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accepting my theft of Verònica! And then, like a dessert, I have left the best for
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Model-based Behavioural Tracking and Scale Invariant Features in
Omnidirectional Matching

Abstract: Two classical but crucial and unsolved problems in Computer Vision
are treated in this thesis: tracking and matching. The first part of the thesis deals
with tracking, studying two of its main difficulties: object representation model drift
and total occlusions. The second part considers the problem of point matching be-
tween omnidirectional images and between omnidirectional and planar images.
Model drift is a major problem of tracking when the object representation model
is updated on-line. In this thesis, we have developed a visual tracking algorithm
that simultaneously tracks and builds a model of the tracked object. The model
is computed using an incremental PCA algorithm that allows to weight samples.
Thus, model drift is avoided by weighting samples added to the model according
to a measure of confidence on the tracked patch. Furthermore, we have introduced
also spatial weights for weighting pixels and increasing tracking accuracy in some
regions of the tracked object.
Total occlusions are another major problem in visual tracking. Indeed, a total oc-
clusion hides completely the tracked object, making visual information unavailable
for tracking. For handling this kind of situations, common in unconstrained sce-
narios, the Model cOrruption and Total Occlusion Handling (MOTOH) framework
is introduced. In this framework, in addition to the model drift avoidance scheme
described above, a total occlusion detection procedure is introduced. When a total
occlusion is detected, the tracker switches to behavioural-based tracking, where in-
stead of guiding the tracker with visual information, a behavioural model of motion
is employed.
Finally, a Scale Invariant Feature Transform (SIFT) for omnidirectional images is
developed. The proposed algorithm generates two types of local descriptors, Lo-
cal Spherical Descriptors and Local Planar Descriptors. With the first ones, point
matching between omnidirectional images can be performed, and with the second
ones, the same matching process can be done but between omnidirectional and
planar images. Furthermore, a planar to spherical mapping is introduced and an
algorithm for its estimation is given. This mapping allows to extract objects from
an omnidirectional image given their SIFT descriptors in a planar image.
Keywords: Tracking, Matching, PCA, On-Line Learning, Pedestrian Tracking,
SIFT, Omnidirectional Vision.





Model-based Behavioural Tracking and Scale Invariant Features in
Omnidirectional Matching

Résumé: Dans cette thèse, nous traitons de deux problèmes cruciaux et non-
résolus à ce jour, dans le domaine de la vision assistée par ordinateur: le suivi et
la correspondance. La première partie de la thèse traite du suivi, par l’étude de ses
deux principales difficultés: la corruption des modèles de représentation d’objets et
les occlusions totales. Dans la seconde partie de la thèse, nous nous intéressons au
problème de la correspondance de points entre des images omnidirectionnelles, et
entre des images omnidirectionnelles et plannaires.
Concernant le suivi, la corruption des modèles est un problème majeur, notamment
lorsque la mise à jour des modèles de représentation d’objets se fait en temps réel.
Dans cette thèse, nous avons développé un algorithme de suivi visuel, qui en plus
de sa fonction première, construit simultanément un modèle d’apparence de l’objet.
Le modèle est calculé en utilisant une Analyse en Composante Principale (ACP)
incrémentale, qui permet la pondération des échantillons. Ainsi, la corruption du
modèle est évitée par l’ajout des échantillons pondérés, basé sur une mesure de
confiance de l’objet suivi. Nous avons également proposé une pondération spatiale,
dans le but de pouvoir pondérer des pixels et d’augmenter la précision du suivi pour
certaines zones de l’objet considéré.
Les occlusions totales représentent un autre problème majeur du suivi visuel. En
effet, l’occlusion totale cache entièrement l’objet, et rend indisponible toute in-
formation utile au suivi. Pour gérer ces situations, communes dans les scénarios
non-constraints, nous proposons un cadre théorique appelé MOTOH pour “Model
cOrruption and Total Occlusion Handling”. Dans ce cadre théorique, et en plus
du schéma d’évitement de corruption des modèles décrit précédemment, nous pro-
posons une procédure de détection des occlusions totales. Lorsqu’une occlusion
totale est détectée, l’algorithme de suivi passe à un suivi basé sur le comportement.
Plus précisément, l’algorithme utilise un modèle de mouvement comportemental, à
la place des informations visuelles.
Enfin, une transformation des informations ne dépendant pas de l’échelle (SIFT),
est développée pour les images omnidirectionnelles. L’algorithme génère deux types
de descripteurs: les descripteurs sphériques locaux et les descripteurs plannaires lo-
caux. Avec les premiers, nous pouvons établir la correspondance entre des points
dans des images omnidirectionnelles; avec les seconds, la correspondance entre des
points peut être établie entre des images omnidirectionnelles et plannaires. En
outre, une transformation pour passer d’images plannaires à sphériques est pro-
posée, et son estimation est donnée. Cette transformation permet d’extraire des
objets d’une image omnidirectionnelle, étant donné leurs descripteurs SIFT dans
une image plannaire.
Mots Clés: Suivi, Correspondance, ACP, Apprentissage en Direct, Suivi de
Piétons, Vision Omnidirectionnelle.
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Chapter 1

Introduction and Motivations

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Organisation of the thesis . . . . . . . . . . . . . . . . . . . . 6

1.1 Context

Visual perception is the capacity of capturing the information contained in visible
light. Human beings have developed an advanced vision, which is the capacity of
interpreting the information captured in this visual perception process. Indeed,
complex visual processes are performed by humans without any special effort, such
as recognising subjects or following a moving object.

The engineering field that studies the development of vision capacities in a
computer is known as Computer Vision (CV). Nowadays, CV is experiencing an
important development thanks to the increasing complexity of the algorithms
developed by the CV community, which allows to perform more and more complex
visual tasks. The capacity of achieving the current degree of complexity has
been favoured by the continuous increase of computational power, as well as the
decrease in the cost of visual perception devices, i.e. cameras. This decrease of
costs has allowed a growth in the number of installed surveillance cameras and a
generalisation in the use of cameras in almost any new device, from video-game
consoles to mobile phones.

Matching of features, points, regions or objects is a core vision task. It can be
studied in a dynamical context, where the matching is performed across time in a
video sequence, or in a static context, where the matching is performed between
different images without a relevant temporal relationship. The first is the kernel
of Visual Tracking (VT), the second is performed in applications such as object
detection or image registration.
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On one side, Visual Tracking is an important vision task required by a wide variety
of CV applications, such as video-surveillance, human-computer interaction, traffic
monitoring or medical imaging. Tracking consists of following a target over time.
VT denotes the group of techniques that employ visual information for performing
this tracking. The difficulty of VT lies in the dynamic nature of the problem,
which generates changes in the tracked object and in the scene context. On the
one hand, noise, illumination changes or camera motion generate changes in the
scene that is being observed. On the other hand, the tracked entity changes due
to occlusions, deformations or pose changes.

The use of robust features for tracking can minimise the effects of most of the
aforementioned variabilities. However, some other aspects cannot be considered
only by using visual information. For instance, when we see a person walking and
passing behind a column, we know that this person will very likely appear on the
other side of the column after some period of time. We do not need any visual
cue on the other side of the column to infer this, instead we use our previous
experience in similar situations and our experience about human behaviour. This
kind of information is not strictly visual, but provides useful information to vision.

Mathematical models allow to exploit this complementary dimension of information
in a CV application. Techniques such as Hidden Markov Models (HMM), Gaussian
networks, Discrete Choice Models (DCM) or Support Vector Machines (SVM)
can be used for simulating human experience about the observed scene. Their
combination with CV techniques based only on visual information can be a way of
developing more robust and powerful CV algorithms, with a closer performance to
the human vision system.

On the other side, applications such as object detection or image registration are
crucial for the development of new interactive applications between humans and
digital devices. This has encouraged a lot of research, producing a wide spectrum
of algorithms robust to typical visual changes such as affine transformations, illu-
mination changes or noise. However, the hardware sometimes imposes constraints
to the final application that are hard to deal with, such as narrow fields of view.
This has encouraged research on new architectures of visual sensors, such as depth
cameras, plenoptic cameras or omnidirectional cameras. As a first approach, CV
algorithms developed for standard projective cameras can be applied to these new
types of cameras. Nevertheless, specific algorithms, taking into account their speci-
ficities, have to be developed to completely exploit all their advantages.

1.2 Motivations

A common step performed in a wide variety of CV applications is the matching
of points, features, regions or objects, i.e. visual entities. For instance, in object
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detection applications, the objective is to match a given object into a given image,
or in VT applications a tracked object is matched across frames. The critical point
of this matching procedure is the variability of the visual entities that are being
matched.

The visual information received from a visual entity can be considered as a
realisation of a random process. Then, observing this visual entity, from different
points of view, during a certain period of time, or from different types of visual
sensors, produces different realisations of this random process. CV algorithms
need to have the capacity of adapting themselves to these variations, making the
procedure robust. This is hard due to the impossibility of modelling some of the
aspects that introduce the variability. We divide the sources of visual information
variability introduced in the realisation of the random process in two groups:
endogenous sources and exogenous sources.

On the one hand, endogenous sources are those that are directly related to the
visual entity itself, such as its motion or its deformation in the case of a deformable
object. Endogenous sources of variability are, in general, not hard to consider
if we have a good knowledge about the visual entity. For instance, in the case
of a planar and rigid moving object observed with a regular projective camera,
the most remarkable endogenous sources of variability are the affine transfor-
mations of the object, and it is not difficult to account for them in a CV application.

On the other hand, exogenous sources are those not directly related to the visual
entity, but to other aspects of the scene. Exogenous sources of variability are not
straightforward to consider in a CV application, since even a complete knowledge
of the observed object (colour, texture, 3D information, etc) can be useless
for handling them. Examples are partial occlusions, total occlusions, noise or
illumination changes.

Some aspects of the variability introduced by exogenous sources can be reduced by
improving the visual sensor. In this sense, omnidirectional visual sensors enlarge
considerably the field of view compared to regular cameras, which can improve for
instance some occlusion aspects. However, in some cases this variability cannot
be handled by using only visual information, as for example in the case of a total
occlusion. This motivates the study of interdisciplinary approaches combining
CV and mathematical modelling techniques, for producing human-like systems
where the lack of visual information is thwarted by experience on similar behaviour.

With the objective of dealing with challenging situations, which are mainly gen-
erated by this uncontrolled exogenous sources of variability, we have investigated
three motivating problems in the dynamical and static contexts introduced above:

• Handling non-persistent exogenous sources of variability in VT:
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Short-time occlusions, temporary changes in lighting or partial occlusions
of an object that is being tracked are difficulties that a VT algorithm has
to deal with. Usually, tracking algorithms use a model of the object being
tracked for determining its position at each frame of the video. In general,
it is useful to update the model with new information about the object, in
order to keep it adapted to the tracking conditions at any moment. This
update has the drawback that bad quality samples of the object can corrupt
the model, causing a loss of track. In this thesis, we have investigated how
the model can be updated without corrupting it with bad quality samples of
the object, giving robustness to the updating process. Furthermore, we have
developed a strategy for achieving more accuracy in important regions of the
tracked object.

• Total occlusions in VT: A total occlusion of an object is an important
problem in tracking, especially when this occlusion is somehow persistent
in time. A total occlusion causes the complete loss of visual information
from the tracked object during a period of time. Therefore, other sources
of information have to be exploited for continuing the tracking. We have
developed a framework where a probabilistic behavioural model replaces
the visual information whenever a total occlusion occurs. The proposed
framework has been applied to pedestrian tracking, where we have studied
the use of a pedestrian walking behaviour model, calibrated and validated on
real data.

• Point matching between omnidirectional images and planar and
omnidirectional images: Standard visual perception devices can be
approximated by the pinhole camera model. In this model, the 3D world is
projected into a 2D plane. For this reason standard cameras are also called
planar cameras. As commented before, new architectures of visual sensors
can solve or minimise some problems of planar images. The problem is that,
omnidirectional visual perception devices capture visual information as if
the sensor were placed in a curved surface, whose geometry is embedded in
the captured image. This can distort considerably the visual information
of the observed objects, which entails two main consequences. First, the
same object at different points of an omnidirectional image can present very
different appearances. Secondly, the image of the same object captured by a
planar sensor and by an omnidirectional sensor can also differ considerably.
This justifies the development of algorithms that take into account this
geometry and, when working with planar and omnidirectional images, work
in a common framework for combining both types of images. With this in
mind, we have studied the problem of point matching between omnidirec-
tional images and between omnidirectional and planar images, developing an
algorithm that performs both tasks successfully, using a spherical scale-space
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representation of omnidirectional images.

1.3 Contributions

Several contributions are presented in this dissertation. A summary of them is
exposed below:

• Weighted incremental Principal Component Analysis (PCA) algo-
rithm: We have developed an incremental PCA algorithm where the con-
tribution of each data sample (columns of the data matrix) can be weighted.
The technique used for weighting the data samples cannot be adapted for
weighting variables (rows of the data matrix). However, in the context of VT
we have developed a way of applying spatial weights for increasing tracking
accuracy in predefined regions of the tracked object.

• Model corruption avoidance in VT: The unsupervised update of a model
with new data is a very sensitive procedure. In VT, bad data samples have to
be detected in order to adapt their contribution to the model accordingly. In
this sense, we have combined our weighted incremental PCA algorithm with
a measure of the quality of a tracking, in order to weight the contributions of
the tracked samples to the model of the tracked object.

• General framework for dealing with total occlusions in VT: Total
occlusions are one of the most challenging problems in VT. In this thesis,
we have developed a tracking framework where the lack of visual information
caused by a total occlusion is counteracted by a probabilistic behavioural
model of motion. The framework is very flexible, allowing its configuration
from a general purpose tracking to an object specific tracking, where the
motion pattern is known.

• Complete VT framework: Combining the model corruption avoidance
strategy and the management of total occlusions, we have developed a com-
plete and robust VT framework. The tracking approach builds and updates
a model of the tracked object while tracking, avoids model corruption by
weighting the contribution of samples, increases, if needed, tracking accuracy
in some regions of the tracked object and handles total occlusions.

• Novel interdisciplinary approach to VT: The complete VT framework
proposed in this thesis has been applied to pedestrian tracking using a pedes-
trian walking behaviour model, estimated and validated on real data. This
approach combines two fields, CV and mathematical modelling of behaviour.
The obtained results show the advantages of using behavioural data in ad-
dition to visual data in CV applications. The pedestrian walking behaviour
model was published in [Robin 2009].
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• Scale Invariant Feature Transform (SIFT) on the sphere for omni-
directional images: A scale invariant feature transform for omnidirectional
images on the sphere has been developed. Two types of feature descriptors
have been introduced. The first one, called Local Spherical Descriptor (LSD),
is defined on the sphere, as the omnidirectional image. The second one, Local
Planar Descriptor (LPD), is defined in a tangent plane to the sphere. This
work has been submitted to the International Journal of Computer Vision
and is nowadays in the second revision round.

• Matching between points in omnidirectional images and points in
planar and omnidirectional images: By performing the SIFT on the
sphere aforementioned, LSDs and LPDs can be computed. On the one hand,
LSDs can be used for matching points between omnidirectional images, which
can be useful for instance in motion estimation applications. On the other
hand, LPDs allow to match points between planar images and omnidirec-
tional images. This is useful for instance in CV applications requiring an
object detection procedure in omnidirectional images, since the great major-
ity of databases of objects consists of planar images. In addition, a planar to
spherical mapping is also introduced for transferring segmentations performed
in planar images to spherical images. This work has been submitted to the
International Journal of Computer Vision and is nowadays in the second re-
vision round.

1.4 Organisation of the thesis

This thesis is organised as follows. Chapter 2 is an introduction to the theoretical
aspects of visual tracking. There, the current state-of-the-art in tracking is
discussed, making special emphasis in Particle Filter (PF) based methods, given
its importance in subsequent chapters. The base VT method used in the thesis is
also described in detail.

In Chapter 3, we introduce the techniques that we have developed to avoid model
corruption in on-line model updating. These techniques are based on weighting
the samples where PCA is performed. A method for simulating a weight applied
to individual pixels, in the context of VT, is also introduced in this Chapter. This
pixel weighting strategy can increase the accuracy of the performed tracking in
some specific regions of the tracked object.

Then, in Chapter 4, we study the problem of total occlusion, developing a method
for handling it in VT applications. This allows to define the complete VT
framework, whose use in the problem of pedestrian tracking is introduced, showing
how to exploit visual and behavioural data for tracking.

Afterwards, in Chapter 5, the scale-invariant feature transform on the sphere is



1.4. Organisation of the thesis 7

introduced, developing the matching algorithms between points in omnidirectional
images and between points in planar and omnidirectional images.

Finally, in Chapter 6 we discuss the conclusions that can be extracted from this
thesis, as well as possible lines of future research.
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Visual Tracking in Computer
Vision
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2.1 Introduction

Visual Tracking is a core problem in many CV applications. For mentioning some
examples, in the context of Human-Computer Interaction (HCI), [Polat 2003] de-
velop a tracking algorithm of hands and faces for collaborative HCI; [Santis 2009]
use an eye-tracking algorithm for communicating with disabled people; and
[An 2011] use a tracking algorithm to detect finger gestures and control a mobile
phone. In traffic monitoring, [Reinartz 2006] use a vehicle tracking algorithm
for monitoring traffic using airbone cameras, and [Semertzidis 2010] use a VT
algorithm for real-time monitoring of traffic in a network of calibrated cameras.
In the context of video-surveillance, [Huang 2008] use a tracking algorithm for
night tracking of moving objects in an autonomous outdoor surveillance system,
and [Baseggio 2010] develop an autonomous surveillance system where a defined
perimeter is autonomously patrolled and mobile targets tracked. Or in the recent
and fast growing field of Augmented Reality (AR), where [Marimon 2007b] develop
a hybrid marker/feature tracker for recovering camera position in Augmented
Reality applications.



10 Chapter 2. Visual Tracking in Computer Vision

The main task of a tracking algorithm is to assign consistent labels to tracked objects
along all the frames of a video sequence. Given a video sequence S composed of
image frames Ik, i.e.

S = {Ik|k ∈ K ⊆ N}, (2.1)

where k is a temporal index, a tracking algorithm estimates for every tracked object
j, a time series

x(j) = {x(j)k |k ∈ K ⊆ N}, (2.2)

j ∈ J , where J denotes the set of objects being tracked. Each element x(j)k of the
time series x(j) denotes the state of object j at time k and defines its trajectory
over time.

Visual Tracking in unconstrained scenarios is an unsolved CV problem. From a
static point of view, the main difficulty of VT is clutter. Clutter is the phenomenon
of similarity between features on target regions and features on non-target regions
(see Figure 2.1). From a dynamic point of view, the temporal dimension in VT
implicitly entails changes in the object of interest due to noise, deformations,
occlusions, illumination changes, etc. Handling these changes and dealing with
clutter are the core difficulties of VT, and the ability of an algorithm for dealing
with one or more of these problems, makes the difference between VT algorithms.
Since there is no universal tracking algorithm, the knowledge about the faced
problem helps in choosing, adapting or developing VT algorithms that are robust
to the specific difficulties of an application. In this Chapter we give an introduction
to the structure of VT algorithms, as well as an overview of the state-of-the-art on
this topic.

A common preliminary operation to tracking is object detection, al-
though some algorithms perform a simultaneous detection and tracking
[Czyz 2007, Breitenstein 2009]. Indeed, when a tracking algorithm is intended
to follow some precise objects, these objects need to be previously detected. In
this thesis we do not deal with this problem. In Chapter 3 and Chapter 4 we
always consider that the starting bounding boxes are given. We only tackle
object detection indirectly in Chapter 5, where object detection is one of the
potential applications of the developed algorithm. The interested reader in object
detection algorithms is referred, as a starting point, to [Yang 2002], [Mundy 2006],
[Enzweiler 2009], [Galleguillos 2010], [Gerónimo 2010] and references inside them.

This Chapter is organised as follows. In Section 2.2 we give a general overview of
the state-of-the-art in VT, describing the components of a general VT algorithm
and the main techniques applied on each of these components. In Section 2.3,
we introduce Particle Filters, given their importance in tracking and their use
in posterior chapters of the thesis. In Section 2.4 we introduce in detail the
Incremental Visual Tracking algorithm, which is the starting point of the tracking
algorithms developed in this thesis. Then, in Section 2.5, performance evaluation
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Figure 2.1: Example of clutter in an image.

of VT algorithms is introduced. Finally, in Section 2.6 we conclude this chapter by
giving some insights of the developments of this thesis with respect to the contents
exposed in this chapter.

2.2 Visual Tracking Algorithms

From a bottom-up point of view, a VT algorithm can be roughly defined by
describing three main blocks [Yilmaz 2006, Maggio 2010]: the feature extraction
block, the object representation block and the object localisation block.

A generic VT algorithm can be seen then as the application of these three blocks
according to the schematic representation in Figure 2.2. Given a frame of a video
sequence, the first block performs a feature extraction on its captured visual
information. These extracted features, together with the model of the object
computed in the object representation block, feed the object localisation block for
estimating the new state of the object of interest. Optionally, the new computed
state can feed the object representation block for updating the model. In the
following sections, each one of these three blocks is described more in detail, giving
a snapshot of their respective state-of-the-art.
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Input Video

Feature Extraction

Object Localisation

Object Representation

Tracking Output

Figure 2.2: Schematic view of a general VT algorithm.

2.2.1 Feature Extraction

A visual sensor receives visual information from the scene that it is observing.
Robust features need to be extracted from this rough visual information in order
to work with this data. In VT applications, robustness in features basically means
persistence along time and uniqueness of the features placed on the object of
interest, i.e. the object being tracked. The uniqueness characteristic has two
objectives: distinguish the object of interest from other similar objects in the scene
and deal with clutter.

The robustness of the performed tracking is directly related with the robustness
of the used features. In this sense, the features that are extracted from the visual
information of the object of interest are a critical point of any VT algorithm. In
general, these features can be divided into three main families [Maggio 2010]:

• Low-level features: Low-level features consider the local information pro-
vided by individual pixels. These are, in general, the easiest features in
terms of computation complexity, but also the most affected by the exoge-
nous sources of variability described in Chapter 1.

• Mid-level features: Mid-level features are those computed using information
provided by groups of pixels.

• High-level features: High-level features consider whole objects as features.
These are the most complex in terms of computation, but are supposed to be
the most robust.

Among low-level features, colour is one of the most popular due to its simplicity
and its suitability to be used with deformable objects. There are a wide variety of
colour spaces, each one with its advantages and disadvantages. In [Wang 2008a],
the authors use RGB, HSV and normalised RGB as features for tracking. RGB
is not discriminative enough, therefore they considered also HSV and normalised
RGB, that are more discriminative and robust to illumination changes, although
more sensitive to noise. Another set of common low-level features are image
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derivatives. Derivatives encode information about local intensity changes, which
are meaningful features especially at the boundaries of the object of interest.
In [Birchfield 1998], boundary of faces is tracked using gradient information of
the image combined with colour histograms. Finally, motion is another low-level
feature useful in tracking. It presents the difficulty that only apparent motion
can be estimated from a video sequence. Apparent motion is the observed motion
due to changes on the intensity information of the image. It is related to real
motion, but it also depends on noise and illumination, which makes the problem of
estimating real motion from apparent motion hard. Motion information is usually
treated using the Optical Flow (OF), which is a vector field that defines the
translations of pixels in a region [Horn 1981, Lucas 1981, Reddy 1996, Zach 2007].
In [Shin 2005] a tracking algorithm using OF features is presented. The method
can deal with partial occlusions thanks to the motion information given by OF.
This motion is used to predict positions of occluded features.

Edges are a typical example of mid-level features. Several edge detector approaches
exist in the literature. The interested reader is referred to [Bowyer 2001]. A
popular approach is the Canny edge detector [Canny 1986], that is used in
[Wang 2010] as feature extractor for tracking in a contrast media injection control
application in computed tomography angiography. Another type of mid-level
features are interest points and regions. Interest points are points on an image that
contain good image features, in the sense of accurate localisation and repeatability.
In [Wang 2008b], Harris corner features [Harris 1988] are used as facial features for
face tracking. If interest points are computed using a scale-space representation
of the image, then they are called interest regions. One of the most well-known
interest region detector is the one defined in the Scale Invariant Feature Transform
(SIFT) [Lowe 2004]. This detector is based on the localisation of some particular
maxima and minima of difference of Gaussian filters applied to the image (see
Chapter 5 for further details). In [Zhou 2009], SIFT features and colour are
combined for tracking. Finally, uniform regions, which are regions of an image
sharing some predefined property, are also mid-level features. In [Yamane 1998],
the authors combine OF with uniform brightness regions for tracking pedestrians.

High-level features are usually the output of an object detector trained to detect
foreground or background regions. Foreground detectors detect directly the object
of interest, while background detectors detect everything that is not of interest. In
[Verma 2003], [Hidaka 2006] and [Meynet 2008], face detectors are used for track-
ing faces, and in [Leibe 2008] several object detectors are combined for tracking
pedestrians and vehicles. In [Kalal 2010], an object detector adapted to the object
of interest is learnt on-line and used for tracking. In [Stauffer 2000] and [Kim 2008],
it is the output of a background detector what is used for tracking moving objects.
Note that background detectors are usually restricted to fixed camera environments.

A VT algorithm does not necessarily use only one type of features. Indeed, VT
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approaches that combine several types of features are common and some examples
have already been cited. This strategy is intended to make the tracking more
robust. For instance, in [Maggio 2007] and [Wang 2008a], gradient and colour
features are considered, and in [Wu 2008] colour features and SIFT descriptors are
combined for tracking.

2.2.2 Object Representation

Feature extraction defines the space where the object of interest will be defined,
i.e. the space where the characteristics of the tracked object will be defined. For
this, a mathematical model of the object of interest, the object representation,
is employed. This model contains shape and appearance information about the
object of interest in the feature space. Shape information encodes the shape of the
tracked object, while appearance information encodes the visual information, in
the defined feature space, inside the shape. In Figure 2.3 a schematic classification
of the most common methods for encoding shape and appearance information is
shown.

