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Abstract—In this report, we present our work done in spring
2011 on the UK crimes dataset. This dataset was first released
in December 2010, and contains reports of crimes committed
in England and Wales, with their type and location. We first
perform some exploratory analysis on this data, by looking at the
correlation of crime rates with some independent variables, such
as the population density or the unemployment rate, as well as
the relationship between different types of crimes. We also study
the spatial autocorrelation of the crime rates. Then, we define a
classification problem in which we are interested in identifying
probable criminals from mobility traces and aggregated crimes
reports. We first introduce a basic algorithm to try and solve this
problem, and then reformulate our model to fit a probabilistic
group testing setup.

I. INTRODUCTION

As part of its Open Government initiative, the United
Kingdom started releasing in December 2010 detailed crime
records as a freely available dataset. Several applications and
websites have emerged from this, allowing people to compare
neighborhoods in terms of crime rates, find the safest place
to move in a new town, or know which intersections to avoid
when traveling in a foreign city. Information extracted from
this kind of dataset is also of high interest for both city
administrations and politics, as it could for example allow to
organize more efficiently police forces [3].

Crime data mining is by far not a new idea. Many studies
have been published on the subject, either exploring spatial
correlations [12], relationship with other covariates [2], or both
[7]. Various areas such as US cities, Belgian countryside or
the Swedish capital have been studied, but the completeness of
the UK dataset allows for the first time to perform a detailed
crime data analysis at the scale of a whole country.

In section II, we first describe the structure of the dataset,
and the specific fields we used in our analysis.

We study in section III the relationship between district
crime counts and different covariates, such as unemployment
rate or population density.

Interactions between crimes of different types are described
in section IV.

In section V, we try to fit a probability distribution to the
monthly crime rates of districts, and assess the goodness-of-fit
of the resulting distribution.

Then, we explore spatial distribution and autocorrelation of
crimes in the different UK districts in section VI.

We describe an interesting classification problem in section
VII, in which we are interested in finding probable criminals in
a set of people, using their mobility traces and crime counts in

TABLE I
TOTAL NUMBER OF CRIMES REPORTED IN THE UK, PER TYPE, FROM DEC
2010 TO APR 2011.
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Other 144542 169056 170766 190800 184725
Vehicle 29283 34673 33424 35002 33305
Violent 57207 59302 56224 61844 63596
Burglary 37825 44328 41789 43739 40005
Robbery 5679 6592 6399 6495 6225
Anti-social | 201520 202536 207600 241942 277341
Total 476056 516487 516202 579822 605197

different areas. Two approaches are proposed to solve it, a very
simple one (that obtains limited results), and a formulation as
a probabilistic group testing setup.

Finally, we conclude this report in section VIII and discuss
future work to be done on this dataset.

II. DATASET

Since December 2010, the UK government releases monthly
a dataset containing all crimes that were reported during the
previous month. This data is freely available on their website',
and contains several pieces of information about each crime,
among which a type and a location. Six different types of
crimes are reported: violent crimes, vehicle crimes, robberies,
burglaries, anti-social behaviors and other crimes. The location
of a crime is given as the street on or near which it was com-
mitted?. Moreover, spatial coordinates (corresponding usually
to an arbitrary point along the street) are given, allowing to
easily plot crimes on a map, and to compute distances between
them.

Table I shows the total number of crimes reported in the UK
for each month and each type of crime. While these numbers
may seem high, one should note that anti-social behaviors
and other crimes account for the majority of reports, and
these represent mostly benign crimes, such as hoax calls and
shoplifting. Figure 1 shows a boxplot of the proportion of
crimes of each type reported monthly in the UK, from Dec
2010 to Apr 2011.

We see that while the number of crimes fluctuates slightly
(even when taking into account the number of days per month),
the proportion of crimes of each type is fairly stable.

Uhttp://www.police.uk/data
2This introduces some uncertainty, in order to protect the victim’s privacy.
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Fig. 1. Boxplot of the proportion of crimes of each type reported each month
in the UK, between Dec 2010 and Apr 2011.

