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Abstract—We consider the problem of reconstructing a dif-
fusion field, such as temperature, from samples collected by a
sensor network. Motivated by the fast decay of the eigenvalues of
the diffusion equation, we approximate the field by a truncated
series. We show that the approximation error decays rapidly with
time. On the other hand, the information content in the field
also decays with time, suggesting the need for a proper choice of
the sampling strategy. We propose two algorithms for sampling
and reconstruction of the field. The first one reconstructs the
distribution of point sources appearing at known times using the
finite rate of innovation (FRI) framework. The second algorithm
addresses a more difficult problem of estimating the unknown
times at which the point sources appear, in addition to their
locations and magnitudes. It relies on the assumption that the
sources appear at distinct times. We verify that the algorithms
are capable of reconstructing the field accurately through a
set of numerical experiments. Specifically, we show that the
second algorithm successfully recovers an arbitrary number of
sources with unknown release times, satisfying the assumption.
For simplicity, we develop the 1–D theory, noting the possibility
of extending the framework to more general domains.

Index Terms—Diffusion field, source localization, release time,
estimation, sensor networks, sparse sampling

I. INTRODUCTION

Sensor networks are often deployed to sense a phenomenon
that can be described by a physical model. Knowing the
underlying model allows us to reduce the quantity of mea-
surements or to improve their quality, even if in practice
this approach raises many challenges. In particular, physical
models are only approximate and their parameters are usually
unknown. Moreover, the theory of multidimensional sampling
usually assumes that the different dimensions of the signal are
homogeneous and interchangeable. This is true in images and
some volumetric data, but in physical fields space and time
are not equivalent.

Consider a sensor network collecting samples of a field;
the spatial sampling density is limited by the dimensions of
the sensors and by their price, while the temporal sampling
frequency is limited by the characteristics of the analog-to-
digital converters, by the channel capacity, and by the energy
constraints. It is often easier and cheaper to increase the
temporal sampling frequency or the channel capacity, than to
increase the number of sensors.

In this paper, we analyze the inverse problem of recon-
structing a diffusion field from samples collected by a sensor
network. Inverse problems are often ill-conditioned, meaning
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Fig. 1: Illustration of the problem setup. We show how to
reconstruct the diffusion field driven by K instantaneous
sources from spatio–temporal samples (how to go from the
left hand side to the right hand side of the figure).

that small errors in the measured data can lead to large errors
in the solution. The reconstruction of diffusion fields is known
to be particularly ill-conditioned [1].

Beyond the application to temperature estimation in solid
bodies, we are interested in pollution detection [2], plume
sources detection [3], short pulse laser applications [4], and
temperature distribution estimation in a server room [5],
in which the proposed techniques may be used to localize
the so-called cold and hot spots, responsible for the energy
inefficiency.

A. Prior art

One of the earliest works, by Fourier and Kelvin [6], studies
the estimation of the initial temperature of Earth from the
current temperature distribution. More recently, Al Masood et
al. considered a well conditioned damped heat equation [7]
and a Bessel operator [8] to estimate the initial temperature
distribution in a diffusion field. Nakamura et al. [9] used
transform techniques to solve the initial inverse problem
in heat conduction, while Takeuchi et al. [10] proved the
existence of the solution and gave a numerical method to
find point sources distributed on a 2–D domain. In the signal
processing community, one of the earliest approaches is by
Nehorai et al. [11] who studied the localization of vapor-
emitting sources. Lu and Vetterli introduced two different
approaches to the reconstruction of a sparse source distribution
driving the diffusion field based on spatial super-resolution
[12], and on an adaptive spatio–temporal sampling scheme
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[13]. An approach using compressed sensing techniques on a
discrete grid was proposed by Ranieri et al. in [14].

B. Main Contributions

Given a set of samples in space and time, we study the
reconstruction of a diffusion field driven by point sources.
First, we show that the signal-to-noise ratio (SNR) of the
collected samples and the effective bandwidth of the field are
fast decreasing functions of time. These two figures of merit
define the natural tradeoff for the sampling of diffusion sources
and indicate the existence of a “sweet spot” sampling window.