Shape representations can be divided into three main families: basic geometric
representations, articulated shape representations and deformable shape repre-
sentations. Basic shape representations are those that consider the shape of the
object of interest as a basic geometric shape. These basic geometric shapes can
go from a single point [Veenman 2001] to the volumetric schematic representation
of the shape of an object [Roller 1993]. Point shape approximations are suitable
for tracking objects that cover a small region of the image, either because they
are small or because they are far from the sensor. Also, tracking algorithms using
object detectors use commonly point shape representations, since the object detec-
tor already accounts for size and appearance of the object. Area approximations
are also common in the literature, usually considering rectangles or ellipses. In
[Ross 2008], a rectangle, and all its affine transformations, represents the shape of
the object of interest. In [Comaniciu 2003] and [Jepson 2003], it is an ellipsoidal
region the chosen area that delimits the shape of the object.

Articulated shape representations combine several basic shape representations
that are joined under motion constraints at connection points. This type of shape
representations is usually used for human tracking [Lan 2004, Sundaresan 2009].

Finally, deformable shape representations relax the shape rigidity imposed by
basic and articulated shape representations. Active contours are a good example
of deformable shape representations. They are usually characterised by a set of
control points where some constraints are imposed [Roh 2007], or by using a level
set approach [Yilmaz 2004]. Another example of deformable shapes are point
distribution models, where a set of points, placed on the boundary as well as
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Figure 2.3: Object representation methods
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inside the boundary of the object of interest, are tracked. The most remarkable
representative of this group are Active Shape Models [Cootes 1995].

Appearance representations can be divided basically in template representations
and probability density representations. A template is an appearance representa-
tion method that maps pixel values into a predefined coordinate system according
to their position within the region of interest. This coordinate system is known
as the template coordinate system. For instance, in [Ross 2008], a rectangular
template is considered and the mapping between the pixels inside the tracked
region and the template is simply an affine transformation.

Probability density representations are the other big family of appearance repre-
sentations. Probability densities can be parametric or non-parametric. Among
parametric methods, Gaussian density estimation is a common and convenient
method, since only two parameters (mean and variance) define precisely the
density function. In [Yang 1996], a Gaussian is used for modelling face colour in
a face tracking application. For handling multimodal distributions, mixtures of
Gaussians are used in the literature [McKenna 1999, Papadourakis 2010].

On the group of non-parametric probability density representations, we can
find techniques such as Parzen windows [Chen 2010], although the most
important are histograms. Histograms are a powerful appearance repre-
sentation, invariant to transformations of the interest region shape. In
[Lu 2001, Moreno 2002, Leichter 2010], histograms of colour features in the
tracked region are used for appearance representation. In [Marimon 2007a], the
features used for computing the histogram are gradients. One of the drawbacks of
histograms is the lack of spatial information, which reduces their discriminative
power. To account for that, the region delimited by the shape is sometimes
divided in subregions where histograms are computed. This way, the object
representation encodes spatial information as well as histograms of features. A well
known appearance information representation computed using this technique is
the Histogram of Oriented Gradients (HOG) [Dalal 2005]. HOG divides the region
delimited by the shape in subregions where individual histograms of gradient angle
values are computed. In [Lu 2006, Bilinski 2009], the authors encode appearance
information using HOG for tracking pedestrians. Let us note that classifiers
trained on HOG descriptors using Support Vector Machines (SVM) are a powerful
pedestrian detection technique [Dalal 2005].

Shape representations are related to appearance information in the sense that
they delimit the information that is considered as belonging to the tracked object.
In some cases this relation is strong and fixes the appearance, as for instance
when point representations are considered for shape. In this case, the considered
appearance information is necessarily a template composed of just a point in the
feature space. Note however that a point in the feature space can represent a
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region in the image, like for instance when using object detectors.

With respect to when the object representation model is computed, three strategies
can be adopted in tracking:

• A priori computation with respect to the beginning of the tracking. In
this case, the model is computed a priori.

• Predefined computation with respect to the beginning of the tracking, i.e.
one or several of the starting snapshots of the object of interest are used for
computing the model.

• During the tracking. In this case, the snapshots of the object of interest
obtained by the tracking algorithm are constantly used for computing and
updating the model.

A model computed a priori lightens the computational cost of the tracking
algorithm, but it is not well adapted to the object of interest in the real conditions
of the tracking. A model computed using some predefined samples of the tracking
increases slightly the computational cost of the algorithm but obtains a better
adapted model. However, changes in the conditions of the object after the
initialisation period are not taken into account in the model. The last strategy
achieves a complete adaptation to the object of interest by continuously updating
the model, with the disadvantage of increasing computational cost and with the
risk of model corruption (drift).

2.2.3 Object Localisation

The final block of a VT algorithm is the one in charge of object localisation, i.e. the
block in charge of the tracking. This block, at a given frame, gets the information
of the feature extraction and the object representation model, and gives as output
an estimation of the state of the object of interest. This estimation is in general
based on the hypothesis of a smooth change of position, shape and appearance.

Object localisation methods can be classified in two big families: Single-Hypothesis
Localisation (SHL) methods and Multiple-Hypothesis Localisation (MHL) methods.

In SHL methods, only one track is evaluated at each time step. The target state
is computed analytically as the solution of an optimisation problem where a cost
function is minimised. These methods can arise from considering a deterministic
problem or a stochastic problem. In [Veenman 2001], the authors developed a point
tracker that considers three underlying motion models: an individual motion model,
a combined motion model and a global motion model. The tracking problem is
solved as a minimisation problem of the deviation with respect to the combination
of these three motion models. In [Hager 1998], a general parametric model for
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motions and deformations of the target region is introduced, and the tracking is
solved as a least squares error minimisation problem. In [Comaniciu 2003] the
well known Mean Shift (MS) tracker is introduced. MS is an iterative algorithm
[Cheng 1995] for locating local maxima of density functions. The Kanade-Lucas-
Tomasi (KLT) tracker [Lucas 1981, Tomasi 1991] is another good example of
SHL method. KLT searches local displacements as the solution of a first order
Taylor approximation of the image. Another example of SHL method is Kalman
Filter (KF) [Li 2010] and Extended Kalman Filter (EKF) [Ndiour 2010, Haj 2010]
based approaches. However, the performance of these methods is limited due to
the strong hypothesis on which they are based (see [Arulampalam 2002] for details).

On the contrary, MHL methods evaluate simultaneously multiple candidate tracks
(hypothesis) per object of interest per time step. Each one of these hypothesis
is validated against visual information and motion models. It can be seen
[Doucet 2009] that the number of hypothesis needed to correctly sample the state
space grows exponentially with its dimensionality. This is the main drawback
that has to be paid in order to have the higher flexibility that MHL methods provide.

Several MHL approaches exist, like for instance approximate grid-based methods,
but the most important and used methods are those based on Particle Filters
(PF). A high number of VT algorithms in the literature use PF approaches for
estimating the state of the object [Isard 1998, Zhou 2004, Ross 2008]. For this
reason and given the importance of PF in the algorithms developed in Chapter 3
and Chapter 4, PF are described in detail in Section 2.3.

There exist also methods that combine aspects of SHL methods with aspects
of MHL methods. They are known as Hybrid Localisation (HL) methods and
try to reduce computational cost of MHL by improving the sampling with
SHL techniques. A common approach is to combine MS with PF. Indeed, the
MS optimisation step moves particles towards local peaks in the likelihood func-
tion, which improves the sampling efficiency [Shan 2007, Wang 2009, Maggio 2009].

2.3 Particle Filters

A theoretical Bayesian solution of a tracking problem would construct the posterior
probability density function of the state based on all available information and
measurements. In a real tracking problem, an estimate has to be computed for
every frame, i.e. for every new measurement. This is the scenario of application of
a recursive filtering approach like Particle Filters (PF).

Let us consider the state sequence x = {xk|k ∈ N} (Equation (2.2) discarding the
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superindex). The evolution of states can be denoted by

xk = fk(xk−1, vk−1), (2.3)

where fk : RNx × RNv → RNx is a possibly non-linear function, {vk|k ∈ N} is an
i.i.d. process noise sequence, and Nx and Nv are the dimensions of the state and the
process noise vector, respectively. For each time step k, the obtained measurement
can be denoted by

zk = hk(xk, nk), (2.4)

where hk : RNx × RNn → RNz is a possibly non-linear function, {nk|k ∈ N} is
an i.i.d. measurement noise sequence, and Nz and Nn are the dimensions of the
measurement and the measurement noise vector, respectively.

The problem of tracking tries to find filtered estimates of xk based on the set of
available measurements up to time k, i.e. z1:k = {zi|i = 1, . . . , k}. These estimates
are computed using the belief on a given state xk, i.e. p(xk|z1:k), with a given
initial prior p(x0|z0) ≡ p(x0). Then, p(xk|z1:k) can be computed by applying
recursively a prediction and an update step.

Let us suppose that p(xk−1|z1:k−1) is known, then the prediction step estimates the
prior of the state xk as

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (2.5)

This expression is obtained by applying the Chapman-Kolmogorov equation, that
states that in a Markov process, the conditional probability p(xn|xk) can be ex-
pressed as

p(xn|xk) =
∫

p(xn|xm)p(xm|xk)dxm, ∀n > m > k ∈ N. (2.6)

Then, when measurement zk becomes available, the update step updates the pos-
terior as

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
, (2.7)

where

p(zk|z1:k−1) =

∫
p(zk|xk)p(xk|z1:k−1)dxk. (2.8)

Equations (2.5) and (2.7) cannot be computed analytically, except for some
particular cases. For instance, if the posterior density at each time step is Gaussian
and Equations (2.3) and (2.4) are known and linear, then Equations (2.5) and
(2.7) can be computed analytically and the Kalman Filter is obtained. Grid-based
methods are another example of exact solutions, and are obtained when the state
space is discrete and finite.
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Methods that compute the exact solution are known as optimal algorithms, but
in general, except for the cases cited above, sub-optimal algorithms have to be
used. PF are among these sub-optimal algorithms, and their main representative is
the Sequential Importance Sampling (SIS) algorithm. SIS algorithm implements a
recursive Bayesian filter by simulation. The idea behind the method is to represent
the posterior density function by a finite set of sample points, the particles, with
an associated weight. Thus, the posterior can be approximated as

p(xk|z1:k) '
Ns∑

i=1

wi
kδ(xk − xik). (2.9)

where wi
k is the weight of particle i at time step k, Ns is the number of particles,∑Ns

i=1w
i
k = 1 and xk and xik are the state at time k and the state of particle i at

time k, respectively. The δ(y) function in Equation (2.9) equals 1 for y = 0 and 0
otherwise.

Suppose now that p(x) is a hard to evaluate probability density function although,
up to proportionality, it can be evaluated through a function π(x), i.e. p(x) ∝ π(x).
Then, given an easy to compute Importance Density q(x) and a set of samples xi ∼
q(x), i = 1, . . . , Ns, the importance sampling principle states that an approximation
of the density p(x) can be computed as

p(x) '
Ns∑

i=1

wiδ(x− xi), (2.10)

where wi ∝ π(xi)
q(xi) . Thus, in the conditional case of Equation (2.9), the weights are

defined as

wi
k ∝

p(xi0:k|z1:k)
q(xi0:k|z1:k)

. (2.11)

If the importance density is chosen such that

q(x0:k|z1:k) = q(xk|x0:k−1, z1:k)q(x0:k−1|z1:k−1), (2.12)

it can be seen that

wi
k ∝ wi

k−1

p(zk|xik)p(xik|xik−1)

q(xik|xi0:k−1, z1:k)
. (2.13)

Furthermore, if the importance density only depends on xk−1 and zk, which is a
common situation, then this last equation reduces to

wi
k ∝ wi

k−1

p(zk|xik)p(xik|xik−1)

q(xik|xik−1, zk)
. (2.14)

Taking all these elements into account, the SIS algorithm can be derived as
described in Algorithm 1. A well-known tracking algorithm in CV using PF is the
Condensation algorithm [Isard 1998]. It considers wi

k ∝ p(zk|xik), i.e. the weights
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Algorithm 1 Sequential Importance Sampling (SIS) algorithm (extracted
from [Arulampalam 2002]).

1: [{xik, wi
k}

Ns
i=1] = SIS[{xik−1, w

i
k−1}

Ns
i=1, zk]

2: for i = 1 : Ns do
3: Draw xik ∼ q(xk|xik−1, zk)

4: Assign to particle i a weight wi
k ∝ wi

k−1
p(zk|x

i
k)p(x

i
k|x

i
k−1)

q(xi
k|x

i
k−1,zk)

of the particles are directly the likelihood of the state of the particle at this time
step, and prior and importance information in Equation (2.14) are discarded.

The main problem of the SIS algorithm is degeneracy, which makes that after some
iterations only a few particles have a non-negligible weight. In [Bergman 1999], a
measure of degeneracy was introduced by estimating the effective sample size

N̂eff =
1

∑Ns
i=1(w

i
k)

2
. (2.15)

The real effective sample size is defined as

Neff =
Ns

1 + Var(w∗i
k )

, (2.16)

although it cannot be computed, since the true weight values, denoted by w∗i
k , are

unknown.

A common practice for fighting against degeneracy is by resampling with replace-
ment the state space, in order to generate a new set of particles. This resampling
can be done when Equation (2.15) becomes smaller than a given threshold or
directly at each time step. The last produces the Sampling Importance Resampling
(SIR) algorithm. For a detailed review of PF theory and algorithms, we refer the
reader to [Arulampalam 2002] and [Doucet 2009].

2.4 The Incremental Visual Tracking Algorithm

Object representations computed a priori, or with some starting snapshots of the
object of interest, are not robust against changes along time on the appearance
of the tracked object. In [Ross 2008], the authors introduced the Incremental
Visual Tracking (IVT) algorithm, a VT algorithm where the object representa-
tion, built using PCA on grayscale templates, is constantly updated with the
samples of the object of interest obtained by the tracker. For achieving this, they
introduced an Incremental Principal Component Analysis (IPCA) algorithm with
mean update. Since newer samples of the object of interest are usually more
representative of its appearance, the authors used a forgetting factor f ∈ [0, 1]
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intended to reduce the contribution of old samples to the computed PCA (f = 1
means infinite memory and f = 0 forces to consider only new samples). In this
Section, we are going to describe the IVT algorithm in detail, given its importance
in the following chapters of this dissertation. Let us start with the IPCA algorithm.

Given a set of N data samples Z = [z1, . . . , zN ] ∈ RM×N , where each sample is
represented as a vector z ∈ RM , PCA performed on these data gives a projection
matrix U ∈ RM×K , K ≤ N , that minimises the squared reconstruction error

ξ =
M∑

i=1

N∑

j=1



ẑij −
K∑

p=1

uip

M∑

q=1

uqpẑqj




2

, (2.17)

where abc represents the element at row b and column c of matrix A and Ẑ is
the matrix obtained by subtracting the sample mean to each column of Z. The
columns of the matrix U are the principal components of the data matrix Ẑ, i.e.
the eigenvectors of the autocovariance matrix of Ẑ. These eigenvectors are usually
computed using the Singular Value Decomposition (SVD) of the matrix Ẑ. In our
context, data samples are snapshots of the object of interest, i.e. images. These
data samples arrive sequentially in time, therefore we refer to the mean amongst
images, i.e. µ = 1

N

∑N
j=1 zj , as the temporal mean.

Let us consider that we have performed a PCA on a data matrix Z(1) =
[z(1)1 , . . . , z(1)

N(1) ] ∈ RM×N(1)
, where each column is a data sample represented as

a vector, z(1)j ∈ RN(1)
. The temporal mean of Z(1) is

µ(1) =
1

N (1)

N(1)∑

j=1

z(1)j , (2.18)

and so the zero mean data matrix is

Ẑ(1) = [z(1)1 − µ(1), . . . , z(1)
N(1) − µ(1)]. (2.19)

The PCA gives us a projection matrix U (1), composed of the eigenvectors
of Cov(Ẑ(1)), and a diagonal matrix Σ(1), being the elements on the di-
agonal the eigenvalues of Cov(Ẑ(1)). For instance, imagine that we have

Z(1) = [z(1)1 z(1)2 z(1)3 z(1)4 ] ∈ R!×" where z(1)1 = (1, 1)$, z(1)2 = (−1,−1)$,

z(1)3 = (0.5, 0.5)$ and z(1)4 = (−0.5,−0.5)$. Then, µ(1) = (0, 0)$,
U (1) = (

√
2/2,

√
2/2)$ and Σ(1) = (1.67). In this very simple example, the

second eigenvector, (−
√
2/2,

√
2/2)$, is discarded because its corresponding

eigenvalue is zero.

Suppose now that a new data matrix Z(2), whose sample mean is µ(2), is received.
Based on the works presented in [Levy 2000], Ross et al. introduced an algorithm
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that provides the projection matrix U (1,2) without computing the whole PCA, where
U (1,2) corresponds to the PCA matrix of

Z(1,2) = [Z(1)Z(2)]. (2.20)

Defining the scatter matrix of a given matrix as the outer product of the zero mean
data matrix, it can be seen that the scatter matrix of Z(1,2) is given by

SZ(1)Z(2) = SZ(1) + SZ(2) +
N (1)N (2)

N (1) +N (2)
(µ(1) − µ(2))(µ(1) − µ(2))$, (2.21)

where SZ(1) and SZ(2) are the scatter matrices of Z(1) and Z(2), respectively.

Using Equation (2.21) for considering the change of mean, the IPCA algorithm
is described in Algorithm 2. Note that eigenvectors corresponding to small
eigenvalues can be suppressed, but we use an abuse of notation and denote the final
projection matrix and eigenvalues (after suppression), U (1,2) and Σ(1,2), respectively.

Algorithm 2 Incremental Principal Component Analysis (IPCA) with
mean update. Algorithm introduced in [Ross 2008].

1: Set Ẑ(2) = [z(2)1 − µ(2), . . . , z(2)
N(2) − µ(2),

√
N(1)N(2)

N(1)+N(2) (µ
(1) − µ(2))]

2: Compute ⊥Ẑ(2) = orth(Ẑ(2) −U (1)U (1)$Ẑ(2)), where “orth()” denotes orthogo-
nalisation via QR decomposition.

3: Compute R =

[
fΣ(1) U (1)$Ẑ(2)

0 ⊥Ẑ(2)$(Ẑ(2) − U (1)U (1)$Ẑ(2))

]
, where f ∈ [0, 1] is a

forgetting factor that decreases the contribution of old blocks of data.
4: Compute SVD(R) = U ′Σ′V ′$

5: Then, U (1,2) = [U (1) ⊥Ẑ(2)]U ′, Σ(1,2) = Σ′ and µ(1,2) = fN(1)

fN(1)+N(2)µ
(1) +

N(2)

fN(1)+N(2)µ
(2).

A probabilistic interpretation of PCA [Tipping 1999] allows to combine this
object representation with a particle filter approach for object localisation. The
state-space where particles are placed is composed of the six parameters of an
affine transformation: translation (2 parameters), rotation angle, scale, aspect
ratio and skew direction. This affine transformation maps the region of interest
onto a rectangular template. The particles represent a sample of the posterior
density function of the state given the observations. A dynamical model drives the
motion of these particles and an observation model assigns their weights.

The dynamical model defines the dynamics between states, and is modelled as a
Brownian motion,

p(xk|xk−1) ∼ N(xk;xk−1,Θ), (2.22)
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where xk denotes a point in the state-space at time k and Θ is a diagonal covariance
matrix containing the variances of the affine parameters.

The observation model gives a measure of how likely an image region zi belongs to
the subspace generated by the projection matrix U , i.e. Span(U). A similar ap-
proach to Condensation [Isard 1998] is adopted, assigning as weight to the particles
directly their likelihood, i.e. wi

k ∝ p(zk|xik). Given an image patch zi, a projection
matrix U , a mean µ and a diagonal matrix of eigenvalues Σ, then

log p(zi ∈ Span(U)) ∝ −(dt + dU ), (2.23)

where dt is the Euclidean distance of zi−µ to the subspace Span(U), and dU is the
Mahalanobis distance within the subspace, i.e. the symmetric bilinear form defined
by the inverse of the autocovariance matrix of the data. These two distances can
be computed as

dt =
1

σ2
(zi − µ)$(I − UU$)(zi − µ), (2.24)

where I denotes the identity matrix, and

dU = (zi − µ)$UΣ−1U$(zi − µ). (2.25)

Note that since the principal components define a basis where the data is uncorre-
lated, the autocovariance matrix reduces to the diagonal matrix of eigenvalues Σ.
The σ2 term can be seen as the average variance lost in the projection:

σ2 =
1

N −Nb

N∑

i=Nb+1

λi. (2.26)

In this last equation, Nb denotes the index of the last considered eigenvector, N
the total number of eigenvectors and λi the eigenvalue corresponding to the i-th
eigenvector.

At each time step, the weights of the particles and the dynamical model are utilised
to propagate the particles. Then, the observation model assigns weights to these
particles. The point in the state-space where the particle with the highest weight
is placed, is chosen as defining the image window that contains the tracked object.
In order to increase performance, new data added to the PCA is computed in
blocks of a prefixed size (every five frames in [Ross 2008]). The maximum total
number of eigenvectors in matrix U is also prefixed. In Algorithm 3, the complete
IVT algorithm is described.

2.5 Performance Evaluation of Visual Tracking Algo-
rithms

In tracking, performance evaluation of an algorithm is a difficult task. Two types of
evaluations are usually performed: visual evaluation and objective evaluation. On
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Algorithm 3 Summary of the Incremental Visual Tracking algorithm (ex-
tracted from [Ross 2008]).

1: Locate the target object in the first frame, either manually or by using an
automated detector, and use a single particle to indicate this location.

2: Initialise the eigenbasis U to be empty, and the mean µ to be the appearance
of the target in the first frame. The effective number of observations so far is
n = 1.

3: Advance to the next frame. Draw particles from the particle filter, according
to the dynamical model.

4: For each particle, extract the corresponding window from the current frame,
and calculate its weight, which is its likelihood under the observation model.

5: Store the image window corresponding to the most likely particle. When the
desired number of new images have been accumulated, perform an incremental
update (with a forgetting factor) of the eigenbasis, mean, and effective number
of observations.

6: Go to step 3.

the one hand, visual evaluation is a subjective evaluation of the performance of a
VT algorithm by observing its behaviour when faced to some particular difficulties.
It does not provide a score of its performance, but it is a useful tool when testing
the algorithm faced to a specific difficulty. For instance, when a tracked object
suffers an occlusion, a ground truth cannot be used for evaluating the algorithm,
but a visual evaluation can determine the capacity of the algorithm for handling
this kind of situations.

On the other hand, objective evaluation consists on computing a set of numerical
performance scores that objectively describe the quality of the algorithm. A com-
mon approach for defining these performance scores is by treating the problem as
a classification problem. In such a problem, two performance scores are typically
defined, namely Precision and Recall. Their computation is based on the concepts
of True Positive (TP), True Negative (TN), False Positive (FP) and False Negative
(FN) samples. In a classification problem with respect to a hypothetical class X,
a TP denotes an object from X correctly classified, a TN denotes an object not
belonging to X correctly classified, a FP denotes an object not belonging to X in-
correctly classified and a FN denotes an object from X incorrectly classified. Then,
Precision and Recall scores can be defined as [Olson 2008]:

Precision =
|TP |

|TP |+ |FP |
, (2.27)

Recall =
|TP |

|TP |+ |FN |
, (2.28)

where |TP | denotes the number of TPs and so on.
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The definition of TP and FP is usually performed using the intersection over union

ρ =
|AT ∩AGT |
|AT ∪AGT |

, (2.29)

where AT denotes the region tracked, AGT the region defined by the ground truth
and | · | the number of pixels inside a region. Then, if ρ is bigger than a given
threshold ρTh, the sample is considered as a TP sample. If ρ < ρTh then the
sample is classified as a FP.

With respect to TNs and FNs, if there is no object of interest and the tracker
does not output any tracked region, the sample corresponds to a TN. FNs are
those samples with the object of interest present in the scene but the tracker not
tracking it, i.e. without giving any output. Note that TNs and FNs, and therefore
the recall score, are related to object detection capabilities of the tracking algorithm.

Another important measure is the lost track ratio

λ =
Ns

Nt
, (2.30)

where Ns denotes the number of frames of unsuccessful tracking and Nt the total
number of frames in the sequence. For using this measure, a definition of unsuccess-
ful tracking is needed. For instance, a threshold Tλ compared to the dice error Dk at
a given frame k can be used as an indicator of unsuccessful tracking [Maggio 2010]:

Dk =
|FPk|+ |FNk|

2|TPk|+ |FPk|+ |FNk|
> Tλ, (2.31)

where the subindex k denotes the frame index and | · | denotes the number of
pixels. Typical values for Tλ are in the interval [0.8, 1].

The values of λ of several VT algorithms applied on a given sequence, are already
an indicator of performance and can be used for comparing them. In case of similar
obtained values, precision and recall are then used for comparison.

The definition of an evaluation protocol for comparing correctly and fairly several
VT algorithms is not straightforward. An evaluation protocol is composed of a
set of performance scores, like for instance those defined above, and a dataset
where run the evaluation tests. Datasets for evaluation have the purpose of
defining a common scenario of test in order to allow comparison between results
of different tracking algorithms. This is probably the most difficult part on the
design of an evaluation protocol. The design of a general purpose dataset, with
enough variability for correctly evaluating a tracker, even in an application specific
scenario, is far from being trivial. In addition, the difficulty of defining a ground
truth, or even the impossibility for instance when an occlusion occurs, makes the
objective evaluation of VT algorithm with standard evaluation protocols even
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more complicated. ETISEO [Nghiem 2007], USF-DATE [Kasturi 2009] or PFT
[Nawaz 2011] are some of the evaluation protocols present in the literature.

