
Revisiting Radiometric Calibration for Color Computer Vision

Haiting Lin1 Seon Joo Kim1,2 Sabine Süsstrunk3 Michael S. Brown1
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Abstract

We present a study of radiometric calibration and the in-
camera imaging process through an extensive analysis of
more than 10,000 images from over 30 cameras. The goal
is to investigate if image values can be transformed to phys-
ically meaningful values and if so, when and how this can
be done. From our analysis, we show that the conventional
radiometric model fits well for image pixels with low color
saturation but begins to degrade as color saturation level
increases. This is due to the color mapping process which
includes gamut mapping in the in-camera processing that
cannot be modeled with conventional methods. To this end,
we introduce a new imaging model for radiometric calibra-
tion and present an effective calibration scheme that allows
us to compensate for the nonlinear color correction to con-
vert non-linear sRGB images to CCD RAW responses.

1. Introduction
Many computer vision algorithms assume that cameras

are accurate light measuring devices that capture images
that are directly related to the actual scene radiance. Repre-
sentative algorithms include photometric stereo, shape from
shading, color constancy, intrinsic image computation, and
high dynamic range imaging. Digital cameras, however,
are much more than light measuring devices; the imaging
pipelines used in digital cameras are well known to be non-
linear. Moreover, the primary goal of many cameras is to
create visually pleasing pictures rather than capturing accu-
rate physical descriptions of the scene.

We present a study of radiometric calibration and the in-
camera image processing through an extensive analysis of
an image database collected by capturing images of scenes
under different conditions with over 30 commercial cam-
eras. The ultimate goal is to investigate if image values can
be transformed to physically meaningful values and if so,
when and how this can be done. From our analysis, we
found a number of factors that cause instability in the cam-
era response function computation and use the findings to

present a practical radiometric algorithm that enhances the
overall accuracy. More importantly, the analysis shows a
limitation of the imaging model employed in conventional
radiometric calibration methods when dealing with pixels
with high color saturation levels. In particular, conventional
radiometric models cannot explain the color mapping com-
ponent which includes gamut mapping [8] in the imaging
pipeline. This makes it difficult to convert points with high
color saturation to physically meaningful values. To address
this limitation, we introduce a new imaging model for ra-
diometric calibration and propose an effective calibration
procedure that allows us to compensate for this color cor-
rection to convert non-linear sRGB images to CCD’s RAW
responses.

2. Preliminaries and Related Work
Radiometric calibration is an area in computer vision in

which the goal is to compute the camera response function
(f ) that maps the amount of light collected by each CCD
pixel (irradiance e) to pixel intensities (i) in the output im-
age:

ix = f(ex), (1)

where x is the pixel location. This radiometric mapping is
almost always nonlinear due to the design factors built into
digital cameras for a variety of reasons, including compress-
ing the dynamic range of the imaged scene (tone-mapping),
accounting for nonlinearities in display systems (gamma
correction), mimicking the response of films, or to create
aesthetic effects [5, 14]. When the response function f is
known, the image intensities can be inverted back to relative
scene radiance values enabling physics-based photometric
analysis of the scene.
Related Work. Conventional radiometric calibration algo-
rithms rely on multiple images of a scene taken with differ-
ent exposures. Assuming constant radiance, which implies
constant illumination, a change in intensity is explained by
a change in exposure. Given a pair of images (I, I′) with an
exposure ratio of k′, the response function f is computed
by solving the following equation from intensity values (i,
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i′) at corresponding points:

f−1(i′x)

f−1(ix)
= k′. (2)

The main difference among various calibration methods
is the model used to represent the response function. The
existing models for a radiometric response function include
the gamma curve [15], polynomial [16], non-parametric [3],
and PCA based model [4]. Other than the work in [10]
where the color was explained as having the same response
function for all the channels but with different exposure
level per channel, most methods do not deal with color and
compute the response function independently per channel.

