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Abstract. This chapter focuses on the development of a new “true” two-
dimensional representation for images that can capture the intrinsic geo-
metrical structure of pictorial information. Our emphasis is on the discrete
framework that can lead to algorithmic implementations. We propose a
double filter bank structure, named the pyramidal directional filter bank,
by combining the Laplacian pyramid with a directional filter bank. The
result is called the contourlet transform, which provides a flexible multires-
olution, local and directional expansion for images. The contourlet trans-
form can be designed to satisfy the anisotropy scaling relation for curves,
and thus offers a fast and structured curvelet-like decomposition sampled
signals. As a result, the proposed transform provides a sparse representa-
tion for two-dimensional piecewise smooth signals that resemble images.
The link between the developed filter banks and the continuous-space con-
structions is set up precisely in a newly defined directional multiresolution
analysis. Finally, we show some numerical experiments demonstrating the
potential of the new transform in several image processing tasks.

1. Introduction and Motivation

We are interested in the construction of efficient linear expansion for two-

dimensional signals, which are smooth away from discontinuities across smooth

curves. Such signals resemble natural images where discontinuities are generated
by edges – referred to the points in the image where there is a sharp contrast
in the intensity, whereas edges are often gathered along smooth contours, which
are created by typically smooth boundaries of physical objects. Efficiency of a
linear expansion means that the coefficients for signals belonging to the class of
interest are sparse, and thus it implies efficient representations for such functions
using a non-linear approximation (NLA) scheme.

Over the last decade, wavelets have had a growing impact on signal process-
ing, mainly due to their good NLA performance for piecewise smooth functions
in one dimension [9, 16, 19]. Unfortunately, this is not the case in two dimen-
sions. In essence, wavelets are good at catching point or zero-dimensional discon-
tinuities, but as mentioned above, two-dimensional piecewise smooth functions
resembling images have one-dimensional discontinuities. Intuitively, wavelets in
2-D obtained by a tensor-product of one dimensional wavelets will be good at
isolating the discontinuities at edge points, but will not see the smoothness along
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the contours. This indicates that more powerful representations are needed in
higher dimensions.

Recently, Candès and Donoho [4, 6] pioneered a new system of represen-
tation, named curvelet, that was shown to achieve optimal approximation be-
havior in a certain sense for 2-D piecewise smooth functions in R

2 where the
discontinuity curve is a C2 function.1 More specifically, an M -term non-linear
approximation for such piecewise smooth functions using curvelets has L2 square
error decaying like O(M−2), and this is the best rate that can be achieved by
a large class of approximation processes [14]. An attractive property of the
curvelet system is that such correct approximation behavior is simply obtained
via thresholding a fixed transform. The key features of the curvelet elements is
that they exhibit very high directionality and anisotropy.

The original construction of the curvelet transform [4] was intended for func-
tions defined in the continuum space R

2. The development of discrete trans-
forms for sampled images that has all the features promised by curvelets in
the continuous domain remains a challenge, especially when critical sampling is
desirable. Furthermore, as the curvelet transform was defined in the frequency
domain, it is not clear how curvelets are sampled in the spatial domain. In
fact, in [15], one of the fundamental research challenges for curvelets was stated
as: “is there a spatial domain scheme for refinement which, at each generation
doubles the spatial resolution as well as the angular resolution?”. This is what
we will try to explore in the following.

First, we will identify the key features that make curvelets to be an efficient
representation for 2-D piecewise smooth functions with smooth discontinuity
curves. Based on this, we propose a filter bank structure that can deal ef-
fectively with piecewise smooth images with smooth contours. The resulting
image expansion is a frame composed of contour segments, and thus is named
contourlet. We then derive an analysis framework that connects the proposed
discrete transform to the frames in the continuous-domain, which can be par-
ticularized to a curvelet-like expansion. Thus our scheme provides an effective
method to implement the discrete curvelet transform. Furthermore, the re-
sulting transform has very small redundancy, being almost critically sampled.
Finally, we will show some numerical experiments demonstrating the potential
of the contourlet transform in several image processing tasks.