2.6 Conclusions

In this Chapter, the main elements of a VT algorithm have been described. For
each one of these elements, representative works present in the literature have
been referenced. Special emphasis has been done on the description of techniques
that are relevant for next chapters. Indeed, Particle Filtering and the Incremental
Visual Tracking algorithm have been described in detail.

Keeping the object representation adapted to the object of interest is a difficult
task in VT. This problem is treated in Chapter 3. Another difficulty of VT is
the disappearance of the tracked object due to a total occlusion. This problem
is tackled in Chapter 4. There, a complete VT framework is introduced. This
framework considers the techniques for model update introduced in Chapter 3,
as well as the total occlusion handling introduced in Chapter 4. In tracking, a
matching process is performed over time, under the assumptions of a smooth
change of position, shape and appearance, which are usually true given a frame
rate high enough. In Chapter 5, static matching between omnidirectional images,
without any smoothness assumption, is studied.

Common approaches for performance evaluation of VT algorithms have been
also described. Difficulties of this performance evaluation have been discussed
and common measures of performance introduced. For evaluating our proposed
algorithms in common situations we will use these measures. In hard specific
situations that our algorithms can handle, such as total occlusions, we will perform
visual evaluations due to the impossibility of defining a ground truth.
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3.1 Introduction

There exists a wide variety of techniques for computing models encod-
ing shape and/or appearance information of a tracked object. For in-
stance PCA [Cootes 2001, Lee 2005, Ross 2008], mixtures of Gaussians
[Stauffer 1999, Papadourakis 2010], histograms [Birchfield 2005, Peng 2005],
bayesian networks [Park 2004] or boosting techniques [Grabner 2006, Iwahori 2008].

The difficulty with these models is that the appearance of the tracked object is
continuously changing, and the model needs to be either built for dealing with
these changes or to have the capacity of being adapted to them. In the first
option, the changes have to be predicted and taken into account in the model
estimation process, which is performed a priori or during an initialisation period.
For this reason, the second option is the most effective in terms of adaptability,
since the type of changes that the model has to handle does not need to be known
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beforehand. This strategy is also interesting in terms of dealing with exogenous
sources of variability (see Chapter 1) since most of the generated changes are not
predictable in advance. However, the adaptation procedure is very sensitive due to
the possibility of corrupting the model with bad samples of the object of interest,
causing a model drift and the consequent loss of track.

In the tracker introduced in Section 2.4, the model is built on-line and incrementally
using a PCA. This allows to maintain the model permanently adapted to the
object of interest and their current conditions. The problem with this procedure is
that bad tracked samples or temporal modifications of the tracked object, such as
occlusions, are also added to the model.

PCA is a well-known and commonly used technique for dimensionality reduction
[Pearson 1901]. It consists of projecting the data onto the eigenvectors with
biggest eigenvalues of the data covariance (or autocorrelation) matrix. In spite
of its popularity and good performance, PCA presents two main problems:
computational cost and sensitivity to outliers (see Figure 3.1 and Figure 3.2 for a
low-dimensional example of the effect of outliers).

The computational cost can be split by considering data incrementally
[Levy 2000, Brand 2006, Ross 2008] (see Section 2.4 for further details). This way,
instead of computing a big PCA on a big data matrix, a PCA is performed on a
small sub-matrix. This PCA is afterwards updated with blocks of the remaining
data. Incremental procedures are also interesting when the whole dataset is not
available at the beginning. In [Levy 2000], the sequential computation of PCA is
tackled by updating an existing PCA with the components of the new data that
are orthogonal to the previously generated subspace. Indeed, the process starts by
computing, for the first block of data, its Singular Value Decomposition (SVD),
which is an efficient way of computing the principal components of a matrix.
Then, for each new block of data, the update process is based on a QR factori-
sation and a SVD of a small matrix. Their results, correctly combined, provide
the principal components of the concatenation of the old and the new data matrices.

With respect to outliers, two strategies arise in a PCA computation procedure
for minimising their effect on principal components. The first option is to discard
samples that are supposed to be outliers. This strategy can be seen as a hard
decision strategy, since samples labeled as outliers are not used at all. This
forces to have a good outlier detection approach, in order to do not discard good
samples. For instance, in [Jackson 2004] a minimum volume ellipsoid is fitted to
data in order to discard, in the PCA computation, the samples that are outside;
in [Hubert 2005] and [Hubert 2009], samples are discarded according to their
projection in a subspace computed using a robust covariance estimation; and in
[Zhou 2010], a convex optimisation procedure is performed to recover noise-free
principal components. Methods using this hard decision strategy are dependent on
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(a) 100 data points without outliers. The principal components are
v1 = (0.70, 0.72) and v2 = (0.72,−0.70) with eigenvalues λ1 = 2.77
and λ2 = 0.02
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(b) 100 correct data points and one outlier at (0, 3). The princi-
pal components are v1 = (0.68, 0.73) and v2 = (0.72,−0.68) with
eigenvalues λ1 = 2.78 and λ2 = 0.07

Figure 3.1: Two-dimensional example of the effect on PCA of a single outlier against
100 correct samples. Each blue cross indicates a sample point. The red arrows are
the principal components normalised to the value of the corresponding eigenvalue.
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(a) 100 correct data points and one outlier at (0, 7). The princi-
pal components are v1 = (0.63, 0.78) and v2 = (0.78,−0.63) with
eigenvalues λ1 = 2.99 and λ2 = 0.24
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(b) 100 correct data points and one outlier at (0, 10). The princi-
pal components are v1 = (0.56, 0.83) and v2 = (0.83,−0.56) with
eigenvalues λ1 = 3.31 and λ2 = 0.42

Figure 3.2: Two-dimensional example of the effect on PCA of a single outlier against
100 correct samples. Each blue cross indicates a sample point. The red arrows are
the principal components normalised to the value of the corresponding eigenvalue.
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the outlier detection method, and their performance strongly depends on it.

The second option is to weight the contribution of each value of the data matrix
according to a measure of confidence. This is a soft decision strategy, in the sense
that all the values in the data matrix are considered, although the contribution
of the less confident ones is reduced. In this kind of approaches, the PCA
computation is still dependent on the outlier detection method, but its dependency
is considerably weakened. In [Kriegel 2008], the authors use a weighted covariance
matrix for computing the principal components. The weight values are computed
using a distance function to clusters of points of the dataset. In [Skočaj 2007], two
kinds of weights are considered, temporal weights and spatial weights. Temporal
weights adjust the contribution of each observation (a column in a data matrix),
while spatial weights adjust the contribution of each variable (individual elements
of each column). In [Skočaj 2008], the authors introduce a weighted incremental
PCA algorithm based on the IPCA algorithm developed in [Hall 1998]. This algo-
rithm updates the PCA for every new sample, using an EigenValue Decomposition
(EVD), which is considerably slower than using SVD and updating the PCA per
blocks of new samples, as shown in [Huang 2009].

In this Chapter we introduce an Incremental Temporally Weighted Principal
Component Analysis (ITWPCA) algorithm based on SVD update, in Section 3.2.
This algorithm allows to compute incrementally a robust low dimensional subspace
representation (model). The robustness is based on the capacity of weighting the
contribution of each single sample to the subspace generation. A spatial penalty
approach has been also introduced in Section 3.3. This spatial penalty allows to
assign more importance to some regions of a tracked object, penalising more the
errors there, and increasing therefore the accuracy of tracking in those regions. A
VT algorithm, based on the combination of the ITWPCA algorithm, the spatial
weights and a particle filter, has been developed and introduced in Section 3.4.
This algorithm allows to reduce the effect of bad tracked or bad quality samples
on the appearance model that is computed simultaneously with tracking, at the
same time that gives more importance to some regions of the tracked object.
Finally, in Section 3.5, all the algorithms introduced in this Chapter are tested. A
journal paper on the works presented in this Chapter is being prepared and will be
submitted soon.

3.2 Incremental PCA with Weighted Samples: the
ITWPCA Algorithm

In Section 2.4, the IPCA algorithm with mean update introduced in [Ross 2008]
has been described. Here, we propose a weighted version of this algorithm.
The weights modulate the contribution of data samples (columns of the data
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matrix) to the computed PCA. The same notation than in Section 2.4 is considered.

Given a set of N data samples Z = [z1, . . . , zN ] ∈ RM×N , where each sample is
represented as a vector z ∈ RM , and a weight matrix with positive elements Ω ∈
RM×N , the goal of weighted PCA is to compute the projection matrix U ∈ RM×K,
K ≤ N , that minimises the weighted squared reconstruction error

ξ̃ =
M∑

i=1

N∑

j=1

ωij



ẑij −
K∑

p=1

uip

M∑

q=1

uqpẑqj




2

. (3.1)

The elements of the temporally weighted mean vector, µi, are computed as

µi =
1

∑N
j=1 ωij

N∑

j=1

ωijzj , (3.2)

and so µ = [µ1, . . . , µM ]$.

If only temporal weights are considered, i.e. ωij = ωkj ∀i, k ∈ [1, . . . ,M ], j ∈
[1, . . . , N ], then the weights can be expressed by a vector tω = [ω1, . . . ,ωN ] ∈ RN

and Equation (3.1) can be rewritten as

ξ̃ =
M∑

i=1

N∑

j=1



˜̂zij −
K∑

p=1

uip

M∑

q=1

uqp˜̂zqj




2

, (3.3)

where ˜̂zij =
√
ωj ẑij . Then, the matrix U that minimises ξ̃ is composed by the

K biggest eigenvalues of the covariance matrix of
˜̂
Z, and can be computed by

performing Singular Value Decomposition on this matrix, i.e. SVD(
˜̂
Z) = UΣV $,

as introduced in [Skočaj 2007].

For introducing the incremental version, let us first note that a scatter temporally
weighted matrix SZ , defined as

SZ =
N∑

i=1

ωi(zi − µ)(zi − µ)$, (3.4)

differs from the weighted covariance matrix by only a scalar multiple, equal to∑N
i=1 ωi. Therefore, eigenvectors of both matrices are the same and eigenvalues are

scaled by this scalar multiple. This makes equivalent to work with the covariance
matrix or the scatter matrix, in terms of PCA. Let us now introduce the following
lemma:

Lemma 1. Let Z(1) = [z(1)1 , . . . , z(1)
N(1) ] and Z(2) = [z(2)1 , . . . , z(2)

N(2) ] be two data matri-

ces; tω(1) = [ω(1)
1 , . . . ,ω(1)

N(1) ] and
tω(2) = [ω(2)

1 , . . . ,ω(2)
N(2) ] the weights corresponding
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to each sample in Z(1) and Z(2), respectively; Z(1,2) = [Z(1)Z(2)] the concatenation
of matrices Z(1) and Z(2); and µ(1), µ(2) and µ(1,2) the weighted means according to
tω(1) and tω(2) of Z(1), Z(2) and Z(1,2), respectively.
Then, the weighted scatter matrix of Z(1,2), SZ(1,2) , can be computed as

SZ(1,2) = SZ(1) + SZ(2) +
‖tω(1)‖1‖tω(2)‖1

‖tω(1)‖1 + ‖tω(2)‖1
(µ(1) − µ(2))(µ(1) − µ(2))$, (3.5)

where SZ(1) and SZ(2) are the weighted scatter matrices of Z(1) and Z(2), respectively,
and ‖ · ‖1 denotes the 1-norm.

Proof. Note that

µ(1,2) =
‖tω(1)‖1

‖tω(1)‖1 + ‖tω(2)‖1
µ(1) +

‖tω(2)‖1
‖tω(1)‖1 + ‖tω(2)‖1

µ(2),

and so

µ(1) − µ(1,2) =
‖tω(2)‖1

‖tω(1)‖1 + ‖tω(2)‖1
(µ(1) − µ(2)), (3.6)

and

µ(2) − µ(1,2) =
‖tω(1)‖1

‖tω(1)‖1 + ‖tω(2)‖1
(µ(2) − µ(1)). (3.7)

Then,

SZ(1,2) =
N(1)∑

i=1

ω(1)
i (z(1)i − µ(1,2))(z(1)i − µ(1,2))$

+
N(2)∑

i=1

ω(2)
i (z(2)i − µ(1,2))(z(2)i − µ(1,2))$

=
N(1)∑

i=1

ω(1)
i (z(1)i − µ(1) + µ(1) − µ(1,2))(z(1)i − µ(1) + µ(1) − µ(1,2))$

+
N(2)∑

i=1

ω(2)
i (z(2)i − µ(2) + µ(2) − µ(1,2))(z(2)i − µ(2) + µ(2) − µ(1,2))$

= SZ(1) + SZ(2) +
N(1)∑

i=1

ω(1)
i (µ(1) − µ(1,2))(µ(1) − µ(1,2))$

+
N(2)∑

i=1

ω(2)
i (µ(2) − µ(1,2))(µ(2) − µ(1,2))$ (3.8)

Applying Equations (3.6) and (3.7) on Equation (3.8), we obtain

SZ(1,2) = SZ(1) + SZ(2) +
‖tω(1)‖1‖tω(2)‖1

‖tω(1)‖1 + ‖tω(2)‖1
(µ(1) − µ(2))(µ(1) − µ(2))$
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The results of Lemma 1 tell us how to express the temporally weighted scatter ma-
trix of a big matrix by means of the weighted scatter matrices of two sub-matrices.
Basically, the new scatter matrix is the sum of the other two, plus a rank-1
perturbation that depends on the difference of means. This rank-1 perturbation
can be taken into account by adding a new column to the data matrix, as expressed
in the Incremental Temporally Weighted PCA (ITWPCA) algorithm described
in Algorithm 4. Note that the algorithm presented in [Ross 2008] can be seen as

a particular case of the algorithm presented here, fixing ω(1)
i = ω(2)

j = 1, ∀i, j.
Furthermore, the complexity of the procedure is almost unchanged. Indeed, only
M ×N (2) additional multiplications and N (2) additional sums, whose computation
time is negligible, are performed in order to consider the weights.

Algorithm 4 Incremental Temporally Weighted PCA (ITWPCA). Given
U (1), Σ(1), ‖tω(1)‖1, a forgetting factor f , and a new data matrix Z(2), with its
corresponding weights tω(2), ITWPCA computes U (1,2) and Σ(1,2) from the total
set of data.

1: Compute µ(2) = 1
‖tω(2)‖1

∑N(2)

i=1 ω(2)
i z(2)i and µ(1,2) = f‖tω(1)‖1

f‖tω(1)‖1+‖tω(2)‖1
µ(1) +

‖tω(2)‖1
f‖tω(1)‖1+‖tω(2)‖1

µ(2)

2: Compute
˜̂
Z

(2)

= [
√
ω(2)
1 (x(2)1 − µ(2)), . . . ,

√
ω(2)
N(2)(x

(2)
N(2) −

µ(2)),

√
‖tω(1)‖1‖tω(2)‖1
‖tω(1)‖1+‖tω(2)‖1

(µ(1) − µ(2))]

3: Compute ⊥ ˜̂Z
(2)

= orth(
˜̂
Z

(2)

− U (1)U (1)$ ˜̂Z
(2)

)

4: Compute R =



fΣ
(1) U (1)$ ˜̂Z

(2)

0 ⊥ ˜̂Z
(2)$

(
˜̂
Z

(2)

− U (1)U (1)$ ˜̂Z
(2)

)





5: Compute SVD(R) = U ′Σ′V ′$

6: Then, U (1,2) = [U (1) ⊥ ˜̂Z
(2)

]U ′ and Σ(1,2) = Σ′.

3.3 What about Weighted Variables in IPCA and VT?

In some applications, weights applied to variables, i.e. to rows, can be also
useful. For instance, if each variable corresponds to data captured by sensors with
different accuracies, weights applied to these variables can be used for giving more
importance to the more accurate sensors. In a VT application, variables are pixels,
and weights applied to them can be also interesting for giving more importance to
some regions of the object of interest. We call weights applied to variables, spatial
weights.

Temporal weights can be applied by preprocessing the data matrix as expressed in
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Equation (3.3). This is not the case for spatial weights. Let us show why. Consider
a vector of spatial weights sω = [ω1, . . . ,ωM ] ∈ RM , where at least two weights are
different. Without loss of generality, suppose that ω1 0= ω2, then

ξ̃ =
M∑

i=1

N∑

j=1

ωi



ẑij −
K∑

p=1

uip

M∑

q=1

uqpẑqj




2

=
M∑

i=1

N∑

j=1



√ωiẑij −
K∑

p=1

uip

M∑

q=1

uqp
√
ωiẑqj




2

(3.9)

From Equation (3.9) it can be observed, for instance, that ω1 multiplies ẑ1j ∀j
and ω2 multiplies ẑqj ∀q, j. Therefore, ẑ1j is multiplied by ω1 in some terms of
Equation (3.9) and by ω2 in some others, which does not allow a preprocessing of
the data matrix, similar to the temporal case, for considering these weights.

The impossibility of preprocessing the data matrix for considering spatial weights
is the reason why, in [Skočaj 2007], the authors use an Expectation-Maximisation
(EM) approach. In our case, as computational time is important and needs to be
limited, an iterative approach as EM is not a good idea. Therefore, an adaptation
of the EM approach for incremental spatially weighted PCA is not suitable.

Nevertheless, thinking in a VT application, the sensor of every variable (pixel
sensors) are supposed to be identical. Moreover, the really important thing is
the accuracy in the tracking of certain regions of the object of interest, not the
accuracy of the model for these regions. For instance, if a face is being tracked,
special care must be taken in order to correctly track the regions containing more
information (eyes, nose and mouth), but a correct delimitation of the cheek is not
as important, in general.

A spatial weighting strategy in the PCA computation on these regions is not
necessary for increasing the accuracy of tracking. Furthermore, this spatial
weighting would not be easily interpretable, since this weighting would give more
importance to some pixel sensors than to others, while all pixel sensors in an
image sensor are supposed to be identical. Instead, a higher tracking accuracy
can be achieved by penalising the contribution of these pixels to the distances in
Equations (2.24) and (2.25), i.e. by applying a spatial penalty to hypothesis.

Let us define a vector of positive values sω ∈ RM as the desired spatial weights,
i.e. pixel weights. The higher the value applied to a pixel, the higher the penalty
applied to this pixel and therefore more importance assigned to this pixel, since
hypothesis fitting better these more penalised pixels will be favoured. Thus, let us
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redefine Equations (2.24) and (2.25) by considering spatial weights as

d̃t =
1

σ2
(z − µ)$diag(sω)(I − UU$)diag(sω)(z − µ), (3.10)

d̃U = (z − µ)$diag(sω)UΣ−1U$diag(sω)(z − µ), (3.11)

where diag(sω) is a diagonal matrix with the spatial weights and σ2 is defined
in Equation (2.26). Equation (3.10) computes a weighted Euclidean distance to
the subspace generated by the PCA, while Equation (3.11) computes a weighted
Mahalanobis distance within this subspace.

Using these equations for computing particle weights considers the importance
given beforehand to every pixel of the tracked region. This implies that the
values of individual pixels of every hypothesis have different importance in the
computation of the particle weight. However, an important thing to take into
account is that an excessive increase of the weight applied to certain pixels can
render the tracking algorithm unstable (as will be shown in Section 3.5). In
the following Section, a complete VT algorithm with temporal weight for model
computation and spatial weights for tracking is introduced.

3.4 Temporal and Spatial Weights in Visual Tracking

In Section 3.2, an incremental PCA algorithm capable of considering weights for
samples has been introduced. This algorithm allows to build, in a VT application,
a model of the object of interest while tracking, giving more importance to the
more confident samples in order to avoid model corruption. From the VT algorithm
described in Section 2.4, a measure of the quality of the tracked region for each
video frame can be computed as follows.

Given a tracked patch expressed as a vector of pixel values z ∈ RM , the recon-
struction error according to the PCA matrix at this time step gives information
about the distance between the tracked patch and the subspace generated by the
PCA. The difference between this patch and the PCA mean gives also information
about how far is the new sample from the PCA subspace. Then, let us define the
confidence on the tracked patch ω as

ω =

{
1− α

M

∑M
i=1 f(zi, ε), if

∑M
i=1 f(zi, ε) ≤

M
α

0, otherwise,
(3.12)

where ε ∈ [0, 1], α ∈ R+ and two different options for f(zi, ε), namely

f(zi, ε) = fR(zi, ε) =

{
1, if |(zi − µi)− z̄i| ≥ ε

0, otherwise,
, (3.13)
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and

f(zi, ε) = fM (zi, ε) =

{
1, if |zi − µi| ≥ ε

0, otherwise,
, (3.14)

being z̄i the i-th component of the vector z̄ = UU$(z − µ). The measure proposed
in Equation (3.12) gives more importance to the number of pixels with a significant
error (ε) than to the amount of the error itself, weighting the contribution of the
sample to the PCA according to this measure. Note that samples with more than
100
α % of the pixels with more than ε error are discarded (ω = 0). This strategy
tries to penalise samples containing big regions with a significant amount of error
(reconstruction error or distance to the mean). Indeed, this is the typical situation
in an occlusion. The neutral value of α = 2 has been adopted in all the tests,
i.e. samples with more than 50% of the pixels with a significant error are not
considered in the PCA computation. Depending on the context of the application,
this value can be increased, with the risk of being too restrictive and therefore
becoming unadapted to the object of interest.

The confidence measure presented in Equation (3.12) is used in the VT algorithm
introduced below for weighting samples supplied to the incremental PCA computa-
tion. Then, combining this temporal weighting with the spatial penalty introduced
in Section 3.3, we can define the Incremental Temporally Weighted Visual Tracking
with Spatial Penalty (ITWVTSP) algorithm. In Algorithm 5, a detailed description
of the complete proposed visual tracking algorithm with incremental temporally
weighted PCA and spatial error penalty is shown. Note that by fixing sω = 1M×1,
we obtain what we call the Incremental Temporally Weighted Visual Tracking
(ITWVT) algorithm. We denote by “/R” the use of Equation (3.13) and by
“/M” the use of Equation (3.14), i.e. for instance we denote by ITWVT/M the
ITWVTSP algorithm using fM(z, ε) and sω = 1M×1 for computing sample weights.

3.5 Tests and Results

We have performed several tests to our Incremental Temporally Weighted Visual
Tracking (ITWVT) algorithm and our Incremental Temporally Weighted Visual
Tracking with Spatial Penalty (ITWVTSP) algorithm, on several video sequences.
For showing the improvement obtained by the weighting strategy, the results
are compared with the results obtained by the IVT algorithm introduced in
[Ross 2008]1. For a general comparison against state-of-the-art algorithms, we
compare also our results with the results obtained with the TLD algorithm
introduced in [Kalal 2010]2.

1Implementation available at http://www.cs.toronto.edu/~dross/ivt/ (last visited in june
2011)

2Implementation available at http://info.ee.surrey.ac.uk/Personal/Z.Kalal/tld.html

(last visited in june 2011)

http://www.cs.toronto.edu/~dross/ivt/
http://info.ee.surrey.ac.uk/Personal/Z.Kalal/tld.html
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Algorithm 5 Incremental Temporally Weighted Visual Tracking with
Spatial Penalty (ITWVTSP). The target region (image of the object in the
first frame) is denoted by z0; N (2) denotes the size of the processed blocks; and K
denotes the maximum number of considered eigenvalues.

1: µ = z0, n = 1, and U (1), Σ(1), Z(2) and tω(2) are empty
2: Set sω to the desired spatial weights (by default, sω = 1M×1)
3: for every frame of the video do
4: Draw particles according to the dynamical model (Equation (2.22)) and the

weight distribution of particles.
5: For each particle, compute its weight according to the observation model and

spatial weights (Equation (3.10) and Equation (3.11)).
6: Store in Z(2) the image region corresponding to the most likely particle, and

in tω(2) its PCA weight (Equation (3.12))
7: if there are N (2) stored images in Z(2) then
8: if n < K then
9: tω(2)

i = 1, ∀i = 1, . . . , N (2)

10: Apply Algorithm 4 with ‖tω(1)‖1 = n, discarding the eigenvectors that
exceed K.

11: Set U (1) = U (1,2), Σ(1) = Σ(1,2) and n = fn+ ‖tω(2)‖1
12: Empty Z(2) and tω(2)

With IVT, ITWVT and ITWVTSP, we use the same parameters that those
proposed in [Ross 2008], i.e. 600 particles, an eigenvector size of 32 × 32 pixels,
a maximum number of 16 eigenvectors and a block update of 5 images. We only
increase slightly the forgetting factor (from 0.95 to 0.97) since the temporal weights
increase the quality of the model and a longer memory is beneficial. With these
parameters, the tracker runs at 7 frames per second in a laptop with a 2.0GHz
processor.

The standard deviations of the dynamical model (Equation (2.22)) in all the
experiments are 9.0px for row and column displacements, 0.05 radians for ro-
tation, 0.05 for scaling in the x direction, 0.001 for scaling in the y direction
and 0.001 radians for the scaling angle defining x and y directions, which are
similar values to those proposed in the implementation of IVT. By using the
same parameters for the three algorithms, the performance improvement due
to the temporal and spatial weighting strategy can be clearly perceived. With
TLD, the standard parameters provided in the distributed implementation are used.

For visualisation of the tracking results, we use the same template as in [Ross 2008]:
the first row contains the current frame with the tracked region, the second row
contains the mean, the tracked window, the reconstruction error and the re-
constructed image, and finally, the third and fourth rows contain the first ten
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Figure 3.3: Frame of the Dudek sequence where an occlusion of the face is starting.
First row contains the current frame with the tracked region. The second row con-
tains the mean, the tracked window, the reconstruction error and the reconstructed
image. Finally, the third and fourth rows contain the first ten eigenvalues.

eigenvalues. In Figure 3.3 an example is shown.