A. District counts

While the fine spatial resolution of the data is useful for
studying spatial distribution, other covariates are usually not
available at such a precise level. Indeed, information like
the mean yearly income or the unemployment rate is rather
published for bigger entities, for instance cities, districts or
counties. Thus, we had to resample our data in order to
generate a dataset at a coarser level, by counting the number of
crimes of each type using some tessellation of the UK territory.

In order to have the finest resolution as possible, we decided
to use administrative districts as spatial units. These are the
smallest regions for which most statistics are available. There
are 380 of them in the UK. We used the official districts
boundaries® to assign each crime to a district, given its spatial
coordinates.

B. Crime counts versus crime rate

Up to this point, we only considered crime counts as our
variable of interest. However, a better statistic to use is the
crime rate, that is the number of crimes per habitant (or per
thousands of habitants). Indeed, using the number of crimes
directly to compare districts is not a good idea, as districts
more populated are more likely to have a higher number of
crimes that districts with a smaller population. Thus, we will
exclusively use crime rates instead of raw crime counts when
comparing districts.

Let us define the crime rate for crime type ¢ in a district d
during month m as:

where X; 4., is the number of crimes of type t reported
in district d during month m, and Ny is the latest estimated
population of district d. In other words, C} 4., is the average
number of crimes of type ¢ per habitant of district d during
month m.

We can then define the mean crime rate of district d for
type t as:

3Available at  http://www.ordnancesurvey.co.uk/oswebsite/products/os-
vectormap-district/index.html
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Fig. 2. Mean total crime rates for each district, defined for one district as the
total number of crimes reported in this district during the whole time period,
divided by the district population times the number of months.

TABLE II
SUMMARY OF THE DISTRICTS’ STATISTICS USED AS INDEPENDENT
VARIABLES.
Min. Median  Mean Max.
Mean yearly income (£) 20850 29740 31970 92230
Unemployment rate (%) 2 7.1 7.23 15.4
Proportion of white (%) 50.5 98.38 9526  99.74
Proportion aged 16-24 (%) 6.2 13.9 14.09 244
Population density (hab/km?) | 8.016 507.3 1381 13720

| M
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where M is the number of months of data available.
To illustrate this, figure 2 shows the mean total crime rate
Cy= Zle C} 4 for each districts d.

III. COVARIATES

Once we obtained the crime rates of different types for
each UK district, we were able to study their correlation
with other covariates. More precisely, we chose the following
independent variables: mean yearly income, unemployment
rate, proportion of white ethnicity, proportion of population
aged 16-24 and population density (as an indicator of rurality).
All these covariates were taken from the latest data available
on the UK official labour market statistics website*. Table II
shows a summary of these covariates.

Following [9], we defined the log crime rate:

Ry q =10g(Ct,q 1000 + 1)

“https://www.nomisweb.co.uk/
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TABLE III
PEARSON’S CORRELATION AND CORRESPONDING P-VALUES OF
Ry 4 = log(Cy,q * 1000 4 1) WITH DIFFERENT COVARIATES, WHERE C} g
IS THE MEAN NUMBER OF CRIMES OF TYPE t PER HABITANT OF DISTRICT
d. BOLD VALUES MEAN A CORRELATION HIGHER THAN 0.3, AND RED
P-VALUES INDICATE INSIGNIFICANT RESULTS (p > 0.05).
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Other | 0.11/0.05 0.1170.04 -02070.00 0.1670.00 0.2970.00
Vehicle | 0.18/0.00 0.22/0.00 -0.38/0.00 0.17/0.00 0.40 /0.00
Violent | 0.05/0.36 0.17/0.00 -0.27/0.00 0.16/0.00 0.34 /0.00
Burglary | 0.10/0.07 0.16/0.00 -0.26/0.00 0.16/0.00 0.28 /0.00
Robbery | 0.33/0.00 0.39/0.00 -0.71/0.00 0.22/0.00 0.73/0.00
Anti-social | -0.07 /022 0.13/0.02 -0.11/0.05 0.14/0.01 0.18/0.00

and studied its correlation with the different covariates
described above. To do so, we used Pearson’s correlation,
defined as:

oxoy

For n samples of paired data (X;,Y;), it can be written as:
r = Z?:1(Xi_)_()(yi_)7)
VI (X - X2 [T, (% - T2

where X is the sample mean of X.

