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Abstract

The near arrival of electric vehicles on the car market generates a need for new models
in order to understand and predict the impact it has on the current market shares. This
research aims at providing contributions regarding several issues related to the evaluation
of the demand for electric vehicles, i.e. related to the survey design, demand models and
forecasting. In this paper we focus on the first of these three methodological issues. We
present the design of a stated preference survey which will enable us to accurately model
and predict demand for electric vehicles. Our aim is to propose choice situations involving
electric cars and petrol-driven ones and in particular which include the respondents’ own
cars. An experimental design is set up in order to test the effect of the variation of several
characteristics related to electric cars on vehicle preferences. Opinion and perception data
are also collected to capture the impact of attitudinal variables on the purchase decision.
This document also presents promising preliminary results of the estimation of the logit
model with multiple alternatives.
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1 INTRODUCTION AND MOTIVATION 3

1 Introduction and motivation

Electric vehicles have been proposed on the car market since many years, but in a rather
marginalised way: only a few models with rechargeable batteries were sold. In the current
situation where governments and public authorities are putting a huge pressure to reduce
the environmental impact of fossil fuels, the demand for such vehicles is likely to increase.
Hence, many car manufacturers are preparing to launch electric vehicles on the market in
a large scale. This upcoming release might affect the market shares of the different fuels
in a significant way.

Electric vehicles have major advantages compared to the petrol-driven ones: they do
not emit carbon dioxyde and greenhouse gases and are silent. Nevertheless they also have
a certain number of drawbacks: their range is limited, a full charge of the battery lasts
up to 8 hours (before fast charges are available) and currently, few charging stations and
infrastructures are available. The electric car user is hence compelled to charge the battery
of his vehicle at home or at work only. These advantages and disadvantages can hence
affect the individuals’ purchase choices of cars in a positive or negative way. For instance,
the environmentally friendly aspect of an electric vehicle is likely to attract individuals
concerned by ecology, whereas its limited range can discourage prospective car buyers.

In order to evaluate up to what extent the arrival of electric vehicles impacts on the
car market, new demand models need to be developed. This raises challenges which are
related to several topics, namely in the data collection, in the specification of new demand
models and in the application of the latter. We plan to address them in this research.
Regarding data collection techniques we aim at recreating choice situation contexts as
close as possible to reality by customizing them according to the respondents’ profiles. On
the modeling side, we wish to capture individuals’ attitudes and perceptions of various
vehicle types and assess their impact on choice. Finally, we want to account for population
heterogeneity and current market properties when we forecast market shares of different
vehicle types.

So far several stated preference surveys have been conducted to collect data on interest
for alternative-fuel or electric vehicles in order to forecast their demand. Train (1980),
Brownstone et al. (1996) and Alvarez-Daziano and Bolduc (2009) present choice situation
contexts involving vehicles with diversified engine types, including standard, alternative-
fuel and/or electric vehicles. In particular, Brownstone et al. (1996) first collect data on
the vehicles owned by the respondent’s household and then design choice situation contexts
based on the information the latter reported.

Discrete choice methodology has been widely used in literature in order to analyze
the demand for alternative-fuel or electric vehicles, but in diverse ways. Train (1980)
analyzes the behavior of individuals in two situation contexts, namely in a ‘most likely
case’ and an ‘optimistic case’ involving different types of alternative-fuel or electric vehicles
in each case. Brownstone et al. (1996) involves vehicle transaction decisions, that is,
adding a vehicle into the respondent’s household, replacing or disposing of an existing
vehicle. Schiraldi (2010) also proposes a model of vehicle transaction, but which involves
a temporal dimension and includes both new and used car markets. Alvarez-Daziano
and Bolduc (2009) apply a hybrid choice model (Ben-Akiva et al., 2002) in order to
analyze demand for electric vehicles. In particular, they assess the effect of individuals’
environmental concern on the vehicle preferences.

Forecasting analysis is fundamental to predict the future market share for electric
vehicles. This issue has been addresed by Train (1980) and Brownstone et al. (1996) among
others in the case of demand for alternative-fuel and electric vehicles. The particularly
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interesting feature of Train (1980) is the correction of the predicted market shares by the
proportion of cars in each segment of the real market.

In order to tackle the methodological issues raised in the context of the upcoming
release of electric vehicles on the market, a stated preference survey is designed. We
address the data collection issue of presenting personalized choice situation contexts to
the respondent by including a vehicle owned by his household. We then define petrol-
driven and electric alternatives to the latter such that they match its segment. Our
motivation for this is to recreate a choice situation context as close as possible to reality.
The attributes of the alternatives are characteristics such as the purchase price, the costs
of usage or the maintenance costs. For the electric car in particular, characteristics related
to the battery are also shown. The purpose of introducing these variables is to evaluate
the respondents’ sensitivity to their variations.