The performed experiments are divided in two groups. In the first group, there
are experiments performed on labelled video sequences, i.e. video sequences with a
ground truth. In these experiments, quantitative performance scores are computed
to show the performance of the algorithms. In the second group, the proposed
algorithms are applied to several unlabelled video sequences in a variety of tracking
applications, to show the polyvalence of the algorithms.

3.5.1 Labelled Video Sequences

First, we have performed a tracking of the face in the Dudek sequence [Jepson 2003]
(see Figure 3.3) with IVT, TLD, ITWVT and ITWVTSP. This sequence is a
very challenging video with changes in the tracked object, the camera posi-
tion and the illumination. The ground truth of 7 manually labelled points on
the face is available for this sequence. This allows to compare quantitatively
the obtained results, by computing the Root Mean Squared Error (RMSE) of
the tracked points with respect to the real ones. Given the implicit stochasticity
of the algorithms, ten independent runs per algorithm are performed in all the tests.
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The ITWVT algorithm has been tested using Equation (3.13) and Equation
(3.14), for 25 different values of ε between 0.01 and 0.9. In Figure 3.4(a), the
results obtained with ITWVT/M are shown, where only runs with a RMSE lower
than 10.0 pixels are plotted. In Figure 3.4(b), the results corresponding to the
ITWVT/R algorithm are shown, plotting again only those with a RMSE lower
than 10 pixels. Both variants of the algorithm provide similar results, with small
variance among runs for ε ∈ [0.02, 0.12]. This is due to the fact that small values
of ε produce low temporal weights, avoiding a good adaptation of the model to
the tracked face, and big values of ε produce big weights, making the performance
similar to IVT (in terms of RMSE and number of track losses). For ε ∈ [0.02, 0.12],
the compromise between good model adaptation and corruption avoidance seems
to be satisfied for the Dudek sequence. The complete statistics of the runs can be
found in Appendix A.

Looking at Figure 3.4, a reasonable value for the error threshold is ε = 0.07.
For this value of ε, ITWVT/M obtains a RMSE = 5.6537px and ITWVT/R a
RMSE = 5.8645px. The best run with IVT obtains a RMSE = 6.2324px, which
shows that the use of temporal weights improves the performance of the tracking.
In addition, only one out of the ten runs lost the track (RMSE higher than 10.0px)
for both, ITWVT/M and ITWVT/R, while five are lost with IVT. This shows the
improvement in the robustness of the tracking thanks to the better quality of the
model.

Let us note that the value of ε is application-specific. Indeed, the appearance
of a rigid object changes slightly, which allows to fix a more restrictive (smaller)
ε. On the contrary, a deformable object like for instance a pedestrian, changes
its appearance considerably, which forces to fix ε to higher values if we want
to avoid unjustified small temporal sample weights. Faces are somehow in
between highly deformable objects and rigid objects, which makes ε = 0.07 an
appropriate candidate value when no information about the application is available.

Performance of ITWVT/R and ITWVT/M are similar, although looking to the
obtained temporal weights (see Figures 3.5(a) and 3.5(b)), those obtained using
the reconstruction error are more robust. Indeed, only frames with an occlusion or
high out-of-plane rotations of the face present a clearly reduced weight.

For observing the effect of spatial penalty, we have designed two sω vectors. The
first one assigns higher weight values to pixels on important regions of the face
(see Figure 3.6(a)), we call this the “spec” spatial weights and denote its use by
“-spec”. The second one is a two-dimensional Gaussian shape, centred in the
middle of the patch (see Figure 3.6(b)), we call this the “iso” spatial weights and
denote its use by “-iso”.

In Figures 3.7(a), 3.7(b), 3.8(a) and 3.8(b) the results obtained varying the maxi-
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(b) ITWVT/R

Figure 3.4: RMSE obtained with ITWVT on the Dudek sequence as a function of
ε. For each value of ε, ten runs of the algorithm are executed. The values of RMSE
higher than 10.0px are not plotted (considered as loss of track).
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(b) ITWVT/R

Figure 3.5: Weights applied to each tracked sample of the Dudek sequence us-
ing ITWVT/M and ITWVT/R with ε = 0.07. These weights correspond to the
runs that gave the best RMSE value (5.6537px for ITWVT/M and 5.8645px for
ITWVT/R). The frames that present an occlusion or the frames where the face is
rotated out-of-the-plane are clearly noticeable (small weights).
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(a) “Spec” spatial weights (b) “Iso” spatial weights

Figure 3.6: Spatial weights used in the experiments. Brighter regions correspond
to high weight values, darker regions to spatial weights equal to 1.0.

mum value of the spatial weight (sωmax) using ITWVTSP/M-spec, ITWVTSP/M-
iso, ITWVTSP/R-spec and ITWVTSP/R-iso respectively, are shown. As before,
values of RMSE higher than 10.0px are considered as track losses and are not
plotted. For values of sωmax > 2.0 using “spec”, the algorithm starts to be
unstable, producing more losses of track than correct tracking among the ten
performed runs. For the “iso” spatial weights, the gradual transition make the
algorithm more stable allowing to go up to sωmax = 3.2. Looking at the results,
good values for the maximum spatial weights are 1.8 for “spec” and 3.2 for “iso”,
although smaller values can be used if we want to minimise the risk of track loss
due to excessive spatial penalty. In Appendix A, the complete statistics of the runs
are shown.

In Table 3.1, the best values of RMSE obtained with each algorithm for the param-
eter values commented above, are shown. As it can be observed, the ITWVTSP
algorithm produces a considerable better tracking performance than IVT with an
increased robustness (two out of ten track losses for ITWVTSP against five out of
ten for IVT). In this sequence, TLD produces considerably higher RMSE than the
other algorithms since it tends to enlarge or reduce the tracked region, which causes
a displacement on the template of the tracked points and therefore a higher error. In
Appendix B, plots of RMSE per frame for the best run of each algorithm are shown.

For testing the algorithms in a real situation with partial occlusions, we recorded
the Rockstar sequence. In this sequence, composed of 171 frames, a subject in
front of the camera is recorded. At a certain moment, the subject puts on a
pair of sunglasses that he takes off later. This sunglasses generate an occlusion
of the eyes of the subject, which is an important part of the face, clearly coded
in the appearance model. The distance between the face of the subject and the
camera, and therefore its size in the image, remains almost constant during the
whole video. This allows to label the ground truth of the sequence by displacing
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Figure 3.7: Obtained RMSE on the Dudek sequence varying sωmax with
ITWVTSP/M-spec and ITWVTSP/M-iso.
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Figure 3.8: Obtained RMSE on the Dudek sequence varying sωmax with
ITWVTSP/R-spec and ITWVTSP/R-iso.
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Algorithm Minimum RMSE

TLD 13.6619
IVT 6.2324
ITWVT/R (ε = 0.07) 5.8645
ITWVT/M (ε = 0.07) 5.6537
ITWVTSP/M-iso (ε = 0.07, sωmax = 3.2) 4.9586
ITWVTSP/M-spec (ε = 0.07, sωmax = 1.8) 4.7596
ITWVTSP/R-iso (ε = 0.07, sωmax = 3.2) 4.6927
ITWVTSP/R-spec (ε = 0.07, sωmax = 1.8) 4.5969

Table 3.1: Best RMSE values for all the algorithms on the Dudek sequence.

the starting bounding box that contains the face, in order to keep eyes, nose and
mouth centred along the whole video sequence. This has been done manually.

Ten runs of IVT, ITWVT, ITWVTSP and TLD have been performed on this
sequence. For spatial weights, a conservative approach has been adopted, taking
sωmax = 2.0 for “iso” and sωmax = 1.6 for “spec”. Precision and lost track ratio
scores have been computed for all the algorithms and the results are shown in
Table 3.2. For computing precision score, the intersection over union criterion with
a threshold value of 0.8 has been used. For the lost track ratio, dice error with
a threshold value of 0.8 has been employed. The results show clearly the better
performance of the family of algorithms introduced in this Chapter. However, the
negative impact in this case of the spatial penalty can be observed too. Indeed,
the persistence of the partial occlusion in an important region, in terms of spatial
weights, seems to have a negative effect in the performance, although it is anyway
better than with IVT and TLD. These two algorithm suffer from a displacement
of the tracked region while the subject is wearing the sunglasses, which causes the
bad precision and lost track ratio scores. Some selected frames of the best run
using IVT, TLD and ITWVT/M are shown in Figure 3.9, Figure 3.10 and Figure
3.11, respectively.

3.5.2 Unlabelled Video Sequences

In Figure 3.12, several frames of the poster sequence are shown. In this sequence,
a poster is recorded while several partial occlusions are generated. The total
sequence is composed of 585 frames, and during the first 100 frames there are
no occlusions. In order to see the effect of the temporal weights, we compute
the deviation from the “correct” first eigenvector due to these occlusions in IVT,
ITWVT/R and ITWVT/M. As “correct” eigenvectors we consider the eigenvectors
at frame 100, with a forgetting factor fixed to 1.0 and the temporal weights up to
frame 100 equal to 1.0. Note that the first eigenvector is the one with the highest
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(a) IVT - Frame #50 (b) IVT - Frame #60 (c) IVT - Frame #80

(d) IVT - Frame #115 (e) IVT - Frame #130 (f) IVT - Frame #150

Figure 3.9: Results obtained with the IVT algorithm on the Rockstar sequence.
The eigenvectors show how the sunglasses corrupt the model, avoiding a correct
tracking continuation after taking them off.
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(a) TLD - Frame #50 (b) TLD - Frame #60 (c) TLD - Frame #80

(d) TLD - Frame #115 (e) TLD - Frame #130 (f) TLD - Frame #150

Figure 3.10: Results obtained with the TLD algorithm on the Rockstar sequence.

eigenvalue, and therefore the most important one for computing particle weights.
The deviation is computed as the distance between the first “correct” eigenvector
and the first eigenvectors given by each algorithm. In Figure 3.13, a plot of these
distances is given, showing that ITWVT/R and ITWVT/M keep the eigenvectors
closer to those before the occlusions start. As commented before, ITWVT/M
produces smaller sample weights (see Figure 3.14), which makes the distances
slightly smaller than with ITWVT/R.

Finally, to show the polyvalence of the algorithms presented here, we have
performed several experiments in two other tracking applications: pedestrian
tracking and vehicle tracking. The videos do not present particular difficulties in
terms of partial occlusions, which makes that similar performances are obtained
with all the algorithms (ITWVT and ITWVTSP). Here we show the results with
ITWVTSP/R-iso.

In Figure 3.15, the tracking of a subject in sequence S1-T1-C of Camera 3 of
the PETS2006 Dataset3 is shown. Given the variability on the appearance of a
pedestrian, mainly due to the legs, we use an “iso” spatial weighting strategy but
with the Gaussian shape displaced toward the upper part of the patch. This gives
more importance to the body of the pedestrian than to his legs. The maximum
spatial weight used is sωmax = 3.2 and the noise threshold ε = 0.12.

In Figure 3.16 and Figure 3.17, a vehicle tracking is performed. In the first

3Available at http://www.cvg.reading.ac.uk/PETS2006/data.html (last visited in june 2011)

http://www.cvg.reading.ac.uk/PETS2006/data.html
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(a) ITWVT/M - Frame #50 (b) ITWVT/M - Frame #60 (c) ITWVT/M - Frame #80

(d) ITWVT/M - Frame #115 (e) ITWVT/M - Frame #130 (f) ITWVT/M - Frame #150

Figure 3.11: Results obtained with the ITWVT/M algorithm. The tracking con-
tinues correctly after taking the sunglasses off.

(a) Frame #100 (b) Frame #161 (c) Frame #310

Figure 3.12: Several frames of the Poster sequence. The total sequence is composed
of 585 frames.
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Figure 3.13: Distances between the first eigenvector at frame 100 and the first eigen-
vector computed using IVT (solid line), ITWVT/R (dashed line) and ITWVT/M
(dotted line) at subsequent frames.

sequence, the tracked vehicle experiences extreme and sudden changes in its
illumination, which can be observed in the temporal weights going to zero. In the
second sequence, which runs at night, the illumination is considerably bad during
the whole sequence, but without any significant variation of the conditions. This
can also be observed in the weights, which are around the same values during the
whole sequence.

3.6 Conclusions and Future Work

In this Chapter we have introduced an incremental PCA algorithm with weighted
samples (ITWPCA). This algorithm can be used in any application requiring an
incremental computation of a PCA, due to either computational requirements or
the lack of the whole dataset at the beginning. The capacity of this algorithm for
weighting the contribution of samples can be used for minimising the impact of
outliers in the computed PCA.

The preprocessing strategy used for considering temporal weights cannot be used
for considering spatial weights, as has been shown. However, in the context of
VT, a strategy for considering spatial weights has been introduced. Both types
of weights, temporal and spatial, have been combined in a VT algorithm, based
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Figure 3.14: Weights applied to the samples of the poster in the Poster sequence
using ITWVT/M and ITWVT/R.
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(a) ITWVTSP/R-iso - Frame
#1020

(b) ITWVTSP/R-iso - Frame
#1039

(c) ITWVTSP/R-iso - Frame
#1059

(d) ITWVTSP/R-iso - Frame
#1064

(e) ITWVTSP/R-iso - Frame
#1069

(f) ITWVTSP/R-iso - Frame
#1079
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(g) Weights applied to each frame

Figure 3.15: Example of pedestrian tracking using ITWVTSP/R-iso (ε = 0.12 and
sωmax = 3.2) on the sequence S1-T1-C Camera 3 of the PETS2006 Dataset.
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(a) ITWVTSP/R-iso - Frame
#1

(b) ITWVTSP/R-iso - Frame
#100

(c) ITWVTSP/R-iso - Frame
#200

(d) ITWVTSP/R-iso - Frame
#300

(e) ITWVTSP/R-iso - Frame
#500

(f) ITWVTSP/R-iso - Frame
#650
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Figure 3.16: Example of vehicle tracking ITWVTSP/R-iso (ε = 0.07 and sωmax =
2.0).
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(a) ITWVTSP/R-iso -
Frame #1

(b) ITWVTSP/R-iso -
Frame #150

(c) ITWVTSP/R-iso -
Frame #300

(d) ITWVTSP/R-iso -
Frame #390
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Figure 3.17: Example of night vehicle tracking ITWVTSP/R-iso (ε = 0.12 and
sωmax = 2.0).
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on a particle filtering approach, producing the Incremental Temporally Weighted
Visual Tracking with Spatial Penalty (ITWVTSP) algorithm and its reduced
version (spatial weights fixed to one) the Incremental Temporally Weighted Visual
Tracking (ITWVT) algorithm. These VT algorithms track targets while building
on-line a robust appearance model of the object of interest. In addition, the
ITWVTSP algorithm has the capacity of increasing accuracy in important regions
of the object of interest.

Several alternatives for the computation of temporal weights and spatial penalty
have been introduced, producing a family of VT algorithms. All the alternatives
have been tested on challenging video sequences, showing their good performance
compared to state-of-the-art techniques, and their polyvalence with respect to the
scenario of application. Indeed, the algorithms have been applied to face tracking,
pedestrian tracking, vehicle tracking and on the tracking of a rigid and static
object (the poster).

The algorithms introduced in this Chapter are based on two weighting strategies,
the temporal weighting of samples and the spatial penalty of hypothesis. With
respect to the temporal weighting, a more in-deep interaction between the
particle filter and the weighting strategy arises as an interesting future line of
research to be explored. Indeed, the weights of the particles seems to be a good
source of information for modulating the contribution of samples to the PCA.
In Chapter 4 we will explore this in the context of total occlusion detection, al-
though their use for defining the tracked sample confidence needs to be investigated.

With respect to spatial weights, in the Rockstar sequence we have seen that
changes in the appearance of the tracked object in spatially important regions
can decrease the performance of ITWVTSP compared to ITWVT. This suggest
the study of dynamical spatial penalty strategies. Indeed, reconstruction error
gives valuable spatial information about changes of the object appearance. This
information could be used for adapting dynamically the values of the spatial weights.

In the next chapter, we study a solution to handle total occlusions of the tracked
object by using a behavioural model of motion. This solution uses the algorithms
developed here for avoiding model drift, and some measures of the PF for the total
occlusion detection.
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4.1 Introduction

A total occlusion of the object of interest is a hard problem in tracking that is
often not handled by tracking algorithms. In the case of partial occlusions, the
capacity of continuing tracking is usually left to the robustness of the tracking
method, without performing any special action. In Chapter 3, we have developed
a tracking algorithm that considers the quality of tracked samples for updating
the object representation model. This strategy allows to decrease the importance
of samples affected by, for instance, partial occlusions, which reduces the risk of
model drift. Nevertheless, this strategy is not appropriate for total occlusions.
Indeed, during a total occlusion, the visual information of the tracked object
completely disappears. In such a case, the strategy described in Chapter 3 could
stop the model update, but the output of the tracker would be unpredictable
and nothing would guarantee a track recovery after the occlusion. Furthermore,
temporal weights, as computed in Chapter 3, are not a good indicator of a total
occlusion. A sudden change in the illumination, for instance, can decrease temporal
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weights but tracking using the visual model is still valid and no occlusion is present.

When designing a tracking algorithm capable of handling total occlusions, two
strategies arise: make assumptions about the hidden movement or employ detection
in the tracking. On the one hand, assumptions about the hidden motion usually con-
sider a constant velocity of the target [Munder 2008, Pal 2008, Hu 2009, Ess 2009],
although other strategies are also adopted in the literature. In [Papadourakis 2010],
the principle of object permanence [Baillargeon 1985] is applied, and objects that
disappear because of an occlusion are expected to appear again near the occluder.
This kind of hypothesis is restrictive and does not take into account additional as-
pects that could influence the behaviour of the tracked object during the occlusion.
On the other hand, tracking algorithms sometimes also perform detection. In this
case, when the tracked object disappears due to an occlusion, the tracking stops
and remains in detection mode until the object is detected again [Kalal 2010],
or recovers hidden positions once the object is re-detected [Kelly 2009]. The
main drawback of this strategy is clutter, which can generate false detections and
consequently bad recovered trackings after occlusions.

When detection is used in tracking, the tracker interacts with an object detector
and therefore occlusions are detected by the object detector itself. However,
when assumptions about the hidden movement are done, a method for detecting
occlusions is needed in order to decide when the tracker has to switch to “occluded
mode”. In [Pal 2008], Bhattacharyya distance is used to detect occlusions in face
tracking. Indeed, the Bhattacharyya distance between the colour distribution of
the tracked region and a Gaussian mixture model of colour components of old
tracked region is computed. If this distance is bigger than 2.5 times the standard
deviation of at least half of the components of the model, then the sample is
labeled as occluded and the colour model is not updated. In [Hu 2009], a constant
velocity model is supposed in case of occlusion in pedestrian tracking. Occlusions
are considered only between tracked pedestrians and treated as an additional
dimension of the state space that influences shape and appearance of pedestrians.
The estimated occlusion state allows to know which pedestrian is occluding which
one. This makes the observation likelihood function more robust, since only
appearance information of observable pedestrians is employed. In [Yu 2010], the
authors developed a VT algorithm where occlusion is taken into account when
updating the object appearance model. This model is computed using a robust
incremental PCA algorithm that computes principal components using only a
subset of pixels (supposed not occluded) in each template. For recovering from an
occlusion, the number of particles and the variance of the dynamical model are
increased, which can be a problem in the presence of clutter.

Among tracking applications, pedestrian tracking is one of the most important. The
spectrum of potential applications is wide, from video-surveillance [Leykin 2006]
to ambient intelligence [Piotto 2009], passing through safety [Pai 2004] or urban
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planning [Kelly 2008]. Pedestrian tracking algorithms exploit the specificities
of the tracked object but are faced to hard intrinsic and extrinsic difficulties.
The main intrinsic difficulties are the highly articulated nature of the tracked
object and the huge intra-class variability. The first, besides generating a wide
set of feasible shapes, constantly generates partial occlusions. Indeed, body parts
as arms and legs generate occlusions with other parts of the body and with
nearby pedestrians. For this reason, human kinematics, from a point of view
of an articulated object, is commonly considered in human tracking systems
[Sundaresan 2009, del Rincón 2011]. The intra-class variability makes the design
of a general appearance model for pedestrians a difficult task. Indeed, clothing can
make the appearance of different pedestrians differ considerably.

Extrinsic difficulties (not directly related to pedestrians but to their context)
are also important in pedestrian tracking. Indeed, common scenarios for pedes-
trian tracking are outside emplacements and big closed spaces. Both scenarios
present illumination problems: outside emplacements because of big changes in
illumination due to clouds or shadows, and big closed spaces because of a bad
lighting. Bad lighting and illumination changes cause a reduction of the contrast
between pedestrians and background, which makes VT harder. In addition,
the clutter phenomenon is specially relevant in pedestrian tracking. Not only
because of similar shapes present in the scene, but also because pedestrians are
usually not alone. Indeed, the common situation is that more than one pedestrian
appears at the same time in the scene. This results in a marked multi-modality
of the probability distribution of the presence of pedestrians over the image,
which is the main reason of popularity of PF approaches for localisation in
pedestrian tracking. Actually, although techniques such as optimisation methods
on graphs [Berclaz 2010, Alahi 2011], Kalman Filter [Alonso 2007] or Mean
Shift [Wu 2006a] are used for pedestrian tracking, PF methods are dominant
[Isard 2001, Wu 2006b, Munder 2008, Hu 2009].

In addition to all these problems related to pedestrians, the high mobility of them
is another aspect that makes tracking difficult. This high mobility generates easily
total occlusions in unconstrained scenarios, between pedestrians and objects or
among pedestrians themselves. For this reason, the capacity of dealing with total
occlusions is of special interest in pedestrian tracking applications. As commented
above, some works that suppose a constant direction and speed can be found in
the literature [Ess 2009, Breitenstein 2009]. However, pedestrians are objects with
a particular behaviour that is rarely exploited by systems using real behavioural
data. In [Venegas 2005], a reduced version of the pedestrian walking behavioural
model described in Section 4.2 was used for pedestrian tracking. The tracking was
performed in a Bayesian framework with the behavioural model as prior. This has
two potential problems. On the one hand, if the model gives narrow candidate
regions for position, the track can be lost if the behaviour of the pedestrian differs
slightly from the model. On the other hand, if the model gives too wide regions,
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clutter can generate track errors. The tracking algorithm presented later tries to
avoid these two situations by combining a behavioural and a visual model into a
single VT framework.

The framework that we propose combines the two strategies described above for
handling total occlusions: hidden motion assumptions and object detection. On
one side, when a total occlusion occurs, the tracking stops using visual information
and starts using a behavioural model of motion as likelihood function for assigning
the weights of the particles. On the other side, while behavioural tracking is
performed, the update of the visual model is stopped and the tracking switches to
a sort of detection mode using this visual model. This detection mode allows to
re-detect the tracked object after the occlusion, and then switch again to visual
tracking. The occlusion detection and the pedestrian re-detection are performed
by using statistics extracted from the particle filter used for tracking. This does
not alter the computational complexity of the tracking algorithm, which is not the
case in general when an object detector is used.

We apply this framework to pedestrian tracking using the Discrete Choice Pedes-
trian Model (DCPM), introduced in [Robin 2009], as behavioural model of motion.
The information provided by this behavioural model depends on personal conditions
of the tracked pedestrian, but also on conditions of surrounding pedestrians. This
allows to capture complex behaviours, reproducing better than a simple constant
velocity model the motion pattern of a pedestrian (see validation of the model in
[Robin 2009]). Although we use the proposed framework for pedestrian tracking,
it can be easily adapted to any other problem with an inherent behaviour of motion.

This Chapter is organised as follows. In Section 4.2 we make a short introduction to
pedestrian behaviour modelling and describe the DCPM, which is the behavioural
model used afterwards for tracking pedestrians. Then, in Section 4.3 the Model
cOrruption and Total Occlusion Handling (MOTOH) framework is introduced,
describing each one of its modules in detail. Afterwards, the details of the
integration of the pedestrian behaviour model into the MOTOH framework are
discussed in Section 4.3.2. Then, in Section 4.4 several tests are performed and
finally, in Section 4.5, some conclusions and potential lines of future research are
given. A journal paper on the works presented in this Chapter is being prepared
and will be submitted soon.

4.2 Pedestrian Behaviour Modelling: the Discrete
Choice Pedestrian Model

Pedestrian behaviour modelling is an important topic in a wide variety of fields,
such as architecture, transportation, sociology, economics or computer vision. One
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of the main problems in pedestrian behaviour modelling is the difficulty of data
acquisition, and only a few of the models presented in the literature have been
calibrated on real datasets.

In general, pedestrian behaviour modelling methods can be classified into two
main families: macroscopic models and microscopic models. On the one hand,
macroscopic models treat groups of individuals as an entity and reproduce its
evolution under certain conditions [Helbing 2007, Piccoli 2011]. On the other
hand, microscopic models treat pedestrians individually. These techniques are
receiving great attention nowadays and in our context, pedestrian tracking,
these are the most appropriate. Examples of microscopic pedestrian models
are the social force model [Helbing 1995], the multi-layer utility maximisation
model [Hoogendoorn 2002] or the Discrete Choice Pedestrian Model (DCPM)
[Robin 2009]. For a general literature review on pedestrian modelling, we refer the
interested reader to [Bierlaire 2009].

We will concentrate on the DCPM introduced in [Robin 2009]. A reduced ver-
sion of this model has been used in CV applications [Antonini 2004, Venegas 2005,
Antonini 2005, Antonini 2006]. This model concentrates on the operational level
of the hierarchical pedestrian decision scheme introduced by [Daamen 2004], where
the author divide the decisions taken by a pedestrian in three levels:

• Strategical: in charge of the choice of destination and activity;

• Tactical: in charge of the planning of the order of activities, activity area
choice and route choice;

• Operational: in charge of instantaneous decisions, such as steps and stops.

The DCPM considers that the strategic and tactical decisions have been ex-
ogenously made, i.e. the model considers that origin and destination are given,
and models the short range behaviour in normal conditions (non-evacuation and
non-panic situations).

