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ABSTRACT 

Background: KRAB-ZFPs (Krüppel-associated box domain-zinc finger proteins) are 

vertebrate-restricted transcriptional repressors encoded in the hundreds by the mouse 

and human genomes. They act via an essential cofactor, KAP1, which recruits 

effectors responsible for the formation of facultative heterochromatin. We have 

recently shown that KRAB/KAP1 can mediate long-range transcriptional repression 

through heterochromatin spreading, but also demonstrated that this process is at times 

countered by endogenous influences. 

Method: To investigate this issue further we used an ectopic KRAB-based repressor. 

This system allowed us to tether KRAB/KAP1 to hundreds of euchromatic sites 

within genes, and to record its impact on gene expression. We then correlated this 
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KRAB/KAP1-mediated transcriptional effect to pre-existing genomic and chromatin 

structures to identify specific characteristics making a gene susceptible to repression. 

Results: We found that genes that were susceptible to KRAB/KAP1-mediated 

silencing carried higher levels of repressive histone marks both at the promoter and 

over the transcribed region than genes that were insensitive. In parallel, we found a 

high enrichment in euchromatic marks within both the close and more distant 

environment of these genes.  

Conclusion: Together, these data indicate that high levels of gene activity in the 

genomic environment and the pre-deposition of repressive histone marks within a 

gene increase its susceptibility to KRAB/KAP1-mediated repression.   

 

KEY WORDS: KAP1, KRAB-zinc finger proteins, transcriptional repression, 

chromatin, heterochromatin, histone modifications 
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BACKGROUND 

 Gene expression is modulated through the alteration of chromatin states by 

epigenetic regulators. Krüppel-associated box zinc finger proteins (KRAB-ZFPs), 

which together constitute the single largest group of transcriptional repressors 

encoded by the human genome, partake in this process [1-3]. The KRAB-ZFP family 

is evolutionary recent and has expanded and diverged through multiple rounds of gene 

and segment duplications, to give rise to more than three hundred and fifty annotated 

members in humans [4-7]. Despite their abundance, KRAB-ZFPs and their 

transcriptional targets remain largely uncharacterized except for a few [8-10]. KRAB-

ZFPs carry a C-terminal array of two to forty C2H2 zinc finger motifs, each 

potentially capable of recognizing a triplet of nucleotides in a sequence-specific 

manner [1], while their N-terminal KRAB domain recruits the KAP1 (KRAB 

associated protein 1) corepressor [11-14]. KAP1 (also named TIF1β, KRIP-1 or 

TRIM28) binds KRAB and homotrimerizes through its N-terminal RBCC (Ring 

finger/B box/Coiled-Coil) domain, while its C-terminus acts as a scaffold for various 

heterochromatin-inducing factors, such as heterochromatin protein 1 (HP1), the 

histone methyltransferase ESET (also known as SetDB1), the nucleosome-remodeling 

and histone deacetylation (NuRD) complex, the nuclear receptor corepressor complex 

1 (N-CoR1) and, at least during early embryonic development, de novo DNA 

methyltransferases [15-22]. This results in local loss of histone acetylation, 

enrichment in histone 3 lysine 9 trimethylation (H3K9me3) and increased chromatin 

compaction [23, 24].  

 Using chromatin immunoprecipitation (ChIP) and a tiling array, KAP1 has been 

documented to bind more than 7000 sites in a human testicular embryonal carcinoma 

cell line [25]. A more recent publication additionally revealed that KAP1 chromatin 



 5    

targeting falls into different categories, only a subset of which is dependent on its 

RBCC domain and consequently on its association with KRAB-ZFPs [26]. KAP1 is 

dynamically associated with both heterochromatin and euchromatin. It is thought to 

organize constitutive heterochromatin and to stimulate its propagation, as evidenced 

by its co-localization with HP1 in pericentromeric heterochromatin domains [16, 27]. 

Using a combination of gene trapping and a drug-controllable KRAB-containing 

repressor, we recently demonstrated that KRAB/KAP1 can induce long-range 

repression through HP1-dependent heterochromatin spreading [28]. However, while 

some promoters located tens of kilobases (kb) from KAP1 docking sites were silenced 

by this mechanism, others were resistant. Here, we investigated the basis for this 

differential behavior by comparing the genomic context and the pre-existing levels of 

specific chromatin marks at repressed and non-repressed genes. This analysis revealed 

that genes most susceptible to KRAB/KAP1-induced silencing were in genomic 

regions of high gene activity. More specifically, repression was most efficient at sites 

with increased levels of pre-existing repressive histone marks at promoters and gene 

bodies, embedded within gene-rich regions with high levels of transcription.  

 

 

RESULTS 

Characterization of thousands of KRAB/KAP1-targeted gene traps 

 To study the impact of specific genomic features on KRAB/KAP1-induced 

silencing, we used the recently described trapping/silencing (TrapSil) system [28]. 

Here, retrovirally-trapped cellular promoters are exposed to a drug-regulated KRAB-

containing repressor. The tTRKRAB protein contains the KRAB domain of the 

human KOX1 ZFP fused to the E. coli tetracycline repressor (tTR), and binds to Tet 
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operator sequences (TetO) in a doxycycline (Dox)-controlled manner [29, 30] (Figure 

1A). We engineered retroviral-based gene trap vectors carrying tandem TetO repeats 

and a promoterless GFP-puromycin resistance fusion reporter. This design predicts 

that i) reporter expression occurs from the promoters of active genes targeted by the 

integrants (“trapping”), and ii) Dox withdrawal results in tTRKRAB binding to the 

TetO sites present in the provirus, thus exposing the trapped promoters to 

KRAB/KAP1-mediated silencing (“silencing”) (Figure 1A). Using this experimental 

setup, we previously observed that while KRAB/KAP1 can act over long distances it 

is generally more effective when bound 20kb or less from a promoter [28]. To study 

which other parameters might affect KRAB/KAP1-induced repression, we infected 

tTRKRAB-expressing HeLa cells with low doses of retroviral-based TrapSil vectors 

to ensure that only one integrant per cell was present. We made use of a combination 

of murine leukemia viral (MLV)- and lentiviral (LV)- based TrapSil vectors to obtain 

a greater diversity of targeted genes, since MLV tends to integrate close to active 

transcriptional start sites (TSS), while LV hits genes further downstream in their 

transcribed region [31, 32].  