Our assumption regarding modeling is that latent variables capturing attitudes or
perceptions of individuals have a non-negligible impact on choice. This effect can be
assessed via a hybrid choice model (see Walker (2001), Walker and Ben-Akiva (2002)
and Ben-Akiva et al. (2002)). In the stated preference survey we collect two types of
indicators of attitudinal variables: ratings of statements regarding several topics such as
their perception of an electric vehicle as an ecological solution or attitude towards new
technologies, and freely reported adjectives characterizing their perception of different
vehicle types.

The estimation results of the discrete choice model enable us to forecast the future
market shares of electric vehicles. Obtaining shares which reflect the market in a realistic
way is a difficult task. We approach that problem by accounting for the distribution
of purchase prices and fuel costs in the current market and by correcting for the bias
resulting from the over- or under-representation of some population segments in the sample
relatively to the target population.

In this paper we focus on the first of the three objectives raised for this research, i.e.
the design of a stated preference survey involving realistic choice contexts which enables us
to collect accurate preference data. Some preliminary modeling results are also presented.
This survey is conducted in the framework of a collaborative project between Renault
Switzerland and EPFL’s Transportation Center. The electric vehicles proposed in the
stated preference experiments are sub-compact and compact cars of the electric product
line which Renault is going to release in a very near future. The document is constructed
as follows.

Section 2 describes the data collection procedure, including a survey overview, a de-
scription of the respondents that were sampled, an explanation of the sampling protocol
and finally a detailled description of the structure of the survey. Section 3 presents the
experimental design used to build the survey as well as a brief explanation of the logit
model. Section 4 describes the specification of the latter as well as some estimation results.
Section 5 presents a conclusion on the main outcomes of the model and section 6 outlines
the future steps planned for this research work.

2 Data collection

A survey was set up at the beginning of year 2011 in order to collect data on people’s
preferences towards different types of vehicles. This section describes the type of survey,
called stated preference survey, the panel of respondents, as well as the sampling protocol.
It finally presents the complete structure of the questionnaire.
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2.1 Survey scope

The type of survey allowing for the evaluation of demand in hypothetical choice contexts,
as in the case of demand for electric cars, is a stated preference survey. Such survey was
typically designed in order to apply discrete choice methodology.

The core idea of that type of survey is to present hypothetical choice situations to the
respondents. In our case, the following vehicles are proposed to each respondent:

e A vehicle that the respondent’s household currently owns;

e An analogous model from Renault, if the respondent’s vehicle is from a different
brand;

e A similar model in the electric product line from Renault.

By including each respondent’s vehicle in the choice situation, the survey shows realistic
choice situations, despite the fact that the context is hypothetical. This involves a data
collection in two phases though: the first time to gather information about the cars in the
respondents’ households and the second time to present choice situations that are adapted
to the profile of each participant of the survey.

The corresponding online survey was conducted in collaboration with the market re-
search institute GfK Switzerland.

2.2 Target groups

The sample of the survey consists of the following four types of respondents:
Recent buyers: Individuals who bought a new car in the last three years.
Prospective buyers: Individuals who plan to buy a new car in the next six months.

Current and future Renault customers: Individuals who already own a Renault car
or who pre-ordered an electric vehicle in the Renault product line.

EV-fans: Individuals who joined the Renault newsletter on electric vehicles.

The four groups were selected in order to be representative of the population which
has faced or is likely to have to face a purchase choice between a conventional vehicle and
an electric one.

The two first groups, i.e. the recent and prospective buyers were sampled by GfK
Switzerland till they both reached a size of at least 150 respondents. For the third and
fourth groups, i.e. the current and future Renault customers, and the EV-fans, the ques-
tionnaire was sent to a list of addresses provided by Renault, but the number of responses
was not guaranteed as for the two first sample groups. The number of responses after
phase I and phase II are reported in Table 1, for each sample group.
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Sent | Phase I Phase 11 Phase I vs phase 11
Group name
Number Rate | Number Rate | Rate
1 Recent buyers 150 141 94.0%
3006 10.0% 9.4%
2 Prospective buyers 151 141 93.4%
3 Renault customers | 1042 | 168 16.1% | 139 13.3% | 82.7%
4 EV-fans 656 | 197 30.0% | 172 26.2% | 87.3%
Total 4704 | 666 14.2% | 593 12.6% | 89.0%

Table 1: Number of online questionnaires sent, numbers and rates of responses after phase I and
phase II, and between both phases, for each sample group.

Table 1 shows that the response rate after phase I was much higher for respondents of
sample group 4. Indeed the latter was about 30.0% for that group. This can be explained
by the fact that subscribers to a newsletter on electric vehicles might be more interested in
a questionnaire about electric vehicles than recent or prospective buyers of vehicles with
classical engines, or Renault customers. After phase II, we obtained the highest response
rate for that group as well.

Let us note that the response rate between the two phases is very high for all four
target groups. It is indeed ranging from 82.7% to 94.0%.