While different radiometric calibration methods vary in
either how the response function is modeled and/or com-
puted, all methods share a common view that it is a fixed
property of a given camera model. In fact, this view was
exploited to compute the radiometric response function by
applying statistical analysis on images downloaded from the
web in [11]. One exception is the work in [18] where the
response function was modeled differently per image using
a probabilistic approach. Another exception is the recent
work in [2] where the goal was to provide an analysis of the
factors that contribute to the color output of a camera for
internet color vision. They proposed a 24-parameter model
to explain the imaging pipeline as follows:

Ix =

 irx
igx
ibx

 =

 fr(erx)
fg(egx)
fb(ebx)

 , (3)

ex =

 erx
egx
ebx

 = TEx. (4)

The term Ex is the irradiance value captured as RAW, T
is a 3 × 3 transformation, and f is modeled with 5th order
polynomial per channel (r, g, and b). The difference in their
model compared to the conventional model (Eq. 1) is that
they explain color by including the color transformation T,
which is responsible for both the transformation from the
camera’s color space to sRGB and white balancing. There-
fore, the image values can be inverted back to the actual
irradiance value at CCD (RAW). Additionally, the function
f is explained as including the color rendering process in
addition to the compressive nonlinearity. Using the avail-
able RAW data from the cameras, they iteratively compute
the color transformation T and the responses f that map
the RAW data to the output sRGB image. Through their
analysis, they suggest that the color rendering function f
is scene-dependent. They go further to suggest that fixed
nonlinearities per channel/camera as used in traditional ra-
diometric calibration are often inadequate.

Scene Dependency and Camera Settings Before mov-
ing forward, it is important to clarify the issue of scene de-
pendency of the in-camera imaging process. If the process
is scene dependent as mentioned in [2], traditional radio-
metric calibration would be inadequate and the only option
would be to use single-image based radiometric calibration
methods [13, 14]. While the single image calibration algo-
rithms are conceptually the best choice, they are sometimes
unstable because they rely on edge regions, which are sen-
sitive to noise and may go through further processing such
as sharpening onboard the camera.

There are generally two color rendering strategies with
regards to how digital cameras convert CCD RAW re-
sponses to the final output: the photofinishing model and
the slide or photographic reproduction model [8]. The dig-
ital camera community defines color rendering as the oper-
ations that apply the tone/color reproduction aims for the
imaging system and change the state of the image from
a scene-referred image state to an output-referred image
state [9]. Color rendering transforms may include tone and
gamut mapping to account for the dynamic range and color
gamut of the output color image encoding (e.g., sRGB,
Adobe RGB), compensation for differences in the input-
and output-viewing conditions, and other color adjustments
(e.g., selective hue, saturation) to account for color repro-
duction preferences of the human observer.

The intent of the “photofinishing” color rendering op-
erations is to produce a pleasing image that is not solely
dependent on the exposure received by the image sensor.
In this model, the imaging pipeline varies the color ren-
dering based on the captured scene, possibly in a spatially
varying manner. Some examples of camera settings that
enable photofinishing are Dynamic Lighting Optimizer on
the Canon EOS550D and D-Range Optimizer in Sony α-
200. Different photofinishing methods can also be associ-
ated with “scene modes”, e.g. Portrait, Landscape, Night-
time, etc. For images produced using such scene depen-
dent processing it is very difficult to convert image values
to physically meaningful values.

The photographic reproduction model, on the other hand,
uses fixed color rendering. This mode is intended to al-
low the digital camera to mimic traditional film cameras
and targets professional photographers [8]. For most high-
end cameras, it is possible to set the camera in this photo-
graphic mode by turning the camera settings to manual and
turn off all settings pertaining to photofinishing. However,
for cheaper “point-and-shoot” cameras, it should be noted
that this may not be possible. The implications of this are
discussed in Section 8, and for the remaining of this paper
it is assumed that the algorithms discussed are intended to
work in the photographic reproduction mode.
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Figure 1. Brightness transfer functions for Nikon D50 and Canon EOS-1D. Each plot includes several BTFs with different exposure ratios
(1.25 and 2.0), different lighting environments (©: outdoors, 4: indoors), and different white balance settings (cloudy and fluorescent).
The key observation from these plots is that the BTFs of sRGB images with the same exposure ratio exhibit a consistent form aside from
outliers and small shifts. For better viewing, please zoom the electronic PDF.