The behavioural structure of the model is illustrated in Figure 4.1. There, it
can be observed that the DCPM models two types of decisions: unconstrained
decisions and constrained decisions. Unconstrained decisions are independent
of the presence of other pedestrians, while constrained decisions depend on the
presence and behaviour of nearby pedestrians. This means that the model captures
individual behaviour as well as interactions among pedestrians.

The DCPM is a Discrete Choice Model (DCM). DCMs are behavioural models
designed to forecast the behaviour of decision makers in a choice context, when a
finite set of alternatives is available. They are based on four elements:

• a set of alternatives Cn available for decision maker n;
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Pedestrian walking behaviour

Unconstrained Constrained

Keep Toward Free flow
direction destination acc/dec

Collision Leader
avoidance follower

Figure 4.1: Conceptual framework for the DCPM from [Robin 2009].

• for each i ∈ Cn, a set of attributes Xin describing the alternative i;

• a set of socio-economic characteristics Zn describing the decision maker;

• assumptions about the choice process and the modelling of uncertainty.

DCMs assume a rational decision maker, who performs choices by maximising the
utilities perceived from the available alternatives [Ben-Akiva 1985]. The utility
function perceived by an individual n for an alternative i ∈ Cn is modelled as a
random variable Uin:

Uin = Vin + εin, (4.1)

where Vin denotes the deterministic term that captures the systematic behaviour,
and εin is a random term that captures the uncertainty.

In the DCPM, the choice set consists of 33 cell regions situated in a circular sector
of 170◦ in front of the pedestrian, whose centre is defined by the position of the
pedestrian and the radius by 1.75 times its speed. Each alternative corresponds to
a combination of speed regime v (deceleration, constant speed or acceleration) and
a radial direction d (±72.5◦, ±50◦, ±32.5◦, ±20◦, ±10◦ or 0◦). In Figure 4.2 the
choice set and the elements that define it are shown.

The systematic utility perceived by individual n for the alternative identified by the
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Figure 4.2: Elements that define the choice set of alternatives for the next step in
[Robin 2009].

speed regime v and direction d is

Vvdn =βdir centraldirdnId,central +

βdir sidedirdnId,side +

βdir extremedirdnId,extreme +





keep direction

βddistddistvdn +

βddirddirdn +

}
toward destination

βdecIv,dec(vn/vmax)
λdec +

βaccLSIn,LSIv,acc(vn/vmaxLS)
λaccLS +

βaccHSIn,HSIv,acc(vn/vmax)
λaccHS +





free flow acceleration

Iv,accI
L
d,accα

L
accD

ρLacc
L ∆vγL

acc
L ∆θδ

L
acc

L +

Iv,decI
L
d,decα

L
decD

ρLdec
L ∆v

γL
dec

L ∆θ
δLdec
L +




 leader-follower

Id,CαCe
ρCDC∆vγC
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}
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(4.2)

where all the α, β, γ, δ, λ and ρ parameters are estimated. This expression
has five sub-blocks: keep direction, toward destination, free flow acceleration,
leader-follower and collision avoidance. Each one of these sub-blocks models a
different aspect of the walking behaviour of pedestrians.
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Figure 4.3: Elements capturing the keep direction and toward destination be-
haviours

Keep direction captures the tendency of people to avoid frequent variation of direc-
tion and plays a smoothing role in the model, avoiding drastic changes of direction.
The non-linearity of this pattern is captured by defining three different groups of
directions: central (cones containing cells 5, 6 and 7 in Figure 4.2(b)), side (cones
containing cells 3, 4, 8 and 9 in Figure 4.2(b)) and extreme (cones containing cells 1,
2, 10 and 11 in Figure 4.2(b)). Each group has its own term in the utility function

βdir centraldirdnId,central + βdir sidedirdnId,side + βdir extremedirdnId,extreme (4.3)

where the variable dirdn is defined as the angle in degrees between the direction
d and the direction dn corresponding to the current direction, as shown in
Figure 4.3. Note that the indicators Id,central, Id,side and Id,extreme, that are
equal to one if the alternative corresponds to a cell in their cones and zero other-
wise, guarantee that only one of the three terms is nonzero for any given alternative.

Toward destination models the tendency of individuals to choose, for the next step,
a spatial location that minimises angular displacement and distance to destination.
It is captured by

βddistddistvdn + βddirddirdn (4.4)

where the variable ddistvdn is defined as the distance (in meters) between the
destination and the center of the alternative Cvdn, while ddirdn is defined as the
angle in degrees between the destination and the alternative’s direction d, as shown
in Figure 4.3.

Free flow acceleration models the acceleration of individuals in free flow conditions.
It is captured by three terms, depending on the speed regime of the alternative (see
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Figure 4.2(d)):

βdecIv,dec(vn/vmax)
λdec+βaccLSIn,LSIv,acc(vn/vmaxLS)

λaccLS+βaccHSIn,HSIv,acc(vn/vmax)
λaccHS ,

(4.5)
where Iv,dec is one if v corresponds to a deceleration, zero otherwise; Iv,acc is one
if v corresponds to an acceleration, zero otherwise; In,LS is one if the individual’s
current speed is less than or equal to 1.39, zero otherwise; In,HS = 1 − In,LS; the
reference speed for low speeds is vmaxLS = 1.39; and the reference speed is selected
to be the maximum speed observed, vmax = 4.84 (m/s).

The leader-follower block captures the influence on an individual of other pedes-
trians walking in front of him [Li 2001]. A possible leader can be identified among
a set of potential leaders for each one of the 11 radial cones of Figure 4.2(c). A
potential leader is an individual who is inside a certain region of interest, not far
from the decision maker and with a moving direction close enough to the direction
of its corresponding radial cone. An individual k is defined as a potential leader
based on the following indicator function (see Figure 4.4 for graphical details):

IkL =






1, if dl ≤ dk ≤ dr (is in the cone),
and 0 < Dk ≤ Dth (not too far),
and 0 < |∆θk| ≤ ∆θth (walking in almost the same direction),

0, otherwise,

where dl and dr represent the bounding left and right directions of the cone in
the choice set (defining the region of interest) while dk is the direction identifying
the position of pedestrian k. Dk is the distance between pedestrian k and the
decision maker, ∆θk = θk − θd is the difference between the movement direction
of pedestrian k (θk) and the angle characterising direction d, i.e. the direction
identifying the radial cone where individual k lies (θd). The two thresholds Dth

and ∆θth are fixed at the values Dth = 5Dmax, where Dmax is the radius of the
choice set, and ∆θth = 10 degrees. This seems to be reasonable and well adapted
to pedestrian environment perception.

Among the set of potential leaders for each radial direction, the one at the min-
imum distance DL = mink∈K(Dk) is chosen as Leader and induces an attractive
interaction on the decision maker, captured by

Iv,accI
L
d,accα

L
accD

ρLacc
L ∆vγL

acc
L ∆θδ

L
acc

L + Iv,decI
L
d,decα

L
decD

ρLdec
L ∆v

γL
dec

L ∆θ
δLdec
L , (4.6)

where ILd,acc is one if the leader in the cone d has been identified with a speed larger

than vn, zero otherwise. Similarly, ILd,dec = 1 − ILd,acc is one if the leader in cone
d has been identified with a speed lower than vn, zero otherwise. The indicator
functions Iv,acc and Iv,dec discriminate between accelerated and decelerated
alternatives, as with the free flow acceleration model. Finally, ∆vL = |vL − vn|,
where vL and vn are the leader’s speed module and the decision maker’s speed
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Figure 4.4: Leader and potential leaders in a given cone.

module, respectively; and ∆θL = θL − θd, where θL represents the leader’s
movement direction and θd is the angle characterising direction d, as shown in
Figure 4.4. Note that in the final specification, the parameter δLdec appeared not
to be significantly different from 0 and therefore was removed from the specification.

Finally, collision avoidance models the influence of potential collision on the tra-
jectory of the decision maker [Collett 1981]. Similarly to leader-follower, for each
direction in the choice set, a collider is identified among a set of potential col-
liders not far from the decision maker and walking in the opposite direction, i.e.
an individual k is defined as a potential collider based on the following indicator
function:

IkC =






1, if dl ≤ dk ≤ dr (is in the cone),
and 0 < Dk ≤ D′

th (not too far),
and π

2 ≤ |∆θk| ≤ π (walking in the other direction),
0, otherwise,

where dl, dr and dk are the same as those defined for the leader-follower model;
D′

k is the distance between individual k and the center of the alternative; and
∆θk = θk − θdn is the difference between the movement direction of pedestrian
k, θk, and the movement direction of the decision maker, θdn . The value of the
distance threshold is now fixed to D′

th = 10Dmax, which is larger than the value
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Figure 4.5: Collider and potential colliders in a given cone

used for leader-follower assuming that the collision avoidance behaviour has a
longer range of action, happening also at a lower level of density. In Figure 4.5,
graphical details are shown.

Among the set of Kd potential colliders for direction d, a collider is chosen in each
cone as that individual having ∆θC = maxk∈Kd

|∆θk|. The indicator Id,C = 1 if a
collider has been identified, and 0 otherwise. Finally, the collision avoidance term
is included in the utility functions of all the alternatives as

Id,CαCe
ρCDC∆vγC

C ∆θδCC . (4.7)

Note that in the final specification, the parameters γC and δC were not significantly
different from 0. Therefore the collision avoidance term depends only on the
presence or not of a collider and on the cone where this collider is placed. Since
the estimated value of αC < 0, this expression reduces the utility, and therefore
the probability, of the alternatives in cones containing colliders.

For a detailed description of the pedestrian behaviour motivations of using these
expressions for the utilities, we refer the reader to [Robin 2009].

The random term in Equation (4.1) is considered with a correlation structure de-
pending on the speed and direction, producing a Cross Nested Logit (CNL) model
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[Bierlaire 2006]. Five nests were identified: accelerated, constant speed, deceler-
ated, central and not central. The probability of choosing alternative i within the
choice set C is

P (i|C) =
M∑

m=1

(
∑

j∈C αµm/µ
jm eµmVj )

µ
µm

∑M
n=1(
∑

j∈C αµn/µ
jn eµnVj )

µ
µn

αµm/µ
im eµmVi

∑
j∈C αµm/µ

jm eµmVj

, (4.8)

where M is the number of nests, αjm is the degree of membership of alternative
j to nest m and 0 < µ ≤ µm ∀m, being µ the scale parameter and µm the nest
parameter. In the DCPM, M = 5, αjm = 0.5 ∀j,m and µ = 1, all the other
parameters are estimated using behavioural data.

Model parameters were estimated using real pedestrian trajectories,
manually tracked from video sequences collected in Sendai, Japan
[Teknomo 2000, Teknomo 2002]. The dataset consists of 190 pedestrian tra-
jectories with 2 observations per second, which produce a total of 10200 observa-
tion (9281 after data cleaning). The values of parameters can be found in Table 4.1.

The model was also validated on the same dataset (using a cross-
validation procedure) and on a dataset collected at Delft University
[Daamen 2003b, Daamen 2003a, Daamen 2004]. The validation allowed to
show the robustness and quality of the specification, as well as its superiority with
respect to a constant speed model.

4.3 The MOTOH Visual Tracker Framework

In the previous Chapter, an approach for avoiding model drift has been introduced.
This approach is useful in situations where the appearance of the tracked object
changes momentarily due to illumination changes, partial occlusions or temporal
deformations, for instance. However, if a total occlusion of the tracked object
occurs, this approach cannot handle the situation, since it requires the tracked
object to be at least partially visible. For dealing with this type of situations,
here we introduce the Model cOrruption and Total Occlusion Handling (MOTOH)
visual tracking framework, which combines the spatial and temporal weighting
strategies introduced in Chapter 3, a total occlusion detector, based on the PF
used for tracking, and a behavioural model of motion for continuing the tracking
when the object is occluded.

The common approach, when a behavioural motion model is available, is to use
it as a prior for state evolution. This presents two potential problems. On the
one hand, if the behavioural model over-fits the behaviour of the tracked object,
a slightly abnormal behaviour of this object can potentially cause a loss of track.
On the other hand, if the model under-fits the behaviour, propagated particles can
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be spread over a wide region of the state space, which can generate mistakes in
cluttered situations. Furthermore, under the hypothesis of smoothness in position,
shape and appearance change, a Gaussian prior is usually well adapted and the
added value of using the behavioural model would be low. For these reasons, we
propose here to use the behavioural model directly in the likelihood p(zk|xk), but
only when the visual information on the scene does not allow to continue the
tracking of the object of interest, i.e. when a total occlusion happens. This switch
between visual and behavioural tracking requires a total occlusion detector, which
is performed by measuring some parameters of the PF in charge of the tracking.
The objective of performing occlusion detection by measuring some parameters
of the PF is to keep the computational complexity of the algorithm as similar to
ITWVTSP as possible.

In Figure 4.6, a schematic view of the MOTOH framework is shown. The input
video is processed by the feature extraction block. As in Chapter 3, we use
grayscale level pixels as features, although the use of another kind of features
could be easily implemented. The object representation feeds the particle filter
and is computed by the ITWPCA algorithm applied to rectangular templates.
The particle filter considers spatial weights and therefore, up to here, the diagram
represents the ITWVTSP algorithm. Actually, occlusions are detected by detecting
changes in the particles, as introduced later, and depending on this, the total
occlusion detector block chooses between the visual likelihood and the behavioural
likelihood. The occlusion detector gives as output the mean state according to
particle weights, which is used by the object representation for updating the visual
model and by the behavioural model as source of historical behavioural information.

In the following Section, the proposed total occlusion detector is introduced and
in Section 4.3.2, the complete algorithm for using the MOTOH framework in
pedestrian tracking with the DCPM as behavioural model is described in detail.

4.3.1 Detecting Total Occlusions

The design of a total occlusion detector is not straightforward. Indeed, nothing
about the occluder object is known a priori, except that it causes the loss of the
visual information of the tracked object. Actually, when a total occlusion happens,
the visual model is measuring some sort of noise and this is the information that
we use for detecting the occlusion.

When the tracked object is well visible and the tracking is performed correctly,
the weights of the particles are high and the variance of the true weights low.
Therefore, the normalisation factor and the estimated variance of the true weights
are indicators, at a given frame k, of the quality of the observed information
of the tracked object. However, scale information about these two measures
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Figure 4.6: Schematic view of the MOTOH Framework
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is not available, which makes hard thresholds too application-specific and even
situation-specific. Indeed, even in the same application, the fluctuations of their
values can be of several orders of magnitude without necessarily the presence of an
occlusion, just a distancing of the object of interest from the visual model. This
is the case, for instance, of pedestrian tracking, where the deformations of the
walking pedestrian generate considerable changes on the values of these measures.

Let us precisely define these two measures. The normalisation factor nw,k at a given
frame k is computed as

nw,k =
Ns∑

i=1

w̃i
k, (4.9)

where Ns is the number of particles and w̃i
k is the weight of particle i at time step

k before normalisation, i.e. before transforming the set of particle weights into a
discrete probability distribution function. The variance of the true weights at time
step k, vw,k, can be estimated by combining Equation (2.15) and Equation (2.16)
as

vw,k ' Ns

Ns∑

i=1

(wi
k)

2 − 1, (4.10)

where wi
k is the normalised weight of particle i at time k.

Due to the fluctuations explained above, a dynamical procedure for deciding when
the values of nw,k and vw,k correspond to an occlusion, is needed. Solutions based
on the mean and the variance of the obtained values do not perform well, since
a gradual variation of the values, due to a gradual occlusion for instance, can be
undetected. The situation-specificity commented above makes techniques such as
SVM, not well suited either.

Here we propose to keep an historical log of the obtained values and compare the
new values with the median and the range of the log. Let us suppose that a set of L
not occluded frames has been observed, obtaining {nw,(, - ∈ L} and {vw,(, - ∈ L}.
An indicator of occlusion at time step k, Ok, is computed as

Ok =






1, if
median{

nw,!
vw,!

,(∈L}
nw,k
vw,k

>
max{

nw,!
vw,!

,(∈L}

min{
nw,!
vw,!

,(∈L}

0, otherwise

, (4.11)

where the value 1 indicates an occlusion at time k, and 0 no occlusion at time k.
This occlusion indicator monitors the new values of the ratio between normalisation
factor and variance of true weights. When the jump from the median value (which
is a robust estimator of the central tendency) to the new obtained value is bigger
than the maximum jump observed, the indicator considers that the new value is an
outlier, i.e. an occlusion. This indicator has shown a good performance in the tests.
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4.3.2 Pedestrian Tracking using the Discrete Choice Pedestrian
Model in the MOTOH Framework

The MOTOH framework provides a generic environment for combining the tracking
algorithms introduced in Chapter 3 with an occlusion handling algorithm. We
apply this framework to pedestrian tracking, using the DCPM as behavioural
model. In this Section, we describe the assumptions and conditions required by
this behavioural model and we provide a detailed description of the global algorithm.

The DCPM (see Section 4.2 for details) needs position and speed of all the pedes-
trians in the scene for generating the choice set and computing utilities. Remember
that this model captures interactions between pedestrians (leader-follower and col-
lision avoidance terms of Equation (4.2)). Speed and position computations require
the calibration of the camera, which limits the use of the presented algorithm to
fixed cameras, in general. As the position of a pedestrian we consider the middle
point of the base of the rectangular tracked region, which is supposed to be at floor,
i.e z = 0. As the DCPM only depends on the dimensions of the state space related
to the position, but not on scale, for instance, the original size so, size in the first
tracked frame, is computed using the calibration information for every new tracked
region. Then, if the tracking switches to behavioural tracking, the size of templates
defined by particles is computed, and the difference with respect to the original size
is used for penalising the weight of particles given by the DCPM. Given a particle
i at time step k whose size in world coordinates is sik, the weight given the DCPM
is multiplied by a factor f i

s,k defined as

f i
s,k = e−3|so−sik|. (4.12)

This function was defined empirically, in order to keep the weight of particles with
a variation of ±10cm in size almost unchanged (e−0.3 ' 0.75). The use of this
penalising factor avoids an arbitrary change of size of the tracked region while
using the behavioural tracking.

An important aspect when using a behavioural model is to respect the estimation
conditions, i.e. for which situations it has been designed and under which
conditions it has been calibrated. The DCPM has been designed and calibrated
using data in normal conditions, i.e. non-evacuation and non-panic situations, and
in general is valid only in this context. The data used for calibration was collected
at 2 data points per second. The choice set is generated using points from half
second before the current point and the prediction gives probabilities for positions
one second after. These conditions have been respected when using the model in
the MOTOH framework, which means that the algorithm needs to correctly track
the first 1.5 · fps frames of a pedestrian before being capable of using the pedestrian
model. The frame rate of the videos is generally considerably higher than the
frame rate of the data used in the model estimation (2 frames per second). In order
to use this extra information and to avoid jumps in the choice set generation, the
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speed of pedestrians is computed using a linear regression on the trajectory points.

Finally, the destination is an exogenous variable in the DCPM and needs to be
given for computing utilities. In the tests that we have done, a simple destination
estimation is performed. Two potential destinations are predefined, d1 = (20, 0)
and d2 = (−20, 0). If during the first 1.5 · fps tracked frames, the x coordinate in
world coordinates increases, d1 is chosen as destination, if not d2.

In Algorithm 6, the algorithm obtained by applying the MOTOH framework to
pedestrian tracking, using the DCPM, is described in detail.

Algorithm 6 The MOTOH Pedestrian Tracker
1: At frame k = 0 compute pedestrian size in world coordinates, so, and store the

value
2: for k = 1, . . . , 1.5 · fps do
3: Track pedestrian using the ITWVTSP algorithm (Algorithm 5)
4: Store tracked position
5: Compute nw,k and vw,k and store them
6: for k > 1.5 · fps do
7: Draw particles according to the dynamical model (Equation (2.22)) and the

weight distribution of particles.
8: For each particle, compute its weight according to the observation model and

spatial weights (Equation (3.10) and Equation (3.11)).
9: Compute nw,k and vw,k and apply Equation (4.11) using the last L stored

values
10: if Ok = 1 then
11: For each particle, compute its weight according to the DCPM (Equation

(4.8) multiplied by Equation (4.12)) using stored information about posi-
tion and speed of all the pedestrians on the scene

12: Compute mean particle and store its position
13: else
14: Compute mean particle and store its position, nw,k and vw,k

4.4 Tests and Results

In Chapter 2 we have reviewed standard techniques for computing performance of
visual tracking algorithms. These techniques have been employed in Chapter 3 for
quantitatively showing the improvement obtained with the proposed algorithm.
As also commented in Chapter 2, sometimes it is interesting to assess qualitatively
the performance of an algorithm faced to a particular situation, especially if a
ground truth cannot be easily defined or cannot be defined at all. The MOTOH
Pedestrian Tracker, tested here, is under this situation. Indeed, the core tracking
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algorithm is the ITWVTSP algorithm, whose good performance has already been
quantified in Chapter 3. Now we are interested in observing the capacity of the
MOTOH Pedestrian Tracker to handle occluded situations, where a ground truth
cannot be defined. We will apply the algorithm to several video sequences, without
occlusions, with artificially generated occlusions and with real occlusions, and will
observe its capacity to recover the track of the object after the occlusion. Obtained
results are compared with those obtained using IVT and TLD, showing the higher
robustness of the MOTOH Pedestrian Tracker, in non-occluded situations thanks
to the ITWVTSP algorithm and in occluded situations thanks to the behavioural
model.

The IVT and the MOTOH Pedestrian Tracker were used with the same parameters
than in Chapter 3, in terms of number of particles (600 particles), maximum
number of eigenvectors (16 eigenvectors), block size for updating the PCA (5
images), forgetting factor (0.97) and standard deviations of the dynamical model
(Equation (2.22)): 9.0px for row and column displacements, 0.001 radians for
rotation, 0.001 radians for skewness, 0.05 for scaling and 0.05 for aspect ratio. The
size of eigenvectors was adapted to the shape of a pedestrian, using a template of
50 × 25 pixels. In the MOTOH Pedestrian Tracker, for avoiding instabilities due
to high spatial weights or low temporal weights, conservative values were chosen
for noise threshold ε = 0.12 and maximum spatial weight sωmax = 2.0 with an
isotropic shape. Given that the upper part of a pedestrian is more stable, since
the legs are constantly moving, the maximum spatial weights were not placed on
the center of the template but on 1/3 of the height (see Figure 4.7). The size of
the historical values of nw,k and vw,k was fixed to 15, which is a good compromise
between the influence of recent values and values corresponding to samples already
added to the model (during 15 samples, three updates of the PCA are performed).

In all the images, the big point in the middle of the basis of each tracked region
represents the position considered for this pedestrian (only used in the MOTOH
Pedestrian Tracker). The output of the MOTOH Pedestrian Tracker is coded in
colours as follows:

• Red: The tracker is in the period where only ITWVTSP is used, first 1.5 · fps
frames.

• Blue: Enough positions have been collected and if an occlusion appears, the
behavioural model could be used.

• Green: The occlusion detector has detected an occlusion and the tracking
is being performed by the behavioural model. The black points represent the
33 alternatives of the DCPM (see Section 4.2).

The starting patch of every pedestrian has been introduced by hand and is the same
for all the methods. A pedestrian is considered as going outside the image region if
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Figure 4.7: Spatial weights used in the experiments. Brighter regions correspond
to high values (close to sωmax = 2.0) and darker regions to spatial weights close to
1.0.

one of the corners of the tracked region goes at least 2px outside of the image region.

First, we have applied the IVT and the MOTOH Pedestrian Tracker to the first
1700 frames of the sequence S1-T1-C of Camera 3 of the PETS2006 Dataset1. In
this sequence there are no big difficulties, excepting a pedestrian that turns around
himself several times, showing to the camera his back and his front and therefore
changing considerably his appearance. This pedestrian is not well tracked with
the IVT algorithm nor the MOTOH Pedestrian Tracker. The reasons however are
slightly different. While in IVT the turns of the pedestrian causes a model drift,
in the MOTOH Pedestrian Tracker these turns generate a false occlusion signal.
The results using IVT are shown in Figure 4.8 and the results using the MOTOH
Pedestrian Tracker in Figure 4.9.

An artificial occlusion has been generated in the same sequence from PETS 2006,
simulating as if the first pedestrian passes behind a column. The occlusion has
been done by simply copying another region of the image. The IVT algorithm fails
to avoid the artificial column, as expected, while the MOTOH Pedestrian Tracker
correctly detects an occlusion and switches to behavioural tracking. The end of
the occlusion is also correctly detected, switching again to visual tracking. The

1Available at http://www.cvg.reading.ac.uk/PETS2006/data.html (last visited in june 2011)

http://www.cvg.reading.ac.uk/PETS2006/data.html
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(a) Frame #100 (b) Frame #185 (c) Frame #300

(d) Frame #380 (e) Frame #480 (f) Frame #960

(g) Frame #1050 (h) Frame #1085 (i) Frame #1170

(j) Frame #1695

Figure 4.8: The IVT algorithm applied to the first 1700 frames of the sequence S1-
T1-C of Camera 3 of the PETS2006 Dataset. The only pedestrian with problems
for being well tracked is the one in the centre of Figure 4.8(j).
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(a) Frame #100 (b) Frame #185 (c) Frame #300

(d) Frame #380 (e) Frame #480 (f) Frame #960

(g) Frame #1050 (h) Frame #1085 (i) Frame #1170

(j) Frame #1695

Figure 4.9: The MOTOH Pedestrian Tracker applied to the first 1700 frames of
the sequence S1-T1-C of Camera 3 of the PETS2006 Dataset. The only pedestrian
with problems for being well tracked is the one in the centre of Figure 4.9(j).