2.3 Sampling protocol

The respondents to the stated preference survey were sampled in order to be representative
of three socio-economic characteristics:

e The language region (German, French or Italian);
e The gender (male or female);
e The age category (18-35 years, 36-55 years or 56-74 years).

Gender and age are classical socio-economic variables for which we wish the survey
sample to match the real population proportions. But in this particular survey design, we
also targeted sample representativity of the three main language regions. Former studies
have indeed shown that inhabitants of different language regions do not show the same
mobility habits (see Bierlaire et al. (2006), Hurtubia et al. (2010) and Atasoy et al. (2010)).

The targeted proportions for each socio-economic group, as well as the obtained ones
are shown in Table 2. For the language group and the age category, no obvious difference
occurs between the targeted proportions and the ones that were obtained at the end of
phase I. A difference in the response rates between the two genders is noticeable: more
men answered to the survey than women. Between phase I and phase II the proportions
did not change much, which could be expected, as the total response rate between the two
phases was very high (89.0%).
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Variable Level Targeted rate Rate phase I Rate phase II
Language German 72.5% 67.3% 67.8%
French 23.0% 27.2% 26.6%
Italian 4.5% 5.56% 5.56%
Gender Male 49.4% 74.0% 74.2%
Female 50.6% 26.0% 25.8%
Age category 18-35 years | 33.6% 23.0% 21.8%
36-55 years | 41.6% 51.8% 52.6%
56-74 years | 24.8% 25.2% 25.6%

Table 2: Targeted and real response rates in each socio-economic group (language, gender and age)
after phase I and phase II. The targeted rates are the Swiss proportions of each group.

2.4 Structure of the stated preference survey

As already mentioned in section 2.1, the stated preference survey is structured in two
phases due to the complexity of generating personalized choice situations. In this section,
the structure of both phases is explained in details.

2.4.1 Phasel

Phase I consisted of three major sections:

Characteristics of the respondent’s car(s): The respondent is required to report the
characteristics of all cars in his household, that is, their makes, models, types of fuel,
motorisations and versions, as far as he knows them. The information reported in
this section will enable us to create personalized choice situations that will be shown
in phase Il questionnaire.

Socio-economic information: The respondent is asked to answer some standard socio-
economic questions, such as gender, age, education, etc. This will be used in the
discrete choice model in order to uncover the population segments which express
different vehicle preferences.

Mobility habits: The last section of the first phase of the stated preference survey con-
sists of questions on the respondent’s mobility habits. For example, the respondent
has to report the length of his daily trips or the transport mode(s) he uses for some
particular types of trips. Our assumption is that different mobility habits, such as
the use of public transports, can induce preferences for different vehicles types.

2.4.2 Phase I1

Phase II was launched two weeks after phase I and consisted of the three following parts:

Opinions on five topics related to electric vehicles: In order to model more com-
plex underlying attitudes that might affect the decision maker’s choice to purchase
an electric vehicle, sentences related to five different topics were shown to him. For
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each of the statements, the respondent was asked to rate his agreement on a five-
point Likert scale, ranging from ‘Total disagreement’ to ‘Total agreement’. Five
sentences were shown per theme. The five topics were the following:

The ecological perception of the electric vehicle: Assuming that individuals
concerned by ecology are more likely to be interested in a transport mode with
a more environmentally friendly propulsion system, statements related to their
general perception of ecology were included in the questionnaire. An example
of such sentences is given hereafter:

I prefer driving a car with a powerful engine than a car that emits
little carbon diozyde.

The attitude towards new technologies: An electric car represents the future
generation of vehicles: it involves a novel type of engine, which might attract
customers that are interested in new technologies. Hence, statements related to
the latter topic were shown in the survey. For example, the following statement
was presented to the respondents:

I never travel without a GPS.

The reliability, security and use of an electric vehicle: Some population seg-
ments might be reluctant to purchase an electric vehicle, fearing that the tech-
nology of the latter could not entirely be trusted, due to its novelty. Statements
on the reliability, security or general use of an electric vehicle were hence in-
cluded into the survey. An example of such sentences is reported below:

The low autonomy of the battery is a real disadvantage.

The importance of design: As a new technology of propulsion involves a new
car design, statements related to the importance of the car’s appearance were
included. For example, the following sentence could be shown:

The capacity of transporting persons and luggages matters more in
the choice of a car than its appearance.

The perception of leasing: Renault plans to rent the battery of the electric vehi-
cles which are going to be released soon. The persons used to having a leasing
contract might be less concerned by this decision than the ones that generally
prefer to pay the total amount of a car they purchase. This topic is also covered
in the questionnaire by a series of statements. An example of such statement
is reported below:

Leasing is the optimal solution for me as it enables me to change
car frequently.

We plan to use the ratings collected on these statements as indicators of individuals’
attitudes towards the five themes presented above. These attitudes are assumed to
have an important impact on the purchase choice and can be modeled using a hybrid
choice model.