We then propose a non-iterative algorithm for the estimation
of an initial point source distribution and an online algorithm
able to estimate the release times. The latter enables us to
recover the field parameters in real-time. To ensure recovery,
we require the releases to take place at distinct times. Both
algorithms use overparameterization to transform a nonlinear
problem into a larger linear system of equations. The source
parameters are then obtained using the annihilation filter
method, common in finite rate of innovation (FRI) sampling
[15], [16]. For simplicity, we develop the theory in one
dimension. We note that the proposed framework can be
extended to more general domains.

Finally, we show through a series of numerical experiments
that the proposed algorithms accurately reconstruct the field.
We emphasize the experiments that verify the capability of the
second algorithm to recover an arbitrary number of sources
with unknown release times—a scenario not well developed
in the literature. The problem setup is illustrated in Fig. 1.

C. Paper Outline

In Section II we present the derivation of the eigenfunction
solution of the diffusion equation, which establishes the basis
for the approximation used in the remainder of the paper.
We also briefly analyze the approximation error. Section III
and Section IV describe the proposed algorithms for the
reconstruction of the diffusion field from samples. Numerical
experiments are presented in Section V before giving the
directions for future research and concluding the paper in
Section VI.

II. DIFFUSION EQUATION

A one-dimensional diffusion field driven by a source distri-
bution s(x, t) satisfies the following partial differential equa-
tion (PDE),

∂f(x, t)

∂t
= γ

∂2f(x, t)

∂x2
+ s(x, t). (1)

For simplicity, we choose the units in (1) so that the diffusion
coefficient is unitary, γ = 1. The solution to (1) is given as a
convolution

f(x, t) =

∫ t

0

∫
R
g0(x− ξ, t− τ)s(ξ, τ) dξ dτ, (2)

where the kernel

g0(x, t) =
exp[−x2/(4t)]

2
√
πt

(3)

is called the Green’s function of the free-space diffusion
equation [17]. We now impose a periodic boundary condition
by requiring that

f(x+ 2kπ, t) = f(x, t), ∀k ∈ Z. (4)

Note that having a periodic domain is not at all crucial for the
proposed algorithms to be applicable. We make this choice so
that the eigenvalue solution simplifies to the spatial Fourier
series of the field. The Green’s function changes accordingly
to the following form

g(x, t) =
∑
k∈Z

g0(x− 2kπ, t). (5)

For a linear PDE, the Green’s function is just the spatio–
temporal impulse response corresponding to a point source
appearing at x = 0 and t = 0.

A. Eigenfunction Solution

Consider the diffusion field f on a circle of length 2π.
That is, the mapping (x, t) 7→ f(x, t) is 2π-periodic in x.
In addition, let the field be driven by a point source occurring
at time t = 0 and at location x = x0. Namely, we have

∂2f

∂x2
− ∂f

∂t
= δ(x− x0)δ(t),

f(x+ 2kπ, t) = f(x, t), ∀k ∈ Z, t ≥ 0. (6)

We know that the solution to this equation is given by the
convolution of the source distribution s(x, t) (3) with the
Green’s function g(x, t). For our purposes, a more convenient
expression for the Green’s function is obtained by computing
the eigenfunction solution to (6).

Assume that f(x, t) = χ(x)e−ω
2t, where χ does not depend

on time. This gives

e−ω
2t ∂

2χ

∂x2
+ ω2e−ω

2tχ(x) = 0. (7)

We require (7) to hold for every t so this is equivalent to

∂2χ

∂x2
= −ω2χ(x). (8)

Solutions to (8) are sin(ωx), cos(ωx) and eiωx. The periodic
boundary condition forces ω’s into the form ωn = n, so the
homogeneous solution to (6) corresponding to ωn is

fn(x, t) = eiωnxe−ω
2
nt = einxe−n

2t. (9)

The general homogeneous solution is just a linear combination
of {fn}n∈Z,

f(x, t) =
∑
n∈Z

cneinxe−n
2t, (10)

where the coefficients cn are computed from the given initial
value of f .

A Dirac delta source at t = 0 can be cast as an initial
value by requiring that f(x, t) → δ(x − x0) as t → 0, or
equivalently, ∫

A

f(x, t) dx = 1, as t→ 0 (11)
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for every open set A ⊂ S1 containing x0, where S1 is the
unit circle. Combining (10) with this initial condition yields
the coefficients cn as the coefficients of a basis expansion of
a Dirac in the orthogonal basis of eigenfunctions

{
einx

}
n∈Z.