 Since we were interested in elucidating differences between KRAB/KAP1 

repressible and non-repressible promoters and genes, we reasoned that “all or none” 

phenotypes would facilitate subsequent analyses. Therefore, we selected cells in 

which trapped promoters were highly active at baseline, and either strongly repressed 

(“repressed clones” containing a “repressing integrant”) or almost completely 

resistant to this process (“non-repressed clones” containing a “non-repressing 

integrant”) when the trans-repressor was allowed to bind its target (Figure 1B). More 

specifically, we isolated trapped integrants from a population of cells by puromycin 

selection in the presence of Dox, which impairs tTRKRAB binding and silencing. 
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Then trapped integrants were subjected to subsequent rounds of cell sorting to isolate 

cells harboring gene traps with repressible promoters and reporter genes. These 

rounds first included the isolation of GFP negative cells when tTRKRAB was allowed 

to bind (Dox-), followed by the sorting out of GFP positive cells when its recruitment 

was inhibited (Dox+) (Figure 1B). Isolation of non-repressible genes was achieved by 

a similar approach. However, trapped cell populations were cultured in the presence 

of tTRKRAB binding (Dox-) and GFP positive cells, which did not silence reporter 

expression, were directly isolated after TrapSil vector infections (Figure 1B).  

 After the isolation of cell populations with differential silencing phenotypes, we 

mapped proviral integration sites, in order to identify the trapped genes. For this, we 

combined linker-mediated PCR (LM-PCR) of proviral-genomic junctions with 

massive parallel DNA pyrosequencing [31, 33, 34]. The amplified sites were mapped 

to the human genome with the FetchGWI software [35], and the UCSC known gene 

annotation was used to subsequently identify the trapped promoters (Figure 1C). We 

previously described that about 1 in 15 promoters trapped by MLV-TrapSil vectors 

were non-repressed by tTRKRAB, compared with approximately 1 in 5 for those 

captured by LV-based vectors [28]. Therefore, we isolated over 7000 integration sites, 

with an intentional bias for non-repressed clones to obtain integrant numbers 

comparable to their repressible counterparts. 69% of the promoter-trapping LV 

integrants mapped within annotated genes, whereas only 54% of their MLV 

counterparts did (Figure 1C, Additional File 1). This observation is in agreement with 

previous data indicating that parental MLV as well as MLV-based gene traps integrate 

in promoter proximal regions, which are less well annotated than gene bodies, which 

in turn are the preferential integration sites of LV and LV-based traps [36, 37]. 

Consistently, we mapped 6135 LV-TrapSil integrants to the genome, 4219 of which 
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were located within genes. In contrast, we only found 787 intragenic MLV-TrapSil 

integrants. 

 Prior to further analysis, we validated our experimental approach by deriving 

clones from each population. All of the 32 clones analyzed exhibited the expected 

silencing profile in flow cytometry measurements. Moreover, the clones comprised 10 

non-repressed (LI I-X) and 8 repressed (LR I-VIII) LV-TrapSil clones, in addition to 

8 non-repressed (MI I-VIII) and 6 repressed (MR I-VI) MLV-TrapSil clones, 

(Additional File 2). We also used ChIP analysis to verify that non-repressed genes 

properly recruited KAP1 and downstream effectors to their tTRKRAB docking site, in 

a doxycycline-dependent manner (Additional File 3). After this validation, we 

continued with the characterization of the genomic context of our KRAB/KAP1 

repressible or non-repressible genes to find patterns correlating with silencing 

efficiency. 

 

Genomic environment of repressing and non-repressing gene trap integrants 

 We characterized the genomic environment of the integrants segregated 

according to their phenotype by using ROC (Receiver Operator Characteristic) curve 

analysis [38]. This type of analysis was previously used to identify the genomic 

features enriched around retroviral integration sites. This study confirmed that both 

MLV and LV preferentially integrate within transcriptionally active regions, and that 

this effect is augmented when integrants enabling reporter expression are selected 

[38]. In addition, this analysis also revealed that the effects of different genomic 

features on integration can change depending on the size of genomic segments in 

question [38]. Therefore, we included genomic intervals ranging from 0.1kb to 10Mb 

in our analyses.  
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 In order to characterize the genomic features surrounding the integrants in our 

different TrapSil groups, we made use of the same approach. We first calculated the 

area under the ROC curve, which is a common measure of a predictor variable’s 

ability to discriminate between two classes of events. In our case we compared the 

average enrichment of a given feature at a set of genomic sites (such as integration 

sites in our case) relative to that of a set of random matched control sites. The read-

out of this comparison is illustrated in color-coded heatmaps, where each rectangle 

represents the specific enrichment of a feature within the indicated intervals of 

distance. The relative enrichment between the integration and control site group is 

scored on a scale from 0 to 1. 1 is scored when a specific feature is enriched in the 

experimental integrants when compared to matched controls, 0 is scored when the 

opposite is true. A value of 0.5 indicates no difference between the two groups. The 

patterns of the genomic features surrounding the TrapSil integrant groups largely 

reflected the preferential genomic environment associated with either LV or MLV 

integrations (for values see Additional File 4). It included a preference for both 

retroviruses for active genes, in addition to their differential targeting to gene bodies 

and promoters, respectively. This is reflected by an increased enrichment of CpG 

islands and DNase I sites at short intervals around MLV integrants when compared to 

LV integrants. This difference is lost when larger intervals are included in the ROC 

area calculation (Figure 2).   