Table III shows the resulting correlations, with the corre-
sponding p-values. We see that the number of robberies cor-
relates with most of the covariates, and that urban areas have
higher rates of vehicle crimes, violent crimes and robberies.

We should also note the high negative correlation of the pro-
portion of white ethnicity in the population with robberies and
vehicle crimes. However, we will not venture an explanation
about this result.

IV. RELATIONSHIP BETWEEN CRIME TYPES

We also investigated the relationship between different types
of crime, to verify if most of the crimes happen together,
regardless of their type, or if some types occur more than
others in some districts. Figure 3 shows a matrix plot of R; 4,
for different pairs of crime types (¢;,t;),%¢ # j. Scatter plots
allow to visually assess linear dependencies between sample
pairs. Clearly, except for robberies, we see that all types of
crime appear to have some direct linear relationship. This
relationship is illustrated by the cloud of points falling close
to a diagonal line in the plots.

This fact is confirmed by the correlation corr(Ry, 4, Rtj’d)
for i # j, shown in table IV. Except for robberies, that are
slightly less correlated to other crime types (but still strongly
correlated with r > 0.75), all other types are highly correlated.

A. SVD and dimensionality reduction

To investigate further this separation of the different types,
we applied a dimensionality reduction technique. We modeled
each district as a point in a T-dimensional space, where each
dimension corresponds to a type of crime. Then, we defined
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Fig. 3. Matrix plot of R; g for different pairs of crimes types (t;,t;),% # j.
Types in order are: other, vehicle, violent, burglary, robbery and anti-social.
This illustrates graphically the relationship between different types of crimes.
Each line and column has respectively the same type for its y and x axis.
Diagonals show scatter plots of Ry 4.

TABLE IV
corr(Ry,,, Ry, a) FOR i # j, i.e. CORRELATION BETWEEN THE LOG
CRIME RATES OF DIFFERENT TYPES, ALONG WITH ASSOCIATED P-VALUES.

\ Other Vehicle Violent Burglary Robbery
Vehicle | 0.97 /0.00
Violent | 0.99 /0.00 0.97 /0.00
Burglary | 0.98 /0.00 0.99 /0.00 0.98 / 0.00
Robbery | 0.75/0.00 0.85/0.00 0.79/0.00 0.82/0.00
Anti-social | 0.99 /0.00 0.95/0.00 0.98/0.00 0.97/0.00 0.71/0.00

a D x T data matrix D where each line represents a district,
each column a type of crime, and a cell D; ; = Z%Zl X im
counts the total number of crimes of type j reported in district
i.

We applied a SVD decomposition to this matrix D. The
resulting singular vectors, along with their corresponding
singular values, are shown in table V.

We see that the first component is more or less proportional
in all dimensions, meaning that it captures the scale of the

data, but no individual relation. The second singular vector,

TABLE V
SINGULAR VECTORS AND ASSOCIATED SINGULAR VALUES OF THE SVD
DECOMPOSITION OF D, WHERE D; ; IS THE TOTAL NUMBER OF CRIMES OF
TYPE j REPORTED IN DISTRICT j.

Other 0425 -0.177 -0.182  -0.520 0.655 -0.234
Vehicle 0.428 0.072 0.379 0.308 -0.172  -0.737
Violent 0428 -0.044 -0212 -0.502 -0.714  0.092

Burglary 0418 -0.138 0.686 0.028 0.108 0.569
Robbery 0.344 0.865 -0.227 0.152 0.139 0.198
Anti-social | 0400 -0.441 -0.506 0.599 0.019 0.176
Sing. value | 2.28 0.70 0.39 0.27 0.19 0.14
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Fig. 4. Projection of the matrix D on its second and third singular vectors.
The axis of the original 6-dimensional space, corresponding each to one type
of crime, are shown in red, illustrating the separation between some of the

types.

however, separates clearly robberies from other types, having
a much greater component that the others. While this already
appeared during the correlation analysis, the reason behind
robberies standing out is not clear to us. Intuitively, one could
say that a robbery is a crime much more involved than break-
ing a window to enter an empty house, or shoplifting. Thus, it
must be committed by a small fraction of the population, that
lays low the rest of the time and commits less other crimes.

