but gated with the octopole exit lens. The

ions that arrived on the detector within a 35 ms window were counted, and the corresponding

analog signal was integrated. The ion current was varied by changing the jet disrupter voltage.

Up to 5000 counts per ms, both signals are proportional in good approximation. For higher

ion currents, however, the slope of the curve increases, indicating that in counting mode, too

few events are detected in order to account for the measured current in the channeltron.

This effect is expected due to the limited pulse pair resolution of the counting preamplifier of

20 ns (50′000 counts per ms). Even at lower rates of 5000 counts per ms, a certain probability

exists that two ions will arrive within 20 ns and will only be counted as a single event. For

higher count rates, this probability increases, leading to observed behavior.

When ions are released from an ion trap as a dense package, the effect should be even more

severe. Figure 2.17 shows the same correlation of integrated analog signal and ion counts for

ions that were trapped in the octopole (3.35e-4 mbar helium pressure), periodically released in

a 2 ms long package, and detected on the second detector. Again, the number of trapped ions

was varied by changing the jet disrupter voltage. Most notably, the number of counts shows

a maximum at about 36′500, while an even higher analog signal leads to a lower number of

detected events. It appears that this behavior is observed when ions arrive on the detector with

such a high frequency that several consecutive events will be counted as only one, even though

they occur over a time span longer than the minimum pulse pair resolution. This is the case if

during a train of pulses, the current is permanently above the detection threshold, so that the

pulses appear like a single long pulse.

Since the ion counts go through a maximum, it becomes impossible to calibrate the analog

signal such that the true number of ions arriving on the detector could be calculated. The ion
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Figure 2.17: Analog ion signal versus number of ion counts for a 2 ms ion packaged released from the
octopole.

package leaving the 22-pole typically has a width of 1–2 ms. If one could stretch this package

out over a much longer time span, an accurate count could be obtained. Attempts to find

parameters that would generate stretched-out ion packages initially failed and succeeded only

after the entire section between the second and third bender was carefully realigned. With long

ion pulses spanning 30–40 ms, counts of & 100′000 ions trapped in the 22-pole in a 20 Hz cycle

could be achieved, which demonstrated indeed the signal levels we were hoping to achieve.

Figure 2.18 compares the analog signal from a short ion package ejected from the 22-pole

(left) to the signal from a long ion package (right) recorded with a digital oscilloscope (LeCroy

WaveSurfer 24Xs-A). In a 250 ms cycle, the ions were pre-trapped in the octopole, injected into

the 22-pole (∼ 4 K), stored for 3 ms, and released.

Long pulses were generated by using a low RF amplitude of ∼50 V0−p, setting the second

and third lens following the 22-pole to -400 V, and raising the “open voltage” on the 22-pole

exit lens until the maximum number of counts could be obtained in a 150 ms detection window.

All remaining parameters of the elements following the 22-pole were optimized for maximum

signal.

These long pulses actually consist of a sequence of discrete ∼0.5–1 ms long packages. Within

the first 40 ms, they appear with a regular period of 3.5 ms, while at later times, they arrive more

randomly. This could point to coherent axial ion motion, which has previously been reported

for ions in an octopole trap.164 However, since the ion signal is very sensitive to the stability of

the voltage on the exit lens as well as to some other parameters, this pattern could also simply

reflect electronic noise.

Figure 2.19 compares the ion signal obtained with a short and a long ion package in both
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Figure 2.18: Analog signal of a short ion package (left) and a stretched-out ion package (right) released
from the cold 22-pole.

counting (top) and analog mode (bottom). In this experiment, the ion current was again varied

by means of the jet disrupter voltage and alternately recorded with the settings optimized for a

short or a long ion package.
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Figure 2.19: Signal level of a short ion package versus signal level of a long ion package released from
the 22-pole in counting and analog detection mode.

Both curves show a similar behavior. At low ion currents, the signal measured with a short

package is 5–10 times as large as the signal of a long package, indicating a low extraction
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efficiency in long pulse mode, which is probably due to the low velocities at which the ions

initially exit the 22-pole. This also means that the count numbers obtained in long pulse mode

represent lower limits for the number of ions stored in the 22-pole.

At larger ion currents, the signal recorded with a short ion package starts to level off. Since

the same behavior is also observed in the analog trace, this strongly suggests that at high ion

numbers and with short pulses, the channeltron itself starts to saturate. Unlike in Fig. 2.17,

the counting signal does not go through a maximum, indicating that ions were arriving on the

detector with a lower maximum frequency than in the previous experiment.

In summary, this section discussed the technical difficulty of accurately determining the

number of ions stored in the 22-pole, which is due to different saturation effects. The counting

signal saturates as soon as the ions arrive at the detector with a frequency higher than the

count rate of the preamplifier. Analog detection can circumvent this problem. However, when

ions are ejected from the 22-pole in a narrow package, evidence is found for the saturation of

the channeltron. Releasing the ions in a stretched-out ion package can avoid this problem. The

significantly higher ion numbers which are obtained with this approach, however, only represent

a lower limit for the number of ions stored in the 22-pole, since under these conditions the

extraction of the ions is less efficient than with a short pulse.

The practical implication of these findings is that saturation affects the reading for the parent

ion signal and can render it difficult to optimize parameters for maximum ion transmission.

However, for the detection of a small number of laser induced fragments, these considerations

do not play any role. For a small number of ions, the highest count numbers are recorded when

a short ion package is used.

2.10.2 Low-Mass Cut-Off of the Ion Funnel

As detailed in section 2.7.5, ion funnels have been shown to possess a lower-mass cut-off, and

the origins of the observed mass discrimination have been investigated. The design of the ion

funnel implemented in this setup was specifically chosen to avoid this flaw, so that studies of

low molecular weight species could be conducted with a similar sensitivity. While it is difficult

to obtain quantitative information about the transfer efficiency of different masses in the ion

funnel, the following experiment was carried out to yield at least some qualitative insight.

Figure 2.20 shows the mass spectrum of a solution of a mixture of primary amines RNH2 in

methanol, with R = methyl, ethyl, n-propyl, n-butyl and n-hexyl. The spectrum was obtained

by scanning the first quadrupole and detecting a continuous signal on the first channeltron

detector.

It was found that the signal intensity of the different masses depends on the choice of several

parameters, especially the ion funnel and hexapole RF amplitudes. However, as the spectrum

in Fig. 2.20 demonstrates, suitable parameters can be found so that a wide range of masses

down to m/z ≈ 40 can be transmitted with good efficiency, while ions with m/z ≈ 30 can at
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Figure 2.20: Mass spectrum of a mixture of protonated primary amines, demonstrating the transmission
of low masses through the ion funnel.

least be detected.

2.10.3 Ideas for the Normalization on Parent Ion Signal

Shot-to-shot variations of the parent ion signal arise mainly from instabilities of the nano-ESI

source and, to a lesser extent, from electronic noise and mechanical vibrations induced from the

operation of the cold head. In order to account for these fluctuations, UV spectra are usually

recorded such that in successive machine cycles, the parent and fragment ions are alternately

monitored. The UV signal SUV is obtained by dividing the fragment signal recorded in one

cycle Scycle 1
fragment by the number of parent ions detected in the subsequent cycle Scycle 2

parent

SUV =
Scycle 1

fragment

Scycle 2
parent

. (2.34)

For IR/UV depletion experiments, a similar scheme is employed. Here, the fragment mass is

monitored in both cycles, while the IR laser is only fired in every other cycle. The depletion

signal Sdepletion is obtained as the difference of the ion count in both cycles Scycle 1
IRon − Scycle 2

IRoff

normalized to the UV-only signal Scycle 2
IRoff

Sdepletion =
Scycle 1

IRon − Scycle 2
IRoff

Scycle 2
IRoff

. (2.35)

Obviously, it would be advantageous to record parent and fragment ions in the same shot,

which is not possible with a quadrupole mass analyzer. However, by extracting the ions si-

multaneously out of both ends of the 22-pole, one can record the fragment ion count on the

third detector and the parent ion intensity on the second detector within the same cycle. If the

partitioning of the ions between both detectors does not fluctuate, the normalized UV signal
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can be calculated from the signals on the second detector Sdet 2 and on the third detector Sdet 3

in the same cycle as

SUV =
Sdet 3

Sdet 2
. (2.36)

The depletion signal can be obtained from the signals in alternate cycles with IR laser Scycle 1
det 2,3

and without Scycle 2
det 2,3 as

Sdepletion =
Scycle 1

det 3

Scycle 1
det 2

−
Scycle 2

det 3

Scycle 2
det 2

. (2.37)

In order to test this idea, protonated tyrosine ions were stored in the 22-pole at room

temperature and then released from both ends. For this purpose, the voltage on both end cap

electrodes was simultaneously lowered to the same potential such that a long ion package could

be recorded on both detectors using analog detection in a 30 ms window. It should be noted

that no laser induced fragments were generated. Instead, the parent ion signal was recorded on

both detectors. With Eqn. 2.36, one should obtain a constant value that corresponds to the

partitioning of the ions between the two detectors, while with Eqn. 2.37, one should obtain zero

under ideal conditions. The same experiment was repeated with the usual detection scheme,

allowing for the same acquisition time and, likewise, using a long ion package. Here, the signals

were obtained from Eqns. 2.34 and 2.35.

As a measure of the signal to noise ratio, table 2.3 lists the standard deviations of the signals

σ(SUV) and σ(Sdepletion) normalized to the average signal < SUV > for the usual acquisition

mode (“normal”) and the acquisition mode using two detectors (“two detectors”).

normal two detectors

σ(SUV)/ <SUV> 7.6% 9.6%

σ(Sdepletion)/ <SUV> 7.6% 13%

Table 2.3: Signal to noise ratios for two different acquisition modes, using one detector (“normal”) or
two detectors (“two detectors”) for the normalization on parent ion signal.

As can be seen, detecting parent and fragment ions simultaneously on two different detectors

is unfortunately afflicted with an even higher noise level. Obviously, the fact that twice as many

data points can be recorded in the same amount of time when two detectors are being used is

more than compensated by the smaller number of ions that reach either detector. Moreover, it

appears that the signals recorded simultaneously on both detectors do not correlate well, which

is probably due to electronic noise that affects the partitioning. As noted above, when long ion

packages are released from the 22-pole, the signal level is particularly sensitive to small changes

in the parameters, especially the exit lens voltage.

At 4 K, even larger fluctuations of the relative signals on both detectors were observed.

The situation could slightly be improved when a high voltage on one of ring electrodes of the

22-pole was used to split the ion cloud into two physically separated packages before ejection.

However, the increase in the noise level was still more pronounced than reported in table 2.3 for

the analogous experiment at room temperature.
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In summary, while the suggested scheme of detecting parent and fragment ions at the same

time can easily be put into practice, it does not offer an advantage under the current experimental

conditions. Obviously, the shot-to-shot fluctuation of the signal has an important contribution

from electronic noise, especially when long ion packages are used to avoid detector saturation.

However, unlike for fluctuations of the number of ions stored in the 22-pole, this kind of noise

will become even more important in the proposed scheme.

2.10.4 22-Pole Trapping Time

Figure 2.21 displays the signal of protonated tyrosine (m/z = 182) as a function of the trapping

time in the 22-pole at room temperature. In this experiment, ions were accumulated in the

octopole during a 5 s machine cycle. Subsequently, a package of reduced intensity was injected

into the 22-pole. After they had been stored for a variable amount of time, the ions were counted

in a long ion package optimized to fill a 350 ms window in order to limit saturation effects. The

22-pole was operated with an amplitude of ∼50 V, while 3.2 and 5.5 V were applied to the

entrance and exit lens, respectively.
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Figure 2.21: Ion signal of protonated tyrosine as a function of storage time in the 22-pole. From the fit
for times > 1 s, a 1/e time of 26.8 ± 3.1 s is determined.

The signal drops sharply within the first ∼500 ms to about 80% of its initial value. The

22-pole is initially loaded with about 180′000 ions so that it can be expected that the signal is

slightly saturated for short times. It is possible that the initial drop reflects ion losses due to

an overfilling of the trap. However, a similar time dependence has also been observed in the

previous instrument, where the number of stored ions is generally smaller.165 For times > 1 s

an exponential decay is observed, and a 1/e trapping time of 26.8 ± 3.1 s can be determined,

which indicates the correct alignment and functioning of the trap.
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2.10.5 Determination of the Ion Temperature

When protonated tyrosine ions (m/z = 182) are stored in the 22-pole at 4 K, the formation

of helium clusters can be observed (Fig. 2.22, bottom), which already points to a low internal

energy of the ions.165
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Figure 2.22: Mass spectra obtained when protonated tyrosine is stored in the 22-pole at 4 K (bottom)
and after laser irradiation at 35081 cm−1 (top).

In order to determine their temperature more precisely, the UV spectrum of protonated

tyrosine was recorded.113 Irradiation at 35081 cm−1 (the band origin of conformer A in the

nomenclature of reference 113) produces a range of fragment ions (see Fig. 2.22, top). Thanks

to the better sensitivity in this experiment, it is now possible to accurately determine the mass

of the dominant channel as m/z = 108, which corresponds to the protonated side chain radical,

while m/z = 107 113 is also observed, although with much lower intensity.

The UV spectrum recorded while monitoring m/z = 108 is depicted in Fig. 2.23. It agrees

well with the previously published spectrum,113 and the band origins or conformers A–D are

labeled as assigned there. Hot band transitions of conformers A and B, labeled A0
1 and B0

1,

can be observed 40 cm−1 and 46 cm−1 to the red of the respective band origins. Under the

assumption that a hot band and the first progression band of the same vibration have similar

Franck-Condon factors, their intensity ratio can be used to estimated the ion temperature from

a Boltzmann distribution. Here, a vibrational temperature of ∼10 K is obtained. Evidently,

despite the large number of ions stored in the 22-pole (∼ 105), space charge induced heating of

the ion cloud149 does not yet limit the achievable ion temperature. Spectra measured with a

reduced number of parent ions regularly show comparable temperatures.
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Figure 2.23: UV spectrum of protonated tyrosine recorded in the m/z = 108 fragment channel.

2.11 Conclusions and Outlook

This chapter described the development and characterization of a new tandem quadrupole mass

spectrometer for the spectroscopy of cold, gas-phase biomolecular ions. The most important

results are summarized in the following, and an outlook for possible future developments of the

setup is given.

It was shown that the implementation of an ion funnel led to an improvement of the sensitiv-

ity of the instrument. Specifically, the recorded ion counts were about one order of magnitude

higher than those that have been reported for the previous setup. (It is, however, not clear

whether the count numbers observed there are equally affected by detector saturation.) At the

same time, the low-mass cut-off of the ion funnel was determined to set in at m/z ≈ 40, which

is lower than necessary for the study of most biologically relevant molecules.

Difficulties were encountered to accurately determine the large number of ions stored in the

22-pole during one experimental cycle due to detector saturation. By stretching out the ion

package leaving the 22-pole, saturation effects can be reduced. This way, a lower estimate for

the number of trapped ions could be obtained.

The determination of the ion vibrational temperature from the UV spectrum of protonated

tyrosine yielded ∼ 10 K, about 2 K lower than in the previous setup. This finding also demon-

strates that the temperature of the protonated tyrosine ions is not yet affected by space charge

induced RF heating, despite their large number (≥ 100′000).

The instrument has proved easy to use in everyday operation. This includes the facile

servicing of the 22-pole and the cleaning of the source, where the gate valve is of great practical

value. (While the design does not allow us to vent the source separately, it is possible to evacuate
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the high vacuum section of the machine indepently, when both parts are initially at atmospheric

pressure.) The software interface provides a simple overview and an easy control of the vast

majority of the experimental parameters and allows one to modify or reload settings and to

control experiments with a mouse click. Operating conditions have generally been found to be

very stable and reproducible.

Chapter 3 describes the addition of a planar trap/TOF mass spectrometer to the instrument,

which will in the future allow one to routinely record TOF spectra of parent and fragment ions.

As will be argued there, this device also has the potential to replace the 22-pole entirely and

greatly simplify the setup.

Experiments using the FAIMS ion mobility filter have not yet been carried out with this

setup. However, for ultimate resolution, the addition of a classical ion mobility drift tube

appears as the logical next step.



Chapter 3

Development of a Planar
Multipole Ion Trap
Time-of-Flight Mass
Spectrometer

3.1 Motivation and State of the Art

The tandem quadrupole mass spectrometer described in chapter 2 was designed with the goal in

mind to later add a time-of-flight (TOF) mass spectrometer166 to the instrument. When ions are

released from the 22-pole in a package that is typically several hundred µs long, only a single mass

can be detected in the second quadrupole, while TOF mass analysis of the ion population in the

22-pole could potentially yield the entire mass spectrum at once. The benefits of the multiplexing

capability of TOF mass spectrometry for the purpose of cold ion spectroscopy are immediately

evident if one, for example, considers the large number of different UV photofragments of larger

peptide ions120 and the fact that the fragmentation pattern can be conformer-specific.113

TOF mass spectrometers are popular, as they can provide good mass resolution over a large

mass range and good ion transmission, while their construction and operation are comparably

simple.167 While this made a TOF analyzer the obvious choice for our application, it is chal-

lenging to record a TOF mass spectrum of the population of a multipole ion trap with both

good resolution and detection efficiency, as will be discussed in the following.

TOF mass spectra of ions ejected from the 22-pole When ions are ejected through the

exit lens of a linear ion trap, they are all imparted with (roughly) the same energy, and conse-

quently, different masses will reach a detector placed at a distance at different times. However,

only a moderate mass resolution can be obtained with this approach, since the ions start with

a large spatial distribution inside the trap, and the necessarily inhomogeneous extraction fields

do not allow for good space focusing. A resolution of m/∆m = 5− 10 was obtained when ions

were simply released from a linear quadrupole trap,168 and for ions ejected from a 22-pole and
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a ring electrode trap, linear TOF mass spectra could be recorded with a resolution of 40 and

50, respectively.132,169 In all three experiments, the ion cloud was compressed at the exit of the

trap before ejection in order to improve resolution.

Multipass reflectrons Even when ion extraction leads to a broad ion package, a high resolu-

tion could be obtained if a considerably longer flight path could be realized. This is the principle

of multipass reflectrons,170–174

which achieve an increase in mass resolution by reflecting ions multiple times in between

two ion mirrors. One realization of such a multipass reflectron, consisting of two opposite

ion mirrors and two Einzel lenses in between, is frequently termed Zajfman trap.175 With

these devices, “self-bunching” of the ion cloud was observed to occur under certain operation

conditions. It results from the Coulombic interaction of the ions and prevents the dephasing of

the circulating ion packages even after prolonged storage, so that resolutions up to ∼ 140′000

could be obtained.176–179

Wester and co-workers recently employed such a trap to record high resolution TOF mass

spectra of ions ejected from a 22-pole.180 A drawback of this elegant solution lies in the low

trapping efficiencies that result unless ions are injected in a narrow, well-collimated beam.181

Furthermore, when the trap is opened in order to release ions onto a micro channel plate (MCP)

detector, different masses may have completed a different number of round trips. Consequently,

ions of higher and lower mass can appear in the spectrum at similar times. Multi-pass reflectrons

or the alternative multi-turn instruments182 represent a general tool to improve the TOF mass

resolution that can be obtained with a limited available flight path length in any instrument.

Orthogonal acceleration While an ion beam released from a multipole trap necessarily has

a large spatial and velocity spread in the extraction direction, it can have a small diameter

and be well collimated. Consequently, TOF extraction orthogonal to the flight direction of the

beam should improve the resolution. Since the ion package leaving the trap is long compared

to the typical size of a TOF extraction region, this approach resembles the task of sampling

a continuous ion beam, which is a much studied problem of TOF mass spectrometry. Indeed,

orthogonal acceleration183,184 is the method of choice to obtain TOF mass spectra of (semi-)

continuous ion beams as they are produced, for example, in ESI sources185,186 or ion mobility

measurements with drift tubes.43 Frequently, a quadrupole guide or mass filter precedes the

extraction region of the TOF. The corresponding instruments are sometimes referred to as qTOF

devices.187 Using orthogonal acceleration, commercial reflectron instruments obtain a resolution

of up to 40′000.188

The high mass resolution, however, comes at the expense of the ion utilization efficiency,

since ions that pass the extraction region while a TOF spectrum is being recorded will be lost.

A 3 eV ion beam of 100 amu ions, for example, travels at a speed of about 2.4 km/s. During the
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time of flight of 100 µs, it traverses a distance of about 24 cm. With a large extraction region of

2.5 cm diameter, a duty cycle of 2.5 cm/24 cm ≈ 10% results. Working with slower ion beams

could in principle enhance the duty cycle, but constitutes a challenge in itself.

Multiplexing techniques Multiplexing techniques like Fourier transform189 or Hadamard

transform TOF mass spectrometry190,191 have been suggested, the latter of which has been

explored more thoroughly. Here, a continuous ion beam is modulated with a pseudo-random

on-off-sequence, and the TOF spectrum is reconstructed from the complex signal that results

through an inverse Hadamard transformation. While this technique makes better use of the

available ions and thus leads to a gain in signal, it also introduces transform noise, which

would reduce the sensitivity of our experiment, which frequently relies on the background-free

detection of a few UV fragments. Moreover, while the ion beam ejected from a 22-pole trap is

typically only several hundred µs long, it changes its composition over time, since light ions travel

faster and reach the extraction region earlier, which will increase the noise in the reconstructed

spectrum.192

Synchronized ejection of short ion packages and TOF extraction If an ion package

released from an ion trap is too long to be efficiently sampled with orthogonal extraction, it

appears that injecting several shorter packages into the extraction region could solve the problem.

Such a scheme has, for example, been implemented for qTOF instruments.187,193 However, as

mentioned above, mass separation of the ions inevitably occurs on their way to the extraction

region, so that a mass window is observed, which depends on the relative timing of ion ejection

and extraction. While a 100% duty cycle can be achieved for a single species for which the

timing has been optimized, other masses may even be absent from the spectrum.

Two schemes were reported that alleviate this problem by mass-selectively ejecting ions from

a linear quadrupole in the axial direction. In the first case, a quadrupolar DC potential is created

along the axis of the ion trap, so that a specific mass can be resonantly ejected, trapped in a

second quadrupole, and separately injected into a TOF analyzer, which is synchronized to the

arrival of this specific mass.194 In the second approach, an effective RF potential is created at

the exit of a linear quadrupole, which prevents the ions from escaping. When this axial trapping

potential is ramped down, heavier ions are ejected before the lighter ones because of the inverse

dependence of the effective potential on the mass (Eqn. 2.22). If the ramp is properly adjusted,

heavy and light ions reach the extraction region at the same time.

Both methods are complicated, since they essentially include a mass selection step that

precedes the recording of the TOF spectrum. Careful consideration also shows that for the

second approach, it will be technically challenging to focus all masses simultaneously to a small

volume within the extraction plates in order to obtain a good resolution and detection efficiency.
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Quadrupole ion trap TOF mass spectrometers If ions could be accumulated within the

extraction region — or in other words if the extraction region could be used as an ion trap — all

masses could indeed be focussed to a small volume prior to extraction. While linear multipoles

provide poor extraction fields, as noted above, the Paul trap195,196 has successfully been em-

ployed as an “ion trap storage/time-of-flight mass spectrometer”.197 Commercial instruments

achieve resolutions of up to 12’000 in reflectron mode.198 These hybrid instruments have suc-

cessfully been coupled with a wide range of ionization techniques, such as laser ionization,199

electron impact (EI) and chemical ionization (CI),200 glow discharge,201 ESI,202 and matrix as-

sisted laser desorption ionization (MALDI).203 The RF is usually applied to the ring electrode,

while the extraction pulse is applied to the end caps. A higher resolution is obtained in bipolar

mode, i.e. for positive ions, a positive pulse is applied to the “repeller”, and a negative pulse is

applied to the “extractor” end cap electrode, which improves the homogeneity of the extraction

fields.200,204,205

As the Paul trap does not possess a field-free region, the ion cloud changes its shape and its

velocity distribution during the RF period,206 so that the extraction efficiency and resolution

depend on the RF phase.197,200,207 In order to avoid this effect, the RF is shut down before

the extraction pulse is applied. However, residual RF oscillations can still lead to peak broad-

ening.151,200 When the extraction pulse is delayed with respect to the clamping of the RF, the

amplitude of these oscillations and their detrimental effect on the resolution can be reduced.

After the RF is switched off, the ion cloud expands, which also decreases the resolution, so that

a compromise has to be found that balances both effects.205

The absence of a field-free region in the Paul trap also causes RF heating and increases

the velocity spread of the ions prior to extraction, leading to a decrease in resolution.112 For

ions stored at room temperature with helium as a buffer gas, translational temperatures of

1180–1690 K have been measured.151

The achievable resolution is furthermore limited by the inhomogeneity of the extraction fields,

which is a consequence of the trap geometry. Along the trap axis, ions experience a variation

of the field strength which leads to a different space focus for different masses and a stronger

dependence of the flight time on the axial position of the ion at the moment of extraction.205

Furthermore, curved equipotential lines inside the trap lead to different times of flight for ions

originating from different radial positions.204

Homogeneous extraction fields can be achieved in a cylindrical ion trap in which the ring

electrode is replaced by two flat rings (to which the RF is applied) and the end caps consist of

flat plates.208 The trapping fields resemble those of a Paul trap, but also contain contributions

from higher order multipoles. The ions are stored in the center of the trap in between the two

rings. Since all electrodes are flat, homogeneous extraction fields can be achieved when separate

high voltage pulses are applied to all four electrodes.

This electrode geometry, however, shares another drawback with the Paul trap/TOF mass
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spectrometers, which severely restricts its utility for our application. Externally generated ions

are usually injected axially, i.e through a hole in one of the end caps.209 With the RF present

on the ring electrode, most ions are either reflected before they enter the trap volume or cannot

be decelerated in collisions with the trapping gas and are lost. Efficient trapping can only be

achieved in a narrow window of RF phases that depends on the ion kinetic energy.205 Moreover,

the trapping efficiency is mass dependent.210

Trapping efficiencies of 3%211 (the value representing an upper limit, as ions were neglected

that are reflected before entering the trapping volume212) and 1-5%210 have been measured. It

was calculated that a continuous ion beam can be trapped at 1 mTorr helium pressure with

an efficiency 0.2%, while near 100% efficiency was obtained at 10 Torr.213 However, such high

pressures are difficult to realize and will degrade the TOF resolution.214 Another numerical

study found a trapping efficiency of 3% for 100 amu ions at 1.5 mTorr helium pressure and of

23% for 1522 amu ions.215

It was also suggested to inject 280 ns long ion pulses that are synchronized to the RF while

applying a short decelerating DC pulse to the entrance end cap electrode. A 100% trapping

efficiency was calculated for this method with parameters optimized for a specific mass, while a

mass window is observed for the simultaneous injection of several different masses.213 Moreover,

achieving such a sequence of short ion pulses with ions ejected from a 22-pole meets obvious

experimental difficulties.