The general solution with the initial value (11) can therefore
be written as

f(x, t) =
1

2π

∑
n∈Z

e−inx0einxe−n
2t =

1

2π

∑
n∈Z

ein(x−x0)−n2t.

(12)
This is an alternative form of the Green’s function (5) for the
initial boundary value problem (6).

The elements of the series in (12) decay rapidly to zero
due to the e−n

2t term, so we can approximate the sum by
truncating the series. To do so, we keep 2N + 1 elements
centered around n = 0,

f(x, t) ≈ 1

2π

N∑
n=−N

ein(x−x0)−n2t. (13)

The choice of N is discussed in Section II-B. Note that this
means that the field is approximately bandlimited in space, for
times away from 0.

B. Tradeoffs in Diffusion Sampling

The proposed diffusion field sampling involves three quanti-
ties: spatial sampling frequency, temporal sampling frequency,
and the cutoff index N . If we sample too late after the source
had appeared, the SNR is too low to make any reasonable
inference from these samples. On the other hand, if we sample
too close to the source (in time and space), the bandwidth is
large. Therefore, for a fixed N , the truncated approximation
may be inaccurate, leading to the failure of the reconstruction
algorithm. This shows that we should choose N according
to the desired spatial and temporal sampling frequency. We
formalize this reasoning in the following proposition.

Proposition 1. Let f(x, t) be a diffusion field on a unit
circle, driven by a point source of unit intensity appearing at
(t, x) = (0, x0). Furthermore, let f (N)(x, t) be the (2N +1)–
term approximation of f(x, t). Then the following bound on
the relative approximation error holds,∣∣∣∣f(x, t)− f (N)(x, t)

f(x, t)

∣∣∣∣ ≤ 4
√
πt exp

[
‖x− x0‖2

4t

] ∑
n>N

e−n
2t.

(14)

Furthermore, f(x, t)→ 1/(2π) as t→∞.

The Proposition 1 shows that the approximation error de-
cays rapidly in time, and that the SNR goes to zero with time.
We omit the proof here since it is purely technical and does
not add new insight.

The bound on the approximation error (14) is drawn in
Fig. 2. The same figure also depicts the corresponding field as
a function of time, to show that the error decays much faster
than the field.
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Fig. 2: Bound on the relative approximation error as a function
of time for three sensor locations (a), and the field value as a
function of time at the same locations (b). The approximation
error is shown for the truncation order N = 5. Note the
difference in the temporal axis limits, indicating the “sweet
spot” sampling window where the error is negligible, and the
field samples still carry information (since the error keeps
decaying rapidly, we show it only up to t = 0.5s).

III. SOLVING THE INITIAL SOURCE PROBLEM

In this section, we give a step-by-step derivation of the
algorithm for reconstructing the initial distribution of diffu-
sion point sources. These steps consider various scenarios of
increasing complexity.

A. Step 1: One unit source, one sample

If we have a sensor at location ξ observing the field at time
τ , then we have access to

f(ξ, τ) ≈ 1

2π

N∑
n=−N

ein(ξ−x0)−n2τ . (15)

Let αn
def
= 1

2π einξ−n2τ , z = e−ix0 , and φ = f(ξ, τ). Assuming
that αn is known by design, we obtain an equation in z of the
form

N∑
n=−N

αnz
n ≈ φ. (16)

After multiplying by zN this becomes a polynomial equation.
It is not difficult to compute the roots of (16) and find the
source location. Due to symmetry, we obtain two feasible
locations. We only use this very simple case to illustrate the
principle and to establish the notation, without discussing it
further.
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B. Step 2: One unit source, multiple samples

Consider now the set of measurements {φm}Mm=1, taken
at different times and different locations. Arrange the mea-
surements in a vector φ such that φ[m] = φm. Let also
αmn = αmn(ξm, τm) be the coefficient multiplying zn in the
summation (16), corresponding to the mth measurement, and
define the matrix A by A[m,n] = αmn. Finally, let z denote
the vector [z−N , z−(N−1), ..., zN−1, zN ]T . Then, if we treat
the powers of z as independent linear unknowns, we have the
following linear system of equations

Az ≈ φ. (17)

Provided that the measurement setup is such that rank(A) =
2N + 1, we can find z ≈ e−ix0 by solving the linear system
(17).