4.4. Tests and Results 81

(a) Frame #100 (b) Frame #140

(c) Frame #155 (d) Frame #185

Figure 4.10: The IVT algorithm applied to the first pedestrian of the sequence
S1-T1-C of Camera 3 of the PETS2006 Dataset. An occluded region has been
artificially generated by copying another portion of the image on it.

TLD algorithm also avoids correctly the artificial occlusion generated. The results
with IVT are shown in Figure 4.10, with TLD in Figure 4.11 and those with the
MOTOH Pedestrian Tracker in Figure 4.12.

A video sequence with real occlusions, called the SV sequence, has been collected.
In this sequence there are two columns that generate occlusions, but given the
recording angle of the camera, multiple occlusions between pedestrians are also
generated. Three pedestrians walk in the scene. The IVT algorithm fails in
the tracking of all the pedestrians, one of them without even an occlusion.
The TLD algorithm has serious problems with clutter in the scene, misleading
several times the tracked regions, and only tracking approximately correctly one
of the pedestrians. The MOTOH Pedestrian Tracker, however, correctly tracks
all the pedestrians, only not correctly recovering the last occlusion of one of
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(a) Frame #100 (b) Frame #140

(c) Frame #155 (d) Frame #185

Figure 4.11: The TLD algorithm applied to the first pedestrian of the sequence
S1-T1-C of Camera 3 of the PETS2006 Dataset. An occluded region has been
artificially generated by copying another portion of the image on it.
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(a) Frame #100 (b) Frame #140

(c) Frame #155 (d) Frame #185

Figure 4.12: The MOTOH Pedestrian Tracker applied to the first pedestrian of the
sequence S1-T1-C of Camera 3 of the PETS2006 Dataset. An occluded region has
been artificially generated by copying another portion of the image on it.
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the pedestrians. Indeed, the MOTOH Pedestrian Tracker correctly tracks the
pedestrian that is lost by IVT without any occlusion, showing the superiority of
the ITWVTSP algorithm. Furthermore, from the five occlusions generated in
this sequence, four are successfully handled. The other one is close (in time) to a
previous occlusion, which probably avoided a proper update of the visual model
with new information after the previous occlusion and generates the failure in the
visual tracking recovery. The results are shown in Figure 4.13, Figure 4.14 and
Figure 4.15 for IVT, TLD and the MOTOH Pedestrian Tracker, respectively.

Another video sequence, called the SV-CAR sequence, was also collected in the
same place and from the same point than the SV sequence. In this sequence a
single pedestrian crosses the scene. In addition to the occlusions generated by
the columns, a vehicle crosses the scene, hiding momentarily the pedestrian. The
IVT and the TLD algorithms loss the track due to the vehicle, while the MOTOH
Pedestrian Tracker correctly detects the occlusion and switches to behavioural
tracking while the pedestrian is hidden. After the pass of the vehicle, the occlusion
detector correctly switches again to visual tracking. The occlusion generated
by the column is then correctly detected too, although suddenly, the algorithm
switches again to visual tracking, sticking the tracked region to the column, where
it stays, losing the track of the pedestrian. The results are shown in Figure 4.16 for
IVT, in Figure 4.17 for TLD and in Figure 4.18 for the MOTOH Pedestrian Tracker.

4.5 Conclusions and Future Work

In this Chapter we have introduced the Model cOrruption and Total Occlusion
Handling (MOTOH) framework for visual tracking. This framework describes the
combination of a visual model with a behavioural model for tracking. The visual
model is computed on-line with the ITWVTSP algorithm (see Chapter 3). The
behavioural model is used for tracking the target using behavioural information
when there is an occlusion. The switch between the visual and the behavioural
tracking is governed by a total occlusion detector that we have introduced. This
detector computes some scores about the particle filter in charge of the tracking,
for detecting a drop in the amount of visual information of the tracked object,
i.e. an occlusion of this object. The occlusion detection algorithm introduced
gets adapted dynamically to the weights of each object of interest, making the
procedure application-independent.

We have applied the framework to pedestrian tracking by plugging the Discrete
Choice Pedestrian Model (DCPM) in the “Behavioural Weights” block. Several
tests in challenging sequences have been performed, showing the added value
of combining visual and behavioural tracking and the capacity of the MOTOH
Pedestrian Tracker to handle complex situations. However, when several occlusions
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(a) Frame #320 (b) Frame #365 (c) Frame #375

(d) Frame #385 (e) Frame #395 (f) Frame #400

(g) Frame #410 (h) Frame #430 (i) Frame #520

(j) Frame #545 (k) Frame #560 (l) Frame #585

Figure 4.13: The IVT algorithm applied to the SV sequence.
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(a) Frame #320 (b) Frame #365 (c) Frame #375

(d) Frame #385 (e) Frame #395 (f) Frame #400

(g) Frame #410 (h) Frame #430 (i) Frame #520

(j) Frame #545 (k) Frame #560 (l) Frame #585

Figure 4.14: The TLD algorithm applied to the SV sequence.
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(a) Frame #320 (b) Frame #365 (c) Frame #375

(d) Frame #385 (e) Frame #395 (f) Frame #400

(g) Frame #410 (h) Frame #430 (i) Frame #520

(j) Frame #545 (k) Frame #560 (l) Frame #585

Figure 4.15: The MOTOH Pedestrian Tracker applied to the SV sequence.
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(a) Frame #40 (b) Frame #75 (c) Frame #105

(d) Frame #125 (e) Frame #130 (f) Frame #135

(g) Frame #141 (h) Frame #143 (i) Frame #160

(j) Frame #170 (k) Frame #175 (l) Frame #195

Figure 4.16: The IVT algorithm applied to the SV-CAR sequence.
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(a) Frame #40 (b) Frame #75 (c) Frame #105

(d) Frame #125 (e) Frame #130 (f) Frame #135

(g) Frame #141 (h) Frame #143 (i) Frame #160

(j) Frame #170 (k) Frame #175 (l) Frame #195

Figure 4.17: The TLD algorithm applied to the SV-CAR sequence.
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(a) Frame #40 (b) Frame #75 (c) Frame #105

(d) Frame #125 (e) Frame #130 (f) Frame #135

(g) Frame #141 (h) Frame #143 (i) Frame #160

(j) Frame #170 (k) Frame #175 (l) Frame #195

Figure 4.18: The MOTOH Pedestrian Tracker applied to the SV-CAR sequence.
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happen close in time, the system seems to have some troubles recovering from the
occlusion. The reason is probably the batch process of samples in the ITWPCA
algorithm. This batch process does not allow a fast adaptation of the visual model
to the target conditions just after the occlusion. Strategies for adapting the batch
size for fast adaptation of the visual model after an occlusion should be studied.
These strategies could consider a change in the batch size, as well as changes in the
forgetting factor and the temporal weights for a fast update of the visual model
after occlusions.

As commented above, two potential destinations are considered and one of them
is chosen according to the tracking during the first frames. The destination has
an important impact in the DCPM and more complex destination estimation
strategies should be developed. In particular, in the context of a long time
monitoring system, origin and destination estimation could be done by tracking.
These data could be used for generating dynamically origin/destination maps for
updating destinations of new pedestrians on the scene. The impact on the tracking
performance of this procedure should be quantified.

In this Chapter, we have applied the MOTOH Pedestrian Tracker on a mono-
camera environment, but note that the algorithm could be used as a multi-camera
tracking algorithm. Indeed, dead zones between cameras can be treated as
occlusions, and the “transfer” of a pedestrian from a camera to another one be
done by behaviourally tracking the pedestrian.

Here we close the part of this dissertation dedicated to visual tracking. The
MOTOH framework includes procedures for avoiding model drift (introduced in
Chapter 3) and for keeping tracking while the object is occluded (Chapter 4). This
deals with hard problems due to exogenous sources of variability (see Chapter
1), producing a robust global tracking algorithm. In addition, we have applied
the MOTOH framework to pedestrian tracking by using a pedestrian walking
behaviour model calibrated and validated on real data. This combination of the
human behaviour modelling field and the computer vision field is not very common.

In the next chapter we will study the problem of matching features between
omnidirectional images or between omnidirectional and planar images. For that,
a scale invariant feature transform on the sphere is developed and two local
descriptors are introduced. Given the matching between omnidirectional and
planar images, a mapping for segmenting regions in an omnidirectional image
given the region in a planar image is also introduced. Let us note that, under the
hypothesis of being placed on rigid objects, the features and descriptors that will
be introduced in next Chapter are more robust than grayscale templates as used
in Chapter 3 and Chapter 4. However, given that for the tracking we dealt with
deformable objects, PCA performed on templates are more suitable.
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5.1 Introduction

The constant increase of computational power allows CV researchers to develop
more complex algorithms that slowly but surely are approaching human vision
performance. However, hardware restrictions imposed by visual sensors are
sometimes hard to handle. A typical example is the narrow field of view provided
by a regular projective camera, which can make difficult for instance to estimate
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motion on a scene. For this reason, research on new visual sensor geometries has
been gaining attention during the last years. An example of these new visual
sensor geometries are omnidirectional visual sensors.

Omnidirectional vision has become an important topic in computer vision. One
of its main benefits is that one omnidirectional camera can cover 360◦ around it.
As with conventional (planar) images, image matching is a main aspect of many
computer vision problems involving omnidirectional images, although it has not
been widely studied for this kind of cameras yet. Usually, techniques designed for
planar images are applied on omnidirectional images, like for instance on panoramic
images, i.e. omnidirectional images mapped on a cylinder, [Yuen 2005, Bur 2006],
although this is not geometrically correct. Even if locally those algorithms are
still valid, as soon as bigger regions of the image are considered, it is not the
case anymore due to the deformation that the omnidirectional sensor introduces.
Moreover, not only do omnidirectional and planar images coexist, but they are
often used jointly, for instance in hybrid camera networks. This is a source of
new problems, since matching between omnidirectional images is needed, but also
between omnidirectional and planar ones.

A common way of tackling the matching problem between two given images is
by using interest points. These are points in an image that fulfill some “interest”
criterion. This criterion is usually defined in such a way that the obtained points
have a well-defined position, contain as much local information on the surroundings
as possible and are robust against changes in the image, such as noise, perspective
transformations, illumination changes, etc. The location of these points is often
used for extraction of local image descriptors. This is a transformation of the local
image data into an element of the transformed space, usually a vector, where some
characteristics are coded, as for example the shape, the orientation, the colour,
the texture, etc. They can be used afterwards, for instance, in matching or image
registration. One of the most well-known and employed interest points are Scale
Invariant Feature Transform (SIFT) points. SIFT is also used in tracking, given its
robustness to image changes and noise, especially on rigid objects. The drawback
is the computational cost of the feature extraction, which in tracking forces to
design strategies for computing SIFT only on small regions of the image [Zhou 2009].

The intuitive approach for defining and performing a scale invariant feature trans-
form on omnidirectional images is to first map them on a panoramic image (i.e. in
cylindrical coordinates) and then to apply the conventional SIFT algorithm. In fact,
using the same reasoning, the classical SIFT has been applied to unwrapped omni-
directional images [Goedeme 2005, Tamimi 2006, Valgren 2007, Scaramuzza 2008].
The difficulties in this case come when there is information in the extremities of
the omnidirectional image. Such images are obtained by spherical omnidirectional
sensors.
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On the one hand, images obtained by omnidirectional sensors contain significant
deformations. Specific mapping, like panoramic or log-polar mappings, attempt
to reduce somehow the distortions but do not succeed completely. A natural
choice of a non-deformed domain for the full sphere of view, where there are no
limitations on the zenithal range, is the sphere S2 ∈ R3. On the other hand, the
scale-invariant feature transform is based on distinctive invariant features from
images for further matching. The features are invariant to image scale and rotation.

Considering the spherical geometry, which is the natural manifold for any
omnidirectional image, we need to first recall the basic affine spherical transforma-
tions. In general, two types of transformations on the sphere are distinguished:
motions (displacements) and dilations (scalings). Concerning the motions,
there are three possible rotations. In particular, these are rotations by angles
ϕ ∈ [0, 2π),ψ ∈ [0, 2π) and θ ∈ [0,π]. In other words, rotations by ϕ are those
around the x0−axis; rotations by θ are those around x2− axis, and rotations by
ψ, are rotations of the point on the sphere around itself (see Figure 5.1). The
dilations affect the angle θ, and the motions the angles ϕ or ψ. Furthermore, a
translation on the plane corresponds to a rotation on the sphere. Therefore, the
notions of dilation and rotation on the plane cannot be simply translated to the
sphere. That is why we cannot apply the standard SIFT paradigm to a complex
data that is defined in spherical coordinates (as for instance, the omnidirectional
image after it has been mapped onto the sphere).

Finally, from here it is clear that applying the standard SIFT on unwrapped
omnidirectional images is locally valid, i.e. for big radius of curvature and,
consequently, at small scales. However, if a global algorithm is wanted, SIFT must
take place in spherical geometry. Having a SIFT algorithm that operates directly
on the sphere is equivalent to preserve the spherical affine transformations and
only in this conditions the transformations are geometrically correct.

In this Chapter, a SIFT algorithm in spherical coordinates and a new approach to
match points between two spherical images or between spherical and planar images
are proposed.

First, we develop an interest point extractor on the sphere based on the spherical
scale-space representation and the SIFT algorithm. This algorithm processes
omnidirectional images mapped on the sphere (see Figure 5.2(c)). The creation
procedure of the spherical scale-space is speeded up by successive downsampling
of the input image for each octave. This down-sampling generates an aliasing
effect when the Spherical Fourier transform is applied at the corresponding level.
For this reason, an anti-aliasing criterion is defined to decide whether an image is
down-sampled or not.

Secondly, we propose two types of descriptors. The first is used for matching
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X1

X2

X0

Figure 5.1: Rotations on the sphere

between two spherical images, the second for matching a spherical and a planar
image. Both descriptors can be useful when working, for instance, with hybrid
camera networks. In such a case, these descriptors can easily help registering data
from all the components of the network.

Finally, we introduce a mapping between planar and spherical images. This
mapping sends the contour or regions of an object in a planar image to a spherical
one and vice versa. The parameters of this mapping are estimated by means of the
obtained matched points, cleaning false detections with the Random Sample Con-
sensus (RANSAC) algorithm [Fischler 1981]. The inputs of the estimation process
are respectively the matched points from the omnidirectional and the planar images.

Several experiments are performed on real omnidirectional images to test the
proposed algorithms. The code developed for these tests has been implemented in
Matlab R© and source code and images are freely available1 under the GPL license.
The source code requires the installation of the “Yet Another Wavelet Toolbox”
(YAWTb)2 for MatLab. This library provides an efficient way of computing the
spherical harmonic transformations as well as a nice visualisation interface. Finally,
for the RANSAC routines, we used the RANSAC Toolbox3.

This Chapter is organised as follows. In Section 5.2, a review of the state-of-the-art
in interest points and local descriptors in planar and omnidirectional images is
shown. In Section 5.3, the mathematical aspects of the interest point extraction
on the sphere are exposed. In Section 5.4, the proposed algorithm is described in
detail, as well as the two proposed descriptors. Then, in Section 5.5, a “planar to

1http://transp-or2.epfl.ch/pagesPerso/javierFiles/software.php
2http://rhea.tele.ucl.ac.be/yawtb
3http://vision.ece.ucsb.edu/~zuliani/Code/Packages/RANSAC/

http://transp-or2.epfl.ch/pagesPerso/javierFiles/software.php
http://rhea.tele.ucl.ac.be/yawtb
http://vision.ece.ucsb.edu/~zuliani/Code/Packages/RANSAC/
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spherical” mapping is defined and a method for its estimation is given. In Section
5.6, several experimental results are presented. Finally, in Section 5.7, some
conclusions and potential lines for future research are given. The works presented
in this Chapter have been submitted to the International Journal of Computer
Vision and are nowadays in the second revision round.

5.2 State-of-the-art

Interest points are widely used nowadays by computer vision algorithms. As com-
mented before, two main aspects make these points useful:

• robustness against image changes and,

• richness of local information in terms of local image structure.

A wide variety of interest points has been defined to best combine these two
aspects, like for example Harris-Stephens corners [Harris 1988], SUSAN cor-
ners [Smith 1997], salient regions [Kadir 2001], Maximally Stable Extremal
Regions (MSER) [Matas 2002] or extrema of the Difference-of-Gaussians
(DoG) [Lowe 2004]. An excellent survey on this kind of points can be
found in [Tuytelaars 2007]. Due to their stability, these keypoints are of-
ten used for the computation of local descriptors, which are used afterwards
for several tasks, such as tracking, object detection or region matching. A
wide variety of local descriptors has also been proposed in the literature
[Zabih 1994, Van Gool 1996, Baumberg 2000, Lowe 2004, Mikolajczyk 2005a]. An
exhaustive comparison of local descriptors has been given in [Mikolajczyk 2005a].

Scale Invariant Feature Transform (SIFT), introduced in [Lowe 2004], is a well-
known algorithm that successfully combines both notions. For interest points, it
considers extrema of the Difference-of-Gaussians, and for local descriptors, a his-
togram of orientations. The SIFT algorithm detects points in a scale-invariant way,
as extrema in the response of the convolution of the image with a DoG function

ψ(x, y,σ) = g(x, y, kσ) − g(x, y,σ), (5.1)

where g(x, y,σ) denotes a two-dimensional Gaussian kernel with standard deviation
σ. This is based on the work of [Lindeberg 1998], and the convolution of an image
with ψ(x, y,σ) can be computed as the difference of consecutive images in the scale-
space representation of the image, choosing properly the value of k. The scale-space
representation L(x, y, t) : R2 × R+ → R of an image I(x, y) can be equivalently
defined in two different ways. The first one is the evolution over time of the heat
distribution I(x, y) in an infinite homogeneous medium:

∂tL(x, y, t) =
1

2
∇2L(x, y, t), (5.2)
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where the initial condition is L(x, y, 0) = I(x, y). The second one is the successive
convolution of the image with a Gaussian kernel, g(x, y,σ), of standard deviation
σ =

√
t:

L(x, y,σ) = g(x, y,σ) ∗ I(x, y). (5.3)

This scale-space representation of an image is efficiently computed directly using
the definition of the convolution, thanks to the separability of the Gaussian filter.
The local data around each interest point is then used to compute SIFT descriptors.
These local descriptors are invariant to rotation and scale changes. They consist
of a three-dimensional histogram: two spatial dimensions and one dimension for
orientations. The size of this region depends on the scale at which the point has
been detected. Thanks to its simplicity, good results in terms of repeatability and
accuracy on matching, it has been used to treat applications requiring tracking or
matching of regions [Sirmacek 2009, Brox 2010].

Several variants of the SIFT algorithm have appeared, trying to improve the
interest point extraction or the local descriptor. Among those trying to improve
the interest point extraction, the most remarkable representative is probably the
Speed-Up Robust Features (SURF) algorithm [Bay 2008]. For those trying to
improve the local descriptor, a good representative is the Gradient Location and
Orientation Histogram (GLOH) introduced in [Mikolajczyk 2005a].

All these algorithms and techniques have been developed to work with regular
(planar) images or videos. Over the last years, though, omnidirectional imaging
has become an important topic, due to both the availability of simple sensors (e.g.
parabolic mirrors mounted on regular cameras) and the great advantages it provides
(e.g. a 360 degrees view in one single image). This kind of sensors has a lot of
applications, such as video surveillance [Boult 2001] or object tracking [Chen 2008],
and their use has become common in robot navigation [Menegatti 2006] and in
autonomous vehicles [Ehlgen 2008, Scaramuzza 2008].

Interest points and local descriptors-based techniques, such as SIFT, have been
applied to omnidirectional images due to their good performance in planar images
[Goedeme 2005, Tamimi 2006, Valgren 2007, Scaramuzza 2008]. Recently, several
efforts have been made to develop algorithms specifically designed to treat these
omnidirectional images [Bogdanova 2007, Hadj-Abdelkader 2008]. An important
aid in this sense were the results of [Geyer 2001], where the authors showed that
the most common catadioptric omnidirectional images (elliptic, parabolic and
hyperbolic) can be bijectively mapped on the surface of a sphere. In particular, for
the case of parabolic images, a parabolic projection is equivalent to the composition
of normalisation to the unit sphere followed by stereographic projection (see Figure
5.2 for an example). Consequently, a whole family of omnidirectional images can
be processed by algorithms treating spherical images. The mapping from the
captured image to the sphere is the only adaptation needed for each element of the
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family. Based on this result, [Hansen 2007b, Hansen 2007a] developed a SIFT-like
algorithm on the sphere to match points between wide-angle images. In this
algorithm, the point extraction is computed on the back-projection of the spherical
scale-space to the wide-angle image plane, and the descriptor is computed using a
fixed size patch of 41× 41 pixels around each extracted point at the corresponding
scale. Also, in [Mauthner 2006] an interest region matching in omnidirectional
images, which uses virtual camera planes, has been developed.

5.3 Spherical scale-space

5.3.1 Spherical Geometry

The 2-sphere (S2 ∈ R3) is a compact manifold of constant positive curvature. In
spherical coordinates, each point on the sphere is a three-dimensional vector

ω = (x0, x1, x2) ≡ (r cos θ, r sin θ sinϕ, r sin θ cosϕ),

with r ∈ (0,∞), θ ∈ [0,π] and ϕ ∈ (0, 2π] as illustrated in Figure 5.3(a). Figure
5.3(b) also illustrates the so called stereographic projection from the South Pole, a
projection that maps any point of the sphere onto a point of the tangent plane at
the North Pole. If we take the sphere S2 as the Riemannian sphere (r = 1) and
the tangent plane as the complex plane C2, then the stereographic projection is a
bijection given by

Φ(ω) = 2 tan
θ

2
(cosϕ, sinϕ), (5.4)

where ω ≡ (θ,ϕ), θ ∈ [0,π],ϕ ∈ [0, 2π).

5.3.2 Fourier Transform on the Sphere

Let us consider two functions f, h ∈ L2(S2) defined on the 2-sphere S2 ∈ R3. Then,
the convolution on the sphere reads

(f ∗ h)(ω) =
∫

r∈SO(3)
f(rη)h(r−1ω)dr, (5.5)

where ω ≡ (θ,ϕ) ∈ S2, θ ∈ [0,π], ϕ ∈ [0, 2π) (see Figure 5.3(a)), SO(3) is the
rotation group and η is the vector pointing to the north pole. Equation (5.5) is hard
to compute, but as it was demonstrated by Driscoll and Healy in [Driscoll 1994],
the convolution of two spherical functions f, h ∈ L2(S2) can be calculated more
efficiently as the point-wise product of their spherical Fourier transforms:

(̂f ∗ h)(-,m) = 2π

√
4π

2-+ 1
f̂(-,m)ĥ(-, 0), (5.6)

where (̂·) is the spherical Fourier transform of the function.
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(a) Original parabolic omnidirectional image (b) Unwrapped omnidirectional image

(c) Omnidirectional image mapped on the unit sphere

Figure 5.2: Example of mapping a parabolic omnidirectional image on the sphere.
The unwrapped spherical image (Figure 5.2(b)) is often used for visualisation pur-
poses.
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Figure 5.3: Spherical geometry

The spherical Fourier transform of a function f ∈ L2(S2) is the set of coefficients
of the expansion of this function in terms of spherical harmonics Y m

( , i.e. the
coefficients f̂(-,m) of the expression

f(θ,ϕ) =
∑

l≥0

∑

|m|≤(

f̂(-,m)Y m
( (θ,ϕ), (5.7)

where the function f(θ,ϕ) and the spherical harmonics Y m
( (θ,ϕ) are expressed in

spherical coordinates for the unit sphere (0 ≤ θ ≤ π, 0 < ϕ ≤ 2π, ρ = 1, see Figure
5.3(a)). The spherical harmonics can be factorized as

Y m
( (θ,ϕ) = k(,mPm

( (cos θ)eimϕ, (5.8)

where Pm
( is an associated Legendre polynomial and k(,m is a normalisation constant

that is

k(,m =

√
2-+ 1

4π

(-−m)!

(-+m)!
(5.9)

in case of orthonormal spherical harmonics (see [Barut 1986] for further details).

Then, the spherical Fourier transform of a function f ∈ L2(S2) is calculated as the
projection of this function on the orthonormal basis of the spherical harmonics

f̂(-,m) = 〈f, Y m
( 〉 = (5.10)

= k(,m

∫

S2
dµ(ω)Y m

( (ω)f(ω),

= k(,m

∫ 2π

0

∫ π

0
Y m
( (θ,ϕ)f(θ,ϕ) sin θdθdϕ (5.11)



102
Chapter 5. Scale Invariant Feature Transform on the Sphere:

Matching Features in Omnidirectional Images

where dµ(ω) = sin θdθdϕ is SO(3) invariant measure on S2. Using Equations (5.8)
and (5.10), it is easy to see that the spherical Fourier transform is a regular Fourier
transform in ϕ followed by a projection on the associated Legendre polynomial.

5.3.3 Spherical DoG as a scale-space

At this point, the only missing element to build the spherical scale-space represen-
tation of a spherical image is the function that plays the role of the Gaussian kernel
in the planar case. Let us note that we need to pass through the spherical Fourier
domain because convolution on the sphere in spatial domain (3D) is hard (almost
impossible) to compute. See Equations (5.5) and (5.6) in Section 5.3.2 for details.
This is not the case of the scale-space representation of a planar image, given the
separability of the Gaussian filter and the simplicity of the planar (2D) convolution.