Higher efficiencies can be obtained if the RF is ramped up during injection216 or is allowed to

even overshoot its final amplitude (“matched dynamic trapping”).211,217 However, the depen-

dence of the injection efficiency on the RF phase and ion kinetic energy cannot be completely

eliminated.212 For matched dynamic trapping of a short ion package generated by MALDI, an

efficiency of 39% was reported,211 which likewise should be considered an upper limit.212 More-

over, one should note that this technique is only applicable for ion pulses that are considerably

shorter than the time required for ramping up the RF, which is on the order of 200 µs.211

Radial extraction out of linear multipoles The low duty cycle is the major drawback of

a scheme in which a Paul trap is used to pretrap ions released from the 22-pole and then extract

them in order to obtain a TOF spectrum. In linear multipoles, on the other hand, ions can be

trapped with near 100% efficiency at moderate pressures,218 while the mass discrimination is

much less pronounced.219 This difference can be explained in terms of the region of low field on

the axis of a linear multipole. Ions injected along this axis will mostly travel in this low-field

region as they are guided to the DC exit electrode and reflected, which gives them sufficient time

to lose their kinetic energy in collisions. In contrast, in a 3D quadrupole trap ions necessarily

start out in a region of strong oscillating fields. Under these conditions trajectories, that lead

to successful trapping, exist only in a narrow window of initial RF phases.

The C-trap220 is a c-shaped quadrupole trap which is used to inject short ion packages into
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an orbitrap mass analyzer. Ions are injected into the trap along its axis, accumulated, focused

to the center of the trap, and extracted in the radial direction. Passing through a hole in the

innermost of the curved quadrupole rods, they reach the entrance of the orbitrap as a narrow

package.

It is, however, conceivable that using a linear multipole as the extraction region of a time-of-

flight analyzer would be accompanied by certain disadvantages. Even if the multipole rods are

sandwiched by a set of extraction plates,221 inhomogeneous extraction fields will result because

of the finite width of the multipole rods.

Concluding remarks In this section, I have given an overview of existing experimental tech-

niques that could be used to obtain a TOF spectrum of the ion population of a 22-pole ion

trap. Achievable resolution and detection efficiency restrict the utility of most of these methods

for our purposes, as has been argued above. This chapter describes the development of a novel

hybrid ion trap/TOF instrument, which combines several of the advantages of the much inves-

tigated Paul trap/TOF devices, while eliminating some of its drawbacks, as will be outlined in

section 3.4.

3.2 Reflectron Time-of-Flight Mass Spectrometry

Time-of-flight (TOF) mass spectrometry is based on the principle that ions of the same kinetic

energy Uq, but of different mass m travel at different speeds. Starting simultaneously at the

same point, they will reach a detector at different flight times. In the most simple arrangement

(Fig. 3.1, top), ions are accelerated in a homogeneous electric field U/a in between two flat

electrodes. They leave the acceleration region after a time

ta = a

√
2m

Uq
(3.1)

and drift in a field-free region for a time

tc = c

√
m

2Uq
, (3.2)

before they reach the detector at a time t = ta + tc.

In this simple layout, the mass spectral resolution is limited by several factors. Since the

ion package starts with a finite width, ions of the same mass will start at different points in the

extraction region and travel with different kinetic energies in the drift region. In Fig. 3.1, top,

this is illustrated for three ions. Ions lagging behind in the acceleration region acquire higher

kinetic energies and catch up with the slower ions in the field-free region at a distance of c = 2a,

where the ion cloud is brought to a (first-order) space focus. Subsequently, the ion cloud spreads

out again, with the fast ions reaching the detector before the slow ones, which leads to a loss

in resolution. It would therefore be best to place the detector in the space focus. However, this

does not allow one to realize long drift times, which is necessary to obtain a good resolution.
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Figure 3.1: Schematic representation of a simple two-electrode ion source (top) and a Wiley-McLaren
type acceleration region comprising three electrodes (bottom). (Adapted from reference 222.)

Adding a third electrode to the extraction region223 introduces the potential Ub on this

element as a new parameter, which allows one to freely choose the length of the (first-order)

space focus (see Fig. 3.1, bottom). The total flight time is now a sum of the flight times in the

extraction region, ta and tb, and the drift time tc

t = ta + tb + tc. (3.3)

As before, tc is given by Eqn. 3.2, while Ua = U − Ub replaces U in Eqn. 3.1

ta = a

√
2m

Uaq
. (3.4)

tb is given by

tb =

√
2m

q

b

Ub
(
√
U −

√
Ua). (3.5)

Expanding t with respect to Ua and substituting ∆Ua/U = r yields222

t = A[2a+ 2bD(B−
1
2 − 1) + cB

1
2 ] (3.6)

+A r
2 [2a+ 2bD(B

1
2 − 1)− cB 3

2 ] (first order) (3.7)

−A r2

8 [2a+ 2bD(B
3
2 − 1)− 3cB

5
2 ] (second order) (3.8)

+A r3

16 [2a+ 2bD(B
5
2 − 1)− 5cB

7
2 ] . . . (third order) (3.9)

with A =

√
m

2Uq
,B =

Ua
U

and D =
Ua
Ub
. (3.10)

If the first-order term is set to zero, the conditions for a first-order space focus are obtained. It

was also shown that second-order compensation can be realized (both the first and second-order

terms are zero). However, the position of this second-order space focus is fixed for a given

geometry and cannot be adjusted with the voltages applied to the electrodes.224

While space focusing can be realized with a two-stage ion source, it can only insufficiently

compensate for the initial velocity distribution of the ions. This effect is sometimes referred
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to as “turn around time”, from the amount of time that elapses before an ion initially moving

with a velocity opposite to the extraction direction returns to its starting point. Since ions

with different initial velocities arrive at the detector at different times, a decrease in resolution

results.

The “turn around time” can be reduced when high extraction fields are used. This places

the space focus at a short distance from the source. Ions pass this point after a short flight time

with little temporal spread, but with a large distribution of velocities. Placing the detector in

this point, however, is undesirable because of the short drift times that can be realized. The

reflectron solves this dilemma by means of an ion mirror, which images this point onto the

detector, so that long drift times can be realized while maintaining the small temporal spread

of the ion package in the space focus of the source.222,225–227

Figure 3.2 illustrates this principle. The space focus of a two-stage ion source with accelera-

tion and drift lengths as, bs and cs can be considered as a new (virtual) ion source, from which

ions originate with a small temporal spread but a large spread of velocities. When the ions

reach the ion mirror, the slow ions are reflected at an early point while the fast ions penetrate

more deeply into the reflector. Thus, higher velocities can be compensated with a longer flight

path, so that all ions reach the detector at the same time. To sum up, the reflectron offers the

U

bs

Usb0
UUrb0

cs
cr

cr’

as
arbr

detector

Figure 3.2: Schematic representation of a two-stage reflectron setup. The ion mirror is usually composed
of a stack of electrodes (to better define the reflecting potentials), which is omitted here for clarity.
(Adapted from reference 222.)

advantage that the source can be independently optimized to reduce the “turn around time”

effect while the ion reflector takes care of the resulting velocity spread.

Ideal energy compensation could be achieved in an ion mirror with a plane parabolic potential

Umirror = kx2, with a constant k and the coordinate of ion motion x. The flight time in such a

potential

t = 2

∫ xmax

0

dx√
2q
m (U − ax2)

=
π√
2qa
m

(3.11)

with the turning point of the ion xmax =
√
U/a, is independent of the initial ion kinetic
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energy U .226 However, constructing or even approximating such an ideal ion mirror228 meets

experimental difficulties. Field-free drift regions are necessary in order to accommodate ion

optical elements and the detector. Moreover, Laplace’s equation demands that a parabolic

field defined by ring shaped electrodes has a curvature in the radial direction, which limits the

acceptance angle of the reflectron.151 Therefore, a design as shown in Fig. 3.2 is frequently

adopted that comprises two field-free drift regions of length cr and c′r between the ion mirror

on the one side and the virtual source and detector, respectively. Here, a two-stage reflectron is

shown that features two different deceleration/reflection fields Urb/br and (U − Urb)/ar.

The properties and principle of operation of a two-stage reflectron can be understood in terms

of Eqns. 3.6–3.10, which describe a two-stage ion source.222 Let us assume for the moment that

cr = c′r. The reflectron can now be considered as a large (virtual) ion source whose (second-

order) space focus can be adjusted to coincide with the space focus of the real ion source and the

detector. The inclination of the real ion source serves to separate the trajectories of incoming

and reflected ions. It is now conceivable how ions originating from the space focus of the real

ion source will all reverse their flight direction in the ion mirror at the same time, with the

ions spread out along the axis of the reflectron stack, depending on their initial kinetic energy.

Obviously, the time of flight of the ions will not change when cr 6= c′r as long as cr + c′r = const.

The picture given above changes only slightly for different drift lengths in that ions of different

energy are no longer reflected at the same time.

With a two-stage ion source and a two-stage ion mirror adjusted for second-order energy

compensation, the TOF resolution is now only limited by the following factors. Although the

“turn around time” can be decreased by high extraction potentials, as noted above, it remains

one of the most important contributions to the peak width. Therefore, by reducing the velocity

spread of the ions, e.g. in a molecular beam or by other techniques for ion cooling, the resolution

can be further improved. Another contribution to the peak width results from the third-order

term of the ion energy, for which the ion mirror does not compensate. This effect is more

important if high extraction potentials are used, which results in a large spread of the ion

energies. The second-order term for the space focus of the ion source, on the other hand, is

negligible because of the short flight times, so that adjusting the ion source for second-order

compensation does not lead to an improvement.

Apart from these inherent limitations, several experimental restrictions exist, like the finite

detector rise time, for example. If ions are created by laser ionization, the finite laser pulse length

leads to different ion times of birth and, consequently, different arrival times at the detector.

The occurrence of space charge effects in the extraction region or at the space focus of the source

will deviate ion trajectories and broaden the peaks, as will the use of grids in the reflectron.

Since ions enter the ion mirror at an angle, a large ion beam diameter or any divergence of the

beam will lead to different lengths of the ion trajectories and, consequently, different times of

flight. Finally, flight paths of different length also result if the ion transmission is optimized
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using deflection plates or an Einzel lens following the source.222

3.3 Planar Ion Traps

In order to store ions, they have to be spatially confined in all three dimensions over a prolonged

period of time. Ion traps therefore usually feature a three-dimensional assembly of RF and DC

electrodes. In recent years, however, several designs based on planar electrode arrays have been

developed. This has in part been motivated by the goal to manufacture miniaturized ion traps

with high precision, which can be achieved when standard microfabrication techniques are used

to pattern electrodes onto a flat substrate. Examples include planar “halo”,229 quadrupole,230

and “coaxial” traps,231 which create quadrupolar or toroidal RF trapping fields by means of

suitable patterns of planar RF electrodes to which different RF amplitudes are applied. The

development of surface ion traps, which store ions above the plane of a printed circuit board, is

part of a larger effort to implement scalable quantum computing.232,233

The present work builds upon the design of a planar multipole trap developed by Wester

and co-workers, who used microelectromechanical systems (MEMS) technology to plate gold

electrodes onto the surface of two opposite, flat glass substrates, between which the ions are

stored.234 The trap features two planar arrays of 16 RF electrodes each (schematically depicted

in Fig. 3.3) with a width and distance of 0.5 mm. The arrays are spaced at a distance of 5 mm

from each other and confine ions in the z direction, while trapping in the xy plane is achieved

with sets of DC electrodes (not shown). The two RF phases are applied to alternating electrodes

as indicated by the shading.

Figure 3.3: RF electrode geometry of the
planar multipole trap of Wester and co-
workers234. Grey and white electrodes carry
opposite RF phases.
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The principle of operation of this trap can be understood if one considers that each of the

RF electrode arrays functions as an ion mirror, as had been demonstrated previously.235,236

The potential Φ(x̂, ẑ) of an infinitely large electrode array can be approximated when the actual

potential on the electrodes is substituted by the first term of its fourier series to give the boundary

condition for Laplace’s equation. One obtains

Φ(x̂, ẑ) = Φ0 exp(−ẑ) cos x̂ (3.12)

with x̂ = x/x0, ẑ = z/x0 and Φ0 = 8
√

2/π2 U0, where U0 is the voltage applied to the

electrodes.112,234 In contrast to the multipole potentials (Eqn. 2.31), Φ decreases exponentially
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with the distance from the plane of the array and is modulated in the direction orthogonal to

the electrodes. The potential Φ of two opposite electrode arrays is given by

Φ(x̂, ẑ) = Φ0 sinh(ẑ) cos(x̂), (3.13)

where Φ0 = 8
√

2/π2 U0/ sinh[z0/(2x0)] and U0 is the RF amplitude. For the effective potential

V ∗ (Eqn. 2.22), one obtains234

V ∗(r) =
q2( 8

√
2

π2 U0)2

4mΩ2x2
0

cosh(2ẑ) + cos(2x̂)

cosh z0
x0
− 1

. (3.14)

With their planar trap, Wester and co-workers demonstrated the storage of up to 3000 ions

(created by electron impact inside the trap) and determined a storage time of 16 s. Evidence

for a charging up of the glass substrate was found, and a concomitant reduction of the storage

time was observed.234 They subsequently incorporated an improved version of the trap into a

tandem TOF mass spectrometer.237 Mass-selected protonated water clusters were injected into

the trap and decelerated in collisions with helium that had been pulsed into the trap prior to the

arrival of the ions. The injection efficiency was estimated to be higher than 70% for clusters with

m/z ≥ 37 and about 30% lower for the lower masses. Storage times of 2.9 s for H3O+ to 12.0 s

for H+(H2O)4 were measured. In order to obtain a TOF spectrum, the ions were extracted

along the x direction, which is analogous to extracting ions out of a linear multipole along its

axis and is therefore afflicted with similar limitations for the resolution (see section 3.1).

This biplanar multipole ion trap has several appealing features that render it interesting for

a number of purposes. As a true multipole trap, it can be used for the buffer gas cooling of ions.

Unlike linear multipole traps, which are usually employed for that purpose, its open geometry

offers easy access to the trapping volume for both particle and laser beams. It was furthermore

suggested that with electrodes manufactured from transparent indium tin oxide, the trap could

be overlapped with a magneto optical trap for ultracold neutral atoms to study the interaction

between a Bose-Einstein condensate and a single charge. Finally, its planar geometry makes it

amenable to microfabrication techniques, which allow one to manufacture the electrodes with

high precision and achieve better trapping fields.234,237 Most important for the present work is

the fact that planar electrodes can be used to create homogeneous DC extraction fields as they

are necessary in TOF mass spectrometers to achieve a good mass resolution.

3.4 Combining a Planar Multipole Ion Trap with a Time-
of-Flight Mass Spectrometer

The original motivation for the work presented in this chapter was to find a method to record

a TOF spectrum of the ions stored in the 22-pole ion trap of the tandem mass spectrometer

described in chapter 2. However, most existing techniques suffer either from a low detection

efficiency or insufficient mass spectral resolution (see section 3.1).
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The basic idea of this chapter is to develop a novel hybrid mass spectrometer for this purpose

in which ions can be stored in a planar multipole ion trap and subsequently extracted in the

direction orthogonal to the planar RF electrodes in order to record a TOF spectrum. As will

be argued in the following, such an instrument would allow one to transfer the ions from the

22-pole into the multipole trap with a high efficiency and extract them to obtain a well-resolved

TOF spectrum.

Like a linear multipole, the trap possesses a large field-free region in its center, so that it

should be possible to inject ions with near 100% efficiency and little mass discrimination. (For a

planar RF trap, an efficiency of more than 70% has been reported for ions with m/z > 37.)237

Furthermore, the RF fields and the potentials of the DC electrodes surrounding the trap allow

focusing the ion cloud in the z direction and the xy plane, respectively. As in all high-order

multipolar ion traps, ions will spend most of their time in the field-free region, where no RF

heating occurs, and thus have a translational temperature close to that of the buffer gas. It

should therefore be possible to create an ion package with a narrow spatial and velocity dis-

tribution prior to extraction, which is necessary to achieve good mass resolution. Moreover,

the phase space distribution of the ions will be largely independent of the RF phase, such that

the extraction efficiency and resolution should not depend on the extraction phase and the ion

mass. Finally, homogeneous extraction fields can be created with planar trap electrodes, which

should help to obtain a good mass resolution.

Disadvantages of the design include the possible difficulty to develop suitable electronics

capable of supplying a RF to the trapping electrodes, switching it off within one oscillation, and

finally applying a high voltage pulse with short rise time. Furthermore, the collision gas needed

for efficient trapping will inevitably lead to a loss of resolution if it cannot be pumped away

before extraction. With solid electrodes, the maximum transmission efficiency would be limited

to 50%. However, a different design of the electrodes could improve the extraction efficiency.

Since the multipole trap could also be used for buffer gas cooling of trapped ions, it could

actually replace the 22-pole of the instrument described in chapter 2 entirely. This way, one

ion transfer step would be saved, and the complexity of the experiment could be reduced. The

advantages of the open structure of the trap for the purposes of laser spectroscopy, such as easy

access for laser beams, have already been noted above. As a positive side effect, cooling the

ions would also reduce their spatial and velocity distribution further and could be a means to

improve the mass resolution. However, it was beyond the scope of this work to couple the trap

to a cryostat and implement this idea.

Quite apart from its original purpose, a planar multipole ion trap/TOF mass spectrometer

could find a number of different applications, and some ideas are noted below (see section 3.8).

The following sections describe design, development and characterization of the multipole ion

trap/TOF mass spectrometer.
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3.5 Design Considerations

The design of the planar multipole trap was guided by SIMION158 simulations of potentials and

ion trajectories. Figure 3.4 shows one layer of RF and DC electrodes of the trap in its final

design. The RF is applied to two interlacing combs of eight 30 mm long and 1 mm wide poles

each, with a spacing of 1 mm between the poles. This structure is surrounded by four 5 mm

wide DC electrodes, which confine the ions in the x and y direction.

Figure 3.4: Electrode geometry of the planar
multipole trap, one set of trap electrodes as
realized in the final design, scale 1:1. The
interlacing RF combs (8 poles of each phase,
30 mm long, 1 mm wide, and 1 mm apart) are
surrounded by DC electrodes (5 mm wide and
spaced by 1 mm).

The trap is composed of two such arrays placed opposite each other at a distance of 5 mm

(Fig. 3.5). Ions are stored between these arrays and ejected in the z direction in order to obtain

a time-of-flight spectrum. Two plates sandwich the structure at a distance of 2 mm, which are

usually kept at the voltage of the pole bias during trapping and serve to provide better fields

during extraction, as described below.

Figure 3.6 displays calculated potentials for a two-dimensional ion trap. They resemble

closely those that one obtains from a cut through the center of the actual three-dimensional

trap along the xz plane (see Fig. 3.5). However, two-dimensional simulations require less

computational effort while capturing the essential features of the trap geometry.

The potential Φ of the DC electrodes (1 V applied) is shown in the top of Fig. 3.6. It is used

to confine the ions in the x direction, while trapping in the z direction is achieved by means of

the RF electrodes. The effective potential V ∗ that an ion of mass 93 experiences if a 3.2 MHz

RF of 60 V amplitude is applied to the comb structure is depicted in the lower part of Fig.

3.6. V ∗ is set to zero in regions where the adiabaticity parameter η exceeds 0.3, so that stable

trapping cannot be achieved (see section 2.7.3). The trap depth is therefore determined by the

areas with η < 0.3.

In the case of linear multipoles, the trap depth initially rises with increasing RF amplitude

because the effective potential is proportional to the square of the RF amplitude (Eqn. 2.32).

However, stronger fields also increase the adiabaticity parameter η, so that the critical radius

within which η < 0.3 finally becomes smaller than the physical radius of the trap. At even

higher RF amplitudes, the volume in which (stable) trapping is possible shrinks, so that the

trap depth decreases.132 This behavior is depicted in Fig. 3.7 (left), where the trap depth for

a 93 amu ion in a 20-pole and a 10-pole of 5 mm inscribed diameter is shown as a function of
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extraction plate
(”extractor”, grid not drawn)

extraction plate
(”repeller”)

electrode support

electrode support

electrode array

electrode array

spacer with gas inlet
and lens assembly

2 mm

5 mm

2 mm

x

y

z

Figure 3.5: Exploded view of the planar multipole trap in its final design. From the top to the bottom:
Upper extraction plate (“extractor”, grid covering the extraction hole not drawn), upper electrode
support, upper array of RF and DC electrodes, spacer with gas inlet and injection lens assembly, lower
array of RF and DC electrodes, lower electrode support, lower extraction plate (“repeller”). Ions are
stored in between the two electrode arrays and then extracted through the hole in the top plate.
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Figure 3.6: Simulated potentials of a two-dimensional planar multipole trap: Electrostatic potential
Φ of the surrounding DC electrodes (1 V applied, top) and effective potential V ∗ created by the RF
electrodes (bottom) for a 93 amu ion and a 3.2 MHz RF of 60 V amplitude. The effective potential is
set to zero for regions with η > 0.3.

the amplitude of the 3.2 MHz trapping RF. For a lower order multipole with the same inscribed

diameter, a higher trap depth can be achieved, while the field-free region in the center of the
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trap is smaller (Fig. 2.10).
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Figure 3.7: Comparison of the trap depths of linear multipoles and planar traps as a function of the
RF amplitude. The trap depths of a 20-pole and a 10-pole with 5 mm inscribed diameter (left) and a
planar multipole ion trap with 0.5 mm and 1 mm electrode width and a distance between the RF combs
of 5 mm (right) are shown.

The same analysis can be performed for planar multipole traps using the approximations

for the potential and effective potential (Eqns. 3.13 and 3.14) and likewise assuming a trapping

RF of 3.2 MHz. Figure 3.7 (right) depicts the trap depth as a function of the RF amplitude for

planar traps with a distance of 5 mm between the two layers of RF electrodes and an electrode

width of 0.5 mm and 1 mm. The behavior is similar to the case of linear multipoles. Initially,

the trap depth increases because the effective potential is proportional to the square of the RF

amplitude (Eqn. 3.14). Upon further increase of the RF amplitude, η starts to exceed 0.3 in

regions close the electrodes, which reduces the volume in which adiabatic ion motion is possible

and consequently the trap depth. In this regime the trap depth is described by

Φtrap depth =
η2
maxmΩ2x2

0

16
−

q2( 8
√

2
π2 U0)2

4mΩ2x2
0(sinh z0

2x0
)2

(3.15)

with the maximum allowed adiabaticity parameter ηmax. The maximum trap depth

Φmaxtrap depth =
η2
maxmΩ2x2

0(tanh z0
2x0

)2

16
(3.16)

is reached at a RF amplitude of Umax0 with

8
√

2

π2
Umax0 =

ηmaxmΩ2x2
0 tanh z0

2x0

2q
. (3.17)

The linear multipoles and planar traps have similar trap depths for comparable geometric

parameters. Also, the decrease in trap depth upon doubling the number of poles is compara-

ble. However, for the planar traps, the trap depth decreases more slowly with increasing RF

amplitude once the adiabatic trapping volume becomes smaller than the physical volume of the

trap.
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A higher trap depth is desirable because it increases the storage time and the efficiency with

which ions can be injected. However, increasing the width of the RF electrodes reduces the

field-free region in the center of the trap as in the case of linear multipoles (see Fig. 2.10). This

is evident in Fig. 3.8, which displays the effective potential V ∗ (Eqn. 3.13) for a 93 amu ion

in a planar trap with 5 mm distance of the RF electrode arrays, 2 mm electrode width, and a

3.2 MHz RF of 200 V amplitude; only the regions with η < 0.3 are shown. Furthermore, a series

of local minima in the center of the trap is visible. Under these conditions, RF heating of the

ions can be expected.

Figure 3.8: Simulation of the effective poten-
tial V ∗ of a planar multipole trap showing a
series of local minima in its center. The simu-
lation assumes a 93 amu ion in a planar trap
with 5 mm distance of the RF electrode ar-
rays, 2 mm electrode width, and a 3.2 MHz
RF of 200 V amplitude. Only the regions with
η < 0.3 are shown.
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It is also apparent from Fig. 3.8 that the trap depth is limited by the minima of the effective

potential that occur on the border of the adiabatic region in between two electrodes. These

minima become more pronounced with wider electrodes and reduces the trap depth for higher

RF amplitudes (Eqn. 3.15 and Fig. 3.7).

Taking the above considerations into account, an electrode width of 1 mm was chosen as

a compromise, which, at the same time, did not render the manual assembly of the trap too

difficult. As will be shown in section 3.7.4, the local minima of the effective potential are actually

beneficial, as they can be used to increase the extraction efficiency. For the purpose of buffer

gas cooling, however, a smaller electrode width would have to be used in future versions of the

trap. This could be realized in a chip-based design, where a better alignment could be achieved

for an even smaller geometry.

The spacing of the two opposite layers of RF and DC electrodes of 5 mm was likewise chosen

as a compromise between different requirements. A smaller spacing will help to focus the ions in

the central plane of the trap, which improves the resolution of the TOF mass spectra. However,

it will become increasingly difficult to inject an ion beam into the smaller volume in between

the electrodes.
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The extraction plates (“repeller” and “extractor”, see Fig. 3.5) that surround the trap were

added in order to achieve more homogeneous extraction fields. They are placed at a convenient

distance of 2 mm from the trap electrodes. Figure 3.9 shows a simulation of the potential Φ

in a two-dimensional trap with typical extraction voltages applied to the electrodes (see figure

caption). The cut along the x coordinate at a distance of 1 mm from the lower layer of trap

electrodes (left) shows a periodic variation of the potential in the center of the trap of about

14 V if the extraction plates are grounded (lower curve), while the potential is homogeneous

when suitable voltages are applied to the extraction electrodes. Similarly, a cut along the z

dimension through the center of the trap (right) demonstrates how the extraction electrodes

improve the homogeneity of the extraction field.
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Figure 3.9: The effect of the extraction plates on the extraction fields. Simulation of the electric potential
in a two-dimensional trap with different extraction voltages applied to the electrodes. Cross sections
along the x coordinate at a distance of 1 mm from the lower comb (left) and along the z coordinate in
the center of the trap (right) are shown. Potentials: “Repeller” 2000 V or 0 V (upper and lower curves,
respectively), lower RF electrodes 1667 V, upper RF electrodes 833 V, “extractor” 500 V or 0 V (upper
and lower curves, respectively), trapping DC electrodes 400 V.

The effect of any grounded surfaces would, of course, be smaller if they were separated from

the trap by more than 2 mm. Nevertheless, the extraction plates help to create well-defined

extraction fields. Moreover, they can be used to modify the trapping potentials during ion

storage. They also reduce the conductance of the trap, which is beneficial if gas is pulsed into

the trap in order to decelerated ions that are injected from the outside.

Figure 3.9 also illustrates the effect of the trapping DC electrodes, which are kept at 400 V

in the simulation. Within a distance of 10 mm from the center of the trap, their contribution

to the extraction potential is negligible. However, even with a potential of only 10 V on the DC

electrodes, the ion cloud is confined to a far smaller region (see below). For this reason, it is

not necessary to apply high voltage pulses to the DC electrodes during extraction as well, which

simplifies the electronics of the traps.

Apart from instrument parameters (e.g. the transmission of various grids or the homogeneity
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of the extraction fields), the fraction of ions that reaches the detector (i.e. the duty cycle) and

the resolution of the TOF spectrum largely depend on the spatial and velocity spread of the ion

cloud at the moment of extraction. In order to determine the phase space distribution of the

ion cloud in the planar trap, ion trajectories were simulated for the actual three-dimensional

electrode geometry and typical operation conditions (Fig. 3.10). The hard sphere collision

model implemented in SIMION was used to simulate the effect of the background gas, with 4He

as collision gas at a pressure of 1e-4 mbar and a temperature of 298 K. Ion trajectories were

started in the center of the trap, and the position and velocities were recorded every µs. The

simulations were stopped once the extracted distributions were stable within reasonable limits.

The actual experimental pressures were one to three orders of magnitude lower (see section 3.7).