Note that here it is necessary to further justify the meaning
of ≈, by examining the conditioning of the matrix A. This
computation is beyond the scope of this paper.

C. Step 3: Multiple sources, multiple samples

Let the K diffusion sources with magnitudes {sk}Kk=1

be located at {xk}Kk=1. Then the measurement (16) can be
rewritten as follows

N∑
n=−N

αmn (s1z
n
1 + s2z

n
2 + · · · sKznK) ≈ φm, 1 ≤ m ≤M.

(18)
We can again write (18) in a matrix form Az = φ, where we
have redefined z as z[n]

def
= s1z

n
1 + · · · + sKz

n
K . Repeating

the reasoning from the previous step, if we treat each z[n] as
being independent, we can find z by solving a linear system,
provided that rank(A) = 2N+1. After computing z, we have
the following nonlinear system of equations,



s1z
−N
1 + · · · + sKz

−N
K ≈ z[−N ]

s1z
−(N−1)
1 + · · · + sKz

−(N−1)
K ≈ z[−(N − 1)]

...

s1z
N
1 + · · · + sKz

N
K ≈ z[N ]. (19)

The signal z is a sum of K complex exponentials. To find
the frequencies of the individual exponentials, we use the
annihilation filter method [15]. Intensities {sk}Kk=1 are then
found by solving a linear system.

From here on, we consider the following sampling scenario:
consider K sources at locations {xk}Kk=1 with intensities
{sk}Kk=1. Assume that we have L sensors at locations {ξl}Ll=1,
each of which takes M measurements at times {τm}Mm=1.
This results in a nonuniform but rectangular spatio–temporal
sampling lattice. Note that the proposed solution does not
require any regularity of the sampling lattice. The recovery of
the initial source distribution is summarized in Algorithm 1.

We conclude this part by noting that the sampling process
can be described in a compact matrix form. Let Φ be an M×L

Algorithm 1 Initial distribution recovery

Input: Sensor locations {xk}Kk=1, sampling times {τm}Mm=1

Output: Locations and magnitudes of the sources

1) Collect samples from sensors and arrange them in a
vector φ,

2) Build the sampling matrix A,
3) Solve for z, z ≈ A \ φ,
4) Using the annihilation filter on vector z, recover the

source locations and then magnitudes.

matrix such that Φ[m, l] = f(ξl, τm), T an M × (2N + 1)
matrix such that T [m,n] = e−n

2τm , Z a diagonal (2N +
1)× (2N + 1) matrix such that Z[n, n] =

∑
k skz

n
k , and Ξ a

(2N + 1)×L matrix such that Ξ[n, l] = einξl . Then we have
the following,

Φ ≈ TZΞ, (20)

where the matrix T depends only on the temporal sampling
pattern, the matrix Ξ depends only on the spatial sensor
network configuration, and the matrix Z depends on the source
locations. For clarity, we give an expanded form of (20) in
(21).

IV. SPATIO–TEMPORAL RECONSTRUCTION OF FIELDS
WITH BOUNDED RELEASE RATE

A challenging issue in spatio–temporal diffusion field recon-
struction is the reconstruction of the unknown release times.
We propose an algorithm to reconstruct both the unknown
release times and the unknown source locations. The proposed
algorithm is an online algorithm. That is, it assumes that
the deployed sensor network uninterruptedly samples the field
with a given sampling frequency. For the algorithm to operate
correctly we must constrain the allowed temporal release
patterns. This is summarized in the following definition.

Definition 1. We say that a diffusion field driven by point
sources appearing at times {tk}∞k=1 has a bounded release
rate if D = infi6=j |ti − tj | > 0. We will call 1/D the
maximum release rate.

The proposed algorithm is applicable to diffusion fields with
a bounded release rate. We argue that essentially all interesting
fields have a bounded release rate. The temporal sampling
frequency must be chosen according to the maximum release
rate of the field. For such fields, we show that the algorithm
is capable of estimating parameters for an arbitrary number of
sources.