Similarly, the third component puts vehicle crimes and
burglaries together and opposed to anti-social behavior. We
won’t push our social analysis further, except to note these
relationships.

To illustrate these separations, we projected the data on the
second and third singular vectors, as a mean of dimensionality
reduction [10]. Figure 4 shows the resulting figure. The
projection of the axis of the original 6-dimensional space
clearly show the separation of the different types mentioned
above.

V. DISTRIBUTION FITTING

Finally, we were interested in trying to fit a probability
distribution to the monthly crime rate in each district Cy ,, =
Zthl C't,a,m- Being able to model precisely this crime rate
would have many useful applications, for instance to generate
new data for simulations.

We proceeded in a systematic way, and started by looking
at the shape of the histograms of the crime rates distribution.
Figure 5a shows such an histogram, for crimes reported in
Dec 2010. We noticed that there is a large concentration of
districts having a crime rate of zero, which corresponds to
missing values. Thus, we removed these entries, as well as
two outliers that have very high crime rates, and obtained the
histogram showed in figure 5b.

According to the histogram shape, we focused on distribu-
tions of the exponential family, and tried to fit several of them
to our data. Our best candidate was the Weibull distribution
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Fig. 5. Distribution of the monthly crime rates C'g ,,, for all districts, in Dec
2010. (a) shows the original histogram, (b) shows the histogram after having
removed zeros (missing values) and two outliers.

[11]. This distribution is characterized by two parameters, the
shape k and slope A, and is defined as follows:

(5) e a0,

flz A\ k) =
r <0,

(=T

Using maximum-likelihood methods, we fit this distribution
to the crime rates C'g ,, of each month. The values we obtained
for these parameters were almost exactly the same for each
month: £ = 1.45, A = 0.01. Figure 6 shows the corresponding
Q-Q plot of the monthly crime rate Cy,,, for Dec 2010 and
Mar 2011 as examples (other months have similar Q-Q plots).

We verified the goodness of fit of the distribution with these
parameters using a Kolmogorov Smirnov test. This test quan-
tifies a distance between the empirical distribution function of
the samples and the cumulative distribution function of the
reference distribution, in this case a Weibull.

For each month, the null hypothesis was accepted with
p > 0.10, meaning that the Weibull distribution cannot be
rejected as the true distribution. Other goodness-of-fit tests
exist, such as Anderson-Darling or x2, and should be applied
to further assert the correctness of our choice of distribution
and parameters.

VI. SPATIAL AUTOCORRELATION

All the relationships we studied up to this point focused on
districts as entities, but did not take at all into account the
spatial dimension. Indeed, it would be interesting to see if a
higher crime rate in a given district has some influence on its
neighbors. Or, in other words, do criminals travel, or are they
inspired by what others close to them do?

To try and answer this question, we explored the global
spatial autocorrelation of the mean crime rates C 4. To do so,
we used two different measures: Moran’s I [8] and Geary’s C'
[6]. Let us first define the D x D matrix of spatial weights W.
It captures the spatial relations between districts as follows:

1
WZJ_{O

Moran’s I is defined as follows:

if districts ¢ and j are adjacent
otherwise
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Fig. 6.  Q-Q plot of the monthly crime rates in all districts Cg_,, versus
a Weibull distribution, for Dec 2010 and Mar 2011. The parameters of
the distribution were obtained using a maximum likelihood method: £k =
1.45, A = 0.01 in both cases. The red line is the z = y diagonal, the black
line is the linear regression of the data points.