However, in order to achieve fast equilibration and have the ion explore the accessible phase

space in a reasonable amount of time, a higher pressure was simulated. It should be noted that

these simulations neglect the effect of space charge.
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Figure 3.10: Simulation of the phase space distribution of a 93 amu ion in the three-dimensional planar
trap at 298 K with a helium pressure of 1e-4 mbar. The extraction plates are grounded, 10 V are applied
to the trapping DC electrodes, and a 3.2 MHz RF with 60 V amplitude and 0 V pole bias is simulated.
The three velocity components are fitted with a one-dimensional Maxwell-Boltzmann distribution (blue)
in order to obtain the translational temperatures.

With a potential of 10 V on the trapping DC electrodes, the ion cloud spans about 15 mm

in the x and y dimensions (designations see Fig. 3.5). It is therefore smaller than the 25 mm

aperture of the Einzel lens that is used in the TOF mass spectrometer. The distribution in x is

modulated with the period of the electrode distance, since ions preferentially accumulate in the
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local traps in between two neighboring electrodes (see Fig. 3.8). These local minima reduce the

mobility of the ion in the x direction. Because of the limited amount of time available for the

simulation, the obtained distribution is therefore not symmetric. With the spatial spread of the

ions in the extraction direction of ∼1.6 mm (comparable dimensions are found in quadrupole

ion trap/TOF instruments), the ion cloud resembles a thin, square slice.

Fitting the three velocity distributions with a one-dimensional Maxwell-Boltzmann law

(Fig. 3.10) yields three different translational temperatures Tx = 417 K, Ty = 301 K, and

Tz = 480 K. Whereas Ty is close to the buffer gas temperature, Tx and Tz are ∼120 and ∼180

K higher, which points to considerable RF heating. It is instructive to analyze the mean abso-

lute velocity components < |vx|>,< |vy|>, and < |vz|> as a function of the spatial coordinates,

as shown in Fig. 3.11.
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Figure 3.11: The simulated mean absolute velocity components of an ion in the three-dimensional planar
trap as a function of the spatial coordinates. Here, a 93 amu ion, a temperature of 298 K, and a helium
pressure of 1e-4 mbar are assumed. The extraction plates are grounded, the trapping DC electrodes are
set to 400 V, and a 3.2 MHz RF with 60 V amplitude and 0 V pole bias is simulated.

In this simulation, the trapping DC electrodes were set to 400 V; nevertheless, similar trans-

lational temperatures are obtained. The dependence of the three velocity components on the x

coordinate of the ion shows that < |vx|> and < |vz|> are periodically modulated, with their

minima approaching the nearly constant value of < |vy|>. This behavior is obviously connected

to the modulation of the RF electrode potential in the x direction and the local minima of

the effective potential of the trap. In between two opposite electrodes, the ions experience an

oscillating electric field that has its largest component in the z direction, while in between two

neighboring electrodes, it points in the x direction. This explains why < |vz|> has maxima at

the position of the electrodes, whereas < |vx|> goes through a minimum. < |vy|> is constant

over a wide range, since the electric field has no y component.

The three mean absolute velocity components are largely independent of the y position of

the ion. However, they peak close to the edge of the ion cloud (as most curves in Fig. 3.11 do),

which is probably due to the fact that only the fast ions can reach this region at all. < |vy|>

is also independent of the z coordinate, while < |vx| > and < |vz| > increase when the ion
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approaches the RF electrodes. In the center of the trap, they are close the nearly constant value

of < |vy|>. In summary, this analysis shows that RF heating occurs in the present geometry

of the trap, which originates from oscillations of the ions in the x and z direction. The specific

electrode geometry of the planar trap leads to three different translational temperatures for the

three space coordinates.

Figure 3.12 shows the simulated phase space distribution for a buffer gas temperature of 6 K

with 10 V RF amplitude, 10 V applied to the DC electrodes, and otherwise identical conditions.

The spatial spread of the ions in the x and y direction shrinks to 4 and 5 mm, respectively, while
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Figure 3.12: Simulation of the phase space distribution of a 93 amu ion in the three-dimensional planar
trap at 6 K with a helium pressure of 1e-4 mbar. The extraction plates are grounded, 10 V are applied
to the trapping DC electrodes, and a 3.2 MHz RF with 60 V amplitude and 0 V pole bias is simulated.
The three velocity components are fitted with a one-dimensional Maxwell-Boltzmann distribution (blue)
in order to obtain the translational temperatures.

the thickness of the ion cloud only slightly decreases to ∼1.5 mm (the lower temperature and

the lower RF amplitude compensate each other). From the velocity distributions, translational

temperatures of Tx = 9 K, Ty = 6 K, and Tz = 12 K are obtained, close to the temperature of

the bath gas. This suggests that buffer gas cooling would still be feasible with this geometry of

the trap, at least for heavy ions.149

3.6 Realization

The development of the planar multipole ion trap time-of-flight mass spectrometer proceeded

in several stages. The proof of principle was established with a first prototype. An improved



68 3.6. REALIZATION

second version was subsequently used for characterization experiments and, finally, coupled to

the tandem quadrupole mass spectrometer described in chapter 2.

3.6.1 Construction of the Prototype

This section briefly describes the design of the first prototype of the trap, which is shown in Fig.

3.13, and discusses flaws of the construction that were identified. The electrodes were mounted

Figure 3.13: Photograph of the prototype of the trap.

onto PEEK supports by simply pressing them into grooves on their surface. While this method

would in principle allow one to dispense with adhesives, the construction became very delicate,

so that some electrodes had to be fixed with Araldite epoxy. Electrical contact was made by

tin-soldering silver-coated copper wires to the electrodes. The assembled trap was then mounted

onto a cylinder that was attached the flange. The photograph also shows the bent gas inlet tube

that was used to leak the sample into the trap.

Some of the employed materials had limited vacuum compatibility, so that the pressure in

the trap chamber did not fall below 1e-7 mbar even after prolonged heating. The stainless-steel

electrodes constituted another problem, as the vacuum cleaning procedure left stains on their

edges and surface that indicated oxidation. After prolonged operation in vacuum, black marks

appeared on the electrodes and the supports (see the photograph), which seems to suggest that

arcing had occurred.

After initial successful testing of the device, the ion signal became unstable and potentials

had to be adjusted frequently. Most notably, the signal would decrease during operation over a

period of several hours and finally vanish. This behavior indicated that non-conductive surfaces

were charging up and disturbing the trapping and extraction fields.

3.6.2 Construction of an Improved Version

The second version of the trap was designed with the goal to avoid all the drawbacks of the

prototype. At the same time, features were incorporated that would make it possible to couple
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the device to the tandem quadrupole mass spectrometer in a second step. Figure 3.5 depicts an

exploded view of the trap itself, while Fig. 3.14 shows how the assembled trap is mounted.

Figure 3.14: The second version of the trap, assembled and mounted onto a flange.

The RF and DC electrodes of the trap were laser cut out of 0.3 mm thick stainless-steel

sheets, while 0.5 mm thick sheets were used for the extraction plates. A circular pattern of

holes was cut into the RF combs in order to increase ion transmission upon ejection. The upper

extraction plate (53 × 55 mm) features a 25 mm diameter hole, which was covered with a 70 lines

per inch, 90% transmission nickel mesh (Precision Eforming, MN17) that was soldered to the

upper surface after all electrodes had been coated with a 1 µm layer of gold (Estoppey-Addor).

The electrodes were glued onto Macor supports (53 × 55 × 1.75 mm) with a vacuum-

compatible epoxy (EPO-TEK 353 ND). These supports feature a 31 × 27 mm hole that leaves

the RF electrodes free standing in the center. The alignment of the RF and DC electrodes was

assured by 0.25 mm deep grooves on the surface of one side of the Macor frame, which positions

them at a center distance of ∼2 mm from the extraction plate.

The application of the epoxy proved challenging, since it becomes very mobile during the

curing process and, by capillary action, tends to cover all adjacent surfaces including the elec-

trodes. Moreover, heating the entire support to ≥ 80 ◦C for curing would sometimes break

existing glue points because of the difference in dilation of the Macor and the stainless-steel

electrodes. The technique that we developed, especially for gluing the tips of the comb shaped

electrodes to the support, consists in applying minute amounts of glue with the tip of a fine

syringe under the microscope and then locally heating the electrode with a solder iron whose

tip presses down on the structure.

The ends of silver-coated copper wires (0.25 mm diameter) with Kapton insulation (Kurt J.

Lesker) were soldered onto the trap and extraction electrodes in order to establish the electrical

contact. The solder points are situated on the side of the electrodes that faces the Macor support

and the wires are guided by means of grooves in the frame.

A copper frame spaces the upper and lower half of the trap such that the trap electrodes are
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∼5 mm apart in the z direction. It is electrically contacted with a wire that is attached on one

side with an M2 screw and features a tube that can serve as a gas inlet, a pair of opposite holes

for laser access, and an opening into which the assembly of a pair of electrostatic lenses inserts

that are used for the purpose of ion injection. In the initial characterization experiments, the

lens assembly was not mounted and no gas was injected through the tube, since ions were created

inside the trap by REMPI of gaseous neutrals. The sample was leaked into the chamber such

that no direct flow could strike the electrodes in order to avoid contamination of the surfaces.

Figure 3.14 shows the assembled trap. Vespel screws are used to mount the trap onto four

stainless-steel rods that are bolted into a rotatable flange. Ceramic spacers prevent electrical

contact between the “repeller” electrode and the poles. MHV feedthroughs on the flange are

used for connections to the extraction plates and RF electrodes, while a 10-pin connector in the

center of the flange is used for the remaining potentials.

The assembly of the trap with the new design proved overall simpler and more reliable. After

only three days of heating, a pressure of 2e-8 mbar was reached in the vacuum chamber housing

the trap, which demonstrates the better vacuum compatibility of the design. No sign of arcing

could be detected, and a stable signal was observed over prolonged periods of operation.

3.6.3 The Test Setup

For the initial testing and characterization of the trap, a test setup was used (see Fig. 3.15),

in which the trap replaces the repeller and extractor of a commercial reflectron (Jordan TOF

Products, Inc., D-850). It is mounted in the center of a six-way cross chamber, which is connected

to the 81 cm long flight tube. Aniline vapor seeded in helium is continuously leaked into the

chamber, and ions are created inside the trap by laser ionization. After ejection, the ions pass a

25.4 mm inner diameter Einzel lens, the first element of which is covered with a grid to serve as

the third electrode in a Wiley-McLaren type electrode arrangement. The 15 mm inner diameter

conductance limit separating the trap chamber and the flight tube and two sets of deflection

plates follow. When the instrument is operated in linear mode the ions strike an 18 mm micro

channel plate (MCP) detector. In reflectron mode, suitable voltages are applied to the reflectron

assembly, so that the ions are reflected and focused onto a second 40 mm MCP detector.

The trap chamber and flight tube are pumped by a 400 l/s turbomolecular pump (Leybold

Vakuum GmbH, Turbovac 361) and a 170 l/s turbomolecular pump (Pfeiffer, TPU 170), respec-

tively, that are both backed by a 5 m3/h rotary vane pump (Pfeiffer, DUO 5). Pressures in the

trap chamber are adjusted with a leak valve, while the pressure in the flight tube is usually one

order of magnitude lower, reaching < 2e-9 mbar without gas load.

3.6.4 Coupling to the Tandem Quadrupole Mass Spectrometer

In a second step, the trap and reflectron were coupled to the tandem quadrupole mass spec-

trometer described in chapter 2, so that the injection of externally generated ions could be
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UV beam

trap Einzel lens

deflection plates reflectron assembly

MCP (reflectron mode) MCP (linear mode)

Figure 3.15: Schematic representation of the test setup. (Adapted from a drawing provided by the
manufacturer under http://www.rmjordan.com.)

investigated. To this end, a 19 cm long octopole (3 mm rods on a 9 mm inscribed diameter,

with entrance and exit lens) was added to the second bender (see Fig. 3.16) to guide ions into

the trap, which is mounted in the center of a CF 160 cube.

octopole

trap

Figure 3.16: Cross section of the tandem quadrupole mass spectrometer with the trap coupled to the
second bender.

The reflectron is placed below the cube with a slightly shorter flight tube of 70 cm length,

which rests upon three feet attached to its bottom flange. The photograph in Fig. 3.17 shows the
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trap hanging from the upper flange of the cube, with the octopole approaching it from the left.

The Teflon gas inlet tube is attached to the copper frame of the trap on the right and connects

to a solenoid valve (Parker Hannifin, General Valve) on the outside of the chamber. The third

Wiley-McLaren electrode (the front plate of the first element of the Einzel lens) is placed at a

distance of about 1 cm from the extractor electrode of the trap. The trap chamber and flight

tube are pumped by a 685 l/s and a 260 l/s turbomolecular pump, respectively (Pfeiffer, HiPace

700 and HiPace 300), that are both backed by a 5 m3/h rotary vane pump (Pfeiffer, DUO 5).

Figure 3.17: Photograph of the trap coupled to the tandem quadrupole mass spectrometer, showing
the trap in the middle with the gas inlet tube on the right, the octopole pointing into the trap chamber
from the left, and the Einzel lens of the reflectron below the trap.

3.6.5 Electronics

Various RF generators have been developed to drive multipoles148,238–241 (and a model corre-

sponding to each of the cited designs has been employed in this thesis). They are based on

push-pull oscillators that either directly drive an LC-circuit consisting of an air coil and the ca-

pacitance of the multipole or use a step-up transformer, so that the resonant circuit is composed

of the secondary coil and the capacitance of the multipole.

For the operation of quadrupole ion trap TOF mass spectrometers, it is necessary to rapidly

switch off the RF, which is normally applied to the ring electrode, before the end caps are

pulsed to high voltage in order to extract the ions. This is usually achieved by stopping the

oscillator and shorting the ring electrode to ground.200,242,243 For the purpose of developing a

planar ion trap TOF mass spectrometer, a further complication arises since high voltage pulses

have to be applied to the same electrodes that carry the RF.157 A similar problem had to

be solved for a cylindrical ion trap TOF mass spectrometer with two separate ring electrodes

that simultaneously serve as RF and extraction electrodes208 and for the C-trap,220 a c-shaped

quadrupole trap used to accumulate ions and then eject them in the radial direction so that

they can be focused into an orbitrap.

Our solution for a viable circuit is schematically depicted in Fig. 3.18. The entire sequence
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of events is controlled with an external TTL pulse (“RF start and stop”), whose rising edge

starts the trapping cycle, while its falling edge triggers the ejection of the ions. Upon arrival of

the control TTL, the timing unit of the instrument (“synchronization and delays”) enables an

oscillator (“osc”), whose frequency can be fine-tuned to the resonance frequency of the circuit

of about 3.2 MHz. This oscillator drives a variable current into a resonant circuit consisting of

the primary coil of an air transformer as well as an additional capacitance and inductance. A

RF waveform of variable amplitude is thereby generated in the two secondary coils, which are

connected to the two pairs of comb electrodes. Each pair of combs is equivalent to a capacitance

between the ends of the coil.

osc driver

synchronization and delays
RF start and stop

pole bias 1

extraction voltage 1

extraction voltage 2

extraction voltage 3

extraction voltage 4extraction pulses

pole bias 2

pole bias 3

pole bias 4
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Figure 3.18: Schematic circuit of the RF/high voltage pulse generator used to generate the waveforms
on the trap electrodes.

While ions are trapped, two separate pole biases (“pole bias 2” and “pole bias 3”) are applied

to the RF electrodes via the center taps of the secondary coils. The extraction electrodes sur-

rounding the trap are kept at a DC voltage labeled “pole bias 1” and “pole bias 4”, respectively.

At the falling edge of the TTL, the timing unit synchronizes the following series of events. The

oscillator is immediately disabled, and the first zero passage of the RF that is detected (“RF

sense”) triggers the “RF quench” and the two separate “extraction pulses” on the RF electrodes

and extraction plates, which occur after independently adjustable delays.

In order to rapidly shut down the RF, a separate secondary coil is short-circuited. The

RF electrodes and extraction plates are pulsed to high voltage by means of MOSFET switches

in push-pull configuration. The “extraction voltage 1” and “extraction voltage 4” are directly

applied to the extraction plates, while the voltages on the RF combs are switched via their
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center taps (“extraction voltage 2” and “extraction voltage 3”).

The RF generator was mounted as close as possible to the electrical feedthroughs, so that

coaxial cables of only 20 cm length could be used and the total capacitance of the trap and

cables could be kept as small as possible. In order to generate four symmetric RF outputs and

to achieve a rapid quenching of the RF, a good coupling between the various coils is necessary,

which would have been difficult with the coils wound onto the usual tube shaped coil forms. The

individual coils were therefore wound onto discs, which could be closely stacked, so that a good

coupling could be achieved. With this design, a 10% to 90% rise time of the extraction pulses

on the RF combs of about 80 ns could be realized. After the short circuit, the RF amplitude

decreases to about 43%, 16%, and 8% in one, two, and three RF periods, respectively, while

smaller oscillations persist for about another 10 periods (see also Fig. 3.23 and section 3.7.5,

where the influence of those residual oscillations on the signal and resolution are studied).

The following DC voltages are necessary to operate the trap. High voltages are generated

with the power supply provided by the manufacturer of the reflectron (Jordan TOF Products,

Inc., D-603) and several other high voltage power supplies (Bertran, 205 B-05R and EMCO

High Voltage Corporation, Octo-Channel High Voltage System). Voltages on other electrostatic

elements as well as the pole bias of the home-built octopole are provided from a Spectrum

Solutions TD 1400 and two Dr. K. Witmer TF 300/0.25 power supplies. The octopole RF is

generated by a MassTech RF Quad Generator. An Iota One pulse driver (Parker Hannifin) is

used to pulse the solenoid valve.

3.7 Characterization

A proof of principle demonstration of a novel scientific instrument and the successful testing of a

prototype are by themselves of only limited use. Only careful characterization can help to unveil

limitations and establish improvements of the design, increase the theoretical understanding of

the technique, and maybe lead to new developments. The characterization essentially consists

of varying instrumental parameters and analyzing the effect with respect to different figures

of merit, which could include e.g. the ion yield or signal intensity, the resolution of the TOF

mass spectrum, and the storage time of the trap. Since these figures of merit are a function of

a large number of variables, experiments should be carried out that yield useful cuts through

this multidimensional surface that capture the essential characteristics. This is the goal of this

section.

3.7.1 Experiments with the Test Setup

In the experiments using the test setup ions are directly created inside the trap. To this end

gaseous aniline entrained in helium is leaked into the trap chamber, which is usually kept at

pressures between 1e-7 and 1e-5 mbar. Aniline is ionized with the frequency doubled output of

a Nd:YAG pumped dye laser at 281.5 nm with pulse energies of ∼1 mJ/pulse, which is focused



CHAPTER 3. PLANAR MULTIPOLE TRAP TOF MASS SPECTROMETER 75

parameter value during trapping value during extraction

“repeller” 0 V 2000 V

first RF combs 0 V pole bias 1768 V

second RF combs 0 V pole bias 686 V

“extractor” 0 V 326 V

DC electrodes 400 V 400 V

Einzel lens 0 V

deflector plates x 89 V

deflector plates y 0 V

first reflector voltage 816 V

second reflector voltage 1300 V

MCP detector 1700 V

RF amplitude 60 V 0 V

trapping time variable, mostly 30 ms

delay between the high voltage
pulses of combs and plates

0 ns

delay between short circuit and
high voltage pulses

∼500 ns

number of averages 400

Table 3.1: Typical voltages and timing parameters for the operation of the planar trap/TOF mass
spectrometer in the test setup.

with a 50 cm lens into the center of the trap. The laser is operated at a frequency of 20 Hz. For

experiments requiring a longer experimental cycle, a mechanical shutter is employed to reduce

the number of laser pulses. Depending on the nature of the experiment, ions are stored for a

variable amount of time and ejected in order to obtain a TOF spectrum. Table 3.1 lists typical

values for the various voltages and timing parameters of the trap.

The experiments are timed with a Berkeley Nucleonics model 555 and a Stanford Research

Systems DG 535 delay generator. TOF mass spectra are recorded with a 200 MHz, 2.5 GS/s

oscilloscope (LeCroy WaveSurfer 24Xs-A), and a simple Visual Basic script is used to acquire,

average, and store the data. A TTL output of the RF generator corresponding to the high

voltage pulse on the RF combs is used to trigger the acquisition of a TOF spectrum.

3.7.2 TOF Mass Spectra with and without Trapping

Figure 3.19 compares mass spectra of aniline and its fragment ions that were obtained with

static extraction voltages applied to the trap electrodes (top), so that the ions are immediately

extracted after creation, and after 30 ms of trapping (bottom). For both measurements, the

parameters were separately optimized; the settings for the trap mode spectrum are given in table

3.1. A voltage of 400 V was kept on the DC electrodes even when ions were extracted promptly,

since it was found that applying the extraction voltages to the corresponding DC electrodes

did not have any perceivable influence. The measurements were carried out at a pressure of
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∼8e-6 mbar and a RF amplitude of 60 V. The spectrum with static voltages is dominated by
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Figure 3.19: Comparison of mass spectra of aniline and its fragment ions obtained with static extraction
voltages applied to the trap electrodes and after 30 ms of trapping.

the aniline parent ion at m/z = 93. At the employed laser power, some fragment ions are

created, although they appear with much lower intensity. In the spectrum obtained after 30 ms

of trapping, the parent ion peak appears with about 2.5 times the integrated intensity, while a

range of fragments is visible, with the peak at m/z = 66 now dominating the spectrum.

The fragmentation behavior of aniline following REMPI is well-documented.244–246 For

higher laser pulse energies, the absorption of further photons leads to the creation of a range of

C+
2 to C+

6 fragments, with C5H+
6 (loss of HCN) as the most intense channel. The fact that strong

fragmentation is observed upon trapping while fragments are nearly absent when the ions are

extracted promptly may have two reasons. Because of the high trapping voltages applied to the

DC electrodes, the ions are accelerated towards the center of the trap after creation and may be

collisionally activated in this process, which could lead to an enhancement of the fragmentation

efficiency (see also section 3.7.8, where the motion of the ions in the trap is analyzed in more

detail). Moreover, it appears that at least the C+
5 fragments are not formed promptly and may

therefore be suppressed when the ions are extracted immediately. This is supported by the

asymmetric peak shape in the spectrum with static voltages (see the inset of Fig. 3.19), which

points to delayed fragmentation of metastable aniline ions.222

The observed increase in parent ion signal when ions are trapped before extraction can be

understood on the basis of the results of sections 3.7.8 and 3.7.10. Briefly, the conclusion drawn

there is that a redistribution of the ions in the trap occurs. The ion cloud is initially created

along the entire laser beam path. However, only the ions in the center of the trap can be



CHAPTER 3. PLANAR MULTIPOLE TRAP TOF MASS SPECTROMETER 77

efficiently extracted and reach the detector, so that prompt extraction is accompanied by ion

losses. If the ions are stored before they are extracted, the ion cloud is focused to the center of

the trap, which leads to the observed increase in signal intensity.

From the aniline parent ion peak (see Fig. 3.19, right), a mass resolution of m/∆m = 1650 for

the spectrum with static voltages can be calculated. In trap mode, a lower resolution of only 890

is obtained. The comparison of both values allows one to disentangle different contribution to

the peak width. The peak width with static voltages can be considered a measure of the quality

of the alignment of the trap and the inherent performance of the reflectron itself. The increase

in peak width observed when ions are trapped before extraction originates from the principle of

operation of the trap. (It should, however, be noted that for trapped ions, a resolution of more

than 1300 could be achieved when higher RF amplitudes were used, see section 3.7.15.)

It appears that one of the major contributions to the decrease in resolution should be the

different spatial distribution of the ions when trapped. The focused laser beam initially creates

an ion cloud with a very low spatial spread in the extraction direction, so that a high mass

resolution is obtained if the extraction occurs promptly. The ion cloud subsequently expands to

fill the trap volume, so that its larger spatial distribution leads to a reduction in resolving power

(see section 3.7.8). This interpretation is supported by the observation that focusing the ion

cloud more strongly by using higher RF amplitudes improves the resolution (see section 3.7.9).

Further contributions to the peak width can originate from imperfections in the waveforms on

the electrodes, such as residual RF oscillations on the combs (see section 3.7.5) and the finite

rise times of the high voltage pulses. The aniline parent ion peak in the trap mode spectrum

shows a slight shoulder on the lower-mass side. This asymmetry is not observed for most of the

other masses like e.g. the C+
2 to C+

6 fragments and can be eliminated with a different choice of

parameters.

3.7.3 Background Signal

Figure 3.20 shows a spectrum recorded after 10 s of trapping. As will be discussed below, the

ions created by the laser pulse have largely escaped from the trap at this point in time. However,

a large signal of aniline parent remains. A similar spectrum, though much lower in intensity, can

be recorded if the laser is not fired at all. This suggests that gaseous aniline is ionized inside the

trap, which could be due to plasma processes, which become even more likely once free electrons

are created during the laser pulse. The increased intensity of the peak at m/z = 94 compared

to the aniline parent ion peak points to processes in which aniline ions abstract an H atom from

background gas. Weak fragment ion signals at m/z = 39, 54 and 65 are also observed.

For a short trapping time of e.g. 30 ms (as in Fig. 3.19) these processes do not play any

role, which is, for example, evident from the isotope pattern of the parent ion peak. In order to

derive trap characteristics from TOF mass spectra measured at long trapping times, however,

one cannot rely on mass peaks which appear as background signal as well. Fortunately, laser



78 3.7. CHARACTERIZATION

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

m/z

si
gn

al
 [V

]
aniline+

39

54
65

x 5 aniline+ + H

Figure 3.20: Spectrum recorded after 10 s of trapping showing background signal of aniline and some
fragments.

ionization with a focused beam creates a range of fragments that do not coincide with fragments

arising from background ionization.

3.7.4 Local Minima of the Effective Potential

As discussed in section 3.5, the chosen electrode geometry (1 mm wide RF electrodes, 1 mm

apart) represents a compromise between the conflicting goals of achieving a high trap depth and

a large field-free region in the center of the trap. The calculations predict local minima of the

effective potential in the center of the trap, which are also reflected in simulated ion distributions

(see Fig. 3.10). However, these simulations do not include space charge effects, and one might

wonder if those local traps have any effect on the performance of the instrument.

The upper half of Fig. 3.21 shows the simulated effective potential in the center of a two-

dimensional trap. The phases are applied as has been assumed so far, i.e. with the opposite

phases applied to opposite electrodes. 15 local minima are visible, which are located in between

neighboring electrodes, with the central minimum exactly in the center of the trap. (The

potential for twice the number of electrodes with 0.5 mm width is drawn in blue and shows no

local minima.)

If the RF phases on the upper combs are swapped as schematically indicated in the lower part

of Fig. 3.21, the trap depth is essentially unchanged. This is the case because the field that an

ion experiences is largely dominated by the closest RF comb due to the exponential dependence

of the potential on the z coordinate (see Eqn. 3.13). However, the simulated effective potential

now features 14 minima that are situated in between two opposite electrodes. This behavior

can easily be rationalized, since minima of the effective potential correspond to saddle points of

the potential, which obviously change their position in the described manner if the phases on

one comb are swapped.

If ions are preferentially located in these minima, their extraction efficiency would conse-

quently depend on the way the phases are applied, since the transmission is higher for ions

passing in between the electrodes. Figure 3.22 shows mass spectra recorded with different RF
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Figure 3.21: Simulation of the effective potential V ∗ in the center of a two-dimensional planar trap.
Different positions of the local minima result when the same or the opposite RF phase are applied to
opposite electrodes. Simulations for a trap with 1 mm (black) and 0.5 mm wide electrodes (blue) are
shown for a 93 amu ion and a 3.2 MHz RF with 60 V amplitude. The RF phases are applied as indicated
in the insets.

phases (top) and the same RF phase (bottom) connected to opposite electrodes (see the insets).

