Contextual elements can strongly modulate visual performance. For example, performance deteriorates when a vernier is flanked by neighboring lines. On a neural level, such contextual modulation is often explained by local spatial interactions such as lateral inhibition or pooling. However, these mechanisms cannot account for a number of recent results which showed that global rather than local factors play a key role in contextual modulation. On a level of perceptual organization, we proposed that contextual modulation increases when the target groups with the flankers and decreases when the target stands out from the flankers. To quantify this "standing out" in foveal vision, here, we performed both a visual search and a vernier offset discrimination task on the same stimulus configurations. Stimulus configurations yielding short reaction times in visual search yielded good vernier discrimination performance. Stimulus configurations yielding long reaction times yielded weaker discrimination. Hence, vernier offset discrimination is superior for targets that are efficiently searched and vice versa.