3 N X WX - X)(X; - X)

Zi Zj Wij Zz(Xz - X)2

where X is the variable of interest, X the sample mean, N
the number of samples and W;; the weights matrix.

Moran’s I ranges from -1 (indicating perfect dispersion)
to +1 (perfect correlation). A zero value indicates a random

spatial pattern.
Geary’s C is defined as:

(N =1)32, >, Wi (Xi — X;)?
2W (X — X)?

where W is the sum of all W;;.

It is inversely related to Moran’s I, but not identical, as it
is more sensitive to local spatial autocorrelation. Its values lie
between 0 and 2, where 1 means no spatial autocorrelation, 0
a positive and 2 a negative one.

I

C:

A. Results

Table VI shows the resulting measures on the mean crime
rates C} 4 across the different UK districts, for each type of

TABLE VI
MEASURES OF GLOBAL SPATIAL AUTOCORRELATION (AND ASSOCIATED
P-VALUE) OF THE MEAN CRIME RATES C 4 ACROSS ALL UK DISTRICTS,
FOR DIFFERENT CRIME TYPES, USING MORAN’S I AND GEARY’S C.
VALUES CLOSE TO RESPECTIVELY 0 AND 1 INDICATE NO SPATIAL
AUTOCORRELATION.

Other Vehicle Violent
Moran’s I | 0.12/0.00 0.20/0.00 0.14 / 0.00
Geary’s C' | 0.95/0.19 0.87/0.00 0.88/0.00
Burglary Robbery Anti-social
Moran’s I | 0.13/0.00 0.60/0.00 0.06/0.05
Geary’s C | 096/0.38 0.43/0.00 1.06/0.13

crime. We see that for all but one type, both I and C are
significantly close to the “no autocorrelation” value, meaning
that there is no spatial relationship between the districts.
Robberies stand out one more time with a slightly higher
spatial autocorrelation, suggesting that authors of such crimes
may travel to nearby districts to commit other offenses.

These two measures assume a certain homogeneity amongst
districts, meaning that either they all are correlated, or none
are. As our results above prove neither of these cases, this
homogeneity assumption may not hold, and thus we may see
some districts correlated in parts of the country, and some
completely independent in other parts.

To test this, there exists a local indicator of spatial as-
sociation (LISA) [1] that computes a local Moran’s I for
each spatial element and allows to evaluate its statistical
significance. It is defined as:

Xi
Z Winj
J

I =

ma

where mo = £+ 3, X2.

These local estimators showed interesting results, as seen in
figure 7, in which we plotted the I; values for districts with
significant p-values (p < 0.05).

First, note that the upper districts show a strong local
autocorrelation, for the reason that their crime rate is mostly
zero, due to a low population.

More important are the clusters that appear on the main
land, especially around London. We clearly see for instance
that robberies are highly spatially correlated around the capital,
suggesting that robbers from London tend to stay in town or
around the suburbs, but do not wander far in the countryside.

We can see similar “clusters” for other types of crimes,
notably one around Middlesbrough for anti-social behaviors.
This makes sense, as Middlesbrough had the 4th highest crime
rate of England in 2007.

VII. CLASSIFICATION

Once the exploratory analysis of the data was completed,
we wanted to go past the mere description of a dataset, and
formulate a more challenging problem. Having such precise
locations of the crimes (to the street level), we wondered if
it would be feasible to detect probable criminals in a set of
people, knowing where each person has been during a given
time period and where crimes were reported.
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Fig. 7. Values of the local indicator of spatial association (local Moran’s
I) for the mean crime rate Cy 4 for different crime types. High values
(red) indicate a positive correlation, low values (yellow) a negative one, and
intermediate values (orange) no spatial correlation. Districts striped in blue
have insignificant indicators (p > 0.05).

This problem relies of course on the assumption that we
have a way of knowing the whereabouts of people. Fortunately,
this kind of mobility traces is increasingly available, either
thanks to the multitude of location-aware smartphones that
people carry all day long, or simply through the logs of mobile
operators. However, this data is not always very precise. For
example, triangulation from GSM towers usually achieves a
maximal precision of fifty meters in urban areas.