 We then compared the ROC values, which are proportional to the levels of 

genomic features at these sites, between TrapSil groups harboring differential 

susceptibilities to KRAB/KAP1-silencing. We did this by making relative 

comparisons between a chosen reference and other gene groups. The reference gene 

groups are indicated by the symbol “---“ within the whole results section. Using this 
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approach we compared the levels of specific genomic features between the respective 

REP gene group and their corresponding NREP counterpart. When statistical 

differences were assessed, we found that LV-TrapSil repressing integrants were 

located within gene-denser genomic regions than non-repressible integrants (Figure 

2). Furthermore, the environment of repressing LV integrants was enriched in CpG 

and DNase I sites, as well as in highly expressed genes (based on publicly available 

microarray data), compared to that of non-repressing LV integrants. While all the 

described parameters were statistically significantly different between repressible and 

non-repressible LV traps, comparisons of their MLV-TrapSil counterparts did not 

reach significant differences, although it showed similar trends (Figure 2). Therefore, 

a positive correlation between gene activity in the environment of the targeted 

transcriptional unit and efficient KRAB/KAP1-mediated silencing is established. The 

lack of significance between the MLV repressible and non-repressible TrapSil groups 

could be due to smaller integrant numbers or could reflect the presence of other 

uncharacterized features affecting KRAB/KAP1 recruitment, including the on average 

closer proximity of MLV integrants to promoters. 

 

Genomic features of matched repressed and non-repressed transcriptional units 

 Repressing integrants were on average closer to the transcriptional start site of 

their targets, compared to non-repressible integrants (Figure 2). This finding is 

consistent with results from our previous analyses, which revealed that KRAB/KAP1-

induced repression was more likely if gene traps were located closer to trapped 

promoters [28]. Therefore, the described integrant-centered analysis may suffer from 

potential biases linked to this spatial factor. We thus repeated our analyses focusing 

on genes that had a minimal size of 20kb, a single known TSS, and were frequently 
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targeted by our trapping vectors, that is, hit at least three times in our series. We then 

classified these genes into three subgroups according to their susceptibility to 

KRAB/KAP1-induced silencing expressed as a function of the distance between 

KRAB-docking integrant and trapped promoter. This led to the identification of 70 

genes that supported long-range repression, that is, for which most integrants located 

within 20kb of the TSS were repressing (group 1); 77 genes supporting limited range 

repression, with silencing occurring mainly when integrants were located 10kb or less 

from the TSS (group 2); and 80 genes resistant to repression, where no significant 

silencing occurred irrespective of the distance between the TSS and the 

KRAB/KAP1-docking sites (group 3) (Figure 3A). Of note, there was no difference 

between the expression patterns of these genes in different tissues, indicating that 

these gene groups did not differ in being essential or not for cellular maintenance 

(data not shown).  

 The genomic context of the three gene groups was reminiscent of observations 

made in the integrant-centered analysis (Figure 2), with genes from group 1 being in 

gene-richer and transcriptionally more active environments, and surrounded by a 

higher density of DNase I hypersensitivity sites (Figure 3B). These associations, 

however, did not reach statistical significance. Importantly, no difference in distance 

between repressor binding site and the trapped promoter was apparent when 

comparing the three groups, eliminating concerns about this potential bias for 

subsequent analyses of these genes (Figure 3B). When we examined the expression 

levels of the different gene groups, we found that genes supporting long-range 

repression (group 1) were on average more highly expressed than genes that did not 

enable KRAB/KAP1-mediated repression (group 3) (Figure 3C). Therefore, 

KRAB/KAP1-mediated silencing seems to be more effective in regions of high gene 
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activity. To further consolidate this result, we assessed the levels of different 

chromatin features, correlating with transcriptional activation or repression in our 

different gene groups. 

 

Chromatin features of matched repressed and non-repressed transcriptional 

units 

 We first assessed the levels of putative barrier elements such as CTCF, 

H3.3/H2Az or chromatin modifiers in the different groups [39-41]. This was achieved 

by utilizing published datasets, which were used to calculate the relative abundance of 

these features by ROC curve analysis and by comparing these values between the 

groups. There was no differential association with either one of the three gene groups 

for the intervals tested (Additional File 5). 

 We then assessed the abundance of a series of histone modifications present at 

an interval of 1, 10 or 100kb or 1Mb around our promoters of interest. We first 

measured the levels of posttranslational histone modifications correlating with active 

gene expression, including histone H3 lysine 27 acetylation (H3K27ac), H2BK5 

monomethylation (H2BK5me1), H3K4 mono- and trimethylation (H3K4me1, me3), 

H3K36me3 and H4K20me1. For this we generated genome-wide histone modification 

maps using a ChIP coupled to deep sequencing (ChIPseq) approach in HeLa cells. 

Then we used ROC curve-based heatmaps to obtain relative enrichment values for the 

three groups. When the long-range repressing group 1 was compared to the non-

repressing group 3 most of the active histone modifications were enriched in group 1 

(Figure 4). This was the case for smaller (10kb) and larger intervals (100kb, 1Mb), 

consistent with the idea that KRAB/KAP1-repressible genes reside in regions of very 

active chromatin both on a local and a more global scale (Figure 4A).  
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 We then measured the levels of histone modifications normally present at silent 

genes, such as H3K9me2/me3, H3K27me3 and H4K20me3. For this we generated 

histone modification maps by ChIPseq in HeLa cells or relied on a published dataset 

for the distribution of H3K27me3 in this cell line [39]. Furthermore, group 1 genes 

were comparatively less depleted in H3K9me3 at the TSS and enriched in H4K20me3 

at the promoter and within a 10kb distance from the TSS, compared with genes from 

groups 2 and 3 (Figure 5). Therefore, promoters sensitive to KRAB/KAP1-mediated 

repression harbor increased levels of some silent histone marks, which are embedded 

within a domain of very high gene activity.  