In [Bulow 2004], the author derives this function as a Green function of the heat
equation (Equation (5.2)) over S2, obtaining

gS
2
(θ,ϕ,σ) =

∑

(∈N

√
2-+ 1

4π
Y 0
( (θ,ϕ)e

−!(!+1)σ2

2 , (5.12)

ĝS2(-,m,σ) =

√
2-+ 1

4π
e

−!(!+1)σ2

2 , (5.13)

where gS
2
denotes the spherical Gaussian function. Therefore, using Equation (5.6),

the spherical Fourier transform of the scale-space representation of an omnidirec-
tional image mapped on the sphere, I(θ,ϕ), is

L̂S2
(-,m,σ) = Î(-,m)e

−!(!+1)σ2

2 (5.14)

for the set of considered scales (different values of σ), and its inverse spherical
Fourier transform,

LS2
(θ,ϕ,σ) = I(θ,ϕ) ∗ gS2

(θ,ϕ,σ), (5.15)

is the spherical scale-space representation of this image. Finally, the spherical DoG
is computed as

ψS2
(θ,ϕ,σ) = LS2

(θ,ϕ, kσ) − LS2
(θ,ϕ,σ). (5.16)

Using these expressions, the algorithm for the extraction of interest points will be
presented in the next section.

5.4 SIFT on the sphere

Let us define the SIFT algorithm in spherical coordinates. In this algorithm, the
extraction of interest points and the local descriptor calculations are performed on



5.4. SIFT on the sphere 103

the surface of the unit sphere. Here, we propose two types of descriptors: Local
Spherical Descriptors (LSD) and Local Planar Descriptors (LPD). The first one is
computed directly on the sphere and is intended to be matched with LSD of points
extracted from different omnidirectional images. The second one is generated
using a local planar approximation of the region around the extracted interest
point, and can be matched with regular SIFT descriptors of points extracted from
planar images. For the matching procedure we follow the method proposed in
[Lowe 2004]. It consists of pairing the nearest points in terms of the distance
between their descriptors, if and only if the ratio between this distance and the
second smallest distance is lower than a fixed threshold d ∈ [0, 1].

The workflow of the spherical SIFT algorithm is summarised in Algorithm 7. Each
one of the steps is described in details in the following sections. Throughout this
paper, a spherical image is considered defined in a (θ,ϕ)-grid where columns are
points of constant longitude, ϕ ∈ [0, 2π), and rows are points of constant latitude,
θ ∈ [0,π].

Algorithm 7 Spherical SIFT algorithm

1: I(θ,ϕ) ←− omnidirectional input image mapped on S2

2: Compute spherical scale-space representation of I(θ,ϕ)
3: Compute spherical DoG
4: E ←− Local extrema of spherical DoG
5: for each Ei ∈ E do
6: Compute LSD and/or LPD of Ei

5.4.1 Spherical scale-space and Difference-of-Gaussians

The spherical scale-space representation of a spherical image I(θ,ϕ) (ρ is fixed to
1) is computed using Equation (5.15) iteratively, i.e.

LS2
(θ,ϕ,σi) = LS2

(θ,ϕ,σi−1) ∗ gS
2
(θ,ϕ, k̃iσ0), (5.17)

where σ0 is the initial scale and k̃i is chosen in such a way that two neighbouring
scales in the spherical scale-space representation are separated by a constant
multiplicative factor k = 21/S (in order to have a constant number S of images
per octave). Therefore, σi = kσi−1 = kiσ0 and using the semi-group property of
the spherical scale-space representation, we have that (kiσ0)2 +(k̃iσ0)2 = (ki+1σ)2,
and so k̃i = ki

√
k2 − 1. These expressions are also valid in the planar case.

The spherical scale-space representation process is speeded up by downsampling
the image by two, instead of increasing the scale σ, each time a complete octave
of ψS2

(θ,ϕ,σ) is obtained. This is the common practice in the planar case too,
but in the spherical case there is a peculiarity. In order to obtain LS2

(θ,ϕ,σ), a
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spherical Fourier transform is computed and, therefore, aliasing has to be taken
into account. This process of downsampling by 2 the images is especially sensitive
to aliasing, since the bandwidth of the spherical Fourier transform is also divided
by 2. For this reason, after the computation of each octave, the following condition
is tested:

e
−nH(nH+1)(σ0/k)

2

8 ≤ e−1, (5.18)

where nH is the new height of the image after reducing its size. This condition
assures that the exponential part of Equation (5.13) remains small for the biggest
value of -. If Equation (5.18) is not fulfilled, instead of reducing the image size for
the next octave, σ is increased and the image size is reduced after the convolution.
Aliasing effects can still appear if they are present in the first computed spherical
Fourier transform, or if σ increases considerably (Equation (5.18) not fulfilled even
for the current H before downsampling). An example of the effect of applying
this anti-aliasing criterion before downsampling an intermediate image in the
computation of ψS2

, is shown in Figure 5.4.

The input images are supposed to have a nominal standard deviation σN of half
pixel, which in our case means σN = 0.5π/H, where H is the height of the spherical
image. To obtain the first image of the spherical scale space, LS2

(θ,ϕ,σ0/k), the
input image is convolved with a spherical Gaussian filter with standard deviation

σ =
√

(σ0/k)2 − σ2
N . The computation of ψS2

is shown in Algorithm 8. Note that
the size of the input image can be doubled before starting the process. Then,
σN = π/H and the first loop starts at o = −1.

Algorithm 8 Spherical scale-space and Difference-of-Gaussians computation
1: S ←− number of stages per octave
2: O ←− number of octaves
3: n ←− 0
4: for o = 0 to O do
5: Compute LS2

(θ,ϕ, 2oσ0/k)
6: for s = 0 to S + 1 do
7: Compute LS2

(θ,ϕ, 2oksσ0)
8: Compute ψS2

(θ,ϕ, 2oks−1σ0)
9: if Equation (5.18) is satisfied then

10: Down-sample by 2 the starting image of the current loop and use it for the
next one

11: else
12: n ←− n+ 1
13: Double the σ’s of the current loop and use them in the next loop
14: Each LS2

(θ,ϕ,σ) in the next loop has to be down-sampled by 2n
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(a) ψS2

(θ,ϕ, 23kσ0) (third stage of the fourth
octave) downsampling the image without ap-
plying the anti-aliasing criterion

(b) ψS2

(θ,ϕ, 23kσ0) (third stage of the fourth
octave) downsampling the image if the anti-
aliasing criterion is fulfilled

Figure 5.4: Example of the effect of the anti-aliasing strategy for the ψS2
computa-

tion of the image in Figure 5.2(c). The image size is 1024× 1024 and the spherical
scale-space was generated using σ0 = 1.6π/1024, σN = 0.5π/1024 and S = 3.

5.4.2 Extrema extraction

Interest points are local extrema of ψS2
(θ,ϕ,σ) (Equation (5.16)). A local

extreme is a point on the spherical grid whose value is bigger (smaller) than its 8
neighbours, bigger (smaller) than its 9 neighbours in the scale above and bigger
(smaller) than its 9 neighbours in the scale below. Note that, contrary to a planar
image, an image on the sphere has no borders and then, points located at the last
column (highest values of ϕ) are neighbours with points located at the first column
(lowest values of ϕ) and vice versa. These simple comparisons give the extrema
candidates, but principal curvature and contrast conditions are imposed on these
points afterwards, in order to keep only the most stable ones.

For each detected local extreme of ψS2
(θ,ϕ,σ), ωi ≡ (θi,ϕi,σi), a quadratic function

is fitted by using a Taylor expansion of Equation (5.16):

ψS2
(θ,ϕ,σ) ' ψS2

(θi,ϕi,σi) + (5.19)

+
∂ψS2

∂Θ

∣∣∣∣∣

$

ωi

δωi +
1

2
δ$ωi

∂2ψS2

∂Θ2

∣∣∣∣∣
ωi

δωi ,

where Θ ≡ (θ,ϕ,σ) and δωi = (θ−θi,ϕ−ϕi,σ−σi)$. The derivatives are calculated
as the central finite differences approximation of the derivatives of the image in that
point, i.e. for a function f : Rn −→ Rm the central finite difference approximation
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of the derivative with respect to the jth variable, xj is

∂f

∂xj
= fxj(x1, x2, . . . , xj , . . . , xn) = (5.20)

=
f(. . . , xj +∆xj , . . . )− f(. . . , xj −∆xj , . . . )

2∆xj
.

From now on, the notation fx will be used to express the derivative (or the finite
differences approximation) of f with respect to x.

Taking the derivative of Equation (5.19) with respect to δωi , the offset δ̃ωi to the
extreme of the fitted function is obtained

δ̃ωi = −
(
∂2ψS2

∂Θ2

)−1
∂ψS2

∂Θ
. (5.21)

If any of the components of vector δ̃ωi is bigger than half the separation between
two points in this dimension, the point ωi is moved to its neighbour in this
dimension and the process repeated. To avoid loops, if after moving the point ωi

5 times a local extreme is still not found, the process is stopped. The movement
in the σ dimension has not been taken into account, which is a common strategy
in implementations of SIFT. This is due to the fact that a displacement in the σ
direction changes completely the conditions where the quadratic function is fitted.
At the end of this iterative process, a point ω̃i is obtained.

Once ω̃i has been obtained, the contrast at this point is computed, and if the
condition

|ψS2
(ω̃i)| >

0.02

ks2o
(5.22)

is not satisfied, then ω̃i is discarded. This condition is similar to the condition
used in some implementations of SIFT. The objective is to be more strict when
accepting a point at small scales, which are the points more affected by noise. At
higher scales, the contrast constraint is relaxed.

Finally, the ratio r of principal curvatures is obtained at ω̃i and the point is kept
if and only if r < 10 (same value than in [Lowe 2004]). Principal curvatures of
a surface at a given point p are the maximum and minimum curvatures of the
resulting curves when intersecting the surface with all the planes containing the
normal vector to the surface at p. This test eliminates points situated along edges,
where one principal curvature is high but the other is low, which produces unstable
points. In other words, if a point does not satisfy the following condition

trace(HS2
)2

det (HS2)
<

(r + 1)2

r
, (5.23)

where

HS2
=

(
ψS2

θθ ψS2

θϕ

ψS2

θϕ ψS2

ϕϕ

)

, (5.24)



5.4. SIFT on the sphere 107

then it is discarded. The condition expressed in Equation (5.23) can be easily
obtained by applying that the trace of a matrix is equal to the sum of its eigenvalues
and the determinant is equal to the product of eigenvalues. Note also that as we
are working on the unit sphere in spherical coordinates, derivatives with respect to
ϕ have a 1/ sin θ coefficient. The full extrema extraction procedure is detailed in
Algorithm 9.

Algorithm 9 Algorithm for the extraction of “good” local extrema

1: E ←− ∅ the set of local extrema
2: for o = 0 (or o = −1) to O do
3: for s = 0 to S − 1 do
4: for each point ωi ≡ (θi,ϕi,σi) of ψS2

(θ,ϕ, 2oksσ0) do
5: if ωi is a local extreme then
6: Compute ω̃i

7: if Equations (5.22) and (5.23) are satisfied at ω̃i then
8: E ←− {E, ω̃i}

5.4.3 Local Spherical Descriptor (LSD)

In order to match points extracted from different omnidirectional images and
obtained with the proposed algorithm, a Local Spherical Descriptor (LSD) is
computed at each point. This descriptor is obtained using the spherical scale-space
representation of the image (see Sections 5.3 and 5.4.1) and consists of a set of
histograms of orientations in a region around the given point. The size of this
region depends on the scale (σ) at which the point has been detected. Orientations
are computed with respect to a principal orientation of the point, which makes
the descriptor invariant to rotations around the axis that links the point with the
centre of the sphere. The complete procedure is detailed below.

First, the orientation of a point in the spherical scale space representation has to
be defined. Let us have a point (θ,ϕ) ∈ S2 at scale σ. Its orientation is defined as
the angle of the gradient of LS2

in that point, with the 0 degrees pointing to the
south pole and the 90 degrees to bigger values of ϕ. These gradients are obtained
using the central finite differences approximation of the derivatives as

α(θ,ϕ,σ) = arctan

(
LS2

ϕ (θ,ϕ,σ)

LS2

θ (θ,ϕ,σ)

)

. (5.25)

Then, for each considered extreme of the ψS2
, Equation (5.25) is used to compute

the orientations of surrounding points on the spherical grid in a 3σ × 3σ squared
window centred at the extreme (where σ is the scale at which each extreme was
located). To define this window, the distance between two points on the unit sphere,



108
Chapter 5. Scale Invariant Feature Transform on the Sphere:

Matching Features in Omnidirectional Images

p1 ≡ (θ1,ϕ1) and p2 ≡ (θ2,ϕ2), needs to be calculated. It can be obtained using
the Vincenty’s formula [Vincenty 1975]:

d(p1, p2) = arctan

(√
A2 +B2

C

)

, (5.26)

where

A = sin θ1 sin∆ϕ, (5.27)

B = sin θ2 cos θ1 − cos θ2 sin θ1 cos∆ϕ, (5.28)

C = cos θ2 cos θ1 + sin θ2 sin θ1 cos∆ϕ, (5.29)

∆ϕ = ϕ1 − ϕ2. (5.30)

For each window, a histogram of orientations is computed using the orientations
of points of the spherical grid that are inside. The orientation value at each point
defines the bin, and the value added to this corresponding bin is the norm of the
gradient at that point,

m(θ,ϕ,σ) =
√

LS2

ϕ (θ,ϕ,σ)2 + LS2

θ (θ,ϕ,σ)2, (5.31)

weighted by a Gaussian centred on the extreme and of standard deviation 1.5σ.
For this histogram, 36 orientations are considered. Finally, once the histogram has
been computed, the principal orientation is calculated as the axis of a parabola
fitted around its maximum. If there are bins greater than 0.8 times the biggest
one, they are also considered. This results in multiple principal orientations for the
same point.

Then, LSD are computed taking their corresponding principal orientations as refer-
ence. This descriptor is a three-dimensional histogram of orientations (two spatial
dimensions and one dimension for orientations) where all the orientations are con-
sidered with respect to the principal one. The produced histogram has 42 × 8 bins
(42 bins for the spatial dimension and 8 bins for the orientations) and is computed
considering the points of the spherical grid contained in a 6σ× 6σ squared window
centred at the extreme and rotated according to the principal orientation. Each
bin value corresponds to the weighted sum of gradient magnitudes of points at the
spatial and orientation defined by the bin. The weight value is defined by a Gaus-
sian centred on the extreme and of standard deviation 1.5σ. The rotation of the
window on the surface of the sphere can be computed using the Rodrigues’ rotation
formula [Rodrigues 1840] for the rotation of vectors, given by

vRot = v cosα+ u× v sinα+ u · v(1− cosα)u, (5.32)

where the vectors u, v and vRot are considered in Cartesian coordinates, and the
vector vRot is the result of rotating α degrees the vector v around u.
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In order to avoid boundary effects, the values of each gradient sample are dis-
tributed by trilinear interpolation into adjacent histogram bins. The resulting
histogram is normalised, each bin thresholded to 0.2 and normalised again, in
order to make it robust to contrast changes. The algorithm for computing Local
Spherical Descriptors is summarised in Algorithm 10.

Algorithm 10 Algorithm for the computation of LSD

1: LSD ←− ∅ the set of local spherical descriptors
2: for each considered extreme of ψS2

, (θi,ϕi,σi) do
3: Select a squared region of size 3σi × 3σi centred at (θi,ϕi)
4: Compute orientations and gradient norms inside this region
5: Compute histogram of orientations
6: MAX ←− maximum histogram value
7: for each bin value ≥ 0.8MAX do
8: Fit a parabola around this bin
9: b ←− axis of the parabola

10: Select a squared region of size 6σi × 6σi centred at (θi,ϕi) and rotated b
degrees

11: Compute orientations and gradient norms inside this region with respect
to b

12: LSDi ←− Compute 3-dimensional histogram
13: LSD ←− {LSD,LSDi}

5.4.4 Local Planar Descriptor (LPD)

Local Planar Descriptors (LPD) allow to match points extracted from a spherical
image, using Algorithms 8 and 9, and SIFT descriptors of points extracted from
planar images. This is of great importance, considering that a preexisting database
of SIFT descriptors computed on planar images could be used to detect objects on
the omnidirectional image.

The LPD is a regular SIFT descriptor computed on a planar approximation of the
region around each interest point ωi ≡ (θi,ϕi,σi). We consider pi ≡ (θi,ϕi) to be
the centre of this planar approximation, which is the stereographic projection on
the tangent plane of the sphere at pi through its antipodal point. This projection of
LS2

(θ,ϕ,σi) around pi can be seen as a local approximation of L(x, y,σ). In other
words, for a point pi ≡ (θi,ϕi), extracted from the spherical image at scale σi, a
squared window centred at ωi on LS2

(θ,ϕ,σi) and of size equal to the minimum
between 12σi and π, is stereographically projected from (θi+π/2,ϕ+π) to the plane
tangent at pi. The projected points are linearly interpolated in order to obtain a
planar image whose cartesian range is [−2 tan 6σi

2 , 2 tan 6σi
2 ]× [−2 tan 6σi

2 , 2 tan 6σi
2 ]

and with a pixel spacing of 2 tan π
2H . H is the height of LS2

(θ,ϕ,σi). The equivalent
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σi in the obtained planar image is given below:

σpl
i =

tan σi
2

tan π
2H

. (5.33)

The outline of the Local Planar Descriptors computation is given in Algorithm 11.

Algorithm 11 Algorithm for the computation of LPD

1: LPD ←− ∅ the set of local planar descriptors
2: for each considered extreme of ψS2

, (θi,ϕi,σi) do
3: L(x, y,σpl

i ) ←− stereographic projection of L(θ,ϕ,σi) from (θi+
π
2 ,ϕi+π) to

the tangent plane at (θi,ϕi)
4: LPDi ←− SIFT descriptor of L(x, y,σpl

i ) at (x, y) = (0, 0)
5: LPD ←− {LPD,LPDi}

5.5 Planar to spherical mapping

As mentioned before, LPD can be matched with regular planar SIFT descriptors
extracted from planar images. In addition to this new kind of matching, we
propose a method to estimate the function that transfers points from an object
in a planar image to their corresponding points in a spherical image. We suppose
that the object is rigid and planar, because only its projection on a planar image is
known. The transfer function, together with the planar to spherical matching, can
segment objects in omnidirectional images given their segmentation in a planar
image or vice-versa.

Let us consider two matched points, the first ppli ≡ (xpl2i, x
pl
1i) in a planar image and

the second pS
2

j ≡ (xS
2

2j , x
S2

1j , x
S2

0j ) in a spherical image, both in cartesian coordinates.
The idea is to find a linear transformation H that sends the point in the planar
image ppli , to a point qij in three-dimensional space, with projection to the unit
sphere pS

2

j (see Figure 5.5). The linearity of H is given by the rigidity assumption.

Let us note that only the transformation from ppli to qij is linear, and this is not
true for the total mapping from ppli to pS

2

j . In other words, we look for a 3 × 3
matrix H that satisfies

pS
2

j =
qij

||qij ||
=

Hp̃pli
||Hp̃pli ||

, (5.34)

where || · || denotes the 2-norm and p̃pli is an embedding of ppli in R3 (more details
follow). For estimating H, the planar image is placed tangentially to the sphere
where the omnidirectional image is mapped. The central point of the planar image
is the contact point with the sphere. In this way, a point ppli ≡ (xpl2i, x

pl
1i) of the

planar image is embedded in R3 as p̃pli ≡ (xpl2i, x
pl
1i, 1). Then, the fact that pS

2

j and

Hp̃pli must be collinear is exploited forcing their vectorial product to be zero, i.e.
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pS
2

j ×Hp̃pli = 0. The latter condition generates three equations, one for each of the
components of the resulting vector of the cross product:

− xS
2

0j x
pl
2ih21 − xS

2

0j x
pl
1ih22 − xS

2

0j h23

+ xS
2

1j x
pl
2ih31 + xS

2

1j x
pl
1ih32 + xS

2

1j h33 = 0, (5.35)

xS
2

0j x
pl
2ih11 + xS

2

0j x
pl
1ih12 + xS

2

0j h13

− xS
2

2j x
pl
2ih31 − xS

2

2j x
pl
1ih32 − xS

2

2j h33 = 0, (5.36)

− xS
2

1j x
pl
2ih11 − xS

2

1j x
pl
1ih12 − xS

2

1j h13

+ xS
2

2j x
pl
2ih21 + xS

2

2j x
pl
1ih22 + xS

2

2j h23 = 0, (5.37)

where the elements of the matrix H are distributed as

H =




h11 h12 h13
h21 h22 h23
h31 h32 h33



 (5.38)

Consequently, if Equations (5.35), (5.36) and (5.37) are expressed in terms of hlm
and all the resulting equations for each pair of matched points are put together, a
system of equations of the form Ah = 0 is obtained, where

h = (h11, h12, h13, h21, h22, h23, h31, h32, h33)
$,

A is a 3N × 9 matrix and N is the number of points matched between the planar
and spherical images. If the restriction ‖h‖ = 1 is considered, h can be computed
as the eigenvector of matrix A corresponding to the smallest eigenvalue. This
eigenvector is the least squares estimator of the solution. Note that although each
pair of matched points generates three equations, only two of them are linearly
independent. This means that at least four non-collinear pairs of matched points
are required for estimating the coefficients of the matrix H.

The estimation of this matrix results in a mapping h : R2 −→ S2 that sends points
in the planar image to points in the spherical one as follows:

h(x, y) =

H




x2
x1
1





∥∥∥∥∥∥
H




x2
x1
1





∥∥∥∥∥∥

. (5.39)

Mapping points of the spherical image onto points of the planar image, can also
be done using the transformation H−1 and normalising the resulting point by its
third component. In this way, a point of the form (x2, x1, 1) is obtained.
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H

ppli

pS
2

j

qij = Hppli

X0

X1

X2

Figure 5.5: Graphical sketch of the mapping

The estimation of H using all the matched points would give bad results due
to false matchings. For avoiding this, the chosen set of matched points for the
estimation of H is selected using RANSAC. This procedure also softens the planar
assumption. Indeed, RANSAC treats non-coplanar points as outliers, since they
do not fit correctly the model generated by H. The outline of the process for
computing H is specified in Algorithm 12.

Algorithm 12 Algorithm for the estimation of H
1: LPD ←− set of local planar descriptors of the spherical image
2: SIFTDesc ←− set of SIFT descriptors of the planar image
3: M ←− matching points between SIFTDesc and LPD
4: H ←− eigenvector with minimum eigenvalue of the matrix defined using Equa-

tions (5.35), (5.36) and (5.37) (use RANSAC to clean M of false matchings).

5.6 Experimental results

In our experimental results we use two types of omnidirectional images: parabolic
and spherical. Parabolic omnidirectional images are obtained by a catadioptric
omnidirectional sensor: a parabolic mirror Kaidan EyeSee 360 deg4 in combination
with a Nikon D40X camera. In order to apply our algorithm on this kind of
images, we first need to map them on the sphere. After this mapping, the images

4http://www.kaidan.com

http://www.kaidan.com
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cover a band of about 100 deg on the sphere. Spherical images are obtained with a
Ladybug2 device5 and they cover 75% of the sphere. It is important to note that
the Ladybug2 outputs the images directly in spherical coordinates and thus no
mapping on the sphere is needed for them. Both types of images have the same
resolution, 1024 × 1024.

In all tests, two interest points p1 and p2 that define two interest regions in two
different images, I1 and I2 respectively, are considered as the same point if after
transferring p2 to I1, the overlap error computed using the intersection over union
criterion [Mikolajczyk 2005b] is smaller than 0.5. The size of the interest regions
considered to compute the overlap error is fixed by the scale at which each point is
detected (see Section 5.4.3 for details).

This section is organised as follows. In Section 5.6.1, a comparison between
standard and spherical SIFT has been done. An example where standard SIFT
applied on omnidirectional images fails is given. In Section 5.6.2, the optimal
parameters of the algorithm for omnidirectional images are deduced from several
performed tests, and then some examples are shown. Finally, in Section 5.6.3, a
matching test between an object on a planar image and several omnidirectional
images containing the object is performed. In addition, the estimation of the
planar to spherical mapping using matchings between planar and omnidirectional
images is illustrated.

5.6.1 “Planar vs Spherical” scale invariant feature transform

As commented in Section 5.1, at small scales and for points far from the poles,
the standard SIFT algorithm can perform acceptably well. But it is important
to be aware of this limitation, since as soon as this two hypothesis are not
fulfilled, the standard SIFT fails and the extra computation cost of considering the
geometry of the sensor needs to be paid. However, this extra cost provides us more
precision and invariance to the deformations that the spherical geometry introduces.

We have compared the points extracted on a sequence of omnidirectional images
by a standard implementation of SIFT and by the proposed algorithm. In
this experiment we apply the standard SIFT as developed and implemented in
[Vedaldi 2008] on a sequence of three real spherical images. These images were
obtained in an office while the sensor points down a table where red objects are
placed. One of these objects is moved throughout the sequence and thus it is
perceived on the South Pole of the sphere, i.e. just right below the sensor. In the
unwrapped version of the spherical image, in (θ,ϕ) coordinates, it is completely
deformed (top image of Figure 5.6). Then, we apply Algorithm 7 for computing
SIFT in spherical coordinates on the same images. For obtaining comparable

5http://www.ptgrey.com/products/ladybug2/

http://www.ptgrey.com/products/ladybug2/
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results, both algorithms are run with the same parameters, those proposed by
Lowe in [Lowe 2004], S = 3 and σ0 = 1.6. The octave −1 is not computed in any
of the two cases.

After applying the standard SIFT algorithm, in Figure 5.6(a), we can observe that
in the first image (bottom), the red object has a point in the centre and points in
the four corners. In the second image, the points in one of the corners and in the
centre have disappeared. Finally, in the third image, only one point is extracted
on the object. Nevertheless, in Figure 5.6(b), where the spherical SIFT is applied,
in the first image (bottom), the red object has a point in the centre and points in
three of its corners. In the second image, the object still has a point in the centre
as well as in the three corners. And finally, in the third image, the red object has
lost the point in the centre but still has the points in the three corners. In other
words, the spherical SIFT detects the object even when it has been completely
deformed by the sensor, while the standard SIFT fails.