Perceptions of four categories of vehicles: In the next section of phase II question-
naire, respondents had to report adjectives that described best a certain type of
vehicle according to them. For each of these categories, three adjectives were asked.
The purpose of this particular part of the survey was to collect data on the respon-
dents’ perceptions of the following types of vehicles:

e Vehicles with a classical combustion engine;
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e Hybrid vehicles;
e Electric vehicles;

e Renault vehicles.

These data are particular, as they consist of words freely reported by respondents.
Their interest is that they are very diverse across respondents and provide a great
amount of information about the latter’s perceptions of different vehicle types. We
are indeed assuming that these perceptions have a non-negligible impact on people’s
vehicle choices. As for the attitude data collected in the previous section, we plan
to capture this effect via a hybrid choice model.

Choice situations: This section builds the core of the entire survey. We wish indeed to
be able to explain and predict each individual’s preference towards a particular type
of vehicle, i.e. a standard petrol- or diesel-driven car versus an electric one. Five
choice situations are shown to each respondent. The aim of each choice situation
is to show three different cars to the respondent: his own car, the analogous model
of the Renault brand (also with combustion engine) and finally a similar model
in the Renault product line of electric cars. Such a choice situation experiment
enables us to define nests of alternatives, which could be ‘petrol-driven’ vehicles for
the respondent’s own vehicle and the analogous petrol-driven vehicle by Renault, or
‘Renault alternatives’ for the Renault car with combustion engine which is analogous
to the respondent’s current vehicle and the electric model. It eventually allows for
the application of nested and/or cross-nested logit models.

Nevertheless it is not always possible to present this exact three-alternative configu-
ration as the respondent may own a Renault model, not have any car at all or have
a too special car for which it is difficult to identify an analogous Renault model with
a combustion engine. The three possible types of choice situations are summarized
in Table 3.

Type | Alternatives Case

Respondent’s car
. . The respondent’s household owns a rather
1 Analogous petrol-/diesel-driven Renault model standard car from a non-Renault brand

Similar electric car from Renault brand

5 Respondent’s Renault car The respondent’s household owns a Renault
Similar electric car from Renault brand car.
3 Renault car with combustion engine The respondent’s household does not own

Similar Renault electric car any car or has only very special ones.

Table 3: Types of possible choice situations in phase IT questionnaire. Column ‘Alternatives’ shows
the different types of vehicles which are presented to the respondent and column ‘Case’ gives the
circumstance to which each choice situation applies.

Let us note that contrary to choice situations types 1 and 2 of Table 3, choice
situation type 3 is not personalised to the respondent’s profile. Nevertheless, it
shows classical settings involving a petrol-driven subcompact or compact car versus
their respective analogous models in the electric product line.
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An example of choice situation type 1, i.e. for a respondent with a standard non-
Renault car, is shown in Table 4 below. Each vehicle is characterized by a list of
attributes defined in collaboration with Renault. The latter include make, model,
type of fuel, purchase price, possible governmental incentive, maintenance costs,
fuel /electricity costs and battery lease.

Characteristics Your vehicle Renault vehicle Renault electric
with combustion vehicle
engine

Make Audi Renault Renault

Model A4 Laguna Fluence

Fuel Petrol Petrol Electricity

Purchase price (in CHF) 42’400 37'200 56’880

Incentive (in CHF) 0 0 —1'000

Total purchase price (in 42'400 37200 55’880

CHF)

OR: Monthly leasing price 477 399 693

(in CHF)

Maintenance costs (in CHF 850 850 425

for 30’000 km)

Cost in fuel/electricity for 11.70 13.55 3.55

100 km (in CHF)

Battery lease (in CHF per 0 0 125

month)

[ ]

[ ]

]

Table 4: An example of choice situation (type 1) presented to respondents with a standard non-
Renault car in their household. The respondent had to tick the box below the column corresponding
to the vehicle he would choose if he had to change his car at present.

Table 4 is an example of personalized choice situation for an individual owning a
particular car model, an Audi A4. The steps that were followed in order to build

the table cells are explained in details below:

1. The make, model and fuel type of the respondent’s car are obtained from the
vehicle description filled in during phase I.

2. The purchase price and the fuel cost of driving 100 km relative to the respon-
dent’s car are inferred from a data base containing information on the vehicles
currently released on the market.

3. The definitions of the analogous petrol-driven and electric vehicles from the
Renault brand are inferred from the information on the respondent’s car given in
phase I, such that the segments of the respondent’s car, the analogous Renault
model with a combustion engine and the electric vehicle match at best.
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4. The purchase price and the fuel cost of driving 100 km relative to the Renault
petrol-driven model are inferred from the same car data base as in 2.