A large RF amplitude of 213 V was used, which increases the depth of the local traps. With

400 V applied to the trapping DC electrodes, the ions are focused to the center of the trap,

however, it can be assumed that after 30 ms of trapping and at a pressure of 3e-7 mbar the ion

cloud has not yet fully collapsed to its equilibrium size (see sections 3.7.6 and 3.7.10). Both mass

spectra were recorded with otherwise identical parameters, and it was verified independently

that these represent optimum conditions for both configurations.
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Figure 3.22: Mass spectra recorded with the same or the opposite RF phase applied to opposite elec-
trodes, as indicated in the insets, but otherwise identical conditions: pressure 3e-7 mbar, trapping DC
400 V, RF amplitude 213 V, 30 ms trapping, 400 averages.
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As predicted, the top spectrum with different RF phases on opposite electrodes shows higher

signal intensities. For the C5H+
6 fragment at m/z = 66, for example, the integrated intensity

is 56% higher, while the C+
2 ions are almost absent in the lower spectrum (see the insets of

Fig. 3.22). In general, the increase in signal is larger for the lower masses, which is consistent

with the hypothesis that local traps are the origin of the observed behavior, since their depth is

inversely proportional to the ion mass (Eqn. 3.14). Since the effective potential is proportional

to the square of the RF amplitude, the observed effect should be less pronounced for a lower RF

amplitude. Indeed, at 60 V amplitude, the differences in integrated peak intensity are smaller,

e.g. only 16% for the C5H+
6 fragment.

At the same time, a change of resolution can be observed. For the m/z = 66 peak, for

example, resolutions of 1180 and 1010 are measured in the top and bottom spectrum of Fig.

3.22. Again, the effect is less pronounced for a lower RF amplitude. It appears that ions that

are extracted through the holes in the RF combs have a higher probability of colliding with the

electrodes, so that a lower mass resolution results.

The above experiments strongly suggest that local minima of the effective potential are

indeed present as predicted from calculations and do have an effect on the ion distribution.

Whereas they might prove disadvantageous if ions are to be cooled due to increased RF heating,

they can be used to accumulate ions in between the RF combs, where higher ion transmission

and resolution can be achieved. All following experiments were carried out with opposite RF

phases connected to opposite electrodes.

Simulations show that the effect of the local traps on the ion distribution can be strongly

reduced if desired. A potential applied to the extraction plates will leak into the trapping

volume. This effect is obviously stronger in between the RF electrodes, so that a suitable

repulsive voltage on the extraction plates can be used to compensated for local minima that are

situated there. At 6 K buffer gas temperature and a RF of 60 V amplitude, a 93 amu ion will get

trapped in a local minimum and will not be able to leave it. With a suitable repulsive voltage

on the extraction plates, its distribution along x becomes homogeneous. However, increased RF

heating results, since the field of the extraction plates pushes the ion into regions of higher RF

fields.

3.7.5 Extraction Phase

As outlined in section 3.6.5, three different events determine the extraction conditions. After

a zero passage of the RF has been detected, the RF is short-circuited, and high voltage pulses

are applied to the RF combs and the extraction plates. The three corresponding delays can be

adjusted separately. Figure 3.23 shows two waveforms (black) that were recorded on one of the

RF combs with a RF amplitude of ∼50 V and a high voltage pulse of 1.5 kV. The short circuit

and the high voltage pulse were timed to occur simultaneously. The two waveforms differ in the

phase of the RF at which the ions are extracted. The phases were adjusted to ∼ 0 (maximum
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voltage on the comb) and ∼ π (minimum voltage on the comb).
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Figure 3.23: Waveforms on one of the RF electrodes for two different extraction phases (black) as well
as their difference (blue). Short circuit and extraction pulse are simultaneous.

The difference of both waveforms (blue) reveals that residual RF oscillations are still present

after the short circuit. They show an initial fast decay to an amplitude of below 2 V within

three oscillations and are subsequently damped more slowly, persisting for about another ten

periods. In the case of Paul trap/TOF instruments, (residual) RF oscillations during extraction

were found to be detrimental to the mass spectral resolution.197,200,207 In order to study the

effect of these residual oscillations in the current setup, mass spectra were recorded for different

extraction phases after 30 ms of trapping. The short circuit of the coils and the high voltage

pulse were timed to occur simultaneously. The waveform on one of the combs was simultaneously

recorded, so that the extraction phase could be determined by fitting a cosine to the RF part

of the waveform and a third-order polynomial to the initial rise of the high voltage pulse and

calculating their intersection. The integrated peak intensity and mass spectral resolution were

extracted from a gaussian fit to several of the mass peaks.

The relative peak intensities as a function of the extraction phase are shown in Fig. 3.24

for the ions with m/z = 28, 66, and 93. The data are corrected for a drop in pressure from

2.4e-6 to 9.4e-7 mbar in the chamber (and a corresponding drop in sample concentration) that

occurred during the course of the experiment.

A periodic modulation of the ion signal with the RF phase is apparent, with the variation

amounting to 70-80% of the maximum signal. The curves are shifted to later phases for lower

masses. This observation can be explained if one considers that ions passing between the RF

electrodes will be deviated if residual RF oscillations are present, so that the divergence of the

beam in the y dimension is increased and fewer ions reach the detector. The amount of deviation

obviously depends on the RF phase at which the ions pass the combs which leads to the observed

phase dependence. Optimum transmission will occur if the ions pass the electrodes during a
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Figure 3.24: Dependence of the ion signal on the extraction phase. The integrated signal intensities for
the species with m/z = 28, 66, and 93 are shown as a function of the extraction phase for simultaneous
short circuit and high voltage pulses.

zero passage of the residual RF. Since lighter ions reach the combs faster, their transmission

maximum occurs for later extraction phases. The mass resolution is likewise modulated with

the RF phase, and the curves for different masses are shifted relative to each, comparable to

the curves for the signal intensity. However, these data show a poor signal to noise ratio and

are therefore not discussed in more detail here.

Extraction efficiency and resolution should increase if the extraction is delayed with respect

to the clamping of the RF, so that much lower RF amplitudes are present at the moment

of extraction. This is evident from the experimental results shown in Fig. 3.25. Here, the

simultaneous extraction pulses were fixed to a specific delay and RF phase, while the timing

of the short circuit was varied. Figure 3.25 shows the integrated signal intensity as well as the

resolution of the aniline cation peak as a function of the delay of the short circuit relative to

the extraction pulses.

At positive delays, the short circuit follows the extraction pulse so that the ions are extracted

while the RF is still applied to the combs. Upon moving to negative delays, the signal rises

sharply, reaching twice the level when the short circuit precedes the extraction pulses by ∼100 ns.

The resolution shows a similar behavior. In between a delay of -100 ns and 0 ns, it suddenly

drops from a level of about 1000 to a level of about 850. This means that if the RF is short-

circuited at least 100 ns before the extraction of the ions, the residual oscillations are sufficiently

reduced, so that a detrimental effect on the signal and resolution can be avoided.

Figure 3.26 shows another experiment, in which the short circuit was fixed to a specific

timing and RF phase while the simultaneous extraction pulses were delayed by 600 to 1000 ns,

i.e. about two to three RF periods. The signal and resolution of the ions with masses 28, 66,

and 93 are shown.

While signal and resolution are not constant, the fluctuations are not correlated with the
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Figure 3.25: Dependence of the ion signal and resolution on the delay between the short circuit and
the extraction pulses. The relative integrated signal intensity and resolution of the aniline ion peak are
shown as a function of the delay of the short circuit relative to the extraction pulses, which are kept
fixed in time and occur at a fixed phase of the RF. For negative delays, the short circuit precedes the
extraction.
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Figure 3.26: Dependence of the ion signal and resolution on the delay between the short circuit and the
extraction pulses at long delays. The relative integrated signal intensity and resolution for the ions with
m/z = 28, 66, and 93 are shown as a function of the delay between the short circuit and the extraction
pulses. The extraction pulses follow the short circuit, which is kept fixed in time and occurs at a fixed
phase of the RF.

RF half-period of ∼150 ns. Most notably, no mass-dependent phase shift for different species

is observed, which makes it likely that the variations originate from systematic errors. It can

be concluded that at these long delays between short circuit and ion extraction, no influence of

residual RF oscillations on the signal and resolution can be detected within the accuracy of the

measurement. For this reason, all following measurements were carried out with the extraction

pulses delayed by ∼500 ns with respect to the short circuit.
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3.7.6 Trapping DC Voltage

Figure 3.27 displays the dependence of the integrated intensity and resolution of the aniline

cation peak as a function of the voltage that is applied to the trapping DC electrodes. The

experiments were carried out at a pressure of 2.5e-8 mbar and with an ion storage time of

40 ms. The observed trend is practically identical for ions of different mass. No signal is
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Figure 3.27: Signal intensity and resolution of the aniline cation mass peak as a function of the voltage
applied to the trapping DC electrodes.

measured without voltage applied to the trapping DC electrodes. It rises steeply up to a voltage

of 100 V and then starts to level off at 400 V, the highest voltage measured. The resolution

shows a similar trend, rising from about 780 at 6 V to about 940 at 400 V.

A simulation of the different ion distributions in the trap that result when either 10 V or

400 V are applied to the trapping DC electrodes seems to offer an explanation (Fig. 3.28, black

and blue curves, respectively). Although the fields from the DC electrodes do not penetrate

deeply into the trapping volume, higher potentials on the trapping electrodes strongly reduce

the spatial extent of the ion cloud in the x and y directions (while the distribution in the z

dimension is almost unchanged). At 400 V, the shape of the x distribution indicates that the

ions are now mostly confined to only three local minima that occur in the effective potential,

compared with nine at 10 V. The half width of the ion cloud in the y dimension similarly shrinks

from 15 mm to 5 mm.

A smaller ion cloud can explain a better mass resolution of the TOF mass spectra. Also, if

the extraction efficiency is higher for ions located in the center of the trap, the gain in signal

for higher trapping DC voltages could be accounted for. However, the analogous experiments

described in section 3.7.17, where externally generated ions are injected into the trap, do not

show the same behavior. It appears more likely that the high trapping voltages necessary to

maximize signal and resolution rather indicate flaws in the operation of the trap. The observation

of ion signal without ionizing laser (see section 3.7.3) already indicates that plasma processes
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Figure 3.28: Simulation of the ion distribution in the three-dimensional trap at 298 K and 1e-4 mbar
helium pressure, with 10 V (black) and 400 V (blue) applied to the trapping DC electrodes.

might be occurring inside the trap. Since the largest RF fields occur at the edges of the electrode

array (see Figs. 3.21 and 3.42), confining the ions closer to the center of the trap could possibly

prevent them from being neutralized with free electrons.

Another possible explanation could be the charging up of nonconducting surfaces through

ions created directly by laser ionization or in plasma processes, which could lead to ion losses

and a reduction of the resolution. Since the Macor supports are the most likely candidates to

carry patch potentials, removing the ions from their vicinity could lead to the improvements in

resolution and ion signal that are observed at higher DC voltages. Section 3.7.17 will shed some

more light on this issue and show that the observed behavior must be linked to the method of

ion creation and not to the inherent properties of the trap.

3.7.7 Pressure

Investigations on the properties of quadrupole ion trap/TOF mass spectrometers identified

the following dilemma, which all ion trap/TOF devices face. While the injection efficiency of

externally generated ions increases with the helium pressure inside the trap, the mass spectral

resolution decreases due to a larger number of collisions during extraction.214,247 In order to

analyze the effect of the pressure in the current setup, mass spectra were recorded for different

pressures under otherwise identical conditions. Figure 3.29 displays the mass resolution of the

aniline ion peak as a function of the pressure in the trap chamber (which was one order of

magnitude higher than the pressure in the flight tube). The behavior is similar for different

masses, although different resolutions for different masses are observed at the same pressure.

A resolution of about 810 is measured at a pressure of 2.8e-7 mbar. It increases to its

maximum of about 870 at 1e-5 mbar and subsequently falls to a value of about 720 at 7.5e-

5 mbar. This agrees qualitatively with the findings of a study on a quadrupole ion trap/TOF

instrument,247 which argued that collisions during extraction lead to a lower resolution at higher

pressures. The observed decrease in resolution at low pressures was ascribed to insufficient

collisional cooling of the ions after they had been injected into the trap.

In the present experiment, ions are generated inside the trap along the laser beam path,
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Figure 3.29: Mass resolution of the aniline ion peak as a function of the pressure in the trap chamber.

starting from a thermal speed distribution of the neutrals, so that it seems, at first sight, that

no collisional cooling should be necessary. However, as will be detailed in the following section,

the high trapping potential of 400 V applied to the DC electrodes accelerates the ions towards

the center of the trap after they have been created. Thus, ions created far from the trap center

initially acquire high translational energies. At low pressures, the trapping time is insufficient

to cool the ions, so that a lower mass resolution results.

3.7.8 Ion Motion

Figure 3.30 displays the integrated signal intensity and resolution of the aniline peak as a

function of trapping time, recorded with 60 V RF amplitude and at a pressure of 4.6e-7 mbar.

The signal initially falls steeply and reaches a minimum at about 40 ms, before it recovers within

the following 2 s. The resolution drops from an initial value of almost 1200 to a minimum of

about 840 on the same time scale of 40 ms and then rises again to asymptotically approach a

value of about 900. The signal and resolution of other mass species show a qualitatively similar

behavior.

These observations support the above interpretation of the results on the low pressure depen-

dence of the mass resolution, since they suggest that at low pressure, the ion cloud equilibrates

only on the time scale of several seconds. The ions are initially created with thermal velocities,

but immediately accelerated by the DC trapping fields. A larger velocity spread decreases the

extraction efficiency as well as the resolution. Some of the fast ions cannot be trapped and

escape from the extraction volume, leading to further signal losses. As the ion cloud is recooled

and focused to the center of the trap, signal and resolution increase again. It should be noted

that at a pressure of 1e-5 mbar or above, the initial drop in ion signal can no longer be observed

(see Fig. 3.34). Instead, the signal rises immediately and peaks within several ms. It appears

that at higher helium densities, the time scale for the initial drop is so short that it is not
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Figure 3.30: Integrated signal and resolution of the aniline cation peak as a function of the trapping
time. Mass spectra were recorded with 60 V RF amplitude and at a pressure of 4.6e-7 mbar.

captured any longer.

This interpretation is also qualitatively confirmed by a SIMION simulation of 595 ion tra-

jectories starting from a thermal distribution (298 K) of 93 amu ions along a line through the

center of the three-dimensional trap (60 V RF amplitude, 400 V applied to the DC electrodes).

A helium pressure of 1e-4 mbar was simulated in order to save computing time, and the buffer

gas temperature was set to 298 K. Figure 3.31 shows the standard deviations of the ion coordi-

nates σi and velocity components σvi as a function of time, which can be considered a measure

of the spatial extent of the ion cloud and the translational temperature of the ions.
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Figure 3.31: Simulation of the trajectories of ions created by laser ionization in the three-dimensional
trap. The standard deviations of the ion coordinates and velocity components as a function of time
demonstrate the relaxation of the ion cloud.
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Since in the simulation, the ions are initially distributed along a line in the y direction, the

ion cloud has a large initial spread in this dimension. Within the first 10 µs, σy drops sharply,

as the ions are accelerated towards the center of the trap and some of the ions with high kinetic

energies are lost. Subsequently, the ion cloud is slowly cooled to its equilibrium width. In the x

and z dimensions, the ions start from a point and then fill the trap volume. σz first overshoots

its equilibrium value and then approaches it from above.

This behavior can be understood when considering the standard deviations of the compo-

nents of the ion velocity. All three components start at the value corresponding to a thermal

distribution. As the ions are accelerated in the y direction, σvy rises sharply. In collisions,

kinetic energy is transferred into the x and z dimensions, so that σvx and σvz peak at the same

time as σvy . At the simulated pressure of 1e-4 mbar (which is larger than the experimental

pressures), the velocities then recool to their equilibrium values on a time scale of several ms.

It is thus conceivable how at low pressures, collisional cooling could be insufficient, so that the

ions initially have a larger spatial spread and a wider velocity distribution, which leads to the

observed decrease in resolution at low pressures and short trapping times. This investigation

lays the basis for section 3.7.15, which studies the injection of externally generated ions into the

trap. While a gas pulse is necessary to decelerate the arriving ions, residual gas at the moment

of extraction is detrimental to the resolution.

3.7.9 RF Amplitude, Studied in the Test Setup

While the voltage on the DC electrodes determines the width of the ion package in the x and

y dimensions (see section 3.7.6), the RF amplitude controls the spread of the ion cloud in

z direction. Figure 3.32 displays the dependence of the ion signal and mass spectral resolution

on the RF amplitude.
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Figure 3.32: Dependence of the ion signal and resolution on the RF amplitude. The relative integrated
signal of the 93, 40, and 28 amu mass peaks and the resolution of the 93 amu mass peak are shown as
function of the RF amplitude.
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For the three masses shown (m/z = 93, 40, and 28), the signal intensity initially increases

steeply with the RF amplitude and then goes through a maximum, before it falls again. The

maximum, however, is mass-dependent and shifts to higher amplitudes for higher masses, which

is in line with the mass-dependent storage and transmission properties of linear multipoles. It

also qualitatively agrees with Eqn. 3.17, which shows that the amplitude corresponding to the

maximum achievable trap depth is proportional to the ion mass. However, the maximum trap

depths are predicted to occur at lower amplitudes than the maxima of the curves recorded in

Fig. 3.32, e.g. the maximum trap depths for 28 and 93 amu ions are already reached at ∼7 and

∼24 V, respectively.

Besides the trap depth, the measured signal intensities also depend on the efficiencies of

ion deceleration and extraction, which both increase with the RF amplitude. As described

in section 3.7.7, ions that are created far from the center of the trap initially acquire high

kinetic energies. At higher RF amplitudes, the probability increases that these fast ions can be

successfully decelerated and trapped. The effect of the RF amplitude on the extraction efficiency

is analyzed in Fig. 3.33, which displays simulated ion distributions at 60 V (black) and 200 V RF

amplitude (blue). The distribution in the x direction shows that at higher RF amplitudes, the

ion population is more strongly confined to the local minima occurring in between neighboring

electrodes, so that fewer ions will collide with the electrodes during extraction. Finally, higher

RF amplitudes could also compensate any misalignment of the electrodes by pushing the ions to

the center of the trap and further away from the combs, so that the effect of any field distortions

is mitigated.
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Figure 3.33: Simulated spatial distribution of the aniline cation (m/z = 93) for a RF amplitude of 60 V
(black) and 200 V (blue) with 400 V applied to the trapping DC electrodes.

A mass-dependent storage efficiency is undesirable for analytical purposes or e.g. in laser

experiments where fragments have to be stored along with the parent ions. By reducing the

width and distance of the RF electrodes, the mass-dependence of the maximum trap depth can

be reduced (see Eqns. 3.15–3.17 and Fig. 3.7).

The dependence of the resolution on the RF amplitude is similar for different mass peaks,

although a lower resolution is observed for the lower masses. As shown for the aniline cation

(Fig. 3.32, right), the resolution increases with the amplitude, here from about 920 at 20 V
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to about 1075 at 100 V before it levels off. This effect can be understood if one considers the

effect of the RF amplitude on the ion distribution in the extraction direction (see Fig. 3.33).

While the distribution in the y dimension is practically unchanged when the RF amplitude is

increased from 60 V (black) to 200 V (blue), the ion cloud is focused in the z dimension, so

that its width is reduced from about 1.5 to 0.5 mm. This explains why the resolution initially

increases with the RF amplitude, as a smaller spatial spread in the extraction direction will

improve the resolution.

The fact that the resolution does not increase any further once the amplitude surpasses

∼125 V could point to the occurrence of space charge effects, which are not included in the

simulation and which would not allow the ion cloud to be focused any further. However, under

different experimental conditions and with a larger number of ions, the resolution was found to

increase up to an amplitude of 200 V, which makes it more likely that different factors limit the

resolution in the test setup (see the discussion in section 3.7.14).

3.7.10 Trapping Time in the Test Setup

In order to determine the trapping time of the planar trap, one cannot rely on the signal of

the aniline cation or any other species that is continuously being generated inside the trap even

without interaction with the ionizing laser (see section 3.7.3). In Fig. 3.34, the intensity of

the C5H+
6 ion (m/z = 66) is therefore monitored as a function of the trapping time, since this

laser induced fragment is largely absent from the background spectrum in Fig. 3.20. In this

experiment, the trap was operated with a RF amplitude of 60 V.
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Figure 3.34: Determination of the trapping time of the test setup for different pressures. The signal of
the m/z = 66 fragment ion is shown as a function of the trapping time at a pressure of 4.4e-5 mbar
(left) and 4.6e-7 mbar (right). A 1/e time of 110 ± 1 ms and 5.8 ± 0.1 s, respectively, is determined
from the fit.

The time dependence of the ion signal shows marked differences when recorded at 4.4e-5 mbar

(left) and 4.6e-7 mbar (right). At high pressure, the signal peaks after 5 ms and then decreases
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with a 1/e time constant of 110 ± 1 ms, as determined from the fit shown in Fig. 3.34. A

small, constant background signal can still be observed after several seconds. At low pressures,

the ion signal shows a time dependence similar to the one described in section 3.7.8, which was

explained with the motion of the ions in the trap. However, since the C5H+
6 fragment is not

being created promptly, the ion signal first rises sharply within the first 100 µs (which is not the

case for the other masses). As noted before, the signal then drops, reaches a minimum at about

60 ms, rises again as the ion motion is being cooled, and then decreases exponentially after a

second maximum at 900 ms. From a fit to the exponential decay, a trapping time of 5.8 ± 0.1 s

can be determined.

By lowering the pressure by two orders of magnitude, the achievable storage time of the trap

increases by a factor of 50. Together with the indications noted above that plasma processes

might be occurring inside the trap (see section 3.7.3), this observation suggests that a higher

number density of the neutral sample leads to a deterioration of the properties of the trap. The

observed loss rates would then not be inherent to the trap, but could originate from the operating

conditions. This question will be discussed again in section 3.7.16, where the trapping time of

the very same trap is determined in the absence of any background gas except helium (which is

necessary in order to trap the externally generated ions). Another increase of the storage time

of almost two orders of magnitude is observed under these conditions, which supports the above

interpretation of the results with the test setup.

3.7.11 Experiments with the Trap Coupled to the Tandem Quadrupole
Mass Spectrometer

As a step towards the goal of using the trap for the buffer gas cooling of externally generated

ions, the trap was coupled to the tandem quadrupole mass spectrometer described in section 2,

so that the injection of ions could be studied (see section 3.6.4). In these experiments, ions are

generated by nano-ESI of a 10 µM/1 µM solution of the amino acids serine and phenylalanine

in methanol/water (50:50) to yield a range of different molecular ions, clusters, and fragments.

They are stored in the octopole between the first two benders at a helium pressure of 1e-4 mbar

and periodically ejected at a frequency of 10 Hz. Passing straight through the second bender

and the second octopole, they enter the trap. They are decelerated in collisions with helium,

which has been pulsed into the trap prior to their arrival, stored for 90 ms, and ejected in order

to obtain a TOF spectrum. In another type of experiment, the ions are first injected into the

22-pole and stored for about 50 ms. The voltages on the second bender and the lenses before

the 22-pole are subsequently switched, so that the ions can be ejected from the 22-pole and

transferred into the trap, where they are stored for about 35 ms, before a TOF spectrum is

acquired.

Table 3.2 lists typical values for the various voltages and timing parameters of the trap used in

these experiments. The extraction voltages are different from the ones given in table 3.1, since
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parameter value during trapping value during extraction

“repeller” 0 V 2000 V

first RF combs -30 V pole bias 1629 V

second RF combs -30 V pole bias 864 V

“extractor” 0 V 718 V

entrance DC electrodes -17 V -17 V

other DC electrodes 30 V 30 V

trap frame -120 V -120 V

Einzel lens 0 V

deflector plates x 135 V

deflector plates y 0 V

first reflector voltage 867 V

second reflector voltage 1500 V

MCP detector 1450 V

RF amplitude 200 V 0 V

trapping time variable, mostly 90 ms

delay between the high voltage
pulses of combs and plates

0 ns

delay between short circuit and
high voltage pulses

∼500 ns

number of averages 400

Table 3.2: Typical voltages and timing parameters for the operation of the planar trap/TOF mass
spectrometer when coupled to the tandem mass spectrometer described in chapter 2.

the distance of the third Wiley-McLaren electrode from the trap is now shorter. Moreover,

the voltage applied to the two trapping DC electrodes that the ions pass upon injection is

different from the potential on the remaining DC electrodes, which greatly enhances the injection

efficiency. With a voltage of -120 V applied to the frame of the trap, a further increase in ion

signal can be achieved. Since the potential of the frame does not influence the storage time of

the trap, this observation suggests that the signal enhancement is due to an improved injection

efficiency. Finally, a lower voltage on the MCP detector is used to avoid saturation due to the

much larger ion signals.

The experiments are timed with a Berkeley Nucleonics model 565 delay generator and Na-

tional instruments timers as described in section 2. As before, TOF mass spectra are recorded

with a 200 MHz, 2.5 GS/s oscilloscope (LeCroy WaveSurfer 24Xs-A), which runs a Visual Basic

script for the purpose of data acquisition. A TTL output of the RF generator corresponding to

the high voltage pulse on the RF combs is used to trigger the acquisition of a TOF spectrum.

3.7.12 Comparison of Quadrupole and TOF Mass Spectra

Figure 3.35 compares a TOF mass spectrum of a serine/phenylalanine mixture (A, bottom)

using the planar trap with a mass spectrum obtained by scanning the first linear quadrupole
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analyzer of the instrument and recording the continuous ion signal as a function of the selected

mass (A, top). The TOF spectrum was obtained by first accumulating the ions in the octopole,

injecting them into the 22-pole and then transferring them into the trap. The trapping and

extraction parameters are listed in table 3.2. The region of the protonated phenylalanine peak

in the TOF spectrum is shown in (B).
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Figure 3.35: (A) Mass spectra recorded with the first quadrupole analyzer (top) and with the planar
trap/TOF mass spectrometer (bottom) of an electrosprayed mixture of serine and phenylalanine. (B)
The region of the protonated phenylalanine peak in the TOF spectrum.

The protonated amino acids, their singly-protonated 1:1 clusters, as well as the corresponding

sodiated species can be identified in (A). The two spectra are largely similar, however, a slight

discrimination of the lower masses in the TOF spectrum is apparent. In section 3.7.14, it was

shown how at high RF amplitudes on the trap combs, lower masses are slightly suppressed.

Since the above spectrum was recorded with a RF amplitude of 200 V, this could explain the

observed difference. However, the mass discrimination could also be a consequence of the chosen

RF amplitudes of the octopole and 22-pole or the settings of the quadrupole benders. The mass

peaks at 88 and 120 amu (marked with asterisks) are absent in the TOF spectrum, which makes

it likely that they belong to clusters that dissociate upon trapping.