3. Data Collection

For the analysis, we collected more than 10,000 images
from 31 cameras ranging from DSLR cameras to point-
and-shoot cameras. Images were taken in manual mode
under different settings including white balance, aperture,
and shutter speed. The images were also collected under
different lighting conditions: indoor lighting and/or out-
door cloudy condition. Images are captured three times
under the same condition to check the shutter speed con-
sistency. RAW images are also saved if the camera sup-
ports RAW. We additionally use the database in [2] which
includes over 1000 images from 35 cameras. Cameras from
most of the major manufacturers are included as shown in
Fig. 4. Though the cameras used for data collection are
not uniformly distributed among manufacturers, they reflect
the reality of certain manufacturers being more popular than
others.

For cameras with RAW support, both sRGB and RAW
data are recorded. The target objects for our dataset are
two Macbeth ColorChecker charts, specifically a 24-patch
chart and a 140-patch chart. There are several reasons why
these color charts were used for our analysis. First, since
the patches are arranged in a regular grid pattern, we can au-
tomatically extract colors from different patches with sim-
ple registration. Also, measurements from different pixels

within a patch can be averaged to reduce the impact of im-
age noise on the analysis. Finally, these color charts in-
clude a broad spectrum of colors and different levels of gray,
which facilitate radiometric calibration and color analysis.

4. Observations
Using the conventional radiometric model, pairs of in-

tensity measurements at corresponding patches in two dif-
ferently exposed images constitute all the necessary infor-
mation to recover the radiometric response function of a
camera [4]. These pairs can be arranged into a plot that rep-
resents the brightness transfer function (BTF [10]), which
can be formulated from Eq. 2 as

i′x = τk(ix) = f(k′f−1(ix)), (5)

where τk is the BTF, f is the response function, and k′ is
the exposure ratio. The BTF describes how image inten-
sity changes with respect to an exposure change under a
given response function. If the response function is a fixed
property of a camera and the model in Eq. 1 is valid, the
BTF should be the same for all pairs of images that share
the same exposure ratio regardless of other camera settings
and lighting conditions. Notice that even if we consider the
color transformation in Eq. 4, the BTFs should still remain
the same for the same exposure ratio as long as the color



transformation remains unchanged between images, i.e.:

f−1(i′cx)

f−1(icx)
= k′

t′cEx

tcEx
= k′ if tc = t′c. (6)

In the above equation, tc is a row of the color transformation
T that corresponds to the color channel c.

To validate the model in Eq. 1 and the assumption that
the response f is a fixed property of a camera, we compare
the BTFs of different cameras under different settings. Rep-
resentative examples from two cameras are shown in Fig. 1
for clarity. In the figure, each point represents the change in
brightness for a given patch between the image pair.

Through our analysis of the database, we made several
key observations, which can also be observed in Fig. 1. The
BTFs of a given camera and exposure ratio exhibit a con-
sistent shape up to slight shifts and a small number of mea-
surement outliers. BTFs recorded in the green channel are
generally more stable than in the other channels and have a
smaller amount of outliers. Also, the appearance of shifts
and outliers tends to increase with larger exposure ratios.

The shifts can be explained with the inconsistency of the
shutter speed. In our experiments, we control the exposure
by changing the shutter speed1, and it is well known that the
shutter speeds of cameras may be imprecise [7]. In particu-
lar, we have found that shutter speeds of cameras with high
shutter-usage count tend to be less accurate, as observed
from measurement inconsistency over repeated image cap-
tures under the same setting. We should note that we can
rule out the illumination change as a cause because of our
illumination monitoring and the consistent BTFs measured
by other cameras under the same conditions. As these shifts
also exist in raw image BTFs, onboard camera processing
can also be ruled out.

We found that some outliers, though having intensity val-
ues well within the dynamic range of the given color chan-
nel, have a 0 or 255 intensity value in at least one of the
other channels. These clipped values at the ends of the dy-
namic range do not accurately represent the true scene irra-
diance.