5. The maintenance costs for the three vehicles, i.e. the respondent’s vehicle,
the analogous petrol-driven Renault model and the similar electric Renault
model are fixed to 850 CHF', 850 CHF and 425 CHF, respectively. The average
maintenance cost for vehicles with a combustion engine is set to 850 CHF for
30'000 km according to an evaluation performed using information given on the
website of Touring Club Suisse (TCS), a swiss repair service for vehicles. For
standard petrol-driven vehicles, the maintenance works include the change of
the brake fluid, the air filter and the oil. For electric vehicles, we make the
working hypothesis that the maintenance cost is half that price. The govern-
mental incentives for all vehicles with combustion engines are set to 0 CHF,
as no such help currently exists in Switzerland. The battery lease is fixed to
0 CHF for all petrol-driven vehicles and is displayed against the battery lease
of the electric vehicle for comparison purposes.

6. For the electric vehicle, the purchase price, the governmental incentive, the
cost of driving 100 km and the battery lease are subject to a fractional factorial
design, which will be explained in details in subsection 3.1.

7. For all three vehicles, the total purchase price, that is, the purchase price mi-
nus the governmental incentive, and the alternatively suggested monthly leasing
price are inferred from the purchase price and leasing conditions given by Re-
nault.

3 Methodology

Here we present both the survey methodology and the modeling framework.

3.1 Experimental design

In order to analyze the respondents’ sensitivity to characteristics of electric cars such as
the purchase price, a possible incentive from the government, the operating costs or the
battery lease when they are facing a choice, an experimental design is considered. For
each characteristic, we select realistic ranges of values. The goal is then to vary these
characteristics in a systematic way withing these ranges, and measure their impacts on
the choice of an electric vehicle.

In this section, the creation of this experimental design is explained, as well as the
sampling procedure, i.e. the way the different levels of the design variables are selected to
create a choice experiment.

3.1.1 Design fractionation

The experimental design is based on the four following variables:

Purchase price: As the price is the first key factor when purchasing a car, it is important
to model the responsiveness of individuals to this variable when they face a choice
involving electric vehicles, as the latter are not yet on the market. Due to the novelty
of the technology, electric cars are likely to be more expensive than the ones with
combustion engines. Hence the price of an electric car was defined as the price of
the respondent’s car plus an amount of 5’000 CHF. Moreover, the resulting price
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was multiplied by one of the three levels 0.8, 1.0 or 1.2, in order to obtain a large
enough range of variability in the data such that elasticities can be computed.

Incentive: A possible reduction of the purchase price of electric vehicles through a gov-
ernmental incentive could promote their use. It is hence important to know how
large this incentive should be.

Cost of 100 km: One advantage of the electric vehicles over the petrol- or diesel-driven
ones is a noticeable lower cost of fuel. Charging the battery of an electric car in
order to perform a distance of 100 km is much cheaper than refueling the tank of
vehicles with standard combustion engines, to perform the same distance. Due to
the variability of the energy prices in Switzerland, several levels were elaborated for
the cost of use of electric vehicles (measured for 100 km of driving).

Battery lease: As the batteries of the electric vehicles on which the study is based will
be leased to customers, this generates an additional monthly cost for their future
users. Hence, it is relevant to analyse how large the battery lease should be so that
it does not result in a loss of interest for the electric vehicles.

The numerical values of the levels of the variables described above are reported in
Table 5.

Level | Purchase price P Incentive I Cost C of 100 km  Battery lease L
1 (Pown +5'000) - 0.8 —0 CHF 1.70 CHF 85 CHF

2 (Pown + 5'000) - 1 —500 CHF 3.55 CHF 105 CHF

3 (Pown +5'000) - 1.2 —1'000 CHF  5.40 CHF 125 CHF

4 - —-5'000 CHF - -

Table 5: Levels of the variables related to the electric vehicles which are subject to an experimental
design, that is, the purchase price P, based on the price P.y, of the respondent’s car, a possible
governmental incentive I, the cost C' of driving 100 km and the battery lease L.

Knowing the values of the levels of each variable of Table 5, let us compute the size
of the experimental design. The purchase price P, the cost C' of 100 km and the battery
lease L have 3 levels and the incentive I has 4 levels. This generates a full factorial design
of size

S=3x3x3x4=108.

This implies that 108 different sequences of levels can be drawn when generating each
choice situation. Before the complete survey was launched, at least 100 valid questionnaires
per respondent group were expected at the end of phase II', implying a total of 4 x 100 =
400 questionnaires at minimum. Each respondent had to face 5 choice situations, hence
giving a total of 400 x 5 = 2000 answers to the choice situations of all questionnaires.
For significance purposes, we set the number of answers per sequence of levels to 30. This
lead to a design size of
2'000/30 = 67.

In other words, the number of sequences of levels should be reduced from 108 to a value
close to 67.

'In reality, we obtained a higher response rate than expected (see Table 1).
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In order to reduce the full factorial design, we need to take a fraction of it. Fac-
tors with different numbers of levels hence must be transformed into two-levels factors
(Montgomery, 2001). Precisely, a three-level or four-level variable becomes two two-level
variables, therefore giving a full factorial design of size 28. The above computation showed
that the size of the design should be close to 67. The power of 2 which is the closest to
67 is 20 = 64, implying that a 1/4 fraction of the full factorial design of size 2% should be
taken.