 

DISCUSSION 

 Previous analyses on the mechanisms of KRAB/KAP1-mediated gene 

regulation have mostly examined the impact of this system on the expression of 

transfected promoter-reporter units. Here, we investigated KRAB/KAP1-induced 

changes within the context of endogenous genes. Using a combination of promoter 

trapping and drug-controllable KRAB/KAP1 recruitment, we previously observed 

that this complex, when docked to the bodies of transcriptionally active genes, could 

induce silencing over distances of several tens of kilobases [28]. However, we had 

also noted that repression was more efficient if the distance between the effector and 

the promoter was less than 20kb. Furthermore, a significant fraction of trapped 

promoters/KRAB docking loci escaped these rules, suggesting other counteracting 

influences. The present large-scale comparison of the genomic features of 

KRAB/KAP1-responsive and KRAB/KAP1-resistant transcriptional units identified 

by our gene trap system reveals a positive correlation between efficient 

KRAB/KAP1-mediated repression of trapped promoters and i) a gene-richer and 
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transcriptionally more active genomic context, ii) a more euchromatic environment, 

and iii) the pre-existence of some repressive marks at and around the promoter.  

 Comparing KRAB/KAP1-repressed and non-repressed genes gave no indication 

for a role of putative obstacles to the spread of heterochromatin, such as CTCF 

binding, accumulation of H3.3/H2Az or recruitment of HATs (reviewed in [42, 43]). 

This is consistent with the observation that CTCF recruitment to the HS4 region of the 

chicken β-globin locus can be prevented without abrogating the barrier function of 

this DNA sequence [44]. However, it is at odds with a recent study presenting CTCF 

as a marker of transition between euchromatic and heterochromatic regions [39]. A 

model reconciling these findings would be that CTCF acts as an H3K27me3 

heterochromatin-specific barrier yet has no effect on H3K9me3-based 

heterochromatin propagation. However, it should be emphasized that our analysis was 

limited to the transcribed region of genes owing to our gene trap-based approach, 

precluding overly general conclusions on the possible role of barrier elements. 

 Although both repressed and non-repressed genes were situated within 

euchromatic regions, as expected from the promoter-trapping approach used for their 

selection, we observed significant differences in both their local and broader 

chromatin environments. Repressed genes were in regions containing generally higher 

levels of major euchromatin-associated marks and higher levels of transcription 

compared with non-repressed genes. Therefore, there is a positive correlation between 

efficient KRAB/KAP1-silencing and high gene activity. This is suggestive of a model 

whereby genes situated in more heterochromatic environments can only be highly 

expressed if endowed with an intrinsic ability to resist repressive influences, while 

genes located in more euchromatic environments do not need such protective 

mechanisms [45]. Consistently, in our analysis KRAB/KAP1-resistant units were on 
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average closer to telomeres than their KRAB/KAP1-susceptible counterparts, 

although this difference did not reach statistical significance (data not shown).  

 Genes repressed by the TrapSil system also carried higher levels of the 

repressive marks H4K20me3 and H9K9me3 at baseline at and around their promoters, 

compared with their repression-resistant counterparts. Noteworthy, these contrasting 

chromatin configurations were not only observed when comparing a selected set of 

multiply hit repressed and non-repressed genes (Figure 5), but were also present in the 

complete pools of repressing and non-repressing integrants (Additional File 6). 

Interestingly, a recent analysis of the chromatin structure of zinc finger genes found 

that high levels of both H3K36me3 and H3K9me3 co-localized at the 3’ exons of 

these genes [46]. Since KRAB-ZFP genes, which belong to this gene family, are 

endogenous targets of KRAB/KAP1-repression [25, 47], we performed the same 

analysis in our HeLa cell system and reproduced the same result (Additional Files 7 

and 8). Therefore, the high levels of both H3K9me3 and H3K36me3 at KRAB-ZFP 

gene bodies may be necessary for efficient KRAB/KAP1-induced heterochromatin 

spreading. The finding that the repressive H3K9me3 and the activating H3K36me3 

marks are not co-regulated further supports this hypothesis [46], since high levels of 

H3K36me3, which positively correlate with active transcription, may independently 

enhance the spread of H3K9me3 at KRAB-ZFP genes. This model is reminiscent of 

results obtained from the TrapSil analysis, where high levels of both active and 

repressive histone marks can be seen in genes that accommodate KRAB/KAP1-

mediated heterochromatin spreading and silencing.  

 A difference between genes targeted by our TrapSil system and endogenous 

KRAB-ZFP genes lays in the finding that the latter do not seem susceptible to 

KRAB/KAP1-mediated long-range repression [28, 46, 47]. This may be due to the 
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use of our ectopic repressor system. Alternatively, certain endogenous promoters may 

be resistant to KRAB/KAP1-induced heterochromatin spreading. A possible factor in 

this process is the H3K9me1/2 demethylase PHF8 [48]. Active H3K9 demethylation 

may prevent the heterochromatization of KRAB-ZFP promoters and subsequent 

transcriptional silencing. This idea is consistent with recent PHF8 genome-wide 

binding data that showed it locating to the promoter regions of zinc finger-encoding 

genes. [49].  