As most other species in the quadrupole mass spectrum, the protonated phenylalanine peak

at 166 amu (Fig. 3.35, right) is accompanied by a number of smaller peaks at lower masses

which are absent in the TOF spectrum. This could also point to larger multiply charged clusters

which dissociate upon trapping. More likely, they are an artifact which we frequently observe

for some combinations of the quadrupole resolution and the ion velocity in the quadrupole.
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3.7.13 TOF Mass Spectra of Laser Induced Fragment Ions

The development of the instrument described in this chapter was originally motivated by the

goal to obtain a TOF spectrum of the ions stored in the 22-pole with good sensitivity and reso-

lution. Figure 3.36 presents a proof of principle experiment, in which mass selected protonated

phenylalanine ions were cooled in the 22-pole (trap temperature of 4 K) and then injected into

the planar trap to obtain a TOF mass spectrum. The spectrum in the bottom part of Fig.

3.36 (“laser off”) shows the intense peak of protonated phenylalanine at m/z = 166 (cut off at

15 mV) as well as a CID fragment at m/z = 120 (loss of H2O and CO).248 Moreover, metastable

fragmentation due to collisional activation during extraction is evident from the broad features

at m/z = 90− 120.
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Figure 3.36: TOF mass spectrum of photofragments of protonated phenylalanine (mass selected in the
first quadrupole). The difference of the spectra recorded with and without laser irradiation reveals the
creation of fragments at 75, 92, 120, and 74 amu. The spectra were recorded with 1200 averages.

When the ions stored in the 22-pole are irradiated at 37529.6 cm−1(which corresponds to

the band origin of conformer B in the terminology of reference 113), photofragments are created,

which can successfully be detected in the TOF spectrum (Fig. 3.36, “laser on”). In a previous

study employing a quadrupole for mass selection, their masses were assigned as m/z = 74 and

m/z = 91 − 93.113 The higher resolution that is available with the current setup, however,

allows for an unambiguous assignment. As the difference of both mass spectra shows, the most

intense fragmentation channel actually corresponds to the loss of the phenylalanine side chain

at m/z = 75 (– C7H7) and is accompanied by a much weaker channel at m/z = 74, where the

additional loss of an H atom is observed (– C7H7 – H). The second most intense fragment actually

appears at m/z = 92 (– H2O – CO – HCN – H), which corresponds to none of the channels

observed in CID experiments. Furthermore, an enhancement of the fragment at 120 amu can

be detected.
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The observed metastable fragmentation contributes to a background signal that interferes

with the fragment ion signal. It could be eliminated if a mass gate was used to suppress the

parent ion signal. In order to implement a TOF detection scheme for photofragments generated

in the 22-pole as outlined above, it would, furthermore, be necessary to develop suitable data

acquisition software, improve the transfer of the ions into the trap, and, probably, deal with

sources of analog noise, which was beyond the scope of this work.

3.7.14 RF Amplitude, Studied with the Trap Coupled to the Tandem
Quadrupole Mass Spectrometer

Figure 3.37 displays the signal intensity and resolution of the protonated phenylalanine peak

(m/z = 166) as a function of the RF amplitude. Ions were collected in the first octopole (0 V

pole bias) and injected straight into the trap (- 30 V pole bias), where they were stored for

90 ms before a TOF spectrum was recorded. The observed dependence is comparable for ions

of different mass.
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Figure 3.37: Dependence of the signal intensity and resolution of the protonated phenylalanine peak
(m/z = 166) on the RF amplitude.

The ion signal increases steadily with the RF amplitude (in the measured range up to 200 V),

which is ascribed to an increased ion injection efficiency at higher RF amplitudes. As discussed

in section 3.5, the trap depth initially rises with the square of the RF amplitude, but goes

through a maximum once the volume in which adiabatic ion motion is possible becomes smaller

than the physical volume of the trap (see Fig. 3.7). Under the present conditions, the maximum

trap depth is reached at a RF amplitude Umax0 = 37 V (Eqn. 3.17). It is therefore clear that the

observed increase in ion signal is not due to a higher trap depth, but to an increasing injection

efficiency. Under the present experimental conditions, ions are essentially unguided inside the

bender, which seems to result in a divergent ion beam that requires higher injection energies

(30 V) for efficient trapping. It appears that higher RF amplitudes increase the probability of

a successful reflection of a fast ion at the RF combs shortly after injection and that the higher
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injection efficiency more than compensates the lower trap depth.

Figure 3.37 also shows that the resolution of the TOF mass spectra continuously increases

with the RF amplitude, which resembles the behavior that was found in experiments with the

test setup (section 3.7.9). There, however, no further increase of the resolution was found beyond

an amplitude of ∼125 V. Two explanations for this discrepancy seem probable. In experiments

with the test setup, evidence was found that plasma processes take place within the volume

of the trap, which are fueled by the presence of neutral sample. These processes could lead

to a charging up of non-conductive surfaces like the Macor frame, which could either prevent

the ion cloud from being focused any tighter with increasing RF amplitude or simply limit the

achievable resolution due to the resulting inhomogeneous extraction fields.

The following sections contain further examples of how superior results could be obtained

with the present setup as compared to the test setup. Since the very same trap was used in both

instances, this strongly suggests that the different method of ion generation is at the origin of

the observed differences.

3.7.15 Gas Pulse

When ions are injected into the trap, a high gas density is desirable for optimum trapping

efficiency, while a low pressure at the moment of ion extraction will lead to a higher resolution.

In order to reach higher peak pressures inside the trapping volume during the helium pulse while

reducing the overall gas load on the system, a copper frame was inserted in between the upper

and lower half of the trap, which reduces the conductance of the otherwise open structure (see

Fig. 3.5). Gas is injected through a tube attached to the frame.

The following experiment was carried out in order to determine the temporal profile of the

gas pulse and the injection efficiency as a function of time. Different ions produced from nano-

ESI of a serine/phenylalanine solution were stored in the first octopole. A 80 µs long ion package

was periodically injected into the trap and stored for about 90 ms, before a TOF spectrum was

acquired. The length of the helium pulse that was injected prior to the arrival of the ions was

adjusted for maximum ion signal. Figure 3.38 displays the total ion signal of some of the most

intense mass peaks as a function of the delay between the arrival of the ions and the gas pulse.

The injection efficiency rises steeply and peaks after the first 400 µs, drops to 80% of its

maximum after another 500 µs, and then decreases exponentially with a 1/e time of about

1.75 ms. Efficient ion injection occurs over a period of about 1 ms. Because several collisions

with helium atoms are necessary to decelerate an ion, the injection efficiency will depend more

than linearly on the gas density. The ion signal therefore drops rapidly as the pressure in

the trap decreases, so that ∼3 ms after its maximum, the injection efficiency already becomes

vanishingly small. For longer time scales, information about the pressure inside the trap can be

obtained from the extraction efficiency and resolution of the TOF mass spectra. With the ion

package and the gas pulse synchronized for maximum signal, the intensity and resolution of the
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Figure 3.38: Characterization of the injection efficiency as a function of the delay between the helium
pulse and the moment of ion injection.

protonated phenylalanine peak (m/z = 166) were monitored as a function of the trapping time

(Fig. 3.39).
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Figure 3.39: Dependence of the signal intensity and resolution of the protonated phenylalanine peak
(m/z = 166) on the trapping time.

No TOF spectrum can be recorded within the first ∼3.5 ms because of the high gas density

inside the trap. The signal intensity rises steeply up to 15 ms after ion injection and then

continues to increase steadily, although at a lower rate. The resolution shows a similar behavior,

rising from below 1100 to about 1300 within the first 10 ms and then increasing more slowly to

about 1350 after 90 ms of trapping.

This section highlights how a subtle balance has to be struck between the conflicting require-

ments of generating high pressures inside the trap during ion injection and low pressures during

extraction, while keeping the overall gas load sufficiently small. The instrument presented here

faces essentially the same dilemma as the Paul trap/TOF devices with respect to the pressure.
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However, the problem should be less severe, since considerably higher injection efficiencies can

already be expected at lower pressures. With a higher pumping speed in the trap chamber, one

could omit the frame that was placed in between the two halves of the trap, so that a faster

pump-out time could be realized, leading to a higher resolution at earlier extraction times. In-

jecting compressed ion packages would also facilitate the task, since the high pressure necessary

for efficient injection would not have to be maintained for a long time, so that shorter helium

pulses could be used. Finally, the picture will change at cryogenic temperatures, where the

pump-out times will be longer.

3.7.16 Trapping Time of the Trap Coupled to the Tandem Quadrupole
Mass Spectrometer

Figure 3.40 shows the ion signal of protonated phenylalanine and its CID fragment (m/z = 166

and 120) as a function of time between ion injection and acquisition of a TOF spectrum. Mass

selected protonated phenylalanine was stored in the octopole and directly injected into the trap,

which was operated at an amplitude of 200 V. The data points up to 100 ms, 60 s, and 300 s

were recorded with 400, 10, and 4 averages, respectively.
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Figure 3.40: Determination of the trapping time for protonated phenylalanine and its CID fragment
(m/z = 166 and 120, respectively). A 1/e time of 268± 14 s and 327± 28 s, respectively, is determined
from a fit for trapping times ≥ 20 s.

The ion signals peak at about 5 s trapping time and then gradually decrease to about 30%

and 37% of their maximum over a time of 300 s. A 1/e time of 268 ± 14 s and 327 ± 28 s,

respectively, is determined from a fit for trapping times ≥ 20 s. Surprisingly, the achievable

trapping times are almost two orders of magnitude longer than the ones determined with the test

setup (section 3.7.10). However, it is hard to imagine how this result could be due to an artifact.

Unlike in the test setup, no neutral sample is present that could fuel the continuous regeneration

of the ionic species. Furthermore, similar trapping times are observed for very different masses,

while species other than the ones injected into the trap do not appear in the mass spectrum.
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Finally, the fact that the ion signal decreases exponentially after a trapping time of 5 s and does

not continue to grow indicates that the ions are not continuously regenerated.

If plasma processes are the origin of the ionization of neutral sample in the test setup, it is

conceivable that free electrons involved in the same processes could lead to a fast neutralization

of the ions. Neutralization, rather than escape of the ions from the trapping volume, would then

be at the origin of the observed loss rates. Free electrons could also originate from the laser

pulse in the first place and speed up the creation of a plasma. Another possible explanation for

the inferior trapping times in the test setup could also be the contamination of the electrode

surfaces with neutral sample, which is excluded under the much better vacuum conditions of

the present setup.

3.7.17 Trapping DC Voltage

Another surprising result was found when the signal of protonated phenylalanine was monitored

as a function of the voltage on the six DC electrodes surrounding the trap that do not function

as entrance electrodes (Fig. 3.41). Mass selected ions were stored in the first octopole and

injected into the trap, which was operated with a pole bias of -30 V, a RF amplitude of 143 V,

and -17.3 V applied to the entrance DC electrodes. After 90 ms of storage, a TOF spectrum

was acquired.

1

voltage on DC elctrodes [V]

Figure 3.41: Dependence of the ion signal on the voltage applied to the trapping DC electrodes. The
signal of protonated phenylalanine (m/z = 166) is displayed as a function of the voltage applied to
the six DC electrodes that do not serve as entrance electrodes (labeled as “other DC electrodes” in
table 3.2).

Marked differences are observed compared to the analogous experiment with test setup,

where the signal dropped with decreasing trapping DC, reaching zero when the pole bias voltage

was applied to the DC electrodes (see section 3.7.6). Here, the ion signal has a maximum when

the voltage applied to the DC electrodes lies about 30 V above the pole bias and steadily

decreases for higher voltages. Most strikingly, however, the signal is still at 60% of its maximum
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with the DC electrodes held at the pole bias potential (-30 V) and falls only slowly when the

trapping potential is lowered further. It drops to 50% when the DC electrodes are held at

∼10 V below the pole bias and only approaches zero at ∼40 V below the pole bias. This

finding essentially means that the DC electrodes are not necessary to confine the ion cloud to

the trapping volume, which seems at odds with the way multipole traps are usually operated.

Simulations of ion trajectories including collisions with helium at 298 K show that ions can be

trapped over long periods of time even if the DC electrodes are kept at the pole bias potential. In

order to understand this phenomenon, it is helpful to consider the simulated effective potential

V ∗ of the RF field in the center plane of the trap (Fig. 3.42).
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Figure 3.42: Simulation of the effective potential V ∗ for a 166 amu ion in the center plane of the trap
(3.2 MHz RF, 200 V amplitude). Opposite RF phases are applied to opposite electrodes. Fringe fields
lead to effective potential walls surrounding the RF electrode array in the current electrode arrangement
(top row). In an alternative geometry (bottom row), gaps are visible at the upper left and lower right
corners of these walls.

In the electrode arrangement of the current setup (top row), small effective potential walls

surround the RF electrodes. They originate from fringe fields at the edges of the electrode arrays

and are sufficiently high to confine the ion cloud in the x and y directions. The walls stretching

in the y dimension are also visible in the two-dimensional simulation of Fig. 3.21. They arise

because the outermost electrodes of the comb structure only have one neighboring electrode of

opposite phase, so that the field in their vicinity is no longer multipolar. For a 166 amu ion
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(3.2 MHz RF, 200 V amplitude, opposite RF phases applied to opposite electrodes), these walls

have a height of about 0.3 V. The jagged effective potential barriers stretching in the x direction

have a height of about 0.16 V and originate from the oscillating fields between the electrode

tips and the handle of the opposite comb. Where both RF walls join, they form a saddle point,

which creates a barrier of 0.14 V.

The simulations thus demonstrate that ions can be stored in an “RF only” trap, in which

fringe fields prevent the ions from escaping in the x and y directions. However, if the DC

electrodes are set to a potential of only 1 V below the pole bias, the ions escape as soon as

they approach the DC electrodes. Fringe fields therefore cannot be the only explanation for the

observed effect. It seems possible that a slight misalignment of the delicate RF electrodes could

create local minima of the effective potential close to the center of the trap. They could be

deep enough to locally confine ions despite an attractive potential on the DC electrodes, whose

fields do not penetrate deeply into the trap. Another explanation for the observation could be

that the Macor supports surrounding the free-standing electrode structure charge up and create

trapping fields of their own.

In the experiments with the test setup, a trapping voltage of 400 V maximized the ion

signal and resolution. With the setup described here, however, the resolution showed only a

slight variation with the trapping voltage. Since the exact same ion trap was used for both

experiments, this strongly suggests that the different observations are linked to the method of

ion generation and not to inherent properties of the trap. If in the test setup, ions are, indeed,

destroyed in plasma processes or patch potentials lead to ion losses and shorter storage times,

as discussed above, this could simply mask the more subtle effects that could be studied here.

The arrangement of the RF combs (Fig. 3.42, top left) has D2 symmetry if one also con-

siders the handles of the combs. However, an alternative structure with D2h symmetry is also

conceivable (Fig. 3.42, bottom). Interestingly, the RF walls created by the fringe fields in such

a configuration leave two gaps (upper left and lower right corner). In simulations, ions are found

to escape from the trapping volume through these openings if no trapping potential is applied

to the DC electrodes.

3.8 Conclusions and Outlook

In this chapter, the design, development, and characterization of a planar multipole ion trap

TOF mass spectrometer was described. The process involved the construction of two generations

of the trap, which were coupled to an existing reflectron time-of-flight mass spectrometer. The

final design employed laser cut gold coated electrodes on Macor supports. Suitable electronics

were developed to supply the complex waveforms to the trap electrodes. A trapping time of 268 s

for m/z = 166 ions and resolutions above 1300 could be achieved. Ion generation inside the trap

by laser ionization as well as the injection of externally generated ions were demonstrated. For

the latter experiments, the trap was coupled to a tandem quadrupole mass spectrometer with



102 3.8. CONCLUSIONS AND OUTLOOK

a cryogenic 22-pole ion trap, which involved equipping the planar trap with a short octopole

guide and ion optics, so that ions could be injected. With this setup, sufficient sensitivity was

demonstrated to detect laser fragments that had been generated in the 22-pole.

Despite these encouraging results, the present instrument is obviously still at the level of a

prototype, and the principle advantages of the design that theory and calculations predict have

not been fully realized or even explored. In the following, different aspects of the instrument

performance are discussed and suggestions are presented for future improvements and possible

applications.

Background signal In experiments with the test setup, it became obvious that the gaseous

neutral sample present in the trap volume was continuously being ionized and fragmented,

probably through plasma processes occurring inside the trap. Evidence was found that these

undesirable processes reduced the achievable storage time and mass resolution. The trap elec-

trodes had been designed with rounded tips so as to avoid these complications. When viewed

under a microscope, however, the electrodes show sharp edges which result from their fabrica-

tion by laser cutting. Moreover, little spikes of molten material protrude from their surface near

the cut. In a future design, a fabrication method that eliminates these defects and produces

rounded edges might considerably improve the performance of the instrument. However, with

helium as the only background gas, evidence for these processes could no longer be found.

Injection efficiency Theoretical considerations suggest that injecting ions into a planar ion

trap should be possible with near 100% efficiency, comparable to linear multipoles and in strong

contrast to Paul traps. However, absolute injection efficiencies are notoriously difficult to mea-

sure, and no rigorous study could be undertaken with the setup in its current configuration.

Sufficient sensitivity could be demonstrated to detect the small number of laser fragments that

had been generated in the 22-pole. A slight mass discrimination was observed, which originates

from the mass-dependence of the RF amplitude corresponding to optimum trapping conditions.

The experiments also suggest that a good collimation of the ion beam improves the injection

efficiency, which is understandable given the small separation of the trap electrodes of only

5 mm. A more careful design of the ion optics preceding the trap and the addition of several

planar DC electrodes to the entrance side of the trap to better steer the incoming beam might

improve the trapping efficiency.

Pressure The instrument faces the same dilemma as quadrupole ion trap/TOF devices. While

a collision gas is necessary to efficiently inject and cool ions, high pressures deteriorate the

achievable mass resolution. Increasing the conductance of the trap while providing enough

pumping speed would decrease the pump-out time and thereby the pressure at the moment of

extraction. Ideally, ions could be injected in a short bunch and decelerated in a pulse of collision

gas passing straight through the trap. Lowering the energy of the arriving ions could also
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reduce the pressure that is necessary for efficient injection. In the end, however, the conflicting

requirements of efficient ion injection and high mass resolution cannot be fully reconciled and

represent a fundamental drawback of the approach.

Resolution With static voltages applied to the trap electrodes, so that ions created by laser

ionization inside the trap were promptly ejected, a mass resolution of 1650 was obtained. For

a given laser pulse length and diameter of the focus, this resolution is limited by properties of

the reflectron (reflector with grids, stability of the electronics, detector rise time, etc.) as well

as by the homogeneity of the extraction fields inside the trap. In the current design of the trap,

the latter is limited by the finite width and the imperfect alignment of the free-standing RF

electrodes, which can be recognized upon close inspection. These defects could be eliminated

and the resolution could be improved if one were able to produce thin, free-standing structures

with high precision. While this would be difficult in a manually assembled trap, the use of

microfabrication techniques could offer a solution.

When ions were trapped prior to extraction a decrease in mass resolution was observed. The

larger spatial spread of the ions in the trap was identified as one of its major causes, and it was

demonstrated how it can be reduced with higher RF amplitudes. Other contributions to the

peak width were found to arise from limitations of the electronics. Ions passing in between the

RF electrodes are deflected by the residual RF oscillations, so that different flight paths and a

loss of resolution result.

While eliminating residual oscillations entirely by improving the electronics might prove

challenging, another approach could be to operate the trap differently. After ion injection, one

could stop the RF on the upper combs (the ones that the ions pass upon extraction) and at

the same time apply a repulsive potential to them. In this configuration, ions would be trapped

by the DC potentials on the trapping electrodes and the upper combs as well as the RF on the

lower combs. During ejection no residual RF would then be present on the upper RF electrodes.

It is also conceivable to replace the upper combs by a DC electrode entirely. However, a trap

with this electrode configuration would no longer possess a field-free region and show several of

the associated drawbacks.

A further improvement of the resolution could be obtained by optimizing the electronics to

reduce the jitter of the RF clamping and extraction pulses and to shorten the rise time of the

extraction pulses.

Trap design and fabrication method The assembly of the trap in its current design

presents a considerable challenge. The RF electrodes are so delicate that they will almost

inevitably be deformed in the process. Any misalignment of the RF electrodes, however, leads

to distortions of the trapping and extraction fields. For the purpose of buffer gas cooling, it

would be necessary to reduce the RF electrode width and spacing even further, in order to elim-
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inate the local minima of the effective potential in the center of the trap. Moreover, in order

to increase ion transmission, the RF electrodes would ideally have to be constructed from thin

wires — as if one were to apply the trapping RF to a Bradbury–Nielsen gate249 surrounded by

the DC electrodes.

It appears close to impossible to realize such a design with the current fabrication method.

Future versions of the trap should therefore be manufactured using MEMS technology, which

allows for the construction of miniaturized structures with high precision. The fabrication of

a Bradbury-Nielsen gate with 10 µm thick wires and 80% transmission, for example, has been

demonstrated250 (although with much smaller dimensions).

Next steps Using the planar trap routinely to obtain TOF mass spectra of laser fragments

created in the 22-pole mainly involves programming suitable data acquisition software and

integrating it into the program that controls the tandem quadrupole mass spectrometer and

the acquisition of laser spectra (see section 2.9). It might, however, also be necessary to solve

a number smaller problems in order to achieve the desired sensitivity. Fine tuning of the ion

optics might improve the transfer of ions from the 22-pole into the planar trap. Due to the

limited dynamic range of the detector, it is difficult to detect a small number of fragment ions

simultaneously with a the large number of parent ions. Adding a mass gate to the reflectron

could help to reduce or cut out the parent ion signal. A mass gate could also be used to eliminate

the signal from metastable fragmentation. It should, however, also be possible to find extraction

conditions under which metastable fragmentation is strongly reduced.

In order to use the planar trap for buffer gas cooling, it would be necessary to attach the trap

to a cold head. While allowing for good heat conductivity, the construction should not transfer

mechanical vibrations to the trap. As mentioned above, the trap should be redesigned with a

larger number of poles and manufactured with MEMS technology in order to avoid local traps,

which might lead to RF heating. Tomography experiments would be useful to characterize the

ion distribution and the quality of the alignment, as has previously been suggested.234

Possible applications It is my hope that the instrument presented in this chapter will prove a

useful scientific tool beyond the context of this work. A few ideas are suggested in the following.

Quadrupole ion trap/TOF instruments have found widespread use because of their ability

to combine the storage capabilities of an ion trap with the speed and resolution of TOF mass

spectrometry.251 The instrument presented here has a similar principle of operation. However,

its particular electrode geometry should also allow one to realize better extraction fields and an

ion injection efficiency approaching 100%. It therefore appears that a planar trap/TOF mass

spectrometer could offer advantages over the quadrupole ion trap instruments, especially for

applications involving externally generated ions.

For example, a quadrupole ion trap has been used to accumulate analyte ions and inject
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them as a narrow package into an ion mobility drift tube.252 More recent designs frequently

employ the end section of an hour glass-shaped ion funnel for this purpose.43 Using a planar

trap instead might offer the advantage of combining a high injection efficiency with good storage

properties and the ability to extract a narrow ion package.

The accumulation of ions and subsequent ejection in a narrow package is also the purpose of

the C-trap,220 which can be used to couple various ion sources to an orbitrap mass analyzer.253

In order to achieve coherent ion motion in the orbitrap and obtain a high mass resolution, the

ion bunch should be short and have a low spread of kinetic energies and transverse velocities.220

A planar trap should be able to accumulate ions with a similar efficiency as a C-trap. However,

with the entrance of the orbitrap placed at the space focus of a planar trap/Wiley-McLaren

setup much shorter ion packages could probably be injected while energy and velocity spreads

would be comparable.

Reflectron TOF mass spectrometers have been used with great success for the spectroscopic

investigation of ionic clusters.125–127 In these experiments, the reflectron is operated as a tandem

mass spectrometer, and mass selection of parent and fragment ions is achieved in the drift

region before and after the ion mirror, respectively. Ions are generated in a molecular beam and

extracted into the flight tube. On their way to the ion mirror they separate according to their

mass. The parent ion package is irradiated with a laser pulse, which induces fragmentation.

Parent and fragment ions arrive at the detector at different times so that a laser spectrum can

be recorded by monitoring the fragment signal as a function of wavelength. A planar trap/TOF

instrument could easily serve to extend this technique to the study of buffer gas cooled ions.

Moreover, when a cold trap is used to grow clusters with a background gas, a range of different

cluster sizes usually results. Similarly, when mass selected clusters are injected into a cold

trap, CID can occur, so that several cluster sizes are present at the same time. Operating

the reflectron in tandem mass spectrometry mode as described above could add another mass

selection step, so that the spectrum of a single species could be obtained.

Velocity map ion imaging is an important technique in the field of molecular dynamics, since

it allows one to probe the three-dimensional velocity distribution of scattered particles or the

products of unimolecular reactions.254 Imaging studies are frequently performed using molecular

beams. However, if one could incorporate a modified planar trap into an imaging setup, this

could open up the possibility to study reactions of trapped, buffer gas or even laser cooled255

ions.



Chapter 4

Spectroscopy of a Protonated
Amino Acid Dimer

4.1 Motivation

A protonated dipeptide in the gas phase is possibly the simplest conceivable system that could

be studied to gain insight into the intramolecular interactions governing the structure and func-

tion of proteins.95,114,256 While reduced to its very essentials, such a model still features the

fundamental interactions that in a large number, give rise to the complexity of big, solvated

proteins.

By analogy, a protonated cluster of two amino acids can be considered an essential model of

the interaction of two separate proteins. The object of study that was chosen here is a protonated

complex of L-phenylalanine and L-serine (Fig. 4.1) — phenylalanine because it usually gives rise

to well-resolved UV spectra50 and serine as one of the smaller amino acids which possesses an

additional OH oscillator.

H2N

H

O

OH

L-phenylalanine

H2N

H OH

O

OH

L-serine

Figure 4.1: Chemical structures of the amino acids L-phenylalanine and L-serine.

At first sight, this system might appear rather simple, and it might seem that it would be

similar to a dipeptide. However, since the amino acids are not covalently linked, a much larger

degree of conformational flexibility can be expected. Furthermore, it is not obvious which of

the amino acids carries the proton and if the other amino acid is in its neutral or zwitterionic

state. Finally, the cluster features seven hetero atoms and eight N- or O-bound hydrogens,

which gives rise to a plethora of possibilities for different intra- and intermolecular hydrogen

bonding networks.
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Single, protonated amino acids in the gas phase have been investigated with several spectro-

scopic techniques. The electronic spectra of protonated tryptophan and tyrosine106,110,257–259

as well as of deprotonated tryptophan260 have been reported. Vibrationally resolved spectra

could be obtained for buffer gas-cooled protonated tyrosine and phenylalanine at ∼12 K, while

protonated tryptophan has an intrinsically broad spectrum, due to its ultrafast excited state

dynamics.106,113 The effect of microsolvation on the excited state lifetime of protonated tryp-

tophan has also been investigated.111

A number of IR spectroscopic studies, mostly using the IRMPD approach, have addressed

the question whether cationized amino acids adopt a zwitterionic structure in the gas phase.

Whereas protonated amino acids were found to be non-zwitterionic,29,87 metal cations can sta-

bilize the zwitterionic structure.87,104,261 IRMPD spectra have also been recorded of protonated

lysine (produced by a photochemical method in a molecular beam)262 and a protonated synthetic

amino acid.263

The only conformer specific IR spectra of protonated amino acids have been reported for

phenylalanine and tyrosine in a 22-pole ion trap at ∼12 K.113 Under these conditions, only two

conformers of protonated phenylalanine were found, which differ only in a rotation around the

Cα-Cβ bond. For protonated tyrosine, the same conformational preferences for the orientation

of the side chain were observed. However, with two possible orientations of the tyrosine OH

group, a total of four conformers were found.