In the fractional factorial design of size 25, two out of the four-factor interactions are
confounded, hence giving a reduced design of resolution V.

Let us note that the fractional factorial design is orthogonal in the main effects.

3.1.2 Sampling strategy

In section 2.2, the four groups of respondents of the survey were introduced. Due to the
differences between these types of individuals, some undesired variability could occur in
their answers to the choice situations. For example, members of the newsletter on electric
vehicles could have a priori preferences for the electric alternative than individuals who
recently bought a car. This source of variability can be avoided by performing blocking.

We considered the four following blocks, corresponding to the target groups of sec-
tion 2.2.

Though blocking allows for reducing variability across respondent groups, it has a
noticeable drawback: the effect of some high-order interactions becomes indistinguishable.
In this survey, two interactions of order three are considered in order to form the blocks.
They consist of two two-level factors and each pair of values from these two variables
generates one of the four blocks. More information on the blocking procedure is given in
chapter 6 of Montgomery (2001).

Let us now consider the sequences of levels generated by the blocking procedure for
one of the respondent groups, e.g. the recent buyers. These are reported in Table 6.
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Incentive Price

Fuel cost of 100 km Battery lease

1 0 0.80
2 0 1.00
3 0 1.00
4 0 1.20
5 —-500  0.80
6 —-500  1.00
7 —-500  1.00
8 —-500 1.20
9 —1000 0.80
10 —1000  1.00
11 —1000  1.00
12 —1000 1.20
13 —5000  0.80
14 —5000  1.00
15 —-5000  1.00
16 —-5000  1.20

1.70
3.55
5.40
3.55
1.70
3.55
5.40
3.55
3.55
5.40
3.55
1.70
3.55
5.40
3.55
1.70

85
125
105
105
125

85
105
105
105
105

85
125
105
105
125

85

Table 6: Sequences of four levels sampled for the respondents of group ‘recent buyers’.

14

Table 6 shows the sequences of levels that will be sampled when creating the choice
situations for the recent buyers. For each choice situation of a repondent n, the following

sampling strategy is used:

1. Selection of the sequences of levels relative to respondent n’s sample group, i.e. the

recent buyers in this example.

2. Sampling with replacement of the sequences of levels of individual n between the

respondents.

3. Sampling without replacement of the sequences of levels that will be used in the

construction of the choice situations relative to individual n.

In Table 6 the intermediate levels of variables ‘Price’, ‘Fuel cost of 100 km’ and ‘Battery
lease’ are sampled twice more often than the two other levels. Therefore, this will generate
a bias in the answers to the choice situations if a simple random sampling is used for
points 2 and 3. In order to correct for this bias, we defined a new sampling strategy, that
aims at selecting each level as often as the others. For example, level 0.80 of variable
‘Price’ should be sampled with probability 1/3, level 1.00 with probability 1/3 and level

1.20 with probability 1/3, instead of having probabilities 1/4, 1/2 and 1/4 with a random

sampling.
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To perform this strategy, we need to compute sampling weights for each sequence of
levels. This calculation is performed by applying the iterative proportional fitting (IPF)
algorithm. The latter is generally used to correct for oversampled or undersampled obser-
vations in a sample with respect to the real socio-demographic structure of the population.
We apply it here in a different context, i.e. we aim at finding sampling weights for a stated
preference survey.

3.2 Discrete choice model

In this section we present the methodology to model demand for electric vehicles.

The type of model we used in a preliminary modeling phase is a logit model with
multiple alternatives. Its purpose is to understand the effect of attributes of alternatives
on the choice as well as capturing heterogeneity of preferences in the population. In such
model, each alternative i is associated with a utility function given as follows, for each
respondent n:

Uin = Vin + €in, with g;, ~ EV(0,1) (1)

Equation (1) is made of two terms: a deterministic term Vj;,, which must be determined
by the modeler and a random term &;,,, which captures what cannot be observed from the
available data.

The deterministic part can be described as a function V : R? — R of explanatory
variables X;,, which consist of characteristics of the alternatives and socio-economic in-
formation of the individuals, and of a p-dimensional vector of parameters §. It can be
written as follows:

Vin = V(meﬁ) (2)

The random part is a random variable ¢;, with a extreme value distribution of location
parameter 0 and scale parameter 1.

For some individuals, part of the alternatives might not always be available. Hence,
we need to define a choice set (), for each person n which contains the alternatives i that
are available for n.

For each individual n we are interested in computing the probability that each alter-
native 7 is selected. In the case of a logit model, this probability is given by the following
formula:

oVin

327 eVin
where Jg, is the number of available alternatives for Cj,.