Other mechanisms potentially involved in conferring resistance to 

KRAB/KAP1-mediated silencing are suggested by the analysis of genes that were 

hotspots of proviral TrapSil targeting and carried both repressible and non-repressible 

integrants (Additional File 9). In this subgroup, the repressible integrants generally 

clustered closer to the promoter than their non-repressible counterparts, consistent 

with the overall observation that silencing is most efficient when KRAB/KAP1 is 

recruited in the proximity of the affected promoter. In some cases, however, the 

distributions of repressible and non-repressible integrants overlapped within the same 

gene. This could reflect the differential susceptibilities of the two alleles of a gene to 

KRAB/KAP1-mediated repression, somewhat reminiscent of what is observed with 

imprinting, a process that involves a KRAB-ZFP [9, 50]. Additionally, cells within a 

population may be heterogeneous for the chromatin status of specific loci, which in 

turn might impact on the consequences of KRAB/KAP1 recruitment. Such a 

phenomenon would be comparable to variegation, where particular genes are 

differentially expressed amongst cells of an otherwise apparently homogeneous 

population [51].  
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CONCLUSIONS 

 In summary, the present work indicates that the impact of KRAB-mediated 

docking of KAP1 on the expression of targeted genes is more variable than previously 

suspected. It further reveals reciprocal influences between the functional outcome of 

KRAB/KAP1 recruitment to DNA and the chromatin features of the involved loci. 

More broadly, the approach described in the present study, which combined an 

analysis of the functional consequences of exogenously introduced cis-acting 

KRAB/KAP1-recruiting sequences with an examination of the transcriptional activity, 

genomic context and chromatin features of targeted loci, could be fruitfully applied to 

the study other epigenetic regulators. 

 

METHODS 

Vectors. pLV-tTR-KRAB-Red was previously described [52]. pLtTR-KRAB-NG95 

was cloned through ligation of a BamHI/XhoI digested MLV-based pNG95 [53] with 

a compatible tTR-KRAB amplicon with BamHI/XhoI sites added by PCR (primer 

sequences see Additional File 10). To construct LV- and MLV-based TrapSil vectors, 

published gene trap vectors [37] were modified by PCR-based mutagenesis 

(Stratagene mutagenesis kit). A BlpI restriction site was introduced into the MLV U3 

region of 3’LTRs (MLV: BlpI Primers MLV Trap F/R - Additional File 10), whereas 

a SpeI site was introduced in the LV U3 region of 3’LTR (Primers HIV Trap F/R - 

Additional File 10), these new sites were then used to insert 7 repeats of TetO. LV- 

and MLV-based particles were produced and titered as described elsewhere 

(http://tcf.epfl.ch/page-6764-en.html). The WPRE of LV-TRAPSIL, the GAG 

remnant of MLV-TRAPSIL, and the Albumin gene served for proviral and cellular 

genome quantification by Taqman. 
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Cell culture and Fluorescence activated cell sorting (FACS). HeLa cells were 

grown under standard conditions. Doxycycline (Sigma-Aldrich) was used at a 

concentration of 1µg/mL. Clonal tTRKRAB-expressing HeLa cell lines dsRK4 (pLV-

tTR-KRAB-Red, LV-backbone) and KiN1.25 (pLTetR-KRAB-NG95, MLV-

backbone) were derived after infection with pLV-tTR-KRAB-Red or pTetR-KRAB-

NG95, respectively. The LV based HeLa dsRK4 clone contains approx. 15 vector 

copies as titrated by Taqman and was used for MLV-TRAPSIL assays while the 

MLV-based KiN1.25 clone contains 10 vector copies and was used for all LV-

TRAPSIL assays. In view of this mapping strategy, 2x10
8
 dsRK4 or KiN1.25 HeLa 

cells were infected with 1.6x10
6
 MLV-TrapSil or LV-TrapSil infectious particles, 

respectively, with a multiplicity of infection of 0.04. Cells were sorted based for GFP 

expression by using the Beckton Dickinson FACSVantage SE turbo Sorter with Diva 

Option. Flow Cytometry analyses were performed on BD FACScan flow cytometer. 

Quantitative PCR (qPCR). qPCR reactions were carried out with a standard PCR 

program in ABI PRISM 7900HT in duplicates or triplicate using either SYBR green 

detection 1x Power Sybr or 1x Taqman Universal Mix, No AmpErase (Applied 

Biosystems). Primers were used at a final concentration of 100nM. When SYBR 

analysis was performed, cycling reactions were followed by a dissociation curve 

analysis to validate specificity of amplified products. The increase in fluorescence 

was analyzed with the SDS software, version 2.2.2 (Applied Biosystems). For all 

amplification plots the baseline data were set with the automatic cycle threshold 

function. Primer sequences for all qPCR reactions are listed in Additional File 10. 

Linker-mediated PCR (LM-PCR), 454 pyrosequencing and data processing. LM-

PCR was used to map integration sites following a previously described protocol [31, 

33, 34]. Briefly, 10µg of genomic DNA (DNeasy, Qiagen) was digested with MseI. 
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Fragments were ligated to a linker and were digested with DpnI and SacI (LV-

TrapSil) or SpeI (MLV-TrapSil) to avoid contaminations with bacterial plasmids and 

to avoid cloning of internal vector fragments. Nested PCR then served to amplify 

TrapSil vector-gDNA junctions (Takara Advantage 2 kit). Amplicons ranging 

between 100 and 400bp were purified, quantified and sent for pyrosequencing at 

GATC biotech (Konstanz, Germany). Raw sequences were downloaded from the 

GATC biotech website and converted to FASTA files. Sequences having exact 

pyrosequencing reaction primers (F: primer A; R: primer B,  Additional File 10) were 

selected and others discarded. Selected sequences were then categorized according to 

barcode for TrapSil vector type and integrant type (barcodes: LI: TGAC/AGTC; LR: 

CTGA; MI: TCGA/AGCT; MR: GTAC). After classification, all primer sequences 

and viral vector overhangs were trimmed yielding only genomic DNA sequence. The 

20 bases adjacent to primer B before trimming were used as tags for mapping the 

inserts to the human genome assembly hg18. The mapping was done using FetchGWI 

tolerating at most 2 mismatches [35]. 