Spectroscopic investigations of protonated amino acid dimers have, so far, been limited to

IRMPD studies at room temperature. Glycine dimer, the simplest protonated dimer, has been

the subject of several studies, which, however, disagree on the structure that they assign to the

observed spectra. Based on a spectrum in the hydrogen stretch region, a non-zwitterionic struc-

ture was proposed in which the ammonium group is solvated by the carbonyl oxygen of the same

amino acid as well as the nitrogen and carbonyl oxygen of the second amino acid.98 A closely

related structure had previously also been suggested in the context of BIRD experiments.27 A

different conformation was subsequently calculated to be lower in energy, and agreement of the

corresponding spectrum with experimental spectra in both the fingerprint and N-H/O-H stretch

region was reported.102,264–266 Here, the ammonium group is likewise complexed by both car-

bonyl oxygens. However, the amino group of the neutral glycine engages in an intramolecular

hydrogen bond with the carboxylic acid hydrogen. (It should be noted that, actually, two dif-

ferent structures with the same hydrogen bonding pattern are reported that differ in a 180◦

rotation around the intermolecular hydrogen bond.)

The spectra of the alanine and valine dimers and the mixed alanine/glycine dimer were

found to strongly resemble that of the glycine dimer in the fingerprint range. It was concluded

that similar structures should be at the origin of this observation, and conformations with an

identical hydrogen bonding pattern were assigned.265 Similarly, the spectra of the serine and

threonine dimers and the mixed serine/threonine dimer were found to be very similar in the
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OH and NH stretch region.98,267 For the serine dimer, several non-zwitterionic structures were

suggested in which the ammonium group engages in several intermolecular hydrogen bonds.267

Zwitterionic structures were only assigned to the proline dimer102 and the mixed glycine/lysine

dimer, while the spectrum of the lysine dimer seemed to indicate a zwitterionic structure but

could not provide conclusive evidence.98

It has been noted that it “is still a matter of debate how much detailed information IR

spectroscopy can yield on room-temperature ions. For these proton-bound complexes many

conformations are possible and multiple structures may be populated at room temperature.”87

Another point of concern may be the calculations. Structures are frequently assigned based on

a good match with the calculated spectrum of one of the lowest-energy conformers. However,

in most cases no stringent test is used if the PES has been exhaustively sampled, so that it can

be assumed that all relevant conformations have actually been included in the calculation. The

large conformational space of the dimers may even render it impossible “to search for all possible

conformational minima, because that would be computationally prohibitive.”98 Moreover, even

a good visual agreement between the experimental spectrum and a calculated spectrum may be

deceptive, since different species may possess similar spectra. However, in some cases, the bands

of two different species that appear at a similar spectral position and with a similar intensity

might be due to different vibrations. Isotopic substitution experiments offer the possibility to

verify the correct assignment of the IR bands and can therefore deliver more stringent criteria

for the structural assignment.

Several complexes of a metal ion with two amino acids have also been investigated, in-

cluding the sodium bound glycine dimer,266 the tryptophan dimer with several divalent metal

cations,104,268 and the deprotonated phenylalanine dimer with a divalent zinc ion.89 The pro-

posed structures show marked differences to the proton bound species, which are characterized

by their hydrogen bond networks. Here, the solvation of the metal by the Lewis basic groups of

the amino acids largely dominates the structure.

The proton affinities of serine and phenylalanine have been tabulated as 914.6 kJ/mol and

922.9 kJ/mol, respectively.269 Most investigations, including more recent studies, agree that

phenylalanine possesses the higher proton affinity by up to 20 kJ/mol.270–274 It should therefore

be expected that phenylalanine carries the proton in the complex with serine.

Only limited data are available for the dissociation energies of protonated amino acid dimers.

For the glycine, alanine, and lysine homodimers as well as the mixed glycine/alanine dimer,

the same binding energy of 111±5 kJ/mol was determined from BIRD measurements,27 in

close agreement with the dissociation enthalpies for the glycine dimer of 114±7 kJ/mol264 and

130±8 kJ/mol275 obtained from pulsed-ionization high-pressure mass spectrometry experiments.

By comparison, a UV photon at 37 520.9 cm−1 (the band origin of conformer A of protonated

phenylalanine in the terminology of reference 113) corresponds to ∼449 kJ/mol, more than four

times the dissociation energy, while the absorption of one IR photon at 3000 cm−1 (∼36 kJ/mol)
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is insufficient to dissociate the cluster.

In the following, the UV spectrum as well as the isomer-specific IR spectra of the protonated

dimer in the electronic ground state are presented. The interpretation of the IR spectra provides

structural information about the dimers. In particular, evidence is obtained that the dimers

adopt a non-zwitterionic structure, i.e. both carboxylic acid groups are protonated and one of

the amino groups carries the excess proton. Such structures should exhibit two carboxylic acid

OH stretch vibrations as well as a group of three ammonium NH stretches and a group of two

amino NH stretches. These two groups of NH stretches can be identified based on their different

spectral positions, line widths, and intensities. When phenylalanine is 15N labeled, isotope shifts

of either the ammonium or amino NH stretches are observed, which is used to corroborate the

assignment of the two groups of NH stretch vibrations. Moreover, from these isotope shifts, the

protonation site can be determined.

4.2 Experimental Approach

Experiments were carried out with the setup described in chapter 2 and the experimental se-

quence detailed in section 2.2 therein. The protonated 1:1 clusters of L-phenylalanine and

L-serine (both Sigma Aldrich) are generated by nano-ESI of a methanol/water solution (1:1)

that is 100 µM and 1 mM in the two amino acids, respectively. The experiment is operated

at 10 Hz. Ions are accumulated in the hexapole and periodically released, mass selected in the

first quadrupole and injected into the 22-pole. After allowing sufficient time for cooling, the

ions are irradiated with IR and UV pulses. After subsequent ejection from the 22-pole, parent

or fragment ions are mass selected in the second quadrupole and detected.

Ultraviolet laser radiation (0.5-1.5 mJ/pulse) is generated by doubling the output of a

Nd:YAG pumped dye laser (Lambda Physik). A slightly convergent UV beam is used, with

a diameter of about 1 mm at the position of the trap, where it is overlapped with an IR beam

for the double-resonance experiments. Infrared radiation is produced with an IR optical para-

metric oscillator/amplifier (LaserVision OPO/OPA, 3-10 mJ/pulse). Its output is focussed with

a 60 cm lens such that the IR beam is slightly larger than the UV beam inside the entire trap

volume. The spectra are normalized on the parent ion intensity and the simultaneously recorded

laser power. The different spectroscopic techniques that are used in this work are described in

section 4.3.

4.3 Spectroscopic Techniques

Different spectroscopic schemes are employed to obtain different kinds of information. In order

to record a UV spectrum (Fig. 4.2), the photofragment intensity is monitored as a function of

the UV laser wavelength. The fragmentation results either from processes on an excited state

surface or in S0 after internal conversion (IC).
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Figure 4.2: Spectroscopic schemes used to obtain a UV spectrum (UV laser only), an IR/UV hole
burning spectrum (IR laser fixed to a specific transition and preceding the UV laser, which is being
scanned), and an IR depletion spectrum (the IR laser is being scanned and precedes the UV pulse,
which is fixed to a specific transition).

In order to assign different transitions in the UV spectrum to different isomers, an IR laser

pulse, tuned to an infrared transition of one of the isomers, is fired ∼50 ns prior to the UV laser.

After the absorption of an IR photon, intramolecular vibrational energy redistribution (IVR)

occurs, which leads to a statistically broadened UV spectrum, so that a decreased UV frag-

mentation signal is observed on UV bands corresponding to the same isomer. The difference of

the fragmentation signal recorded with and without the IR laser yields an IR/UV hole burning

spectrum, which corresponds to the UV spectrum of a single isomer. When, instead, the UV

laser is fixed to the transition of one isomer and the IR laser is scanned, an IR/UV depletion

spectrum is obtained, which reflects the IR spectrum of a single isomer.

The IR spectrum of an excited state species can be obtained if the order of the IR and UV

pulses is inverted, as illustrated in Fig. 4.3, and the IR pulse is fired before the excited state

has decayed. The absorption of one IR photon can change the fragmentation pattern in the

excited state if different fragmentation or deactivation pathways exist that are close in energy,

so that a modified branching ratio can be observed. Monitoring the depletion or appearance

of one fragment will then yield the IR spectrum of a single isomer in the excited state. At

the same time, this techniques does not probe species that have undergone internal conversion

to the S0 surface, since the additional energy of one IR photon does not significantly alter the

fragmentation behavior of a hot ground state species for which different fragmentation channels

involving different electronic surfaces are not accessible.

S1

UV

IR

high-lying
levels of S0S0

IC

S0 dissociation
threshold

fast dissociation on
excited state surface

fragmentation
in S0

Figure 4.3: Spectroscopic scheme to obtain the IR spectrum of a single isomer in the excited state. The
IR laser follows the UV laser and induces a change in the observed fragmentation pattern if in resonance
with a transition of an excited state species.
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This technique is analogous to a spectroscopic scheme that has previously been employed

to record the excited state IR spectra of neutrals, which is possible if the absorption of an IR

photon changes the fluorescence quantum yield of the excited state species.75

4.4 Ground State Spectra

Figure 4.4 shows the mass spectrum that is obtained when protonated phenylalanine/serine

dimer ions (m/z = 271) are stored in the 22-pole (bottom). Apart from the protonated amino

acid dimer (271 amu), a CID fragment at 166 amu is visible, which corresponds to protonated

phenylalanine, while protonated serine (106 amu) is hardly visible, in agreement with the relative

proton affinities of the two amino acids. Upon irradiation of the ions at 38432.8 cm−1 (Fig. 4.4,

+

271180

+

166+

106
120

60 80 100 120 140 160 180 200 220 240 260
m/z

Figure 4.4: Mass spectrum obtained when protonated phenylalanine/serine dimer ions (m/z = 271) are
stored in the 22-pole (bottom) and irradiated at 38432.8 cm−1 (top).

top), the channels with m/z = 166 and 106 are enhanced. Further laser fragments appear

at m/z = 180 (loss of the phenylalanine side chain) and m/z = 120 (loss of H2O and CO

from protonated phenylalanine), in analogy to the fragmentation pattern in bare protonated

phenylalanine (see section 3.7.13). However, the fragment at 120 amu is now also accompanied

by a less intense mass peak at 122 amu (loss of CO2 from protonated phenylalanine). The

same fragmentation pattern is observed on different UV transitions. Unless otherwise noted,

laser spectra were recorded while monitoring the 180 amu channel, which is the most intense,

background-free channel.

Figure 4.5 shows the UV spectrum of the dimer recorded in the 180 amu channel. The

first transition occurs at 37596.1 cm−1, about 75 cm−1 blue-shifted from the first band in the

spectrum of bare protonated phenylalanine.113 Infrared depletion spectra were recorded for

a number of transitions in order to identify different isomers contributing to the spectrum.

With the UV laser fixed to the bands marked with arrows at 37596.1 (A), 37613.7 (B), 37664.4

(C), 37866.6 (D), and 38432.8 cm−1 (E), isomer specific IR spectra were obtained, which are

shown in Fig. 4.6. To facilitate the discussion, shading indicates the spectral ranges of different
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Figure 4.5: The UV spectrum of the protonated phenylalanine/serine dimer, recorded in the 180 amu
channel.

hydride stretch vibrations. The IR spectra are well-resolved, and clearly belong to different

conformations. A number of weaker transitions in the range below 3100 cm−1 are assigned to

the six aliphatic and five aromatic CH stretches. At least in the case of isomer E, where the

best signal to noise ratio could be achieved, all eleven transitions can clearly be accounted for.

The NH stretch vibrations and, possibly, any red-shifted hydrogen-bonded OH stretches, appear

between 3100 and 3500 cm−1. The free carboxylic acid OH stretches are observed in a narrow

window between 3560 and 3575 cm−1, while the vibrations above 3600 cm−1 are assigned to the

OH stretch of the serine side chain.

In all of the probed conformations, the serine side chain OH stretch vibration is found to

be almost unperturbed and appears between 3660 and 3680 cm−1, with the exception of isomer

A, where the vibration is red-shifted to 3604 cm−1. This shift is indicative of a weak hydrogen

bond, whose nature is further discussed in section 4.6, where evidence is provided that it is likely

a π-hydrogen bond with the aromatic ring. The spectrum of isomer C exhibits an additional

peak at 3604 cm−1, which is most likely an artifact, since it is too weak for an OH stretch

vibration and, furthermore, coincides exactly with the alcohol OH stretch of isomer A. A weak

electronic transition of isomer A probably coincides with the UV transition of isomer C that was

probed here, so that a minor contribution to the IR spectrum from isomer A can be observed.

Isomers A, C, and D clearly show two free carboxylic acid OH stretches, which directly

excludes that these conformations could be zwitterionic. Spectra B and E exhibit only a single,

narrow peak in this region, which seems to be due to a single OH stretch vibration. However, it

cannot be excluded that two free carboxylic acid OH stretches are actually present which simply

cannot be resolved.

For several gas-phase conformers of neutral phenylalanine63,276 as well as tryptophan64 and

tyrosine,277 an intramolecular hydrogen bond between the acid proton and the amino nitrogen

was observed. The same intramolecular hydrogen bonding motif is adopted by the neutral

glycine moiety of the protonated glycine dimer.102,264–266 Moreover, it was suggested that the

alanine and valine dimers as well as the mixed alanine/glycine dimer should have analogous
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Figure 4.6: IR depletion spectra recorded on the different UV transitions indicated with arrows in
Fig. 4.5: 37596.1 (A), 37613.7 (B), 37664.4 (C), 37866.6 (D), and 38432.8 cm−1 (E). Shading indicates
the spectral ranges of different hydride stretch vibrations.

structures.265 Such an intramolecular hydrogen bond involving the neutral amino acid can be

excluded for the structures with two free carboxylic acid OH stretches.

It is reasonable to assume that the dimer would stabilize itself by maximizing the number

of hydrogen bonds. As potential hydrogen bond donors, the NH2, NH+
3 , and OH protons are

available. The latter, however, are mostly bystanders of the hydrogen bond network, as can be

concluded from the observation of two or three free OH stretch vibrations for any of the isomers.

Only isomers B and E could possibly possess a single strong OH hydrogen bond involving the

carboxylic acid proton. The clusters should therefore be largely dominated by hydrogen bonds
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with the ammonium protons, which can be expected to be stronger donors than the amino

group protons due to the presence of the charge. Structures that are characterized by several

intermolecular hydrogen bonds with the ammonium group have also been suggested for the

protonated serine dimer.267

The IR spectra show pronounced differences in the range between 3100 and 3500 cm−1.

In the case of isomer A, five transitions are observed, which are readily assigned to the three

ammonium NH stretches (3128, 3155, and 3256 cm−1) and the two amino NH stretches (3326

and 3389 cm−1), as expected for a non-zwitterionic structure. The assignment of the amino NH

stretch vibrations is supported by the gas phase spectra of the neutral aromatic amino acids.

There, the symmetric and antisymmetric NH stretch vibrations appear as sharp transitions in

the range of 3330–3370 cm−1 and 3390–3440 cm−1, respectively, with the antisymmetric stretch

being more intense.63,64,277 These observations agree closely with the frequencies, intensity

ratio, and line widths found here. The ammonium NH stretches are expected to be red-shifted

with respect to those of the amino group, in agreement with the above assignment. This is, for

example, the case in the matrix spectrum of zwitterionic tryptophan, where they appear between

3130 and 3340 cm−1.278 In the spectra of cold, protonated dipeptides on the other hand, a single

ammonium NH stretch appears between 3350 and 3375 cm−1, which was rationalized with a

specific hydrogen bonding pattern.114 The assignment of the ammonium NH bands solely on the

basis of their frequencies might therefore not be definitive. However, the NH stretch vibrations of

isomer A below 3300 cm−1 show a considerable broadening, which is characteristic for hydrogen-

bonded ammonium NH vibrations113,114 and thus confirms their assignment.

Further evidence is provided by the IR spectrum of isomer A with 15N labeled phenylalanine

(Fig. 4.7). 15N substitution had previously been employed to identify the different NH stretches

of a polypeptide and to verify the correct sequence of peaks in the calculated spectrum. A

redshift of about 8 cm−1 was typically observed for the labeled amide NH vibrations.116 Fig-

ure 4.7 compares the spectra of the labeled clusters (bottom traces) with the spectra of their 14N

counterparts (top traces). For isomer A, the three broad bands between 3100 and 3300 cm−1

are found to red-shift by an average 7 cm−1, which confirms their assignment as ammonium

NH stretch vibrations. The symmetric NH2 vibration of the amino group at 3326 cm−1 is also

slightly red-shifted by ∼2 cm−1, probably due to coupling with the ammonium vibrations, while

the asymmetric stretch appears unchanged. It can be concluded that the excess proton is lo-

cated on phenylalanine, as expected from the difference in proton affinities of the two amino

acids.

The protonated glycine dimer features a vibration at 2440 cm−1, which was assigned to the

strongly red-shifted vibration of the ammonium hydrogen involved in the only intermolecular

hydrogen bond.266 The fact that all three ammonium vibrations of isomer A can be observed in

the range between 3100 and 3300 cm−1 is therefore remarkable. This observation may suggest

that the ammonium group is involved in several weaker hydrogen bonds of similar strength.
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Figure 4.7: Spectra of the various isomers in the NH stretch region with 15N labeled phenylalanine
(bottom traces) and natural isotope abundance (top traces).
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This is in agreement with the conclusion drawn above that the hydrogen bond network should

be dominated by several hydrogen bonds with the ammonium group.

As in the case of isomer A, 15N labeling of phenylalanine in B and C reveals two different

groups of vibrations (Fig. 4.7). Three bands in the NH+
3 range undergo a red-shift, while two

bands in the NH2 range remain essentially unchanged. In analogy to A, they are therefore

assigned to the NH+
3 and NH2 vibrations, respectively, and it can be concluded that B and

C are both non-zwitterionic, protonated on the phenylalanine amino group, and structurally

related to A. In the spectrum of B, the amino NH stretches appear blue-shifted to 3353 and

3442 cm−1, which is, however, still within the range that can be expected from the spectra of

neutral amino acids (see above). The three bands at 3175, 3203, and 3260 cm−1 shift upon

isotopic substitution and are therefore assigned to the ammonium NH stretches. The band at

3260 cm−1 is accompanied by a shoulder at 3249 cm−1, which appears shifted in the 15N labeled

compound. This shoulder is also observed when the IR spectrum is recorded with the UV laser

fixed to a different transition of isomer B. It is therefore unlikely that it should be due to an

artifact, although no ready explanation for this shoulder is available. Also, the spectrum does

not show any indication in any other spectral range for contributions from another isomer. An

additional band appears at 3214 cm−1, which does not shift upon 15N substitution (marked

with an asterisk in Fig. 4.7). It is tentatively assigned to the remaining carboxylic acid OH

stretch vibration, which is red-shifted due to a strong hydrogen bond. This assignment is

supported by the observation of hydrogen bonded carboxylic acid OH stretches in the range of

3200–3300 cm−1 for a coiled dodecapeptide116 and some conformations of the neutral aromatic

amino acids featuring an intramolecular hydrogen bond.63,64,277 Labeling of the phenylalanine

nitrogen of isomer C leads to a redshift of the bands at 3252, 3275, and 3314 cm−1, which

are therefore assigned to the phenylalanine ammonium vibrations. Compared with the other

isomers, these vibrations appear at higher wavenumbers, so that the two groups of NH stretch

bands overlap. The peaks at 3301 cm−1 and 3379 cm−1 are assigned to the symmetric and

antisymmetric stretch of the serine amino group, respectively.

The spectra D and E show the opposite pattern of isotope shifts. A redshift is observed

for the two NH vibrations with the highest wavenumbers, while the remaining transitions are

unchanged. This is most easily recognized for E, where the bands at 3323 and 3387 cm−1

clearly undergo an isotope shift. They are assigned to the NH2 vibrations, which is furthermore

supported by their positions, line widths, and intensities. The three ammonium stretches and

the second carboxylic acid OH stretch are left to be assigned, which renders the interpretation

of the only three remaining bands at 3167, 3218, and 3291 cm−1 less straight forward. If one

of the carboxylic OH groups should be hydrogen bonded, it would be expected to appear red-

shifted. This could lead one to speculate that in the NH+
3 range, two bands might overlap.

Alternatively, one of the ammonium stretches could be strongly red-shifted and not appear in

the spectral range investigated here. In isomer D, the shift of the asymmetric NH2 stretch at
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3384 cm−1 can clearly be observed, whereas that of the symmetric stretch is only indirectly

evident from the peak at 3316 cm−1. While the position of this peak is unchanged, its blue

shoulder at 3319 cm−1 disappears and its width decreases from about 9 to 6 cm−1, which is

significant given the IR resolution of about 1 cm−1. This suggests the assignment of the shoulder

at 3319 cm−1 to the symmetric stretch. The bands at 3316, 3163, and 3197 cm−1 are assigned

to the ammonium stretch vibrations. In conclusion, isomers D and E are both non-zwitterionic

and protonated at the amino group of the less basic amino acid, serine. They are structural

isomers of the other three clusters and possess a different bond connectivity. It thus appears

that structural effects override the inherent basicities of the two amino acids or, in other words,

that more favorable intra- and intermolecular interactions compensate for the energy cost of

transferring the proton from phenylalanine to serine.

In previous studies of protonated amino acid dimers using IRMPD spectroscopy, the exper-

imental spectrum has mostly been attributed to the presence of a single isomer. The isomer

specific depletion spectra presented here paint a more complex picture for the protonated phenyl-

alanine/serine dimer. However, the question has not been addressed, so far, how many isomers

are present. To this end, IR/UV hole burning spectra were recorded. When the serine side chain

OH stretches of isomers A, C, and E at 3604, 3663, and 3677 cm−1, respectively, were pumped,

the corresponding hole burning spectra A, C, and E were obtained (Fig. 4.8). Close inspection

reveals that these three hole burning spectra alone can account for every single peak of the UV

spectrum within the limits of the experimental signal to noise level, while the isomer specific

IR spectra demonstrate the presence of at least five different species. This means that some

hole burning spectra must contain contributions from several isomers. Indeed, pumping the NH

stretch vibration of isomer B at 3442 cm−1 results in the hole burning spectrum B, which shows

a subset of the bands in spectrum E. The latter must therefore have contributions from isomers

B and E, although their serine side chain OH stretch vibrations are separated by 3 cm−1. Ob-

viously, at the IR laser power of about 10 mJ/pulse that was used in these experiments, the

transitions of the two isomers are sufficiently broadened and deplete so readily that they cannot

be distinguished. While experiments with attenuated IR power could circumvent this difficulty,

isomer D does not even posses a transition that does not overlap with any of the other isomers.

It is evident that the IR/UV hole burning technique is not suitable to settle the question how

many isomers are present and that UV/UV hole burning spectra might be a better tool for this

purpose. Since IR depletion spectra could not be recorded for all the UV transitions observed

in Fig. 4.5, it has to be concluded that the protonated phenylalanine/serine dimer possesses at

least five different isomers.

Figure 4.9 compares UV spectra of the dimer that were recorded in the 180 amu channel

(top) and the 120 amu channel (bottom). The two spectra are largely similar. However, a broad

background signal appears in the 120 amu channel, which extends down to below 36500 cm−1,

as well as two sharp transitions at 37512.1 and 37521.9 cm−1. This observation points to the
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Figure 4.8: The UV spectrum of the protonated phenylalanine/serine dimer, recorded in the 180 amu
channel (top) together with IR/UV hole burning spectra. The hole burning spectra A, C, and E are
obtained by pumping the serine alcohol OH stretches of isomers A, C, and E (see Fig. 4.6) at 3604,
3663, and 3677 cm−1, respectively. Pumping the NH stretch vibration of isomer B at 3442 cm−1 results
in the hole burning spectrum labeled B.
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Figure 4.9: Comparison of the UV spectra of the protonated dimer in the 180 amu channel (top) and
in the 120 amu channel (bottom).

existence of at least one further species, which possesses a different fragmentation pattern and

a (mostly) broad UV spectrum. Again, it would be useful to carry out UV/UV hole burning

experiments, in order to selectively obtain the UV spectrum of this species. Similar cases have

previously been reported for neutrals, where different conformers of the same species showed

either a well-resolved or a broad UV spectrum. These findings were explained with a conformer

dependent energy ordering of several close-lying electronic states and the existence of a fast de-

activation pathway through several conical intersections for some of the conformations.61,74,279

Figure 4.10 shows the IR gain spectrum in the 120 amu channel that is obtained with the UV

laser fixed to the transition at 37521.9 cm−1 (marked with an arrow in Fig. 4.9). With the UV

laser in resonance with the band at 37512.1 cm−1 or tuned further to the red, to 37451.9 cm−1,

the same spectrum is obtained. The spectrum appears largely like a weighted sum of the different

2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800

re
la

tiv
e 

io
n 

sig
na

l

wavenumber [cm ]

CH NH3
+ NH2 OHCOOH

Figure 4.10: IR gain spectrum in the 120 amu channel obtained with the UV laser at 37521.9 cm−1

(marked with an arrow in Fig. 4.9).

IR spectra of Fig. 4.6 and obviously contains important contributions from gains of the different
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isomers identified above.280 Only the peak at 3548 cm−1 cannot be explained by any of the

spectra in Fig. 4.6. It corresponds to a slightly red-shifted carboxylic acid OH stretch band

and points to a new isomer. It is not clear whether this peak belongs to a species with a broad

UV spectrum or whether it is actually due to another, yet unidentified isomer with a sharp

spectrum. Further experiments will be necessary to settle this question. In conclusion, the

observation of broad features in the UV spectrum of Fig. 4.9 and of new IR features in the gain

spectrum of Fig. 4.10 provides evidence that the number of isomers is greater than five under

the present experimental conditions.

4.5 Quantum Chemical Calculations

Since there is no direct way to obtain the complete structure of a molecular species from its gas

phase IR spectrum, quantum chemical calculations are frequently carried out to aid the analysis

of the spectra. In flexible molecules, this approach usually involves guessing the structures of

possible conformers and optimizing them with an ab initio method that is assumed to describe

the system with sufficient accuracy. Structures can then be assigned based on a convincing

match between the calculated (harmonic) and the experimental spectra. Under the assumption

that the species can efficiently reach the lowest lying minima of the PES under the experimental

conditions, the search for a matching spectrum is frequently restricted to a limited number of

structures of lowest energy. A small energy range is usually considered, which is determined by

the assumed error of the calculated energies.

For systems with a large conformational space, it becomes virtually impossible to guess all

the relevant minima of the PES. For peptides, a conformational search on the force field level is

therefore frequently used to generate suitable starting structures for the geometry optimization.

This approach assumes that the employed force field is similar to the ab initio PES (i.e. it

features the same minima) and that the search samples the PES sufficiently, so that no relevant

structure is omitted. Again, only the lowest-energy structures determined with the force field

are used for the geometry optimization, and the chosen energy range essentially reflects the

assumed error of the force field energy. The power of this approach has been demonstrated, for

example, in the analysis of the spectra of cold protonated amino acids and short peptides,50

while it did not lead to success for some larger peptides.9 However, one would expect that a

protonated amino acid dimer should still be sufficiently small and simple.