In order to identify which variables have an effect on inviduals choices, we need to
estimate the vector 3 of parameters on the collected data. This is performed by maximum
likelihood estimation, where the following likelihood function £ is maximized:

P,(i|Cy) =

9

N Jo,
=[] P.GICn)vm
n=1i=1
where y;,, is an indicator that respondent n chose alternative ¢. Mathematically, variable
Yin is defined as follows:

1 if Uy, = max; U;
0 otherwise

The vector of parameters 3 is estimated using the extended version of software BIO-
GEME (Bierlaire, 2003), which is described in Bierlaire and Fetiarison (2009).
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4 Model specification and estimation

This section presents a preliminary vehicle choice model that was calibrated on the data
described in section 2. The type of model is a logit model with multiple alternatives (see
section 3.2 for more details on the methodology).

The choice respondents are facing is a vehicle choice between their own current car,
a possible analogous petrol- or diesel-driven car of brand Renault and finally a similar
electric car of brand Renault too.

The choice sets vary across respondents. For an individual n owning car from a different
brand than Renault, the choice set Cﬁon‘chault is defined as n’s own car, the analogous
petrol-driven model from the Renault brand and a similar electric car:

Cmon-Renault — (. Renault, electric}.

For an individual m owning a Renault car, the choice set CRmaU!t ig defined as m’s own
car (of brand Renault) and a similar electric car:

CRenault _ foun | electric}.

The specifications of the deterministic parts Vown, VRenault and Veec of the utility
functions of these three alternatives are represented by Table 7. For each alternative i,
each deterministic utility V; is given by the inner product between the left-hand column
‘Utilities’ and the column corresponding to 7. For instance, deterministic utility Vown is
given by the inner product between column ‘Utilities’ and column ‘Own car’.
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Utilities Own car Renault car Electric car
ASCoyn 1 - -
ASCRrenautt | - 1 -

Bprice,,, price ., - -

Bpriceromane - Pricegrenauit -

Bprice, .. - - pricegec
BuseCostPetrol | UseCostPetrolyyn  UseCostPetrolgenault -
BuseCostElec | - - UseCostElec
BBatteryHigh - - BatteryHigh
BincentiveHigh | - - IncentiveHigh
BPT o PT - }

BPTrenaut - PT -

Blncomeqyn Income - -
Bincomenenane | - Income -

BNbCarsown NbCars - .
BNbCarspenante | - NbCars -

OSitFamgys SitFam - -
BsitFampenan: | - SitFam -

Bage, .. Age - -

PAge e - Age -

Table 7: Specification table of the utilities

In the case where the respondent owns a Renault car, alternative VRepaut 1S made
unavailable and is not included in the computation of the likelihood function.
The assumptions regarding the utility functions are the following:

e All three utility functions contain a constant term, namely ASCown, ASCRenault and
ASCgjec, but the constant for the electric alternative, i.e. ASCglec, is fixed to 0.

e In each function, the purchase price of the vehicle was also included. The purchase
price, i.e. price,,,, Pricerepaut and pricegq., was included in all alternatives with
alternative specific parameters. For the petrol-driven alternatives, the refueling costs
UseCostPetroloyn, and UseCostPetrolgenaur were also introduced with a generic co-
efficient. In particular, variables UseCostPetrolyy, and UseCostPetrolgenauls were
included via the following piecewise-linear functions:

UseCostPetrolyyy, = min(Cost1006yn, 15)

UseCostPetrolgenaut = min(Cost100Renaut, 15),

where Cost100oywn and Cost100genaut denote the cost (in CHF) for driving 100 km
with the car owned by the respondent and the petrol-driven car from Renault, re-
spectively. Our assumption was that for vehicles with a use cost of more than 15 CHF
per 100 km, i.e. with engines with high consumptions, the use cost does not affect
any more the utility of petrol-driven cars in a negative way.
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e Some other design variables were also included in the utility of the electric car, that is
the highest level of cost of usage UseCostElec (equal to 5.40 CHF), the highest level of
battery lease BatteryHigh (equal to 125 CHF) and the highest level of governmental
incentive IncentiveHigh (equal to 5000 CHF).

e In the utility functions related to the petrol-driven alternatives, socio-economic vari-
ables were also included, in order to capture the heterogeneity within the population
regarding the choice of electric vehicles versus standard vehicles. Variables FamSit,
PT, Income, Age and NbCars were related to the following socio-economic informa-
tion: the household composition, the usage of public transportation, the income, the
age and the number of cars in the respondent’s household.

The parameters related to the variables described hereabove are estimated by max-
imum likelihood on a sample of 2'965 observations resulting from the answers of 593
individuals. Let us recall that each respondent had to answer to five choice situations. We
obtain a value of the final log-likelihood of —2/822.32 and of p? of 0.2.