Integration site mapping in genes: Integrant orientation was annotated as determined 

during sequence processing. UCSC known gene [54] were downloaded from UCSC 

tables with transcript start (Tsx), transcript end (Tsend) and gene orientation. Only 

integrants mapping with correct orientation within a gene were mapped relative to it. 

In a second step, a non-redundant gene list was generated (from the original UCSC 

Gene list) using an aggressive clustering strategy, which groups all transcripts that 

directly or indirectly (through other transcripts) overlap on the same strand of the 

same chromosome. In the non-redundant gene list we recorded the 5’most Tsx 

position and the 3’most Tsend position for each cluster. For analysis of the integrant 

distance to gene promoters, we considered only integrants falling within the 
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transcribed region of the same gene. Files containing integration sites (sequence-

mapping from Insipid, LV_LUI (LV irrepressible), LV_LUR (LV repressible), 

MLV_MUI (MLV irrepressible), MLV_MUR (MLV_repressible)) and gene groups 

(20KB promoter classes with at least 3 integration sites: group 1: “long-range 

repressible), group 2: “short-range repressible”, group 3: “long-range irrepressible”) 

can be found under http://ccg.vital-it.ch/KAP1/  

Receiver Operator Characteristic (ROC) curve analysis. Data analysis was based 

on a “nested case control” strategy using a collection of TSS characterized by a given 

behavior with respect to repression along with control sites sampled from the genome 

to make inferences about the probability of a TSS to display a given response to 

repression based on genomic/epigenetic features characterizing its environment. More 

detailed description of statistical basis for this analysis can be found in [38]. Data 

were analyzed using the R language and environment for statistical 

computing/graphics version 2.3.0 and several contributed packages. Empirical ROC 

curve areas were calculated for datasets that used random genomic controls, in which 

case each TSS of a cluster was compared only with its matched controls to determine 

the proportions of controls whose values equaled or exceeded that of TSS [55]. 

Annotations of genomic features were obtained as described previously [38]; the 

chromatin features analyzed came from ChIP-seq data generated in this and other 

studies [39-41]. 

Chromatin immunoprecipitation (ChIP) and ChIP followed by sequencing 

(ChIP-Seq). ChIP reactions were performed according to published protocols with 

minor modifications (www.millipore.cosm/userguides/tech1/mcproto407 and 

http://cshprotocols.cshlp.org/cgi/content/full/2009/6/pdb.prot5237), using antibodies 

listed in Additional File 11, either native or pre-bound to beads. For Histone 
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modifications, 2x10
7
 HeLa cells were trypsinized and resuspended in MNase buffer. 

1U MNase (Roche) was added for 10 min and adding EDTA to a final of 10mM 

arrested the nuclease reaction. Chromatin was sonicated with a Branson digital 

sonicator (model 250) on ice three times for 20s and then dialyzed against RIPA with 

AEBSF protease inhibitor 0.2mM for 1h. The chromatin was pelleted after dialysis; 

glycerol was added to the supernatant to a final 5% concentration and the chromatin 

was stored at -80°C. 500ul was incubated with AB-specific pre-coated beads over 

night (IP). Complexes were washed, eluted, purified, precipitated and resuspended in 

50ul H2O. For KAP1 ChIPs, approximately 2x10
7 

cells were cross-linked with 1% 

formaldehyde for 8 min at RT, quenched by adding glycine and rinsed with PBS, 

before shearing by sonication with a Branson digital sonicator (model 250) on ice four 

times for 20s at 30% intensity. 100µl of sonicated chromatin was directly de-

crosslinked and used as the total input (TI) reference in qPCR analysis at a dilution of 

1:100. 100µl of sonicated chromatin was used for each ChIP reaction and was diluted 

in 900µl dilution buffer and precleared with 80µl salmon-sperm DNA protein A 

agarose beads (Upstate). Chromatin-antibody complexes were captured washed and 

eluted with 100mM NaHCO3, 1% SDS. Cross-links between DNA and proteins were 

reversed by addition of NaCl and incubation at 65°C. DNA was precipitated after 

incubation with RNase A (Sigma) and Proteinase K (Roche) and resuspended in 50µl 

H2O and subjected to qPCR analysis. qPCR is described above and primers are listed 

in Additional File 10. Negative control reactions without antibody were run for each 

sample and in all cases gave negligible results. To validate the relative enrichment of 

proteins or specific histone modifications at a given sequence a ratio between the 

relative quantities of IP and TI was established. 

The sequencing libraries from all ChIP products were prepared using the ChIP-seq 
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Sample Preparation Kit (Illumina; San Diego, California, USA; Cat. No. IP-102-

1001) according to the protocol supplied with the reagents and using 10ng of ChIP 

sample quantified using the Qubit fluorometer (Invitrogen; Carlsbad, California, 

USA). One lane of each library was sequenced on the Illumina Genome Analyzer IIx 

using the Single-Read Cluster Generation Kit v2 (Cat. No. FC-103-2001) and 36 

Cycle Sequencing Kits v3 and v4 (Cat. Nos. FC-104-3002 and FC-104-4002). Data 

were processed using the Illumina Pipeline Software v1.5.1. Illumina GAII data were 

mapped to the genome with Bowtie (http://bowtie-bio.sourceforge.net/index.shtml). 