One significant reason for outliers observed is that when
a camera’s color range extends beyond that of the sRGB
gamut, gamut mapping is needed to convert colors from out-
side the sRGB gamut to within the gamut for the purpose of
sRGB representation [8, 9, 17]. We can observe the vast
majority of outliers in our dataset have high color satura-
tion levels and lie close to the boundary of the sRGB color
gamut. This gamut mapping essentially produces a change
in color for points outside the sRGB gamut, and if out-of-
gamut colors are shifted in different ways between differ-
ent exposures, the color transformation becomes different
(T 6= T′ in Eq. 6) between the two images. Thus these

1We use shutter speed to control exposure because changing the aper-
ture could result in spatial variation of irradiance due to vignetting.

points become outliers positioned off from the BTF. This ef-
fect of gamut mapping becomes more significant with larger
exposure ratios, since the out-of-gamut colors need a greater
displacement in color space to move into the sRGB gamut.

To summarize, the observations imply that factors such
as shutter speed inaccuracies and gamut mapping have to
be considered to compute the radiometric response function
accurately. Additionally, the observations show that less
saturated colors can be modeled with the conventional ra-
diometric model (Eq. 1) and be linearized accurately. How-
ever, it is shown that the conventional model has an essen-
tial limitation in representing the nonlinear color mapping
in the imaging pipeline and highly saturated colors will not
be linearized accurately with the model in Eq. 1.

5. Radiometric Calibration Algorithm
In this section, we describe practical steps to make radio-

metric calibration more robust by taking into account the
observations and findings from the previous section. The
overall procedure follows conventional radiometric calibra-
tion methods which operate in the log domain, and we use
the PCA based model of camera response functions intro-
duced in [5]:

g(Ix) = log(f−1(Ix)) = g0(Ix) +

M∑
n=1

hn(Ix)cn (7)

where g0 is the mean response function and hn’s are the
PCA basis functions of the response curve in the log do-
main. Given multiple images with different exposures, the
response function can be computed linearly by putting the
model in Eq. 7 into the following equation, which is the log
version of Eq. 2:

g(I ′x)− g(Ix) = K ′, (8)

where g = log f−1 and K ′ = log k′.
A common practice for solving Eq. 8 is to read the expo-

sure values from the camera’s meta data and use it for K ′.
However, actual image recordings are not always consistent
with the camera’s meta data as discussed in the previous
section. To deal with this issue, capturing images both in
sRGB and RAW format is recommended if the camera sup-
ports RAW capture. With RAW images, the exposure ratio
can be directly computed by dividing the raw values be-
tween two images. If RAW images are unavailable, K ′ in
Eq. 8 can be treated as an unknown variable and be solved
together with the log response g as in [10]. Notice that the
solution using the method in [10] is determined up to an un-
known scale in the log domain, meaning that the computed
response function f−1 is known up to an unknown expo-
nential γ. To address this ambiguity, we fixed the exposure
ratio of an image pair using the exposure values from the
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Figure 2. A new radiometric model: the color (gamut) mapping
process h [9] is added to overcome the limitation of the conven-
tional model.

camera. We took multiple shots of each image to deal with
the instability of the shutter speeds.

The outliers mentioned in Section 4 also need to be ad-
dressed for the accurate radiometric calibration. In some
cameras and scenes, the number of outliers is small and the
effect of outliers on the estimation of the response curve is
minimal. However, we have found that the outliers can have
a serious effect in some cameras and scenes, so the outliers
need to be detected and discarded from the response estima-
tion. First, points with 0 or 255 in any of the channels are
rejected as outliers. Next, we use the color saturation value
to detect the points that lie close to the boundary of the color
gamut. We convert RGB to HSV, and points with saturation
over a threshold (β) are considered to be outliers. Sugges-
tions on how to best select β to remove outliers is described
in Section 7. In the following Section, we describe a cali-
bration scheme to deal with these outliers by modeling the
color mapping component of the in-camera processing.