2. Representing 2-D Piecewise Smooth Functions

2.1. Curvelet construction

In a nutshell, the curvelet transform [4] is obtained by filtering and then applying
a windowed ridgelet transform [5] to each bandpass image. In R

2, ridgelets are
constant along ridge lines x1 cos(θ) + x2 sin(θ) = const and are wavelets (with
a scale s) along the orthogonal direction. In frequency domain, such ridgelet

1Cp is the space of functions that are bounded and p-times continuously differentiable.
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function is essentially localized in the corona |ω| ∈ [2s, 2s+1] and around the
angle θ. The ridgelet transform provides a sparse representation for smooth ob-
jects with straight edges. In summary, the curvelet decomposition is composed
of the following steps [4] (also see Figure 2(a)):

1. Subband decomposition of the object into a sequence of subbands.

2. Windowing each subband into blocks of appropriate size, depending on its
center frequency.

3. Applying the ridgelet transform to these blocks.

The motivation behind the curvelet transform is that by smooth windowing,
segments of smooth curves would look straight in sub-images, hence they can
be captured efficiently by a local ridgelet transform. Subband decomposition is
used to keep the number of ridgelets at multiple scales under control by the fact
that ridgelets of a given scale live in a certain subband. The window’s size and
subband frequency are coordinated such that curvelets have support obeying
the key anisotropy scaling relation for curves [4, 6]:

width ∝ length2. (2.1.1)

2.2. Non-linear approximation behaviors

We next sketch illustrations on the non-linear approximation behaviors for 2-
D piecewise smooth functions using different expansions. Rather than being
rigorous, the following discussion aims at providing an intuition that can serve
as a guideline for our construction of the pyramidal directional filter banks and
contourlets latter. For a complete and rigorous discussion, we refer to [14].

Consider a simple “Horizon” model of piecewise smooth functions f(x1, x2)
defined on the unit square [0, 1]2:

f(x1, x2) = 1{x2≥c(x1)} 0 ≤ x1, x2 ≤ 1,

where the boundary of two pieces (or the contour) c(x1) is in Cp and has finite
length inside the unit square. Clearly, such a 2-D function has complexity
equivalent to a 1-D function, namely its contour c(x1). The reason for studying
this model is that the approximation rates for 2-D piecewise smooth functions
resembling images are typically dominated by the discontinuity curves.

Let’s first consider how a wavelet system performs for such function. Assume
that the orthonormal wavelet transform with the separable Haar wavelet is
employed. At the level j, wavelet basis functions have support on dyadic squares
of size 2−j (see Figure 1(a)). Let nj be the number of dyadic squares at level j
that intersect with the contour on the unit square. Since the contour has finite
length, it follows that

nj ∼ O(2j). (2.2.1)
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Thus, there are O(2j) nonzero wavelet coefficients at the scale 2−j . This
is the problem of the separable wavelet transform for 2-D piecewise smooth
functions. For the 1-D piecewise smooth function, the number of significant
wavelet coefficients at each scale is bounded by a constant; in the 2-D case this
number grows exponentially as the scale gets finer. The total number of nonzero
wavelet coefficients up to the level J is

NJ =
J∑

j=0

nj ∼ O(2J ). (2.2.2)

wavelet curvelet

basis functions

PSfrag replacements

c2j/2

2−j

2−j

c2−j/2

Figure 1. Non-linear approximation of a 2-D piecewise smooth function using wavelets
and curvelets. Curvelet basis functions can be viewed as a local grouping of wavelet
basis functions into linear structures so that they can capture the smooth discontinuity
curve more efficiently.

Along the discontinuity curve c, it is easy to see that these nonzero wavelet
coefficients decay like O(2−j) at the j-th level. Next, suppose we keep only
M = NJ nonzero coefficients up to the level J in the wavelet expansion. Then
the error due to truncation of the wavelet series is

||f − f̂
(wavelet)
M ||2 ∼

∞∑

j=J+1

2j(2−j)2

∼ O(2−J ). (2.2.3)

Combining (2.2.2) and (2.2.3) we obtain the following non-linear approxi-
mation rate of the wavelet expansion for the “Horizon” model

||f − f̂
(wavelet)
M ||2 ∼ O(M−1). (2.2.4)

Therefore, when the discontinuity curves c is sufficiently smooth, c ∈ Cp

with p > 1, wavelet approximation is suboptimal. It is important to note that
the smoothness of the discontinuity curve is irrelevant to the performance of the
wavelet approximation.
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How can we improve the performance of the wavelet representation when
the discontinuity curve is known to be smooth? Simply looking at the wavelet
scheme in Figure 1(a) suggests that rather than treating each significant wavelet
coefficient along the discontinuity curve independently, one should group the
nearby coefficients since their locations are locally correlated. Recall that at the
level j, the essential support of the wavelet basis functions has size 2−j . The
curve scaling relation (2.1.1) suggests that we can group about c2j/2 nearby
wavelet basis functions into one basis function with a linear structure so that
its width is proportional to its length squared (see Figure 1). This group-
ing operation reduces the number of significant coefficients at the level j from
O(2j) to O(2j/2). Consequently, this new representation provides the same ap-

proximation error as wavelets in (2.2.3) with only M ′ ∼
∑J

j=0 2j/2 or O(2J/2)
coefficients. In other words, the M -term non-linear approximation using this
improved wavelet representation decays like

||f − f̂
(improved−wavelet)
M ||2 ∼ O(M−2). (2.2.5)