All output files were converted to processable file formats (SGA) for subsequent 

bioinformatics analysis described below. Enrichment of genomic and chromatin 

features was assessed with the ChIPcor web-based tool (http://ccg.vital-

it.ch/chipseq/chip_cor.html). All files were converted into SGA format, settings 

included: sort input: on, strand option: oriented for references files (gene clusters TSS 

and poly-A sites) and any for all target features, range was set at -40kb to +40 kb, 

window size was at 500/50 (for graphic or statistical analysis) and cut-off value was 

1. Raw and processed sga files can also be found under http://ccg.vital-it.ch/KAP1/ 

and were used as follows: “SGA files for Zhao-produced CTCF and H3K27me3 

genome wide” include HeLa-CTCF.sga.gz, HeLa-H3K27me3.sga.gz data; “H3.3-

H2A.Z double ChIP (Zhao et al)” contain GSM335958.sga.gz files; “SGA files from 

genome-wide mapping of HATs and HDACs in human CD4+ T cells” [41]: contain 

CD4-Tip60.sga.gz; “SGA files for histone modification profiles (ChIP-Seq data)”: 

contains H3K27ac: H3K27acpf.sga,  H2BK5me1: H2BK5me1pf.sga, H3K4me1: 

H3K4me1pf.sga, H3K4me3: H3K4me3p.sga, H3K36me3: H3K36me3b.sga, 

H4K20me1: H4K20me1b.sga, H3K9me2: H3K9me2p.sga, H3K9me3: 

H3K9me3pf.sga, H4K20me3: H4K20me3b.sga.  
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Microarray data. HU133a arrays for HeLa cells were downloaded from GEO/NCBI 

[56, 57] and data were extracted and normalized using RNA Robust Multichip 

Average (Quantile normalization) [58]. Specific gene expression scores were 

extracted and normalized average values for 4 different arrays were calculated. 

Statistical comparisons were done with the non-parametric Wilcoxon test. 
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FIGURE LEGENDS 

Figure 1: Isolation of thousands of KRAB/KAP1 recruitment sites in genes with 

variable silencing phenotypes 

(A) Experimental setup used to target tTRKRAB to endogenous genes through the 

retroviral vector-based promoter trapping/silencing (TrapSil) system. TetO-containing 

gene traps, which carry the promoterless GFP-puro
R
 fusion reporter, are only 

expressed if they trap an actively transcribed gene. In the absence of doxycycline 

(Dox-), binding of the ectopic tTRKRAB repressor to TetO mediates silencing by 

recruiting KAP1 and associated heterochromatin-inducing factors. (B) Method used 

for isolating TrapSil HeLa cell subpopulations based on the effect of tTRKRAB 

binding on trapped gene expression. Repressible (REP) clones exhibit silencing of the 

reporter gene upon tTRKRAB binding, whereas reporter transcription of non-

repressible clones (NREP) remains unaltered in this condition. (C) This table shows 

the outcome of the proviral integrant mapping and their distribution relative to genes. 

Mapping to the genome was performed with FetchGWI. The determination of 

intragenic integration sites was based on UCSC known genes. LVtotal and MLVtotal 

encompass all LV- and MLV -integrants. In addition, LV- and MLV- REP and NREP 

describe the repressible and non-repressible subsets of each vector type.   

 

Figure 2. Characterization of the genomic environment of KRAB/KAP1-docking 

integrants 

LV and MLV TrapSil integrants were split in repressing (REP) and non-repressing 

(NREP) groups according to the effect of KRAB/KAP1 recruitment on the trapped 

promoters. The genomic environment of the different proviral integrant groups was 

analyzed for the indicated genomic features by ROC curve analysis. This method 
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serves to calculate the relative abundance of a given genomic feature around the 

integrants of a group for specific intervals. The resulting values are depicted in color-

coded heat maps. 1 indicates that the specific feature is enriched in integrants, 0 

means that it is depleted. Relative abundance scores of repressing and non-repressing 

integrants were compared for each trapping vector subtype and the statistical method 

used included the non-central chi-square test (** p<0.01; *** p<0.001). The different 

genomic feature categories tested were: “gene density”, with all of the Refseq 

annotated genes; the “highly expressed genes” and “expressed genes” group, 

including genes expressed in the top 1/16
th

, or the top 1/2 of all genes measured in a 

transcriptional profiling analysis; “start/end”, including the distance to the nearest 

transcriptional start (TSS) or stop site; “gene start”, including the distance to the 

nearest TSS; “gene size” was the average size of the targeted genes and was only 

analyzed for intragenic integrants; “GC content”, included the density of GC 

nucleotides, which are more abundant in gene-rich regions; “CpG density”, contained 

the frequency of CpG dinucleotides, mostly present at promoters; “DNAse HS sites”, 

included the number of DNAse I hypersensitive sites, frequently associated with gene 

regulatory regions.  

 

Figure 3. Generation and characterization of matched gene groups displaying 

differential KRAB/KAP1 silencing phenotypes 

(A) Matched gene groups with differential KRAB/KAP1-silencing phenotypes. The 

cumulative histograms illustrate the distribution of repressible (blue) and non-

repressible (red) LV-TrapSil and MLV-TrapSil integrants in the transcribed region of 

genes trapped multiple times. Three groups were distinguished based on the pattern of 

repressible and non-repressible integrants over 20kb. Group 1 genes harbored mainly 
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repressing integrants (“long-range repression”), while group 3 contained mostly non-

repressible integrants (“absence of repression”). Group 2 genes exhibited an 

intermediate phenotype, with repressing integrants clustered over the first 10kb of 

their transcribed region (“limited repression”). 

(B) The three gene groups (group 1: “long-range repression”, group 2: “limited 

repression” and group 3: “absence of repression”) were analyzed by ROC curves as 

described in Figure 2 for genomic features over various DNA stretches.  

(C) Comparison of mean expression levels of the three gene groups based on publicly 

available microarray data. Group 1: “long-range repression”, group 2: “limited 

repression” and group 3: “absence of repression”. Statistical comparisons were made 

with a non-parametric Wilcoxon test. P-Value Legend: ** p<0.01. 