Following the reported procedure,50 a Monte Carlo conformational search was performed

with the AMBER* force field as implemented in the MacroModel package.281 Zwitterionic

structures had previously only been reported for basic amino acids and dimers containing either

proline or lysine.87 Furthermore, the above analysis of the IR spectra does not support the

formation of a zwitterion, so that only non-zwitterionic structures with the excess proton either

bound to the phenylalanine or serine amino group were considered. Within a range of 50 kJ/mol,

1480 and 462 conformers were found, respectively. A large number of search iterations was chosen
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to ensure complete sampling of the PES. If additional iterations do not yield any new structures,

the search can reasonably be considered exhaustive. The 100 lowest energy structures with the

proton located on phenylalanine or serine were found 67 and 174 times on average, respectively,

although 3 and 11 structures were only generated a single time.

Of each group, 120 structures were optimized on the M06/6-31G* level,282 and frequency

calculations were used to verify that the calculations had converged to a minimum. Fig. 4.11

displays the relative (zero point-corrected) M06 energies as a function of the relative force

field energies. The structural families with the proton located on serine and phenylalanine are

represented with open and filled circles, respectively. Fits of the data points with straight lines
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Figure 4.11: Relative (zero point corrected) DFT energy versus relative force field energy for the lowest
energy structures obtained in the conformational search. Isomers in which either serine or phenylalanine
carries the proton (120 each) are marked with open and filled circles, respectively. Calculations for
several additional structures featuring two free carboxylic acid OH groups are also included. A fit of
a straight line to the data is indicated with a dash-dotted (protonated serine) and dashed (protonated
phenylalanine) line. The DFT energies obtained after optimizing several guessed structures are marked
with crosses.

yield slopes of 0.78 (protonated serine, dash-dotted line) and 1.31 (protonated phenylalanine,

dashed line) with r2 values of 0.28 and 0.22, respectively. The lower slope for the isomer family

with protonated serine is in part due to the fact that upon M06 optimization, starting structures

with higher AMBER* energies converged frequently to lower-energy conformations. The root

mean squared errors of the relative AMBER* energies are determined to be 10.52 kJ/mol and

10.95 kJ/mol.

The positive slopes seem to indicate that the AMBER* and M06 PES are similar enough

for the structures considered here so that a correlation of their corresponding energies can

be observed. Structures have been tested within an energy window of about 30 kJ/mol and
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20 kJ/mol, corresponding to about three and two times the error of the force field energies of

about 11 kJ/mol. It would therefore seem reasonable to assume that the optimization of further

force field conformations of even higher energy would yield DFT energies lying considerably

above the global minimum. However, a comparison of the experimental and calculated IR

spectra revealed marked differences. Most notably, several experimental spectra feature three

free OH oscillators, whereas in the vast majority of the 240 structures considered thus far, at

least one of the OH groups is a hydrogen bond donor. This is illustrated in Fig. 4.12, which shows

the three lowest-energy DFT conformers of the protonated phenylalanine family (a–c) and the

protonated serine family (d–f); the energy increases from left to right. Intramolecular hydrogen

bonds are indicated in blue, while intermolecular hydrogen bonds involving the ammonium

group or an OH group are shown in green and red, respectively. In each of the conformations,

two OH donor hydrogen bonds can be found. (In structure d, an additional interaction of one

of the serine carboxylic acid OH groups with the aromatic ring can be observed.)

It might therefore appear that the AMBER* force field disfavors hydrogen bonding pat-

terns in which several OH groups are free. Additional calculations were therefore performed

of structures outside of the energy window considered so far that feature at least two free car-

boxylic acid OH groups. These data points are also included in Fig. 4.11 and appear at higher

AMBER* energies. They extend the considered energy window by another ∼20 kJ/mol and

∼10 kJ/mol for the families with protonated serine and phenylalanine, respectively. The corre-

sponding DFT energies, however, were found to lie at least 10 kJ/mol higher than the lowest

energies determined initially.

The structures a–f are characterized by a maximum number of hydrogen bonds, four in each

isomer. However, the pattern of intra- and intermolecular hydrogen bonds almost inevitably

involves the OH groups. In an attempt to construct conformations with a larger number of free

OH oscillators, a different hydrogen bonding network was therefore adapted. Several structures

were guessed in which the ammonium group of protonated phenylalanine forms three inter-

molecular hydrogen bonds with the serine hetero atoms. Such a configuration, which is driven

by intermolecular charge solvation, leaves at least two of the three OH hydrogens free. The

optimized DFT energies of 14 such structures are marked with crosses in Fig. 4.11. Five of

them possess a lower energy than the best structure obtained with the conformational search,

the lowest being favored by 13.5 kJ/mol.

The three lowest-energy structures are illustrated in the bottom row of Fig. 4.12 (g–i), each of

them featuring three intermolecular hydrogen bonds (green) involving the ammonium hydrogens.

The two structures of lowest energy (g and h) also show an intermolecular hydrogen bond

between the phenylalanine carbonyl oxygen and the serine alcohol hydrogen. In structure (i),

even all three OH groups are free, as experimentally observed for some of the isomers. Here, all

four hydrogen bonds are formed with the ammonium group. The serine carbonyl oxygen, which

forms one of them, points in between the three ammonium hydrogens.
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(b)

(e)

(c)

(f)

(a)

(d)

(g)

(h)

(i)

Figure 4.12: DFT optimized structures of different isomers of the protonated amino acid dimer. Lowest
energy structures obtained from the force field conformational search with the excess proton located on
phenylalanine (a–c) and serine (d–f) are shown together with the best structures obtained by guessing
(g–i).

When isomer (g) was used as the starting point of a conformational search, a new set of

conformations was generated that are structurally related to (g) and the other guessed structures.

Most of them feature several hydrogen bonds with the ammonium group and two or three free

OH groups. The 50 most stable structures were optimized on the DFT level and are included

in Fig. 4.13, which displays their relative MO6 energies as a function of the relative AMBER*

energies together with those of the structures already considered in Fig. 4.11. They can be

distinguished by their force field and DFT energies that are up to ∼40 kJ/mol lower than those

of the lowest energy isomers found before. As in Fig. 4.11, open and filled circles represent

isomers that are protonated on the phenylalanine and serine amino group, respectively.

These findings suggest that the Monte Carlo search algorithm does not sample the PES

efficiently. Depending on the starting structure, only certain structural families are explored

and the algorithm is obviously not able to jump from one basin of the PES to another. It
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Figure 4.13: Relative (zero point corrected) DFT energy versus relative force field energy for the lowest
energy structures obtained in the conformational search. Isomers in which either serine or phenylalanine
carries the proton are marked with open and filled circles, respectively. For the family with protonated
phenylalanine, the conformational search generates conformers of different structural families depending
on the starting structure that is used.

may seem surprising that the conformational search should be inefficient for such a small and

flexible system, particularly, since some dipeptides had previously been found to be perfectly

tractable.114 In order to convert between the different types of structures, the breaking of several

hydrogen bonds and the rearrangement of the entire hydrogen bond network is necessary. The

associated energy cost obviously hinders the search algorithm to leave one valley and enter a

different one. More sophisticated (and more expensive) algorithms might be better suited for

the exploration of the PES, which was, however, beyond the scope of this work.

It has to be concluded that with the simple methodology employed here, it is impossible to

exhaustively explore the protonated phenylalanine/serine PES and assign calculated structures

to the experimental spectra in a deterministic and reliable procedure. However, the computa-

tional results may still serve to elucidate some of the structural features of the dimer.

Figure 4.14 compares the experimental spectra of isomers A and B with calculated (har-

monic) spectra. To account for anharmonicity and for ease of comparison, they have been

scaled with a factor of 0.955. The spectra labeled a–i correspond to the structures shown in

Fig. 4.12. The serine side chain OH stretch is indicated in violet, the carboxylic acid OH

stretches in red, and the ammonium NH stretches in green. The weak NH stretch vibrations of

the amino group (blue) are marked with arrows to increase their visibility. The transitions at

3210 and 3215 cm−1 in spectrum (d) correspond to strongly mixed NH/carboxylic OH stretches

and are therefore neither colored green nor red.

All calculated spectra in Fig. 4.14 feature a free alcohol OH stretch vibration in agreement
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Figure 4.14: Comparison of two experimental IR spectra (middle) with calculated spectra of structures
obtained from the conformational search (top) and guessed structures (bottom). The labels of the
spectra refer to the structures displayed in Figs. 4.12 and 4.16. The calculated spectra are scaled with a
factor of 0.955. The serine side chain OH stretch is indicated in violet, the carboxylic acid OH stretches
in red, and the ammonium NH stretches in green. The weak NH stretch vibrations of the amino group
(blue) are marked with arrows to increase their visibility.
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with the majority of the experimental IR spectra. As mentioned above, the spectra a–f, which

correspond to the lowest energy structures obtained from the initial conformational search, pro-

vide a poor match for the experimental spectra, since they do not show any free carboxylic acid

OH stretches. In all of these structures, the neutral amino acid features an intramolecular hydro-

gen bond between the nitrogen and the carboxylic acid proton. The corresponding OH stretch

vibration is calculated to shift to the range between 3150 and 3250 cm−1, in good agreement

with experimental observations for the neutral aromatic amino acids.63,64,277 The remaining

carboxylic acid group mostly functions as a hydrogen bond donor in an intermolecular hydrogen

bond with an oxygen atom. (The only exception is structure d, in which the hydrogen interacts

with the aromatic ring.) A smaller redshift is associated with these hydrogen bonds, and the

corresponding OH stretch vibrations are calculated to appear between 3340 and 3460 cm−1.

Only in structure f, where this interaction is the only intermolecular hydrogen bond, a larger

shift is observed.

A weakly hydrogen bonded carboxylic OH stretch band could in principle explain the tran-

sition of isomer B at 3442 cm−1. It would then, however, be difficult to assign the two stretches

of the NH2 group, and one would have to assume a zwitterionic structure. Moreover, the cal-

culations suggest that such a red-shifted OH stretch vibration should be more intense than the

free alcohol OH band, in contrast to the experimental findings. An alternative explanation is

offered by the spectra of structures a–f, which feature an intramolecular hydrogen bond between

the carboxylic acid OH proton and the amino group of the neutral amino acid. The symmetric

and antisymmetric NH stretch vibrations of these isomers appear blue-shifted (as compared, for

example, to the spectra of structures g–i, where such a hydrogen bond is absent). One could

therefore speculate that isomer B possesses this type of intramolecular hydrogen bond, which

would at the same time explain the absence of the second free carboxylic OH stretch and the

blueshift of the NH bands of the amino group. Further experiments will be necessary to verify

this hypothesis.

The different hydrogen bond topology of the structures g–i manifests itself in their calculated

IR spectra (Fig. 4.15). Isomer g features one free carboxylic OH stretch, while h and i possess

even two. The strong NH· · ·N hydrogen bond that all three structures have in common leads

to a strong redshift of the corresponding ammonium NH stretch band, which is predicted to

appear below 2800 cm−1. This, however, is at odds with the experimental spectra which clearly

show three ammonium bands for several of the observed isomers. With the goal of finding an

isomer that features the same hydrogen bonding pattern as the structures g–i, but shows better

agreement with the experimental spectra, the structure displayed in Fig. 4.16 was constructed

by simply rotating the serine moiety in structure i.

Here, the amino group nitrogen points in between the ammonium hydrogens, which are all

complexed by an oxygen atom. The calculated spectrum (marked with an asterisk in Fig. 4.14)

reveals that, indeed, all hydrogen bonds are of similar strength, so that none of the ammonium
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(g)

(h)

(i)

Figure 4.15: DFT optimized structures of the best isomers of the protonated dimer that were obtained
by guessing.

Figure 4.16: Structure of the dimer corre-
sponding to the spectrum marked with an as-
terisk in Fig. 4.14.

stretches experiences a strong redshift. The energy of this isomer lies 8.0 kJ/mol above the

energy of structure g, but still 5.6 kJ/mol below the energy of the best force field isomer (a).

The calculated spectrum of this isomer provides the best agreement with the general features of

the IR depletion spectra. However, it is unlikely that it should accidentally correspond to the

true structure of any of the isomers that were identified experimentally. The vast majority of

the calculated spectra of the isomers that were obtained when the conformational search was

started with structure (d) are similar to the spectra (g–i) and show the characteristic red-shifted

ammonium NH stretch that arises from a hydrogen bond with the amino group nitrogen of the

neutral amino acid.

In summary, this section documents the failure of a frequently used approach for analyzing

the gas phase spectra of peptides by means of quantum chemical calculations. It was shown,

specifically, that the initial exploration of the PES of the protonated phenylalanine/serine dimer

on the force field level fails, due to an inefficient sampling with the Monte Carlo search algorithm

that was employed here. However, in the absence of a tool for sampling the entire conformational

space in a reliable fashion, quantum chemical calculations can only yield qualitative information.

They suggest that the structures of the protonated dimer should be dominated by hydrogen

bonds with the ammonium group. Maybe most importantly, these investigations underline the

complexity of the protonated dimer from the perspective of the computational tractability of

the problem.
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4.6 Excited State Spectra

This section about the spectroscopic properties and dynamics of the UV excited dimers should

be considered as work in progress. While several new insights could be gained and corroborated,

even more open questions remain, some of which could easily be answered with the methods

established in this section. For example, the limited time available did not permit to investigate

all the isomers of the protonated dimer.

As illustrated in Fig. 4.3, the IR spectrum of the excited state of an ion can be obtained if

the absorption of an IR photon changes the fragmentation pattern of this species. Figure 4.17

presents difference mass spectra obtained by subtracting the mass spectrum recorded after

UV (only) excitation from the mass spectrum corresponding to UV excitation followed by IR

irradiation. In each of these spectra, the OPO was tuned to the OH stretch transition of one

of the carboxylic acid groups. The change of the fragmentation pattern upon IR absorption is

evident from positive peaks (enhancement of a mass channel) and negative peaks (depletion).

It should be noted that the parent ion signal at m/z = 271 does not entirely disappear due to

shot-to-shot signal fluctuations.

The spectra a–d were recorded with a delay of approximately 10 ns between the UV and

the IR laser pulses. Spectra a and b correspond to UV excitation of isomer A at 37596.1 cm−1

and 38129.4 cm−1, respectively, while c and d were obtained when exciting isomers B and

E on the usual transitions as marked in Fig. 4.5. The four spectra show depletion of the

180 amu channel (loss of the phenylalanine side chain), while the 120 amu fragment (dissociation

of the cluster and H2O and CO loss from protonated phenylalanine) as well as the 106 and

166 amu channels (corresponding to the intermolecular dissociation of the cluster with the

proton remaining either on serine or phenylalanine, respectively) are enhanced. Only spectrum b

does not show any significant IR induced change of the 106 amu channel. This indicates that

the fragmentation behavior depends on the excess energy imparted to the molecule upon UV

excitation. Furthermore, while the relative fragment intensities are otherwise largely similar,

isomer B shows a strong relative increase of the 166 fragment, which indicates isomer specific

behavior.

At a delay of about 400 ns (spectra e and f), isomers A (excitation at 38129.4 cm−1) and E

show a different fragmentation pattern. As in the spectra at short times, depletion of the

180 amu channel and enhancement of the 106 amu channel is observed. However, the other two

channels do not show a change in fragmentation yield upon IR irradiation. It was found that the

peak at 166 amu in spectrum e (marked with an asterisk) actually arises from the action of the

IR laser only. At the origin of this observation seems to be a slightly higher sample concentration

in this particular mass scan, which favors the formation of larger, multiply charged clusters that

dissociate upon absorption of one or several IR photons. These clusters were found to be absent

at the lower concentrations that were usually employed. The different fragmentation pattern
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Figure 4.17: Difference photofragment mass spectra showing the enhancement or depletion of different
mass channels upon IR irradiation of a UV excited species. The IR OPO is tuned to one of the
carboxylic acid OH stretches and fired at a delay of about 10 ns (a-d) and 400 ns (e, f) after the UV
laser. The isomers are excited at the same UV transitions as in Fig. 4.6; for isomer A, a different
transition at 38129.4 cm−1 is also probed (b and e). In spectrum e, the peak at 166 amu (marked with
an asterisk) does not originate from an electronically excited species, but probably stems from the IR
only dissociation of larger, multiply charged clusters.
a) Isomer A, excitation at 37596.1 cm−1, 10 ns delay, b) isomer A, excitation at 38129.4 cm−1, 10 ns
delay, c) isomer B, excitation at 37613.7 cm−1, 10 ns delay, d) isomer E, excitation at 38432.8 cm−1, 10 ns
delay, e) isomer A, excitation at 38129.4 cm−1, 400 ns delay, f) isomer E, excitation at 38432.8 cm−1,
400 ns delay.

at ∼400 ns indicates that the corresponding species are different from the ones giving rise to

spectra a–d. This is confirmed by Fig. 4.18, which shows that the ground state IR depletion

spectra as well as the spectra of the UV excited species recorded at about 10 and 400 ns are all

different from one another.

The spectra b and c were recorded in the 120 amu channel after UV excitation of isomer A
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Figure 4.18: Comparison of the ground and excited state spectra of three isomers. Bands marked
with an asterisk are attributed to different species than the electronically excited cluster that is being
interrogated. In d and i, the structure observed on top of the band at 3666 cm−1 is due to water
absorption in the IR beam path. a) Isomer A, UV transition at 37596.1 cm−1, ground state spectrum
in the 180 amu channel; b) isomer A, UV transition at 37596.1 cm−1, excited state spectrum in the
120 amu channel at a delay of ∼ 10 ns; c) same, UV transition at 38129.4 cm−1; d) isomer A, UV
transition at 38129.4 cm−1, excited state spectrum in the 120 amu channel at a delay of ∼ 400 ns; e)
isomer B, ground state spectrum in the 180 amu channel; f) isomer B, excited state spectrum in the
120 amu channel at a delay of ∼ 10 ns; g) isomer E, ground state spectrum in the 180 amu channel;
h) isomer E, excited state spectrum in the 120 amu channel at a delay of ∼ 10 ns; i) isomer E, excited
state spectrum in the 180 amu channel at a delay of ∼ 400 ns.
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at 37596.1 and 38129.4 cm−1, respectively, with a delay of the IR pulse of about 10 ns. Both

spectra are largely similar, but show marked differences to the ground state spectrum (a); most

notably, the bands in the NH stretch range appear with much lower intensity. In spectrum c,

where isomer A is excited more than 530 cm−1 above the band origin, a broad background signal

is observed in this range, which likely points to a higher internal temperature of the ions. It has

previously been reported that specific vibrations of several indole derivatives appear broadened

and with lower peak intensities in the excited state IR spectra. This observation has been

explained by a strong coupling of the vibrational states associated with these specific modes to

a different, close-lying electronic surface that leads to a fast deactivation.74 One might speculate

that a similar mechanism could be operating here. All the fragments that are enhanced by the

absorption of an IR photon are created upon intermolecular dissociation. If the ammonium

hydrogens are indeed involved in several intermolecular hydrogen bonds, as suggested above,

it is not unlikely that the corresponding excited NH stretch vibrational states could couple to

the dissociative coordinate on a different surface. Another possible explanation for the low

intensity of the NH stretch bands could be that internal conversion from the initially excited

ππ∗ state to a locally excited state occurs,279 during which electronic energy is converted into

vibrational energy, so that a warm species is probed in the IR spectra b and c. Indeed, the room

temperature IRMPD spectra of some protonated amino acid dimers show weak, broad features

in the NH stretch range,98 similar to what is observed here.

Several peaks in the OH stretch region of the spectra b and c (marked with asterisks) are

attributed to different species than the excited state of isomer A that is being investigated here.

The peak at 3548 cm−1 is not observed when the same spectrum is recorded in depletion in

the 180 amu channel and is attributed to the same species that was already identified in the

gain spectrum shown in Fig. 4.9. Similarly, the band at 3675 cm−1 is assigned to gains from

the other isomers (in their ground state); and the depletion at 3604 cm−1, to the depletion of

the ground state of isomer A. When the laser pulses partially overlap in time, these gains and

depletions arise because there is a finite probability that a molecule will absorb an IR photon

before the UV photon, even though the peak of the UV pulse precedes that of the IR pulse.

The transitions at 3560 and 3567 cm−1 are assigned to the slightly red-shifted carboxylic acid

OH stretches; and the peak at 3588 cm−1, to the serine side chain OH vibration, which shows

a large redshift of 16 cm−1. The spectral positions of the NH2 and OH vibrations indicate that

the structure of the observed species should be close to that of the ground state. Moreover, the

fact that the OH bands do not show any considerable broadening indicates that the observed

species is not internally hot, which would not be expected if a large amount of electronic energy

had been converted into vibrational energy in a radiationless transition. It therefore appears

likely that the species probed in the spectra a and b is in the initially excited ππ∗ state or

in another excited electronic state that is close in energy. The strong shift of the alcohol OH

stretch transition of the serine moiety could be explained by a hydrogen bond with the aromatic
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ring. At higher internal energies (spectrum c), this band broadens, which is also in agreement

with the hypothesis of a hydrogen bonded OH group.

Spectrum d, recorded in the 180 amu channel after about 400 ns (excitation at 38129.4 cm−1),

only shows a broad, structureless absorption below 3500 cm−1. The broad peaks at 3558 cm−1

(half width of ∼11 cm−1) and at 3666 cm−1 (half width of ∼24 cm−1) are assigned to the

red-shifted, free carboxylic OH stretches and the red-shifted, free serine side chain OH stretch,

respectively. The broadening and redshifts are indicative of an internally hot species. The

features of the species observed in spectrum c are absent. At shorter delays, both species can

be simultaneously observed in the 180 amu mass channel, as demonstrated in Fig. 4.19, which

shows spectra recorded at different delays.

The NH stretch region provides only a poor diagnostic tool, since it is broad for both species

and shows only some structure at short delays. However, in the OH stretch range, the simulta-

neous disappearance of the sharp spectral features and the appearance of the broad features can

be observed. This indicates that the species observed at short times undergoes a radiationless

transition, yielding the species whose spectral signature appears at long delays. In this pro-

cess, electronic energy is converted into vibrational energy, leading to a hot species with broad,

red-shifted features. The internal energy is obviously sufficient to melt the hydrogen bonding

network of the cluster, which leads to the loss of the hydrogen bond of the serine side chain OH

group, so that a free alcohol OH stretch is observed. This second, internally hot species is not

identical with the electronic ground state, since it shows a non-statistical fragmentation pattern

(i.e. a pattern different from the one observed upon CID of the ground state species), which

changes upon IR excitation (see Fig. 4.17). It should be noted that the structure observed on

top of the band at 3666 cm−1 is due to water absorption in the IR beam path.

Above 3300 cm−1, the IR spectrum of isomer B at a delay of ∼10 ns after UV excitation

(Fig. 4.18, f) is practically identical to the ground state spectrum (e). However, the ammo-

nium NH vibrations appear red-shifted and broadened and clearly exhibit a different spectral

signature. As in the case of isomer A, it seems possible that this observation could be a conse-

quence of a strong coupling of the ammonium NH stretch vibrational levels to another excited

state surface or that a radiationless transition from the ππ∗ state to another close-lying excited

surface is involved, during which a rearrangement of the hydrogen bond network occurs.

For isomer E, a similar picture is obtained. The IR spectrum at a delay of ∼10 ns after UV

excitation (Fig. 4.18, h) is similar to the spectrum in the ground state (spectrum g), indicating a

similar structure in the excited state. Most bands appear red-shifted by 1–2 cm−1, and the peaks

in the range of the ammonium NH stretches are broadened. Some of the CH stretch bands below

2950 cm−1 can still be distinguished, while others appear washed out. This provides further

evidence for a mode specific coupling to another electronic surface on which fast deactivation

occurs. The spectrum of isomer E recorded at ∼ 400 ns (spectrum i) is practically identical

to the spectrum d of isomer A. This, together with the identical fragmentation pattern at long
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Figure 4.19: IR spectra of isomer A in the 180 amu channel at various delays after UV excitation at
38129.4 cm−1. The structure observed on the band at 3666 cm−1 is due to a water absorption in the
IR beam path.

delays, suggests that both isomers undergo a sequence of radiationless transitions that lead

to vibrationally hot clusters on the same excited state surface. These clusters have sufficient

internal energy to interconvert, which results in identical IR spectra.

Figure 4.20 shows the results of an experiment to determine the lifetime of the species that

is initially observed after UV excitation of isomer A at 38129.4 cm−1. The relative enhancement

signal in the 120 amu channel is shown as a function of the delay between UV excitation and

IR probe pulse at 3588 cm−1, which corresponds to the serine side chain OH stretch vibration.
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From the data points for delays > 18 ns, a lifetime of 63 ± 1 ns is determined, slightly shorter
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Figure 4.20: Determination of the lifetime of the short lived species that is initially created upon UV
excitation of isomer A at 38129.4 cm−1. The relative enhancement signal in the 120 amu channel is
shown as a function of the delay between UV excitation and IR probe pulse at 3588 cm−1 (corresponding
to the serine side chain OH stretch). From the data points for delays > 18 ns, a lifetime of 63 ± 1 ns is
determined.

than the lifetime of 73 ± 3 ns that was obtained when the band origin of the same isomer at

37596.1 cm−1 was pumped instead. For isomers B and E, similar measurements yielded lifetimes

of 112± 5 ns and 70± 2 ns, respectively.

Figure 4.21 shows the results of the analogous experiment to determine the lifetime of the

species that is observed at long delays after UV excitation of isomer A at 38129.4 cm−1. The

relative depletion signal in the 180 amu channel is shown as a function of the delay between UV

excitation and IR probe pulse at 3558 cm−1, which corresponds to the broad peak assigned to

the carboxylic acid OH stretches. The initial fast drop of the depletion signal is ascribed to the

escape of the ions from the volume of the laser focus and their redistribution in the trap.120 From

the data points for delays > 60 µs, a lifetime of 506± 62 µs is determined, considerably longer

than that of the initially created species. It should also be noted that collisional deactivation

and cooling due to residual helium in the trap occurs on a similar time scale, so that the value

obtained above might not reflect the intrinsic lifetime of the species. A similar measurement for

isomer E could provide further evidence for the identity of the species formed at long times.

In summary, the available information on the excited state properties of the protonated

phenylalanine/serine dimers suggest the following picture. After UV excitation, a first species is

observed whose IR spectrum is largely similar to the spectrum of the ground state, suggesting a

structure with identical hydrogen bonding network. Sharp transitions are observed in the range

of the amino group NH stretches and the OH stretches as well as for some CH stretches, which

points to a vibrationally cold species. This renders it likely that the initially excited ππ∗ state is
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Figure 4.21: Determination of the lifetime of the long lived species that is created after UV excitation
of isomer A at 38129.4 cm−1 and a subsequent radiationless transition. The relative depletion signal in
the 180 amu channel is shown as a function of the delay between UV excitation and IR probe pulse at
3558 cm−1 (corresponding to the carboxylic acid OH stretches). The initial fast drop of the depletion
signal is ascribed to the escape of the ions from the volume of the laser focus and their redistribution
in the trap.120 From the data points for delays > 60 µs, a lifetime of 506 ± 62 µs is determined.

being probed. The ammonium NH stretches show considerable broadening, which is attributed

to a strong coupling to a different excited state surface that leads to fast deactivation.

On a time scale on the order of 100 ns, the transition to a different excited state surface

occurs. This second species possesses a lifetime of at least ∼500 µs and a different fragmen-

tation pattern. Its IR spectrum is broad below 3500 cm−1 and shows only two broad peaks,

corresponding to the free carboxylic acid OH stretches and the free OH stretch of the serine side

chain. These features indicate an internally hot species with a molten structure and suggest

that a considerable amount of electronic energy is converted to vibrational energy during the

radiationless transition that leads to this species.