Moreover, as said in section II, crime locations in this
dataset are voluntarily “blurred” to protect the privacy of

people, resulting in aggregates of crimes at some places, and
more generally in some imprecision of the location. Thus, one
should rather use a coarse resolution when dealing with this
classification problem, instead of relying on finer but imprecise
locations.

A. Model

To tackle this classification problem, we first started with
some simulated data. We defined our space as a grid of G x G
cells. In this grid, we place uniformly at random NN people.
Each person is a criminal with probability p, i.e. P; ~ Ber(p).
These are sampled at the beginning of the simulation, and are
then fixed.

Each person walks across the grid following a slightly
modified 2D random walk: at each step, a person chooses
a cell uniformly in a (25 + 1) x (25 + 1) square around its
current position (thus allowing people to move at different
speeds around the grid).

In other words, the position (z;, y;) of person i at time step
k 4+ 1 is defined as:

2D
(k+1)

2

= M +U(-5,5)
y +U(-8,5)

where U(a,b) is a discrete uniform random variable over
the interval [a, b].

Finally, at each time step k € (1,...,T), each criminal 4
has a probability g of committing a crime:

if =1

®) | ~ Ber(q)
G = { 0 if P, =0

B. Simulation input/output

To summarize, our simulation takes the following inputs:

o G: dimension of the grid

o S: step size of each person at each time step

o T: number of time steps to simulate

o N: number of people to simulate

o p: probability of each person to be a criminal

e q: probability of each criminal to commit a crime at each
time step

It outputs the following data:

o people: vector of N elements where people(i) = 1 if
person ¢ is a criminal, and people(i) = 0 otherwise

e crimes: G x G matrix giving the number of crimes
committed in each cell

e trajectories: T x N X 2 matrix giving the position of
each person ¢ at each time k, i.e. trajectories(k,i,-) =

)

Figure 8 shows an example of the output of such a simu-
lation, for G = 50, S =3, T = 50, N = 20, p = 0.2 and
qg=0.2.



Fig. 8. Simulation of mobility traces and crimes for N = 20 people in a
50 x 50 grid during 7" = 50 time steps, with step size S = 3, proportion
of criminals p = 0.2 and crime rate ¢ = 0.2. Blue lines represent traces of
normal people, red lines traces of criminals, and green dots crimes.

C. Recovery algorithm

From this setup, we derived a simple recovery algorithm,
that aims at finding the most likely suspects from the output
described above. The basic idea is the following: people that
were (often) in cells where crimes occurred are more likely to
be criminals.

To explain our algorithm, we will use a simple case. We
consider a 2 x 3 grid, with N = 3 people, one of which is a
criminal. They moved around the grid for 7' = 4 time steps,
during which three crimes were committed. Figure 9 illustrates
the resulting setup.

Fig. 9. Simple setup for the explanation of our recovery algorithm. N = 3
people walked for 7" = 4 time steps around a 2 X 3 grid. The red, blue and
green lines show respectively the traces of each person, and the cells with red
background show cells where a crime was committed.

From the traces, we can build the following /N x H presence
matrix M, in which each row corresponds to a person, and each
column a cell of the grid (H is here the total number of cells
in the grid) :

10 0 2 10
M = 010111
111010

¢ = (100110

In other words, M tells how many times each person was
in each cell. Above is also shown the H x 1 matrix C, that
counts the number of crimes committed in each cell.

Then, we simply normalize each column of MW such that
it sums to one:

$ 00 2 20
MO = [0 F oo )]

$ £ 10 %0

¢ = (10011 0)

Finally, we compute the score of each person by multiplying
MY with C:

1.5
0.67
0.83

Pscores = M(l) -C=

This score can be seen as the likelihood of a person being a
criminal. Note that by multiplying with C, we make sure that
cells with no crimes have no influence.