Since we do not know where and when the releases take
place, and since the quality of the information available from
the field decays rapidly with time (see Proposition 1), we must
ensure that the spatial sampling is sufficiently dense. We leave
the precise theoretical analysis to future work.

We justify this algorithm by causality and fast decay of the
field. Causality means that there is absolutely no information
in the field about sources that are yet to appear. Each source
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introduces the need to sample it, but only after it had appeared.
Therefore, we argue that any robust reconstruction scheme
must sample continuously.

1) Estimating the release time for one source: A field gen-
erated by a point source appearing at (t0, x0) with magnitude
s0 is given as

f(x, t) ≈ s0

2π

N∑
n=−N

ein(x−x0)−n2(t−t0), (22)

where we assume that the choice of N is such that the
approximation error is negligible. As before, we assume we
have L sensors at locations {ξl}Ll=1, each of which takes M
measurements at times {τm}Mm=1. Let βmn

def
= 1

2π e−n
2τm+inξm

and yn
def
= s0 · e−inx0+n2t0 . Arranging the measurements in a

vector φ of length LM , we obtain the following system of
equations,

N∑
n=−N

βmnyn ≈ φm, m ∈ {1, . . . , LM} . (23)

We can again cast this system of nonlinear equations as a linear
system by treating the y’s as independent linear unknowns,

By ≈ φ. (24)

The estimation of the parameters of one source is summa-
rized in the following proposition.

Proposition 2. Consider the diffusion field f(x, t) driven by
a point source of intensity s0, appearing at (t0, x0). Let the
sampling setup be such that all the samples are accurately
represented by an N–term truncation. Then the source pa-
rameters are given as follows,

s0 ≈ y[0], (25)
t0 ≈ log |y[−1]/s0| , (26)
x0 ≈ arg y[−1]. (27)

Proof: Straightforward from the definition of yn.
One might be tempted to simply take N = 1 and have a

very small system, requiring a small number of measurements.
This is not feasible since the assumed field model would be
inaccurate. We note again that it is necessary to precise the
meaning of ≈ by taking into account the conditioning of B.

A. Online estimation of parameters for an arbitrary number
of sources

We now give a list of observations which, together with
Proposition 2, enable us to design an efficient spatio–temporal
reconstruction algorithm that can estimate release times, loca-
tions and intensities:

1) After we detect one source, we can cancel it from subse-
quent measurements, by simply subtracting the estimated
value of the field generated by that source.

2) For the estimation algorithm in Proposition 2 to be
correct, the sensor network must collect Nsamp samples,
where Nsamp depends on the network’s configuration, and

we assume that it is known. If we collect a sample too
close in time to the release (for an exact idea see Fig. 2),
the truncated model will be inaccurate. We avoid this
problem by discarding the first Nguard samples before
running the estimation.

3) If we use absolute time in the estimation algorithm, the
coefficients β in (23) become too small for the machine
precision due to the e−n

2τ term. This is avoided if we
use local time by rewriting (22) as follows,

f(x, t) ≈ s0

2π

N∑
n=−N

ein(x−x0)−n2(t−toff−(t0−toff )), (28)

where toff is arbitrary, and we choose it to ensure the nu-
merical stability of the estimation. Note that toff changes
for each sample.

The complete online estimation process is presented in Algo-
rithm 2.

Algorithm 2 Online reconstruction of diffusion field
Input: Nsamp, Nguard, maximum release rate 1/D, detection
threshold
Output: Release times t, locations x and magnitudes s

1) Compute the sampling period as ∆ =
D

Nsamp +Nguard
,

2) Initialize circular buffers of depth Nsamp+Nguard to store
magnitudes s, locations x and times t Of the detected
sources,

3) Repeat:
(i) j ← j + 1

(ii) Collect samples at j∆,
(iii) For k ∈ 1 : # (detected sources)

• Subtract s[k]g(t − t[k], x − x[k]) from the col-
lected samples,

(iv) Buffer the samples for t = j∆,
(v) If min(collected samples) < detection threshold,

• Goto (i),
otherwise
• Discard the oldest Nguard samples,
• Compute y according to (24),
• s0 ← y[0], t0 ← log |y[−1]/s0| , x0 ←

arg y[−1],
• Add s0, t0 and x0 to s, x and t, and increment

the number of detected sources,
• Clear sample buffer.