5.6.2 “Omni vs Omni” repeatability and matching

First of all, in order to test LSD matching, some parameters of the algorithm
need to be fixed, essentially S and σ0. In order to choose the values of S and σ0
that maximise repeatability, repeatability tests have been performed on 28 real
omnidirectional images. These images were taken in three different days and in
two different locations, producing images under very different conditions. Some
examples are shown in Figures 5.7 and 5.8.

For the purpose of testing, these images have been corrupted with zero mean ad-
ditive Gaussian noise with standard deviation 0.05 (pixel values are in the range
[0, 1]) and rotated on the sphere a random angle ψ around X2 (see Figure 5.1). This
produces hard deformations as it can be observed for instance in Figure 5.13(a)-
right. Then, the repeatability score for a given pair of images, i and j, is computed
as

rij =
nRij

min (ni, nj)
, (5.40)

where ni and nj are the number of extracted points from images i and j, respec-
tively, and nRij is the number of repeated points, i.e. points defining regions with
an overlap error lower than 0.5 [Mikolajczyk 2005b].

The results of repeatability tests are given in Figure 5.9. As expected, the re-
peatability increases for higher values of σ0. Although a higher σ0 also means that
the extrema of the DoG at lower scales are lost. Consequently, a compromise has
to be found between the smallest scale of the extrema detected and the tolerated
amount of “noise” (not repeatable points) between all the extracted points. On
the other hand, higher values of S imply a greater number of stages per octave,
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(a) Location of the extracted points by the
standard SIFT algorithm applied to a se-
quence of 3 omnidirectional images. From
bottom to up: 808 points, 846 points and
855 points.

(b) Location of the extracted points by the
proposed scale invariant feature transform
on the sphere applied to a sequence of 3 om-
nidirectional images. From bottom to up:
1373 points, 1413 points and 1489 points.

Figure 5.6: Comparison between points extracted by a standard implementation of
SIFT and those extracted by the proposed scale invariant feature transform on the
sphere. It can be observed how the Standard SIFT losses the extracted points of
the object that goes towards the pole, while the Spherical SIFT continues to extract
them without problems.
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(a) Unwrapped parabolic images (b) Parabolic images mapped on the
sphere

Figure 5.7: Some of the real parabolic omnidirectional images used in our tests of
repeatability and matching.
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(a) Unwrapped spherical images (b) Spherical images mapped on the
sphere

Figure 5.8: Some of the real spherical omnidirectional images used in our tests of
repeatability and matching.
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Mean Maximum Minimum
repeatability repeatability repeatability

Spherical SIFT 82.02% 96.39% 69.19%
Standard SIFT (with octave −1) 38.78% 93.16% 9.90%
Standard SIFT (without octave −1) 45.96% 95.44% 11.64%

Table 5.1: Repeatability values of spherical SIFT and standard SIFT.

which requires more computation time. Looking at the graphics, σ0 = 3.0π/1024
and S = 3 are reasonable values to choose.

For comparing the performance in omnidirectional images of the scale invariant
feature transform on the sphere against the standard implementation of SIFT,
we have performed a repeatability test comparing both methods. Here we have
corrupted omnidirectional images with zero mean additive Gaussian noise with
standard deviation 0.05 (pixel values are in the range [0, 1]) and then, the obtained
images have been rotated 50 times on the sphere a random angle ψ around X2,
producing a total of 1400 pairs of images. In Table 5.1, the mean, maximum and
minimum values of repeatability for both methods are shown. As you can see, the
results obtained by spherical SIFT are considerably better. Furthermore, in Figure
5.10 we have plotted repeatability values as a function of rotation angle (plotted
values are obtained by grouping values in bands of 10 degrees). It can be observed
that the results obtained with spherical SIFT are independent of the rotation angle
and the obtained values are always better than those obtained by standard SIFT.
The difference is small for rotation values of 0, 180 and 360 degrees. However, a
small rotation of 10 degrees already decreases the repeatability of standard SIFT
considerably. Furthermore, if only spherical images are considered (discarding the
parabolic ones) i.e. we consider images that contain information on one of the poles
(see Figure 5.8). Then, in this case, the repeatability values for the standard SIFT
are already 6.7, 7.6 and 4.6 percentage points lower than with the spherical SIFT
for 0, 180 and 360 degrees, respectively. This difference also increases considerably
increasing the rotated angle.

For these chosen values, σ0 = 3.0π/1024 and S = 3, a matching test has been
performed in order to observe the effect of the threshold d (see Section 5.4).
Again, real omnidirectional images have been artificially rotated on the sphere by
a random angle ψ around X2 and corrupted with zero mean additive Gaussian
noise. In Figure 5.11, the results of this test can be observed. In Figure 5.11(a) the
percentage of correct matchings is computed as the ratio between correct matchings
and the total number of matchings. In Figure 5.11(b), the percentage of correct
matchings is computed as the ratio between correct matchings and the total number
of repeated points. On the one hand, for a matching threshold higher than 0.3,
more than 50% of repeated points are correctly matched. On the other hand, for a
matching threshold lower than 0.7 more than 80% of the matched points are correct.
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(a) One stage per octave
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(b) Two stages per octave
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(c) Three stages per octave
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(d) Four stages per octave
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(e) Five stages per octave
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(f) Six stages per octave

Figure 5.9: Results of the repeatability tests varying S and σ0 over a set of 28
omnidirectional images. Note that the values of σ0 in the graphs are in terms of
relative distance between points of the spherical grid, i.e. for an image of 1024×1024
pixels, σ0 = 2.0 in the graph means an effective σ0 = 2.0 π

1024 . The boxes in the plot
mark the 25th and the 75th percentile, red lines are the median and red stars are
values considered as outliers (values larger than q75 +1.5(q75 − q25) or smaller than
q25−1.5(q75−q25), where q25 and q75 are the 25th and 75th percentiles, respectively).
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Figure 5.10: Plots of repeatability values, as a function of the randomly rotated
angle on the sphere, for the spherical SIFT implementation and a standard SIFT
implementation [Vedaldi 2008] with and without the octave −1. The optimal pa-
rameters for both algorithms were used. The tests were performed on 28 real omni-
directional images that were corrupted with Gaussian noise and randomly rotated
50 times, producing 1400 pairs of images. Solid lines indicate the mean value and
dashed lines the mean +/− standard deviation.
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In Figure 5.12, results of repeatability and correct matchings as a function of pixel
noise are given. As expected, the increase of the amount of noise causes a decrease
of repeatability (see Figure 5.12(a)), but observing Figures 5.12(b) and 5.12(c), we
can observe the robustness of the matching, since the decrease on the percentage
of correct matchings is considerably lower.

In Figures 5.13 and 5.14, some examples of LSD matching between omnidirectional
images are shown. In all the computations, the above mentioned parameters
(S = 3 and σ0 = 3.0π/1024) are used, as well as a matching threshold of d = 0.7.
In Figure 5.13, we show the matchings between a parabolic omnidirectional image
and the same image rotated on the sphere and corrupted by additive Gaussian
noise with zero mean and standard deviation 0.05. 184 LSD are correctly matched
between the two images, over a total of 207 matched points (88.9%), with 329
extracted points on the image on the left, and 341 on the image on the right. In
Figure 5.14, we show the 49 matched LSD obtained between two different parabolic
images. Among the incorrect matches observed, most of them are actually locally
correct, since they are the result of matching the real window with its reflection
in the whiteboard, or one of the three identical markers in the whiteboard with
another of them, etc.

Let us note that we do not need to use any virtual camera plane framework for
performing matching, as in [Mauthner 2006]. Instead, we perform the matching
directly in the spherical coordinates, in which the omnidirectional sensor outputs
the images (what concerns the Ladybug2).

5.6.3 “Planar vs Omni” matching

In this section, LPD are tested for matching between points extracted from
omnidirectional images (using Algorithm 7) and points extracted from a planar
image (using the standard SIFT algorithm). For these experiments, the SIFT
parameters proposed in [Lowe 2004] (S = 3 and σ0 = 1.6) are used in both the
standard SIFT algorithm and the spherical SIFT algorithm. Note that on the
sphere, the equivalent σ parameter is σ0 = 1.6π/1024. We do not compute octave
−1 for speeding up the computation. On the other hand, the images we are
working with are already at high resolution.

In a first step, a sequence of spherical images is processed for extracting LPD
descriptors. The sequence is shown in Figure 5.15, in its unwrapped version and
on the sphere, . This sequence consists of six images where a spherical camera
moves approximately parallel to a poster on a wall. Then, a planar image of the
same poster in the same scene is processed in order to extract SIFT descriptors.
The result of matching both descriptors are presented in Figure 5.15. There, the
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(a) Correct matchings with respect to the to-
tal number of matched points, as a function of
matching threshold.
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(b) Correct matchings with respect to the to-
tal number of repeated points, as a function of
matching threshold.

Figure 5.11: Plots of correct matching tests performed on 28 real omnidirectional
images. Correct matchings are plotted as a function of the matching threshold.
Solid lines indicate the mean value and dashed lines the mean +/− standard devi-
ation.

links between matched points are shown only on the unwrapped version so that
the entire sphere is visible. As it can be observed, the proposed algorithm presents
a good performance as well as a good stability of the matched points. Some of the
incorrect matchings that are present are due to the fact that other posters in the
corridor contain some of the images of the original poster. Using the planar to
spherical mapping, we can compute the repeatability between the standard SIFT
algorithm applied on the planar image and the spherical SIFT algorithm applied
on the sequence of spherical images. For an overlapping error lower than 0.5, we
obtain an average repeatability of 27.5%, with a maximum repeatability of 34.3%
and a minimum of 21.2%. These are good results, since we obtain a good amount
of repeated points even considering two completely different images (planar and
spherical), with two different resolutions of the poster (in the spherical image, the
poster size is 1/4 the size in the planar image) and with some artefacts in the
spherical image due to the stitching performed by the Ladybug2 device.

The estimation of the planar to spherical mapping, as introduced in Section 5.5, has
also been tested. First, Algorithm 7 is applied to the corresponding omnidirectional
images in order to obtain the set of LPD. Then, the standard SIFT descriptors
are computed for the planar images, and both descriptors LPD and SIFT are the
input of Algorithm 12. Let us recall that this algorithm automatically computes
the matching and the mapping.

In Figure 5.16, results obtained with images containing the EPFL logo (Figures
5.16(a) and 5.16(b)) and a poster (Figures 5.16(c) and 5.16(d)) are shown. It is
interesting to note that the obtained results are satisfactory even with a highly
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standard deviation of Gaussian noise added to
the images.
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(c) Correct matchings with respect to the total
number of repeated points, as a function of the
standard deviation of Gaussian noise added to
the images.

Figure 5.12: Plots of repeatability and correct matching tests performed on 28 real
omnidirectional images, as a function of the standard deviation of the Gaussian
noise added to the images, for σ0 = 3.0π/1024, S = 3 and a matching threshold
fixed to 0.6. Solid lines indicate the mean value and dashed lines the mean +/−
standard deviation.
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(a) Matching between a parabolic omnidirectional image (left) and an artificially rotated and
corrupted version of the same image. 184 points are correctly matched (88.9% of the total
matched points). Green dots represent correctly matched points and red dots incorrectly
matched points.

(b) Parabolic omnidirectional image mapped on
the sphere (unwrapped version in Figure5.13(a)-
left)

(c) Parabolic omnidirectional image rotated 72
degrees around X2 and mapped on the sphere
(unwrapped version in Figure 5.13(a)-right)

Figure 5.13: Example of LSD matching between spherical images. The images are
shown unwrapped and on the sphere. The values of the parameters obtained in the
previous tests (S = 3 and σ0 = 3.0π/1024) have been used in the computations.
The matching threshold has been fixed to 0.7.
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(a) Matching between two different parabolic omnidirectional images. 49 LSD are matched.

(b) Omnidirectional image in Figure 5.14(a)-left
mapped on the sphere

(c) Omnidirectional image in Figure 5.14(a)-
right mapped on the sphere

Figure 5.14: Example of LSD matching between spherical images. The images are
shown unwrapped and on the sphere. The values of the parameters obtained in the
previous tests (S = 3 and σ0 = 3.0π/1024) have been used in the computations.
The matching threshold has been fixed to 0.7.
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symmetric object, as is the case of the logo, or an object with parts present in
several places on the omnidirectional image, as is the case of the poster. Indeed,
in these cases a matching can be locally correct while being incorrect considering
the whole object or image.

5.7 Conclusions and Future Work

After studying matching between images with a temporal correlation in Chapter 3
and Chapter 4, here we have broken the temporal relationship and have studied a
general problem of matching involving omnidirectional images. This implies bigger
changes between features and therefore, the robustness of the features used for
matching is the crucial point of the problem.

In this Chapter, we have proposed a SIFT algorithm directly computed in spherical
coordinates for omnidirectional images. It is not limited to pure spherical images,
since it can also be applied to a wide variety of omnidirectional images that can be
mapped on the sphere. Two types of point descriptors have been proposed: Local
Spherical Descriptors (LSD) and Local Planar Descriptors (LPD). Using these de-
scriptors, we have successfully performed point matchings between omnidirectional
images, with LSD, and between omnidirectional and planar images, with LPD. For
the matchings between omnidirectional images, the parameters of the algorithm
have been chosen according to the results obtained on test images varying S and
σ0. For the planar vs omnidirectional case, the same parameter values as those
proposed in [Lowe 2004] have been kept. Finally, point matchings obtained in
this last case have been successfully used to estimate a planar to spherical mapping.

Potential applications of the proposed algorithm are global tracking in hybrid
camera networks (together with the SIFT algorithm for planar images), motion
estimation in omnidirectional images, object detection and extraction from
omnidirectional images and, in general, any problem requiring a matching between
points in omnidirectional images or between points in omnidirectional and planar
images.

The main drawback of the proposed algorithm is the computation time. Indeed,
for a 1024×1024 image, the complete point extraction and LSD computation takes
around 33 seconds in a 3.33GHz processor. If LPD are needed, the stereographic
projection for each extracted point requires around 0.1 extra seconds. Computation
time depends, however, on the number of stages per octave, the σ0 value and
the number of points extracted. By optimising the code and implementing the
spherical Fourier transform presented in [Tygert 2008], the computation time could
be reduced.
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(a) 29 descriptors matched (b) 30 descriptors matched (c) 24 descriptors matched

(d) 29 descriptors matched (e) 30 descriptors matched (f) 40 descriptors matched

Figure 5.15: Matchings obtained between LPD of a sequence of spherical images
and SIFT descriptors of a planar image. In the sequence of spherical images (shown
unwrapped and on the sphere), the camera moves approximately parallel to the
object present in the planar image. The matching threshold has been set to 0.6.
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(a) Planar image. The border of the logo (in
blue) has been marked by hand.

(b) Parabolic omnidirectional image mapped on
the sphere. The blue border is the mapping of the
logo border from Figure 5.16(a) using Equation
(5.39).

(c) Planar image. The border
of the poster (in blue) has been
marked by hand.

(d) Spherical image. The blue border is the map-
ping of the poster border from Figure 5.16(c) using
Equation (5.39).

Figure 5.16: Examples of estimation of the mapping between the boundary of an
object in a planar image to this object in an omnidirectional image using Algorithm
12. The green dots in the planar image are the points whose matching has been
used for estimating the mapping.
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Many directions for further research can be considered starting from this work.
First, it would be interesting to study methods for speeding up the feature extrac-
tion procedure. In this sense, the development of approximations of the spherical
DoG, as it is done in SURF [Bay 2008] for the planar case, could help in avoiding
the use of the spherical Fourier transform. Secondly, the use of local descriptors
more adapted to the spherical geometry could improve the matching performance
of the algorithm. Indeed, the Gradient Location and Orientation Histogram
(GLOH) seems to be very appropriate for spherical images, given that is computed
in polar coordinates. Finally, there is a lack on datasets of real omnidirectional
images. In particular, the recording of a database of omnidirectional images with
three-dimensional information would be extremely useful for a lot of researchers
working on omnidirectional vision.





Chapter 6

Conclusions and Perspectives

Contents
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 Perspectives and Future Lines of Research . . . . . . . . . . 133

6.1 Conclusions

This dissertation contains two slightly separated parts around a common problem:
visual matching. In the first part, matching is treated between images with a
temporal correlation, i.e. the first part studies the problem of Visual Tracking
in video sequences. Under the assumptions of a smooth change of position,
shape and appearance, Visual Tracking deals with the problem of matching the
tracked object between consecutive frames of a video. In the second part, the
temporal relationship is not considered. There, we study the matching between fea-
tures extracted from two different images, with at least one of them omnidirectional.

In Visual Tracking, the continuous update of the target appearance model is an
useful strategy for keeping the tracker constantly adapted to the target. However,
bad information about the target added to the model can generate a model drift,
and the resulting loss of track. In Chapter 3 we have studied this problem,
developing algorithms to minimise the impact of outliers in the model update. We
have developed an incremental PCA algorithm that considers weighted samples,
the Incremental Temporally Weighted PCA (ITWPCA) algorithm. This algorithm,
combined with a measure of the quality of a sample, is the core of the developed
Incremental Temporally Weighted Visual Tracking (ITWVT) algorithm. This
algorithm tracks a target and simultaneously computes a visual model of it. The
samples that update the model are weighted by a measure of their quality with
respect to the visual model, minimising the effect of potential outliers added to
the model. This tracking approach has been complemented with the capacity of
giving more importance to predefined regions of the object of interest, producing
the Incremental Temporally Weighted Visual Tracking with Spatial Penalty
(ITWVTSP) algorithm. The importance is given by spatial weights applied to the
likelihood function of the particles, and produces a higher accuracy of the tracking.
All these developed tracking algorithms have been tested in several applications:
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face tracking, pedestrian tracking, vehicle tacking and object tracking. The tests
have shown the robustness of the algorithm and the increase of accuracy that
temporal and spatial weights provide.

A common situation that violates the smoothness hypothesis is the presence of total
occlusions. When the occlusion is partial, the algorithm introduced in Chapter 3
reduces the weight of the concerned samples and their impact in the appearance
model is low. This allows to continue the tracking without problems once the
occlusion has disappeared. However, when the object of interest is completely
occluded, i.e. no visual information of the object of interest is perceived by the
visual sensor, the ITWVTSP algorithm cannot handle the situation. In Chapter 4
we have studied how this drawback can be handled by a visual tracking algorithm.
We have developed the Model cOrruption and Total Occlusion Handling (MOTOH)
framework, that combines the algorithms introduced in Chapter 3 with a total
occlusion detector that switches between the visual model and a behavioural model
of motion. When a total occlusion of the target appears, the tracking switches
from the visual model to the behavioural model and continues to track the target
with behavioural information instead of visual information. The detection of total
occlusions has been developed by using some measures of the particle filter used for
the tracking. Pedestrians have a particular behaviour that can be modelled. The
Discrete Choice Pedestrian Model (DCPM) is a pedestrian walking behavioural
model that reproduces individual pedestrian behaviour based on this pedestrian
and its interactions with other pedestrians on the scene. The DCPM has been
plugged as behavioural model of motion in the MOTOH framework, producing
a pedestrian tracker that successfully handles occlusions. This have been shown
in several video sequences without occlusions, with artificial occlusions and with
real occlusions. The occlusion handling by behavioural tracking has also potential
applications on multi-camera environments, where dead zones between cameras
can be treated as occlusions and the behavioural tracking can move particles from
a camera to another.

Finally, in Chapter 5, the visual matching problem has been observed from
the point of view of two unrelated images, with at least one captured with an
omnidirectional camera. The use of omnidirectional cameras requires the design
of algorithms that take into account the geometry that these sensors embed into
images. In this sense, we have developed a scale invariant feature transform
computed in spherical coordinates. Actually, most of the common omnidirectional
images can be bijectively mapped on a sphere, which makes that algorithms
working on spherical coordinates, consider the geometry of the omnidirectional
sensor. The developed algorithm extract points from images in a scale invariant
framework. Two feature descriptors have been proposed for the extracted points:
Local Spherical Descriptors (LSD) and Local Planar Descriptors (LPD). LSD allow
to perform point matching between points on omnidirectional images. LPD can
be treated as SIFT descriptors and therefore, be used for matching between points
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on an omnidirectional image and points on a planar image. A mapping from a
region on a planar image to a region on a spherical image has been also introduced.
This mapping allows to segment objects on omnidirectional images based on a
segmentation in the planar image. All these matchings, between omnidirectional
images or between an omnidirectional image and a planar one, have been tested on
real images captured under different environmental conditions.

6.2 Perspectives and Future Lines of Research

The works presented in this dissertation could be expanded in several directions:

• Adaptive Spatial Weights: Spatial weights introduced in Chapter 3 were
fixed and predefined. However, it is easy to imagine situations where an adap-
tive change of them can be interesting. For instance, in the tests performed in
Chapter 3 it has been observed that a high spatial weight on a region where
a partial occlusion appears can cause, at least momentarily, a loss of track.
Using for instance the reconstruction error, information about the regions
containing the occlusion can be obtained, and their spatial weight could be
decreased accordingly. More complex strategies can be also imagined, like for
instance an algorithm for incrementally learn, simultaneously with the ap-
pearance model, an optimal distribution of the spatial weights for the tracked
object.

• Interaction between particle weights and tracking parameters: The
weights of particles give valuable information that is usually not exploited. In
Chapter 4, two measures extracted from these weights have shown their power
in detecting total occlusions of the tracked object. However, a deeper interac-
tion with the parameters of the tracking algorithm could be fruitful. Indeed,
in the tests performed in Chapter 4, we have observed that total occlusions
very close in time can difficult the recovery of the visual tracking. The in-
formation extracted from the particles could be used for boosting the update
of the appearance model, by adapting parameters such as the batch size, the
forgetting factor, the temporal weights or even the number of eigenvectors.

• Multi-camera environments: It has been already commented that the
MOTOH Pedestrian Tracker has a potential application on multi-camera en-
vironments. If the occluded region is because of a dead zone, the occlusion
detection is easier, since it is simply a pedestrian exiting the region monitored
by one of the cameras in the network. However, in this case it is probably
interesting to increase the number of hypothesis (particles) during the occlu-
sion in order to consider more potential trajectories given by the behavioural
model. The study of the application of the MOTOH framework on a multi-
camera environment, with all the particular characteristics involved, is an
interesting path to explore.
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• Interaction between vision and exogenous variables of behavioural
models: The Discrete Choice Pedestrian Model, used in Chapter 4, needed
the information about the destination of the pedestrian for computing next
step probabilities. This situation is not unusual in behaviour models, where
some aspects are considered exogenous to the model and therefore given. In
the MOTOH Pedestrian Tracker, only direct visual observations fed the be-
havioural model: current and past positions of every pedestrian currently on
the scene. It is clear that pedestrian destination cannot be directly observed
when the tracking starts, but visual tracking information can be collected and
used on new pedestrians for inferring exogenous variables such as the desti-
nation. This would increase the quality of the data given to the behavioural
model and, therefore, the quality of its output when behavioural tracking is
being performed.

• Deeper use of behavioural models in computer vision algorithms:
With the MOTOH Pedestrian Tracker, the added value obtained by combining
visual and behavioural information has been shown. Behavioural information
is present in numerous problems treated in Computer Vision, although it is
not sufficiently exploited. Feature extraction is one of these problems. Indeed,
humans are able to efficiently track and detect objects, and this experience
should be further exploited. In these sense, theories about how humans look
at a scene, based on early vision properties, are the foundations of saliency
maps [Treisman 1980, Lindeberg 1993, Itti 2000, Rajashekar 2008]. Saliency
maps can be used for detecting important regions of a scene and extract useful
features and information. The use of behavioural information and models in
saliency map computation, in addition to early vision properties, should be
investigated since it could increase their quality and therefore the quality of
extracted features and information.

• Spherical approximation of difference of Gaussians: In the planar case,
approximations to the difference of Gaussians are sometimes considered for
speeding up scale space computations (see for instance [Bay 2008]). These
approximations usually consider Haar-like filters that can be very efficiently
applied to an image using the integral image representation. For the omni-
directional case, the development of a similar technique on the sphere would
be an important achievement that would boost the use of scale space-like
techniques in omnidirectional images.



Appendix A

Complete Statistics for the
Dudek Sequence

Complete statistics of the results obtained with IVT, ITWVT/M, ITWVT/R,
ITWVTSP/M-Spec, ITWVTSP/M-Iso, ITWVTSP/R-Spec and ITWVTSP/R-Iso.
A track is considered lost if the mean RMSE across all the frames is bigger than
10.0px.
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IVT

Losses of Track Mean RMSE Max RMSE Min RMSE StdDev RMSE

5 6.8702 7.279 6.2324 0.3964

Table A.1: Statistics of the obtained results on the Dudek sequence using IVT.
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Appendix B

Plots of RMSE on the Dudek
Sequence

Plots of Root Mean Squared Error per frame obtained on the Dudek sequence
using TLD, IVT, ITWVT/M, ITWVT/R, ITWVTSP/M-iso, ITWVTSP/M-spec,
ITWVTSP/R-iso and ITWVTSP/R-spec. Each plot corresponds to the best run
of the ten performed runs for each algorithm.
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148 Appendix B. Plots of RMSE on the Dudek Sequence

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

7
0

0
8

0
0

9
0

0
1

0
0

0
1

1
0

0
0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

F
ra

m
e

 N
u

m
b

e
r

RMSE

F
igu

re
B
.5:

R
M
S
E

p
er

fram
e
on

th
e
D
u
d
ek

sequ
en

ce
u
sin

g
IT

W
V
T
S
P
/M

-iso



149

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

7
0

0
8

0
0

9
0

0
1

0
0

0
1

1
0

0
05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

F
ra

m
e

 N
u

m
b

e
r

RMSE

F
ig
u
re

B
.6
:
R
M
S
E

p
er

fr
am

e
on

th
e
D
u
d
ek

se
qu

en
ce

u
si
n
g
IT

W
V
T
S
P
/M

-s
p
ec



150 Appendix B. Plots of RMSE on the Dudek Sequence
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