6. Image to Irradiance (RAW)
It was shown in Section 4 that the existing radiometric

model (Eq. 1) cannot represent the nonlinear color mapping
(gamut mapping) effectively by simply having a different
response function per color channel. Therefore, points with
high color saturation cannot be mapped back to physical
values as well as neutral colors. To overcome the limita-
tion of the conventional model in Eq. 1, we introduce a new
radiometric imaging model as follows:

icx = fc(h(TEx)), (9)

where c represents the color channel, f is the conven-
tional radiometric response function responsible for the
tone-compression, h:R3 → R3 is the color mapping func-
tion, T is a 3 × 3 matrix which includes the white balance
and the transformation from camera color space to linear

sRGB, and Ex is the irradiance (RAW). Fig. 2 shows a di-
agram of this radiometric model including the color map-
ping.

Because the nonlinear color mapping process h is spe-
cific to each camera manufacturer and can be drastically
different, it is difficult to design a parametric model for this
process. Instead, we use scatter point interpolation via ra-
dial basis functions (RBF) to estimate this nonlinear map-
ping as:

h−1(e) =

N∑
i=1

wi ‖e− ei‖2 , (10)

where e represents a linearized sRGB color point and ei
represents a RBF control point. The weights (wi) are com-
puted from a set of selected sRGB-RAW control point pairs
in the form of ei → TEi, where the TEi is the correspond-
ing RAW value that has been corrected by T. For more in-
formation on RBF, readers are referred to [1]. This inverse
color mapping h−1(e) is essentially a 3D warping that re-
verses the gamut mapping process which enables more ac-
curate reconstruction of a RAW image from a given sRGB
image.

We pre-calibrate the functions f−1c and h−1 per cam-
era and the transformation T per white balance setting.
The response functions (f−1c ) are computed as described
in Section 5 using a number of differently exposed im-
ages. With the response function computed, the transfor-
mation T is then computed using Eq. 4 from a number
of sRGB-RAW pairs. Finally, the color mapping function
(h−1) which should map the linearized image values to the
RAW values transformed by T is computed from a num-
ber of sRGB-RAW pairs with various white balance set-
tings (typically 1500 samples are used to define h−1). After
the pre-calibration, a new image which is in the non-linear
sRGB space can be mapped to the RAW by Erx

Egx

Ebx

 = T−1 · h−1

 f−1
r (irx)
f−1
g (igx)
f−1

b (ibx)

 . (11)

7. Experiments
Radiometric response function estimation. We first com-
pare the performance of the practical algorithm (Section 5)
against the conventional approach [5] upon which we have
built our algorithm. Fig. 3 shows an example of the out-
liers detected by our algorithm and the response functions
recovered by the two methods. There is a significant differ-
ence in the estimations and the proposed algorithm clearly
outperforms on the linearization results.

A selected few response functions computed using our
algorithm for some cameras in our database are shown in
Fig. 4. Note that the responses differ from the gamma curve
(γ = 2.2) commonly used for linearization in some color
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Figure 3. A BTF, estimated response function, and linearization
results for the blue channel of Nikon D40 using our practical al-
gorithm and a conventional method [5]. Using the practical algo-
rithm, outliers can be effectively removed for more accurate cali-
bration.

vision work. The response functions for the cameras in the
database, as well as data and the software for exploring the
data, are all available online at the author’s project webpage.
For a quantitative evaluation of the response estimation, we
use the following measure per channel to gauge the accu-
racy of linearization from Eq. 2:

δc =

√∑N
n=1

∑
x∈A ||k′nf−1(incx)− f−1(in

′
cx)||2

N |A|
, (12)

where N is the number of image pairs, A is the set of all
image points, and |A| is the size of the set A. To compute
δ for each camera, we use all available sets of images in the
database for the particular camera, not just the ones used for
calibration. This is to verify that a response function com-

puted under a specific condition can be used to accurately
linearize images captured under different settings such as
the lighting condition and the white balance setting.