Identifying the criminals is now simply a matter of taking
the highest K scores, where K is the number of criminals (in
our toy example, K = 1). Hence, in this case the first person
is the criminal:

1
Pest =10
0

If K is unknown, we can either threshold this score, or
estimate K using the proportion of criminals p: E(K) = Np.

D. Results

We tested the efficiency of our algorithm with the following
setup: G = 100, N = 1000 people, T' = 100 time steps, step
size S = 5, probability of being a criminal p € [0,1] and
crime rate ¢ € [0, 1].

We measured the performance as follows:

E(Pest7PTeal) = hd(Pest7Preal)/N

where hd(x,y) is the hamming distance between x and y.

This metric counts the proportion of false classifications,
i.e. both false positives (regular people wrongly categorized
as criminals) and false negatives (criminals not detected).

We measured this error for different values of p and ¢, and
plotted the results in figure 10.

These results show that for high crime rates, our algorithm
performs quite well. However, for low crime rates, it is unable
to identify properly criminals, simply because most of them
committed very few or even no crimes at all. This is clearly
illustrated when the crime rate is zero: even while no crimes
were committed, our algorithm still tries to identify criminals,
and thus ends up assigning people arbitrarily.

To verify if it scaled properly, we fixed the proportion of
criminals and the crime rate, and compared our algorithm with
a random guess, for an increasing number of people V. Figure
11 shows the results.

We see that with small number of people, our algorithm
performs significantly better than a random guess. However,
the error seems to increase with the number of people. This
is most probably due to the combinatorial explosion of the
possible assignments. Indeed, the grid being only 100 x 100,
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Fig. 11. Comparison of our algorithm with a random guess on a 100 x
100 grid with a step size S = 5, during 7" = 100 time steps, for N =
[50, 100, 500, 1000, 5000, 10000] people. The proportion of criminals is p =
0.5 and the crime rate is ¢ = 0.5. The blue line is our algorithm, the red line
is the random guess.

a high number of people simulated during 7' = 100 time
steps will cover most of the grid, meaning that there will
have been several people in each cell of the grid. Thus, when
computing the scores, many people will have similar scores,
and the algorithm will have no mean of splitting the ties.

Another observation about this algorithm is that it uses only
“local” knowledge to make its decisions, in the sense that cells
have no influence on the others. Indeed, if one cell where a
crime was reported only had one person visiting it, this would
mean that this person is undoubtedly a criminal. Hence, a more
efficient algorithm should take advantage of this fact during
the reconstruction process, which ours does not.

E. Group testing

Inspired by [4], we tried a slightly more complex approach
to model our reconstruction problem, by using a probabilistic
group testing setup. Group testing is targeted at reducing the

cost of finding certain elements of a set. It was first introduced
in 1943 [5], when the US army was looking for a way to
detect syphilis in groups, without having to test each soldier
individually.

In classical group testing, the setup is the following: we
have N items, in which at most K < N are defective. We
then test M subsets of the items, and get a test result y:

|1
Y. = 0

The subsets are defined by the following contact matrix

M(C) :
(e) _ 1
Mm- = { 0

This contact matrix simply tells which items were in which
test pool. Then, group testing simply aims at finding a sparse
vector X such that:

if subset 7 contains > 1 defective items
otherwise

if test ¢ includes item j
otherwise

y:M(C).X

The novelty introduced by [4] is to add some uncertainty to
the testing procedure: each defective item has a probability ¢
of being detected. This is the same as generating a sampling
matrix M) by randomly flipping the ones of M to zero
with probability 1 — gq.

In other words, each element of M) is mapped to the
corresponding element of the sampling matrix M) by passing
through the channel shown in figure 12.

0 0

Fig. 12. Each element of the sampling matrix M) is generated indepen-
dently from the corresponding element of the contact matrix M(¢) by passing
through a channel that flips ones to zeros with probability 1 — q.