 

Figure 4: Characterization of the chromatin environments of the matched gene 

groups with respect to active histone marks 

(A) The levels of specific posttranslational histone modifications around the 

promoters of the different gene groups were calculated over different DNA intervals 

ranging from 1kb to 1Mb. The gene groups included group 1: “long-range 

repression”, group 2: “limited repression” and group 3: “absence of repression” and 

ROC curve analyses was employed. Briefly, the illustrated heat maps, contain squares 

giving the relative abundance of the studied histone mark. 1 is scored when the 

modification is enriched in the gene group when compared to a control group, while 0 

indicates depletion of the mark. 0.5 is scored when there is no difference. Non-central 

chi-square statistical analysis compared differences between the repressible group 1 

and the non-repressible group 3. P-Value Legend: * p<0.05; ** p<0.01. The histone 

modifications in the analysis included H3K27ac, H2BK5me1, H3K4me1, H3K4me3, 
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H3K36me3, H4K20me1, which are mostly found within active chromatin.  

(B) Relevant histograms representing the relative H3K4me3 and H3K36me3 values 

over 100kb and 1Mb, which reached statistically relevant differences when all three 

gene groups were compared.  

 

Figure 5: Characterization of the chromatin environments of the matched gene 

groups with respect to silent histone marks 

(A) The levels of histone marks associated with silent chromatin were analyzed at 

specific intervals around the promoters of the three gene groups (group 1: “long-range 

repression”, group 2: “limited repression” and group 3: “absence of repression”). The 

calculations were based on ROC curve analysis as described in Figure 4. Non-central 

chi-square statistical analysis compared differences between group 1 and group 2, and 

group 1 and group 3. The p-Value Legend is * p<0.05; ** p<0.01. The histone 

modifications in the analysis included H3K9me2, H3K9me3, H3K27me3 and 

H4K20me3, mainly associated with silent chromatin. 

(B) Relevant histograms representing relative H3K9me3 and H4K20me3 values over 

1kb and 10kb, which reached statistically relevant differences when the three groups 

were compared.  

 

DESCRIPTION OF ADDITIONAL DATA  

Additional File 1: List of mapped integrants and integrant gene groups 

 

Additional File 2: KRAB/KAP1 repression profiles from clones isolated from 

repressible and non-repressible TrapSil populations 

Reporter gene activity in the presence and absence of doxycycline (Dox) was 
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monitored in clones derived from repressible and non-repressible TrapSil populations.  

 

Additional File 3: KAP1 and H3K9me3 are present at non-repressible clones in 

the presence of repressor binding 

Chromatin-immunoprecipitation (ChIP) in combination with qPCR was used to verify 

proper KAP1 recruitment to gene traps in the absence of doxycycline in non-

repressible clones. In addition, levels of H3K9me3 monitored the enzymatic activity 

of the KRAB/KAP1 silencing complex. The relative enrichment was calculated as a 

percentage of the total input (% of total input). 

 

Additional File 4: Values from Receiver Operator Characteristic  (ROC) curve 

analysis 

 

Additional File 5: Heterochromatin barrier elements in the environment of the 

matched gene groups 

The relative level of barrier elements was assayed in the three gene groups (group 1: 

“long-range repression”, group 2: “limited repression” and group 3: “absence of 

repression”). Calculations were based on ROC curves as described in Figure 3 and 

included various DNA stretches around the promoters of the different gene groups. 

Non-central chi square statistical analysis indicated no differences between the 

groups. The features considered in the analysis were (A) Histone variants associated 

with active remodeling (H3.3, H2Az), (B) CTCF or (C) chromatin modifiers, such as 

the histone acetyltransferases p300, TIP60, PCAF and MOF, in addition to the histone 

deacetylases HDAC1, 2, 3, and 6. The genome-wide binding data for these factors 

came from published work in HeLa cells (H3.3, H2Az, p300) or CD4 cells (TIP60, 



 34    

PCAF, MOF, HDAC1, 2, 3 and 6).  

 

Additional File 6: Characterization of the chromatin environment of all 

KRAB/KAP1-docking integrants 

LV and MLV TrapSil integrants were split in repressing (REP) and non-repressing 

(NREP) groups according to the effect of KRAB/KAP1 recruitment on the trapped 

promoters. The chromatin environment of the different proviral integrant groups was 

analyzed for the indicated features by ROC curve analysis. (A) The histone 

modifications in the analysis included H3K27ac, H2BK5me1, H3K4me1, H3K4me3, 

H3K36me3, H4K20me1, which are mostly found within active chromatin. (B) The 

histone modifications in this analysis included H3K9me2, H3K9me3, H3K27me3 and 

H4K20me3, mainly associated with silent chromatin. Non-central chi-square 

statistical analysis compared differences between the integrant groups with the 

differential silencing phenotypes. P-Value Legend: * p<0.05; ** p<0.01; *** 

p<0.001. 

 

Additional File 7: Characterization of the chromatin state of KRAB-ZFP genes 

Illustration of H3K9me3 and H3K36me3 enrichments at KRAB-ZFP gene bodies in 

HeLa cells. KRAB-ZFP gene lengths were equalized by division into 40 bins and 

included a 2kb flanking region on both sides of the genes. See Additional File 8 for 

the list of KRAB-ZFP genes, which were included in the analysis. 

 

Additional File 8: List of known and putative KRAB-ZFP genes included in the 

analysis 
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Additional File 9: Genes with multiple TrapSil integrants of different silencing 

phenotypes 

Graphic representation of 6 genes, where multiple TrapSil integrations of different 

phenotypes have occurred: calnexin precursor (CANX), heterogeneous nuclear 

ribonucleoprotein A2/B1 (HNRNPA2B1), karyopherin beta 1 (KPNB1), 

nucleophosmin 1 (NPM1), Y-box binding protein 1 (YBX1), laminin alpha 5 

(LAMA5). The integrants with a repressible phenotype are depicted as black lines 

above the baseline (y=0), whereas the non-repressible counterparts are depicted as 

light grey lines below the baseline. Some intragenic sites carried multiple but distinct 

proviral integrants and subsequently harboured more than 1 integrant count (see y-

axis). 

 

Additional File 10: List of primers used in this study 

 

Additional File 11: List of antibodies used in this study 
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