Fig. 4 plots the δ’s for all cameras in the database. We
can see that for many cameras in our database, the image
can be linearized very well with an average error of less
than 1%. Note that outliers were included for the statistics
in Fig. 4. If we exclude outliers from the computation, δ
converges almost to 0 in many cameras. So the δ in Fig. 4 is
related to the amount of outliers, or the degree of color map-
ping in the in-camera image processing. For the cameras
with high δ’s, the gamut mapping is applied to points well
within the sRGB gamut as opposed to other cameras where
it applies only to points close to the boundary of the gamut.
For this reason, we had to rely mostly on gray patches to re-
liably compute the response functions for the cameras with
high δ, using a low threshold (β = 0.4) for determining sat-
uration outliers in Section 5. A higher threshold (β > 0.7)
was used for most other cameras with low δ’s.
Color mapping function estimation and converting im-
age to RAW. Next, we evaluate the new radiometric model
(Eq. 9) and the method for converting images to RAW re-
sponses. The 3D color mapping functions (h) for the Nikon
D50 and the Canon EOS-1D are shown as slices in Fig. 5
(a). The colors on the map in Fig. 5 (a) encode the magni-
tude of 3D color warping at a color point e,

∥∥e− h−1(e)∥∥2.
The results confirm the existence of the gamut mapping in
the in-camera imaging process and the need to include the
color mapping function in the radiometric model.

The performance of our algorithm for converting image
values to RAW responses described in Section 6 is shown
in Fig. 5 (b). In the figure, we compare the results from
three different techniques given a number of sRGB-RAW
image pairs. The first method is the implementation of the
algorithm from [2] where f (5th order polynomial) and T
are computed iteratively. The second method computes the
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Figure 5. (a) Estimated color mapping function h for Nikon D50 and Canon EOS-1D. The maps shown here are slices of the 3D functions.
It can be seen that the gamut mapping was only applied to the points near the boundaries in Nikon D50 whereas the gamut mapping
influences the points well within the gamut and the degree of the mapping is more severe in Canon EOS-1D. (b) Performance of mapping
image values to RAW values (Canon EOS-1D) with different techniques: using the technique in [2], using f and T from Section 6 without
h, and the new method with h. Using our new model, images can be mapped back to RAW accurately.

RAW just from f and T , which are computed as described
in Section 6 without the color mapping function h. Fi-
nally, the third method computes RAW from Eq. 11 with
the color mapping function included. As can be seen, the
image can be mapped backed to RAW accurately by includ-
ing the color mapping function in the radiometric model and
approximating the mapping function with radial basis func-
tions.

Finally, we show the results of applying the calibration
results to convert images of real scenes back to RAW re-
sponses for various scenes and cameras in Fig. 6. The esti-
mates of RAW images are compared with the ground truth
RAW images. Note that the estimates are purely from the
pre-calibrated values of f , h, and T and the ground truth
RAW images are used only for the evaluation purposes. Us-
ing the new model and the algorithm introduced in Section
6, we can accurately convert the image values to RAW val-
ues even for the highly saturated colors in the scene.

8. Conclusion and Future Work

In this paper, we presented a study of radiometric cali-
bration and the in-camera image processing through an ex-
tensive analysis of a large image database. One of the key
contributions of this paper is bringing the color (gamut)
mapping in the in-camera image processing to light to over-
come the limitations of the conventional radiometric model
and calibration methods. By considering the color mapping
in the imaging process, we could compute the radiometric
response function more accurately. Moreover, by introduc-
ing the color mapping function to the radiometric model and
the algorithm to estimate it, we could convert any given im-
age to RAW accurately using a pre-calibration scheme.

There are several directions that we need to explore more
in the future. We currently rely on a pre-calibration scheme,
where different mappings (f , h, and T ) are first computed
given a number of sRGB-RAW pairs and are used later to
transform images to RAW images. While this is an effec-

tive scheme for cameras with RAW support, we cannot use
this scheme for cameras that do not provide RAW images.
Further investigation is needed to explore the possibility of
extending the work to cameras without RAW support.

Recall that the underlying assumption for this work is
that cameras are operating under the photographic repro-
duction mode, which can be achieved by capturing images
in the manual mode and turning off features for scene de-
pendent rendering. In the future, we plan to investigate to
see what and how much scene dependent processing is done
in images under the photofinishing mode. The analysis on
the photofinishing mode together with the analysis done in
this paper will suggest a direction for the internet color vi-
sion [2, 6, 11, 12] research in the future.
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