FE. Application to our problem

We feel that this setup could be adapted to our initial
classification problem:

o each cell corresponds to a test
o the pool of item on which the test is performed corre-
sponds to the people that were present in the cell
o the test outcome is the number of crimes that were
committed in the cell during the T' time steps
« each element of M(®) would be flipped to zero with a
probability p(1 — ¢) + (1 — p), which is the probability
that a person does not commit a crime.
We should check if the required conditions presented in [4]
are satisfied by our setup, and then implement their algorithm.
Unfortunately, this remains to be done.



VIII. CONCLUSION

During this project, we explored a new dataset that was
made available in December 2010, and that has continued
to grow ever since. It contains monthly reports of crimes
committed in the UK, with their type and location.

First, we described the principal characteristics of this
dataset, and defined crime rates in districts as our variable
of interest.

We studied its correlation with different covariates, and
found that the urbanization (represented by the population
density) was an important factor affecting the number of
vehicle crimes, violent crimes and robberies. We also noticed
that the proportion of white people correlates negatively with
the rate of vehicle crimes and robberies, but did not push the
reasoning further. Finally, we noted that robberies correlated
with nearly all covariates, making this type of crime stand out
from others. This finding was corroborated by the analysis of
the correlation of the different crime types, which revealed that
all types but robberies are highly correlated with each other,
meaning that there is not a type that tends to happen on its
own.

This separation of types appeared again when we applied
a dimensionality reduction technique to the dataset. Indeed,
it split the types in three groups, with robbery on its own,
burglary and vehicle crime as a pair, and the three remaining
types (violent crime, anti-social behavior and other crime)
together. We put forward an explanation for this separation,
by differentiating these three groups of crimes with respect to
their severity (a robbery is a crime much more involved than
a graffiti) and the amount of contact between the criminal and
the victim (burglaries and vehicle thefts usually happen when
the victim is absent).

We were able to fit a Weibull distribution to the monthly
crime rates in each district, allowing us to have a good model
of this variable. However, we do not have an intuitive or formal
justification of the reason why these crime rates follow this
distribution.

Then, we explored the spatial autocorrelation of the crime
rates between the districts. Using global measures of autocor-
relation, we did not uncover any homogeneous pattern. We
were nevertheless able to identify a few cluster of districts
that have significant spatial correlation between them for some
crime type, either positive or negative. This was notably the
case for robberies, for which districts in the London area were
highly autocorrelated.

Finally, we proposed an interesting problem of classifi-
cation, in which we would like to identify the most likely
suspects when given mobility traces of users and report of
crimes. We proposed a simple algorithm to solve this problem.
It obtained fair results, but scaled poorly with the number of
people, merely due to the combinatorial explosion of possible
classifications. Instead, we introduced the notion of probabilis-
tic group testing, and explained how such an approach could
be applied to our problem.

A. Future work

Now that the principal characteristics of this dataset are
more familiar, it is a good starting point for more advanced

enquiries:

[6]
[7]

[8]
[9]

[10]

[11]

[12

Temporal prediction: for now, only five months of data
are available. While this is plenty for spatial analysis, hav-
ing only a monthly temporal resolution is pretty limiting.
Indeed, it would be interesting to try and apply recurrent
neural networks such as an echo state network (ESN)
or a liquid state machine (LSM) to perform time-series
prediction. The problem with such learning approaches
is that they usually require large numbers of training
samples, which translates to several months of data.
Spatial analysis: we obtained some interesting results of
local autocorrelation of the crime rates, but these results
were restricted to districts, which still represent large
areas. It would be interesting to apply the same analysis at
a much smaller resolution. This would allow to answer
interesting questions such as “Can one go from a safe
neighborhood to a nest of criminals by simply crossing
a street?”, or “Are different types of crimes restricted to
some neighborhoods?”.

Criminals detection: our algorithm presented in section
VII-C was very simple, but still performed fairly well in
some conditions. There is room for a lot of improvement,
for instance in taking the crime rate into account, or by
using information about known criminals to compute the
likelihood of other suspects.

Group testing: in section VII-F, we proposed a way
of applying probabilistic group testing to our criminals
identification problem. However, we formulated it, but did
not verify if the necessary conditions of the contact matrix
were fulfilled, nor did we implement the reconstruction
algorithm.
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