It is difficult to link these findings to any previous studies that investigated the excited

state dynamics either of protonated amino acids or protonated peptides – simply because these

systems are different and might be governed by different mechanisms. Most closely related are

probably the investigations on the mechanism of the so-called Infrared Laser Assisted Photofrag-

ment Spectroscopy (IRLAPS) technique, which has been used to enhance the fragmentation yield

of UV excited protonated peptides through subsequent irradiation with a CO2 laser.119 It was

found that in tyrosine or phenylalanine containing peptides, the mass channel corresponding to

the loss of the aromatic side chain usually showed the strongest enhancement. This, however,

suggests fragmentation on an excited state surface, since side chain loss is not observed from

hot, ground state molecules.120 IRLAPS enhancement could still be observed even at a delay of

several hundred µs between the UV and CO2 laser pulses. The similar lifetime of the long-lived
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species observed here suggests that it might be related to the species whose dissociation yield

can be enhanced with the IRLAPS technique and that both intermediates might be formed in

a related process. The high vibrational temperature of the long-lived species could also explain

the high efficiency of the IRMPD enhancement of up to two orders of magnitude.119 At high

internal energies, the high density of states leads to efficient IRMPD, while for internally cold

species, on the other hand, the multiple photon excitation with an off-resonant IR laser can be

expected to be slow. Furthermore, the long-lived species observed here is in an excited electronic

state, and one of its fragmentation channels corresponds to side chain loss, as observed in the

IRLAPS experiments. Whereas in the IRLAPS investigations, an enhancement of this channel

was observed, it is actually suppressed upon IR excitation in the present study. However, the

differences in the IR excitation scheme and the molecular system might account for the different

behavior. It was also reported that at long delays of several ms between UV excitation and

IRMPD, a constant IRLAPS enhancement signal could be measured.120 In the present study,

the long-lived species is not detectable any more on these time scales.

Several studies have explored the UV photo induced dynamics of protonated aromatic amino

acids from the fs to the ms time scale, and these efforts have been reviewed recently.283 The

most detailed picture has been elaborated for protonated tryptophan, while the investigations for

protonated phenylalanine generally suffer from a lower fragmentation yield.284,285 The complex

fragmentation behavior of protonated tryptophan arises from a coupling of the ππ∗ state with

two charge transfer states that are close in energy and lead to different fragmentation patterns.

However, it is not clear whether these states and the dissociation mechanisms of protonated

tryptophan are relevant to the excited state dynamics of the protonated dimers. It has, for

example, been observed that microsolvation of protonated tryptophan raises the energy of the

dissociative πσ∗ state that leads to fast H atom loss from the ammonium group. This should also

be the case for the protonated dimers, since the analysis of the ground state spectra suggests that

the ammonium group is involved in several hydrogen bonds. Different excited-state dynamics

can therefore be expected.

The elementary steps suggested for the different fragmentation pathways of protonated tryp-

tophan involve H atom loss from the ammonium group, intramolecular proton transfer, loss of

NH3, and breakage of the Cα-Cβ bond. For the dimers, loss of NH3 is not observed in the

photofragment mass spectra. Also, the two transient species observed here clearly have not lost

the aromatic side chain – otherwise, absorption of an IR photon would not be able to deplete

the yield in these channels. H atom loss or intramolecular proton transfer on a different elec-

tronic surface would likely result in a vibrationally hot species. It is therefore possible that

such elementary steps are involved in the formation of the long-lived intermediate, while the

low internal temperature and vibrational signature of the short-lived species suggest otherwise.
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4.7 Conclusions and Outlook

The UV and IR spectra of the protonated phenylalanine/serine dimer demonstrate the presence

of at least five different isomers under the experimental conditions. Non-zwitterionic structures

are assigned to these isomers based on a pattern of NH stretch vibrations that is consistent

with a free amino group and a hydrogen-bonded ammonium group as well as the observation

of two free carboxylic OH stretches for three of the isomers. The spectra with 15N labeled

phenylalanine are consistent with the assignment of the bands in the NH stretch range, since

they either show the redshift of the two bands assigned to the free amino group or the shift of

the three ammonium stretches. Most importantly, the labeling experiments show that in two

of the isomers, the excess proton is located on the amino acid with the lower proton affinity,

serine.

Quantum chemical calculations have been performed with the goal to assign structures to

the isomer-specific IR spectra. It is shown that the previously successful strategy of exploring

the PES on the force field level and then refining the obtained structures in DFT calculations

cannot be applied to the present system. A detailed analysis demonstrates that the Monte

Carlo conformational search that was employed does not efficiently sample the PES. With

this approach, it is therefore not possible to obtain the structures and spectra of the lowest

energy isomers in a reliable and deterministic fashion. The calculations, however, support the

conclusions drawn from the IR spectra about the connectivity of the hydrogen bonding network,

which appears to be dominated by several intermolecular hydrogen bonds of the ammonium

group.

The present investigation of the protonated phenylalanine/serine dimer leaves many ques-

tions open about the detailed structures of the observed isomers. It demonstrates the complexity

of such an apparently simple system – in contrast to the simple picture that previous studies

of protonated amino acid dimers using IRMPD spectroscopy have suggested. The failure of a

standard computational approach to elucidate the structure of even such a small system raises

questions about the applicability of these methods to much larger biological molecules. Surpris-

ingly, it is not even possible to a priori predict which amino acid carries the excess proton.

The investigations of the IR spectroscopic signatures and dynamics of the excited state

species are incomplete at this point. Most of all, a complete set of experiments for all isomers of

the protonated dimer are missing, and several suggestions for further investigations have been

made in the text. The available data, however, provide conclusive evidence for the following

picture. Upon UV excitation, a short-lived species is initially created, whose IR spectrum

indicates a low vibrational temperature and resembles that of the ground state. It seems likely

that this species corresponds to the ππ∗ state which, on a time scale on the order of 100 ns,

converts into another electronically excited species with a lifetime on the order of 500 µs. The

IR spectrum of the latter reveals a high internal temperature and a molten structure and is
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identical for different isomers in the ground state. These initial investigations suggest that with

the methodology used here new kinds of information about the excited state dynamics of cold

ions could potentially be accessible for a large variety of systems.



Chapter 5

Conclusions

The attempt to draw a unifying conclusion from the scientific efforts described in the previous

chapters meets several difficulties. The body of work presents itself as very heterogeneous, so

that it seemed wise to include detailed conclusions for each experimental chapter separately.

Consequently, the goal of this chapter should not be to simply repeat the separate thoughts

discussed there, but rather to put the work into a larger context and discuss its implications

for the field of research. However, from this larger point of view, the progress that could be

achieved with the efforts of four years seems very modest, and it would appear vain to try and

arrive at far reaching conclusions based on the minute contribution of the present work. One

feels tempted to join Wagner in Goethe’s Faust who exclaims “ Ach Gott! die Kunst ist lang; /

Und kurz ist unser Leben.” (“Oh, God! Art is long / And life is short.”)

The “spectroscopy of cold, biomolecular ions” constitutes the uniting frame of the present

work, for which the introduction sets the stage. The second chapter then actually describes the

construction of a mass spectrometer for the preparation of cold, biomolecular ions. Several new

features were implemented that improve the performance of the instrument in comparison with

the previous generation of the setup. In particular, the use of an ion funnel provides a tenfold

increase in signal. At the current stage, only a few studies have been carried out on this new

system. Most of all, its extended capabilities have hardly been exhausted and its limits explored.

It will hopefully unfold its full potential in the future and lay the basis for many fruitful studies.

The third chapter describes the development of a planar multipole ion trap/TOF mass

spectrometer. Although originally motivated in the context of the second chapter, it actually

represents a work in its own right. Apart from its potential as a tool for the investigation of

buffer gas cooled ions, it is also relevant as a new approach to some long standing technical

challenges in TOF mass spectrometry. A number of further applications to a range of different

problems are suggested. The chapter describes the evolution of the mechanical design, the

development of the electronics, and the different setups in which the instrument was tested.

Characterization experiments accompanied by numerical simulations shed light onto several

subtleties of the principle of operation of the device. It is my hope that the planar trap/TOF

instrument developed here will in the future prove a useful extension of the experimental toolbox
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of mass spectrometry as well as cold ion spectroscopy.

These first two experimental chapters are technical in nature and (maybe involuntarily)

shift the emphasis of the present work to the side of the instrumentation. However, as the

introduction argues, the development of experimental tools to control and manipulate molec-

ular systems and the development of concepts describing these systems depend on each other.

Moreover, “[n]othing tends so much to the advancement of knowledge as the application of a

new instrument.”286

The fourth chapter finally describes the spectroscopic investigation of a protonated amino

acid dimer. The isomer specific IR spectra demonstrate that this small and apparently simple

system is far more complicated than could have been anticipated from previous investigations of

related systems. The greater detail of the spectroscopic information also provides more stringent

criteria for the analysis of the experimental spectra by means of quantum chemical calculations.

With a frequently used computational approach, the system is not tractable. Using a UV-

pump/IR-probe scheme, it was demonstrated how the lifetimes and the IR spectra of several

excited state species can be obtained. These investigations are certainly incomplete at the

present stage. Moreover, it would be interesting to extend the studies to other amino acids and

peptides and explore whether they show a similar behavior.

Again, drawing general conclusions about the entire field from the investigations on a par-

ticular system would seem a stretch. However, a few observations may still be insightful. First

of all, the surprising complexity of a small amino acid dimer suggests that, maybe, our un-

derstanding of entire proteins is only superficial. Moreover, at this point, our tools seem to be

insufficient to fully elucidate the problem. The appeal of the spectroscopy of cold biomolecules is

to no small extent due to the fact that it has been successful in providing structural information

about large and complex systems. While the nature of a single hydrogen or van der Waals bond

has been subjected to detailed investigations, e.g. by means of gas phase spectroscopy, the com-

plexity that arises from a large number of these fundamental interactions is hardly understood

and difficult to tackle with other techniques (see chapter 1).

However, the difficulty to obtain structural information even for a small amino acid dimer

may point to some limitations of the approach and raise questions about the suitability of

spectroscopy as a structural probe. Unlike e.g. for multidimensional NMR spectroscopy, there

is no direct way to obtain the structure from an IR spectrum. (While multidimensional optical

techniques are being employed in the liquid phase,287 they are currently not sufficiently sensitive

for the gas phase.) This makes it necessary to resort to quantum chemical calculations to

interpret the spectra. In some cases, the calculations for the protonated phenylalanine/serine

dimer predicted almost identical spectra for different isomers of largely different structures. This

usually does not present a problem, since only the lowest-energy structures are considered for

the comparison with the experimental spectra. However, it shows that there is no one-to-one

correspondence between the IR spectrum and the structure of the molecule.
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In order to study complexity, the molecular necessarily has to be large. With an increasing

number of NH and OH oscillators, it will become impossible to resolve all of them. Again, NMR

spectroscopy avoids this problem by using multidimensional techniques, which is prohibitive for

the low sample concentrations of gas phase ions. Diffraction techniques, on the other hand, are a

direct probe of the structure and could therefore in the future offer the best approach. Moreover,

time-resolved diffraction experiments25,288 would allow one to obtain information about both

structure and reactivity, the two fundamental concepts of chemistry. However, these techniques

are still in their infancy and enormous technical hurdles will have to be overcome before it will

actually be possible to study large and complex systems in the gas phase. No matter in which

direction the field will develop, many interesting questions remain to be answered, and we can

hope for many exciting discoveries to be made.



Appendix

Table 5.1 provides pinouts of the various multipin connectors of the vacuum chamber of the

tandem quadrupole mass spectrometer described in chapter 2. These connectors carry the

majority of the DC voltages that are applied to the various electrostatic elements. The remaining

connections, including, for example, the RF connections for the multipoles, are fairly obvious.
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The slots of the PXI chassis are occupied by the following PXI instruments.

Table 5.2: Occupation of the slots in the PXI
chassis by the different DAQ instruments. The
two PXI 6723 cards possess two SCSI connec-
tors each, which are labeled a, b, c, and d in
the following.

slot instrument

1 PXI 8145 RT

2 PXI 6602

3 PXI 6052E

4 PXI 6711

5 PXI 6723 (a and b)

6 PXI 6704

7 PXI 8430/8

8 PXI 6723 (c and d)

9 PXI 6132

The PXI cards are equipped with SCSI connectors, which allow the manufacturer to combine

68 signals in a single, compact connector. SCSI cables connect the DAQ cards to the back plane

of a connector box (Fig. 5.1), which routes the signals to more convenient miniature LEMO

and D-Sub connectors on its front panels. The pinout of the front panels of the connector box,
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I 6
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Figure 5.1: Schematic representation of the front and back plane of the connector box. The DAQ cards
are connected to the back plane via SCSI cables. Miniature LEMO and D-Sub connectors on the front
panels allow one to easily connect the different signals to various devices.

schematically shown in Fig. 5.1, is given in the following. For every connector, the PXI card,

the number of the SCSI pin, the pin designation (National Instruments terminology), and the

current function of the signal on the connector are given.
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Panel 1, timers, PXI 6602
Various timing tasks. Some timers are used internally to synchronize the data acquisition to
the machine cycle. Their signals can be read out for diagnostic purposes.

card pin pin designation function

PXI 6602 5 PFI 36/CTR 0 OUT internal (timing of execution)

PXI 6602 9 PFI 32/CTR 1 OUT hexapole exit lens timing

PXI 6602 32 PFI 28/P0.28/CTR 2 OUT 22-pole exit lens timing

PXI 6602 29 PFI 24/P0.24/CTR 3 OUT broken

PXI 6602 26 CTR 4 OUT/PFI 20/P0.20 pyroelectric detector gate

PXI 6602 23 CTR 5 OUT/PFI 16/P0.16 CTR 0 gate out

PXI 6602 53 CTR 6 OUT/PFI 12/P0.12 internal (timing of execution)

PXI 6602 16 CTR 7 OUT/PFI 8/P0.8 internal (timing of execution)

Panel 2, DIO and CTR sources, PXI 6602
The output of the counting preamplifier is connected to the source of the counter CTR 0. The
counter CTR 1 is currently not used. The digital lines P0.0 and P0.1 are used as inputs to
synchronize the system with the BNC delay generator, which is used as the master clock of
the experiment. The digital lines P0.2 and P0.3 handle the communication with the Lambda
Physik dye laser.

card pin pin designation function

PXI 6602 2 PFI 39/CTR 0 SOURCE CTR 0 source (ion counting)

PXI 6602 7 PFI 35/CTR 1 SOURCE CTR 1 source (not used)

PXI 6602 10 PFI 0/P0.0 t0 in (clocking pulse in)

PXI 6602 44 PFI 1/P0.1 ν/2 in (half frequency clocking
pulse in)

PXI 6602 45 PFI 2/P0.2 Lambda burst trigger

PXI 6602 12 PFI 3/P0.3 Lambda ready

PXI 6602 13 PFI 4/P0.4

PXI 6602 47 PFI 5/P0.5

Panel 3, AI, PXI 6052E
Various readbacks.

card pin pin designation function

PXI 6052E 28 AI 4 multiplier(+) Vmon

PXI 6052E 60 AI 5 Q1 pole bias read

PXI 6052E 25 AI 6 Q2 pole bias read

PXI 6052E 57 AI 7 broken

PXI 6052E 34 AI 8 ion funnel RF amplitude read

PXI 6052E 66 AI 9 hexapole RF amplitude read

PXI 6052E 31 AI 10 22-pole RF amplitude read

PXI 6052E 63 AI 11 needle voltage read
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Panel 4, DO and AI, PXI 6052E and PXI 6711
This panel features two 15D-Sub connectors, which are used to read back the DC voltages
generated by two Spectrum Solutions power supplies. Four digital lines and one analog input
are used for the readback of each ten outputs. The digital lines are connected to a multiplexer
that selects which output to read on the analog line.

15D-Sub A

card pin pin designation function

PXI 6052E 52 P0.0 pin 1, bit 1

PXI 6052E 17 P0.1 pin 9, bit 2

PXI 6052E 49 P0.2 pin 2, bit 4

PXI 6052E 47 P0.3 pin 10, bit 8

PXI 6052E 68 AI 0 pin 3, meter channel 1-10

PXI 6052E 19 P0.4 pin 11, bit 1

PXI 6052E 51 P0.5 pin 4, bit 2

PXI 6052E 16 P0.6 pin 12, bit 4

PXI 6052E 48 P0.7 pin 5, bit 8

PXI 6052E 33 AI 1 pin 13, meter channel 11-20

15D-Sub B

card pin pin designation function

PXI 6711 52 P0.0 pin 1, bit 1

PXI 6711 17 P0.1 pin 9, bit 2

PXI 6711 49 P0.2 pin 2, bit 4

PXI 6711 47 P0.3 pin 10, bit 8

PXI 6052E 65 AI 2 pin 3, meter channel 1-10

PXI 6711 19 P0.4 pin 11, bit 1

PXI 6711 51 P0.5 pin 4, bit 2

PXI 6711 16 P0.6 pin 12, bit 4

PXI 6711 48 P0.7 pin 5, bit 8

PXI 6052E 30 AI 3 pin 13, meter channel 11-20

Panel 5, fast AO, PXI 6052E and PXI 6711
Control voltages for mass command and pole bias of Q1.

card pin pin designation function

PXI 6052E 22 AO 0 Q1 mass command

PXI 6052E 21 AO 1 Q1 pole bias

PXI 6711 22 AO 0

PXI 6711 21 AO 1

PXI 6711 57 AO 2

PXI 6711 25 AO 3
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Panel 6, timers, PXI 6052E, PXI 6711 and PXI 6723 (a)
Various timers.

card pin pin designation function

PXI 6052E 2 CTR 0 OUT 22-pole enable

PXI 6052E 40 CTR 1 OUT pulsed valve

PXI 6711 2 CTR 0 OUT

PXI 6711 40 CTR 1 OUT

PXI 6723 (a) 2 CTR 0 OUT

PXI 6723 (a) 40 CTR 1 OUT

Panels 7 and 8, AO, PXI 6723 (a), 6723 (b), and 6704
Panels 7 and 8 each feature one 25D-Sub connector that supplies the command voltages for a
Spectrum Solutions power supply.

25D-Sub A

card pin pin designation function

PXI 6723 (a) 22 AO 0 pin 1, output 1

PXI 6723 (a) 21 AO 1 pin 14, output 2

PXI 6723 (a) 57 AO 2 pin 2, output 3

PXI 6723 (a) 25 AO 3 pin 15, output 4

PXI 6723 (a) 60 AO 4 pin 3, output 5

PXI 6723 (a) 28 AO 5 pin 16, output 6

PXI 6723 (a) 30 AO 6 pin 4, output 7

PXI 6723 (a) 65 AO 7 pin 17, output 8

PXI 6723 (b) 68 AO 8 pin 5, output 9

PXI 6723 (b) 33 AO 9 pin 18, output 10

PXI 6723 (b) 32 AO 10 pin 6, output 11

PXI 6723 (b) 65 AO 11 pin 19, output 12

PXI 6723 (b) 30 AO 12 pin 7, output 13

PXI 6723 (b) 29 AO 13 pin 20, output 14

PXI 6723 (b) 62 AO 14 pin 8, output 15

PXI 6723 (b) 27 AO 15 pin 21, output 16

PXI 6723 (b) 26 AO 16 pin 9, output 17

PXI 6723 (b) 59 AO 17 pin 22, output 18

PXI 6723 (b) 24 AO 18 pin 10, output 19

PXI 6723 (b) 23 AO 19 pin 23, output 20
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25D-Sub B

card pin pin designation function

PXI 6723 (b) 22 AO 20 pin 1, output 1

PXI 6723 (b) 21 AO 21 pin 14, output 2

PXI 6723 (b) 57 AO 22 pin 2, output 3

PXI 6723 (b) 25 AO 23 pin 15, output 4

PXI 6723 (b) 60 AO 24 pin 3, output 5

PXI 6723 (b) 28 AO 25 pin 16, output 6

PXI 6723 (b) 30 AO 26 pin 4, output 7

PXI 6723 (b) 65 AO 27 pin 17, output 8

PXI 6723 (b) 68 AO 28 pin 5, output 9

PXI 6723 (b) 33 AO 29 pin 18, output 10

PXI 6723 (b) 32 AO 30 pin 6, output 11

PXI 6723 (b) 65 AO 31 pin 19, output 12

PXI 6704 34 AO 0 (V) pin 7, output 13

PXI 6704 66 AO 1 (V) pin 20, output 14

PXI 6704 31 AO 2 (V) pin 8, output 15

PXI 6704 63 AO 3 (V) pin 21, output 16

PXI 6704 28 AO 4 (V) pin 9, output 17

PXI 6704 60 AO 5 (V) pin 22, output 18

PXI 6704 25 AO 6 (V) pin 10, output 19

PXI 6704 57 AO 7 (V) pin 23, output 20

Panel 9, slow AO, PXI 6704
Command voltages for the quadrupoles and the octopole.

card pin pin designation function

PXI 6704 22 AO 8 (V) Q2 mass command

PXI 6704 54 AO 9 (V) Q2 pole bias

PXI 6704 52 AO 10 (V) Q2 ∆m

PXI 6704 17 AO 11 (V) Q1 ∆m

PXI 6704 15 AO 12 (V) octopole “mass command”
(i.e. RF amplitude)

PXI 6704 47 AO 13 (V) octopole pole bias

PXI 6704 12 AO 14 (V)

PXI 6704 44 AO 15 (V)
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Panel 10, DIO, PXI 6704
Digital signals for the communication with the quadrupoles and the Lumonics dye laser.

card pin pin designation function

PXI 6704 2 P0.0 Q1 pole DC

PXI 6704 3 P0.1 Q1 pole DC reverse

PXI 6704 4 P0.2 Q3 pole DC

PXI 6704 5 P0.3 Q3 pole DC reverse

PXI 6704 6 P0.4 Lumonics burst trigger

PXI 6704 7 P0.5 Lumonics in position

PXI 6704 8 P0.6 broken

PXI 6704 9 P0.7

Panel 11, DIO, PXI 6723 (a)
Digital signals for the communication with the ion funnel and hexapole RF power supplies and
the high voltage power supplies for the dynode and multiplier (–). The digital line P0.6 reads
the half frequency clocking pulse. This way the software can determine whether the current
cycle is an “on” or “off” cycle.

card pin pin designation function

PXI 6723 (a) 52 P0.0 ion funnel enable

PXI 6723 (a) 17 P0.1 hexapole enable

PXI 6723 (a) 49 P0.2 dynode polarity set

PXI 6723 (a) 47 P0.3 multiplier (–) polarity set

PXI 6723 (a) 19 P0.4 dynode polarity read

PXI 6723 (a) 51 P0.5 multiplier (–) polarity read

PXI 6723 (a) 16 P0.6 ν/2 in (half frequency clocking
pulse in)

PXI 6723 (a) 48 P0.7

Panel 12, timers, AI, and DIO, PXI 6723 (c) and PXI 6052E
This panel provides two timer outputs; two analog inputs, which are used to read back the
voltage outputs of two high voltage power supplies; and the 15D-Sub connector that is used to
read back the DC voltages of a third Spectrum Solutions power supply (see panel 4).

card pin pin designation function

PXI 6723 (c) 2 CRT 0 OUT

PXI 6723 (c) 40 CRT 1 OUT

PXI 6052E 58 AI 14 dynode Vmon

PXI 6052E 23 AI 15 multiplier (–) Vmon
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15D-Sub C

card pin pin designation function

PXI 6723 (c) 52 P0.0 pin 1, bit 1

PXI 6723 (c) 17 P0.1 pin 9, bit 2

PXI 6723 (c) 49 P0.2 pin 2, bit 4

PXI 6723 (c) 47 P0.3 pin 10, bit 8

PXI 6052E 61 AI 12 pin 3, meter channel 1-10

PXI 6723 (c) 19 P0.4 pin 11, bit 1

PXI 6723 (c) 51 P0.5 pin 4, bit 2

PXI 6723 (c) 16 P0.6 pin 12, bit 4

PXI 6723 (c) 48 P0.7 pin 5, bit 8

PXI 6052E 26 AI 13 pin 13, meter channel 11-20

Panel 13, AO, PXI 6723 (c) and 6723 (d)
Panel 13 features one 25D-Sub connector that supplies the command voltages for a third
Spectrum Solutions power supply (see panels 7 and 8).

25D-Sub C

card pin pin designation function

PXI 6723 (c) 22 AO 0 pin 1, output 1

PXI 6723 (c) 21 AO 1 pin 14, output 2

PXI 6723 (c) 57 AO 2 pin 2, output 3

PXI 6723 (c) 25 AO 3 pin 15, output 4

PXI 6723 (c) 60 AO 4 pin 3, output 5

PXI 6723 (c) 28 AO 5 pin 16, output 6

PXI 6723 (c) 30 AO 6 pin 4, output 7

PXI 6723 (c) 65 AO 7 pin 17, output 8

PXI 6723 (d) 68 AO 8 pin 5, output 9

PXI 6723 (d) 33 AO 9 pin 18, output 10

PXI 6723 (d) 32 AO 10 pin 6, output 11

PXI 6723 (d) 65 AO 11 pin 19, output 12

PXI 6723 (d) 30 AO 12 pin 7, output 13

PXI 6723 (d) 29 AO 13 pin 20, output 14

PXI 6723 (d) 62 AO 14 pin 8, output 15

PXI 6723 (d) 27 AO 15 pin 21, output 16

PXI 6723 (d) 26 AO 16 pin 9, output 17

PXI 6723 (d) 59 AO 17 pin 22, output 18

PXI 6723 (d) 24 AO 18 pin 10, output 19

PXI 6723 (d) 23 AO 19 pin 23, output 20
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Panel 14, AO, PXI 6723 (d)
Various command voltages. The RF amplitudes of the ion funnel, hexapole, and 22-pole are
indirectly controlled via DC voltages that three FUG power supplies deliver to the RF power
supplies.

card pin pin designation function

PXI 6723 (d) 55 AO 20 Q1 ∆res

PXI 6723 (d) 20 AO 21 Q2 ∆res

PXI 6723 (d) 19 AO 22 ion funnel RF amplitude

PXI 6723 (d) 52 AO 23 hexapole RF amplitude

PXI 6723 (d) 17 AO 24 22-pole RF amplitude

PXI 6723 (d) 16 AO 25 dynode Vset

PXI 6723 (d) 49 AO 26 multiplier (–) Vset

PXI 6723 (d) 14 AO 27 multiplier (+) Vset

Panel 15, AO, PXI 6723 (d)
The command voltage for the high voltage applied to the spray needle.

card pin pin designation function

PXI 6723 (d) 13 AO 28 needle voltage

PXI 6723 (d) 46 AO 29

PXI 6723 (d) 11 AO 30

PXI 6723 (d) 10 AO 31

The PXI 6133 card is used to record the analog ion signal and the signal of the pyroelectric

detector for normalization on the laser power. These signals are directly connected to the PXI

the card via a short connector bock (National Instruments).

Connections for analog ion signal and signal of the pyroelectric detector,
fast AI, PXI 6133

card pin pin designation function

PXI 6133 AI 0 analog ion signal

PXI 6133 AI 1 signal of pyroelectric detector
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patience in constructing the two versions of the planar trap.



Our electronics workshops, especially Supardi Sujito, Grégoire Pasche, and Patrick Favre, who

made the major part of the electronics that we needed to set up the lab.

Our secretary, Marianne Dang, the soul and heart of our group, whose kindness and moral

support are invaluable.

Prof. Rainer Beck for good advice and for helping me out so many times with his equipment.

Dr. Caroline Seaiby for long conversations and mutual encouragement, her special sense of

humor, and our Négoce breaks.
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