V. NUMERICAL EXPERIMENTS

We have validated both algorithms on a number of numer-
ical simulations, which we present in Fig. 3 and Fig. 4. In
Fig. 3 we show the reconstructed source locations and the field
profile for a field generated by four randomly located sources.
The sensing network comprises 12 sensors, each taking four
samples of the field, and the source locations are estimated
using Algorithm 1.
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 f(ξ1, τ1) · · · f(ξL, τ1)
...

. . .
...

f(ξ1, τM ) · · · f(ξL, τM )



≈ 1

2π

 e−(−N)2τ1 · · · e−N
2τ1

...
. . .

...
e−(−N)2τM · · · e−N

2τM



∑
k skz

−N
k 0 · · · 0

0
∑
k skz

−(N−1)
k · · · 0

0 0
. . . 0

0 0 0
∑
k skz

N
k


ei(−N)ξ1 · · · ei(−N)ξL

...
. . .

...
eiNξ1 · · · eiNξL

 (21)
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Fig. 3: Reconstruction of the source configuration in an initial value problem. The field is generated by 4 randomly located
sources. True source positions in (a), (b) and (c) are marked by blue dots, while the estimated locations are denoted with a
diamond. The reconstructed field is shown in (d), (e) and (f) as a solid surface, where the unit circle is mapped onto an interval
for visualization. The mesh represents the true field. Even if in the case (c) some source locations are inaccurately estimated,
the field estimation is accurate.

Diamonds denote the reconstructed sources, while blue dots
denote the actual source locations. Field is shown as a solid
blue surface, superposed with a mesh that shows the true field.

We conclude from Fig. 3a) and Fig. 3b) that the source
locations are accurately reconstructed. From the field surface
plots, Fig. 3d) and Fig. 3e), we further conclude that the
magnitudes are estimated correctly.

We deliberately show a degenerate case in Fig. 3c), and
Fig. 3f) to conclude that even when some of the sources are
not localized correctly, the error in the field reconstruction is
small. Intuitively, the reason for inaccurate localization is that
the sources are all clustered together, yielding a unimodal field
as shown in Fig. 3f).

Fig. 4 shows the reconstruction of two different diffusion
fields driven by sources randomly appearing in both space
and time. The diffusion fields have bounded release rates, as
established in Definition 1, and the sources are retrieved using

Algorithm 2. In Fig. 4a) and Fig. 4d) we show the release
times, locations and magnitudes of the estimated sources
(blue), compared to the parameters of the true sources (red).
Spatial and temporal projections of the field are shown in
Fig. 4b) and Fig. 4e), with the sampling instants denoted by
red crosses. For reasons of visualization, we omit the temporal
sampling instants in Fig. 4e).

The recovered fields are given as surface plots in Fig. 4c)
and Fig. 4f).

VI. CONCLUSION

We studied the reconstruction of diffusion fields from
samples collected by a sensor network. Our contributions
are twofold. First, we introduce an approximate model of a
diffusion field based on the fast decay of the eigenvalues of
a diffusion equation. We analyze the approximation error, and
assert that there is a “sweet spot” temporal sampling window.
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Fig. 4: Reconstruction of release times, locations and magnitudes with Algorithm 2. Reconstructed sources are shown in (a)
and (d) in blue, with true sources shown as red circles. The corresponding temporal and spatial projections are given in (b)
and (e). Red crosses show the sampling instants in space and time, and the reconstructed fields are shown in (c) and (f).

Second, we proposed two algorithms for field estimation.
Algorithm 1 is designed for the recovery of locations and
magnitudes of point sources appearing at a known time. Algo-
rithm 2 addresses a more challenging problem of estimating
the distribution of point sources with unknown release times,
locations and magnitudes. We propose a solution relying on
the assumption that the sources appear at distinct times. If
the field satisfies this assumption, Algorithm 2 is capable of
estimating the parameters of an arbitrary number of sources.
We substantiate the theoretical developments through simu-
lations, and observe accurate reconstruction of the field with
both algorithms.

Ongoing work includes extensions to more general domains,
a detailed theoretical analysis concerning the reconstruction
performance, and a study of optimal sampling strategies.
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