Comparing with (2.2.4), we see that for C2 discontinuity curves, the new
representation is superior compared to wavelets and in fact achieves the optimal
rate. The curvelet system achieves this optimality using a similar argument. In
the original curvelet construction [4], the linear structure of the basis function
comes from the ridgelet basis while the curve scaling relation is ensured by
suitable combination of subband filtering and windowing.

2.3. A filter bank approach for sparse image expansions

The original definition of the curvelet transform as described in Section 2.1.
poses several problems when one translates it into the discrete world. First,
since it is a block-based transform, either the approximated images have block-
ing effects or one has to use overlapping windows and thus increase the redun-
dancy. Secondly, the use of ridgelet transform, which is defined on a polar coor-
dinate, makes the implementation of the curvelet transform for discrete images
on rectangular coordinates very challenging. In [15, 25, 1], different interpola-
tion approaches were proposed to solve the polar versus rectangular coordinate
transform problem, all required overcomplete systems. Consequently, the ver-
sion of the discrete curvelet transform in [25] for example has a redundancy
factor equal to 16J + 1 where J is the number of multiscale levels.

Comparing the wavelet scheme with the curvelet scheme in Figure 1, we see
that the improvement of curvelets can be loosely interpreted as a grouping of
nearby wavelet coefficients, since their locations are locally correlated due to the
smoothness of the discontinuity curve. Therefore, we can obtain a sparse image
expansion by first applying a multiscale transform and then applying a local
directional transform to gather the nearby basis functions at the same scale
into linear structures. In essence, we first use a wavelet-like transform for edge

detection, and then a local directional transform for contour segment detection.
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Interestingly, this approach is similar to the popular Hough transform [17] for
line detection in computer vision.

With this insight, we proposed a double filter bank approach for obtaining
sparse expansions for typical images with smooth contours (Figure 2(b)). In our
newly constructed pyramidal directional filter bank [11], the Laplacian pyramid
[3] is first used to capture the point discontinuities, then followed by a directional
filter bank [2] to link point discontinuities into linear structures. The overall
result is an image expansion using elementary images like contour segments,
and thus it is named the contourlet transform.

The contourlet transform offers a flexible multiresolution and directional
decomposition for images, since it allows for a different number of directions
at each scale. For the contourlet transform to satisfy the anisotropy scaling

law, as in the curvelet transform, we simply need to impose that the number of
directions is doubled at every other finer scale of the pyramid [11].

The contourlet transform is almost critically sampled, with a small redun-
dancy factor of up to 1.33. Comparing this with a much larger redundancy
ratio of the discrete implementation of the curvelet transform [25] mentioned
above, the contourlet transform is much more suitable for image compression.
Furthermore, the contourlet transform can be designed to be a tight frame,
which implies robustness against the noise due to quantization or thresholding.
Finally, the contourlet transform is implemented efficiently via iterated filter
banks with fast algorithms. In the next section we will describe such a filter
filter bank in detail.

3. Pyramidal Directional Filter Bank

3.1. Multiscale decomposition

One way of achieving a multiscale decomposition is to use a Laplacian pyramid
(LP) as introduced by Burt and Adelson [3]. The LP decomposition at each step
generates a sampled lowpass version of the original and the difference between
the original and the prediction, resulting in a bandpass image (see Figure 3(a)).
The process can be iterated on the coarse version.

A drawback of the LP is the implicit oversampling. However, in contrast
to the critically sampled wavelet scheme, the LP has the distinguishing feature
that each pyramid level generates only one bandpass image (even for multidi-
mensional cases) which does not have “scrambled” frequencies. This frequency
scrambling happens in the wavelet filter bank when a highpass channel, after
downsampling, is folded back into the low frequency band, and thus its spec-
trum is reflected. In the LP, this effect is avoided by downsampling the lowpass
channel only.