The estimates of the parameters are reported in Table 8. All parameters are significant
at a 95% level except parameters SramSitgenaus ncomerenautt> ONbCarsgonaus A0 BAgerenau
relative to part of the socio-economic information in the utility of the petrol-driven vehicle
by Renault, and the two constants ASCown and ASCRrenault relative to the alternatives of
the vehicle owned by the respondent and of the petrol-driven car from the Renault brand.
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Name Value t-test
ASCown 0.44 1.77*
ASCRrenault -0.90  -2.46*
Bprice, gy, -0.03 -1.89
Bpriceemaut -0.28 -3.78
Bprice e -0.45  -10.47

BuseCostPetrol ~ -0.08  -3.52
BuseCostElec -0.21  -245
BBatteryHigh -0.18  -2.05
BrncentiveHigh 0.65 7.15

BPT oum -0.50  -5.09
BPTRenaut -0.47  -2.43
BFamSitown -0.25 291
BFamSitpepane  -0-08  -0.48%*
Bncomeown -0.30  -3.58
Bincomepepas ~ -0-18  -1.10%*
BNbCarsown -0.24 -4.16
BNbCarspepan;  -0-06  -0.65%*
Bage,on 0.20 2.03
BAgerenaus -0.14  -0.67**

Table 8: Estimates of the coefficients of the logit model of demand for the three car types, with
values of t-test. (** Statistical significance < 90%, * Statistical significance < 95%)

An analysis of the signs of the estimates of the parameters indicates that the higher
the purchase price of any type of vehicle is, the lower its utility is. The price effect is the
highest for the electric alternative, the second highest for the Renault car with combustion
engine and the lowest for the respondent’s own car. The parameter relative to the use
cost for the two petrol-driven alternatives has the expected negative sign, implying that
for cars with a use cost of less than 15 CHF per 100 km, the more expensive the fuel cost
is, the less likely individuals are going to select a petrol-driven alternative.

Regarding the parameters of the design variables, we also notice that a too high battery
lease has a negative effect on the choice of an electric vehicle, a high governmental incentive
can encourage its purchase and a high cost of usage decreases its interest. More specifically,
an analysis of willingness-to-pay shows us that if the battery lease increases from one of
the lowest level of 85 CHF or 105 CHF to the highest level of 125 CHF, the purchase price
of the electric vehicle can decrease of 4’000 CHF. Similarly, if a governmental incentive of
5’000 CHF is provided when a new electric vehicle is purchased, the latter’s cost can be
reduced of 14’444 CHF. Finally, if the cost of driving 100 km increases from one of the two
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lowest levels 1.70 CHF and 3.55 CHF to the highest level 5.40 CHF, the purchase price of
the electric vehicle can decrease of 4667 CHF.

The estimates of the parameters relative to socio-economic variables characterize the
potential customers. They show a meaningful interpretation. A next step in this research
is to combine these estimation results with real car market data in order to forecast the
potential market share of the electric alternative as well as the induced changes in the
market shares of the two other vehicle types.

5 Conclusion

In this paper, we presented the design of a survey which aims at evaluating individuals’
demand for electric vehicles in a context where their release on the market is expected in
a near future. In order to forecast the future market share of such vehicles, an analysis of
the factors driving people’s purchase choice is necessary.

The complexity of the survey lies in its two-phase construction, whose purpose is
to define choice situations which are adapted to each respondent, and in its sampling
procedure, which includes a correction of the probabilities of sampling each series of levels
of the variables subject to a fractional factorial design.

Another interest of the survey is the inclusion of statements in order to capture indi-
viduals’ opinions on topics related to the choice they need to perform, e.g. their concern
about ecology, their general interest in new technologies, etc. Questions related to their
perception of different types of vehicles, such as electric or hybrid cars, were also included.
The particularity of the answers is that they do not consist of numerical values, but of
adjectives freely reported by the respondents, which generates new modeling challenges.

We also obtained preliminary modeling results by applying a logit model with multiple
alternatives to the data collected from the survey. These results are encouraging and
enable us to quantify the impact of design variables as well as socio-economic information
on choice. Although preliminary, the model estimates are consistent with the expectations.

6 Future works

The inclusion of socio-economic variables in the model gave some hints for the identification
of the target population segments that are likely to be interested in electric vehicles. This
could be investigated more in detail by calibrating a discrete choice model with latent
classes.

The data collected also involved statements or questions reflecting people’s opinions.
A next step in this research would be to model the latter’s latent attitudes or perceptions
such as their ecological concern or their attitude towards new technologies by using these
data as measurements. A hybrid choice model could then be applied. Such methodology
could also be used in order to assess the effect on choice of the individuals’ perceptions of
different vehicle types, which were measured via adjectives reported by the respondents.

The model applied so far is rather simple, though the choice set could involve a nested
structure. Two alternatives are indeed petrol- or diesel-driven, i.e. the respondent’s own
car and the analogous Renault model with combustion engine, while the third one is driven
by electricity. Moreover, two vehicles are from brand Renault, while the respondent’s car
is usually from a different brand. This allows for the calibration of nested or cross-nested
logit models. The development of such models is a next phase in this research.

As respondents had to perform five choice experiments, a panel term could also be
specified in the model, in order to take into account the correlation between answers
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reported by a same individual.
Further works also include simulations to evaluate the demand elasticity regarding
variations of prices of the electric vehicles.
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