In [13], we study the LP using the theory of frames and oversampled filter
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Transform
Ridgelet

Block

Decomposition
Subband

IMAGE

(a) Curvelet transform

(b) Contourlet transform

Figure 2. Two approaches for dealing with images having smooth contours.
(a) Curvelet transform: block ridgelet transforms are applied to subband images.
(b) Contourlet transform: image is decomposed by a double filter-bank structure,
where the first one captures the edge points and the second one links these edge
points into contour segments. The gray areas in the boxes represent the support sizes
of the filters..

banks. We show that the LP with orthogonal filters (that is, h[n] = g[−n]
and g[n] is orthogonal to its translates with respect to the subsampling lattice)
is a tight frame with frame bounds equal to 1. In this case, we suggest the
use of the optimal linear reconstruction using the dual frame operator, which is
symmetrical with the forward transform (see Figure 3(b)). Note that this new
reconstruction is different from the usual reconstruction and is crucial for our
contourlet expansion described later.
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Figure 3. Laplacian pyramid scheme. (a) Analysis: the outputs are a coarse ap-
proximation c and a difference d between the original signal and the prediction. The
process can be iterated by decomposing the coarse version repeatedly. (b) The pro-
posed reconstruction scheme for the Laplacian pyramid.

3.2. Directional decomposition

In 1992, Bamberger and Smith [2] introduced a 2-D directional filter bank (DFB)
that can be maximally decimated while achieving perfect reconstruction. The
DFB is efficiently implemented via a l-level tree-structured decomposition that
leads to 2l subbands with wedge-shaped frequency partition as shown in Fig-
ure 4.
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Figure 4. Directional filter bank frequency partitioning where l = 3 and there are
23 = 8 real wedge-shaped frequency bands.

The original construction of the DFB in [2] involves modulating the input
signal and using diamond-shaped filters. Furthermore, to obtain the desired
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frequency partition, an involved tree expanding rule has to be followed (see
[22, 21] for details). As a result, the frequency regions for the resulting subbands
do not follow a simple ordering as shown in Figure 4 based on the channel indices.

In [10, 12], we propose a new formulation for the DFB that is based only on
the QFB’s with fan filters. The new DFB avoids the modulation of the input
image and has a simpler rule for expanding the decomposition tree. Intuitively,
the wedge-shaped frequency partition of the DFB is realized by an appropriate
combination of directional frequency splitting by the fan QFB’s and the “ro-
tation” operations done by resampling, which are illustrated in Figure 5 and
Figure 6, respectively.

+

PSfrag replacements
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Q

Figure 5. Two-dimensional spectrum splitting using the quincunx filter banks with
fan filters. The black regions represent the ideal frequency supports of each filter.

(a) (b)

Figure 6. Example of a resampling operation that is used effectively as a rotation
operation for the DFB decomposition. (a) The “cameraman” image. (b) The “cam-
eraman” image after being resampled.

Using the multirate identities, we can transform a l-level tree-structured
DFB into a parallel structure of 2l channels with equivalent filters and overall

sampling matrices. Denote these equivalent synthesis filters as G
(l)
k , 0 ≤ k < 2l,

which correspond to the subbands indexed as in Figure 4. The oversampling
matrices have diagonal form as:

S
(l)
k =

{

diag(2l−1, 2) for 0 ≤ k < 2l−1

diag(2, 2l−1) for 2l−1 ≤ k < 2l,
(3.2.1)
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which correspond to the basically horizontal and basically vertical subbands,
respectively.

With this, it is easy to see that the family
{

g
(l)
k [n− S

(l)
k m]

}

0≤k<2l, m∈Z2
, (3.2.2)

obtained by translating the impulse responses of the synthesis filters G
(l)
k over

the sampling lattices S
(l)
k , is a basis for discrete signals in l2(Z2). This basis

exhibits both directional and localization properties. Figure 7 demonstrates
this fact by showing the impulse responses of equivalent filters from an example
DFB. These basis functions have linear supports in space and span all directions.
Therefore (3.2.2) resembles a local Radon transform and the basis functions are
referred to as Radonlets.

Figure 7. Impulse responses of 32 equivalent filters for the first half channels of a
6-levels DFB that use the Haar filters. Black and gray squares correspond to +1 and
−1, respectively. Because the basis functions resemble “local lines”, we call them
Radonlets.

3.3. Multiscale and directional decomposition

The directional filter bank (DFB) is designed to capture the high frequency
components (representing directionality) of images. Therefore, low frequency
components are handled poorly by the DFB. In fact, with the frequency par-
tition shown in Figure 4, low frequencies would “leak” into several directional
subbands, hence DFB does not provide a sparse representation for images. To
improve the situation, low frequencies should be removed before the DFB. This
provides another reason to combine the DFB with a multiresolution scheme.

Therefore, the LP permits further subband decomposition to be applied on
its bandpass images. Those bandpass images can be fed into a DFB so that
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directional information can be captured efficiently. The scheme can be iterated
repeatedly on the coarse image (see Figure 8). The end result is a double
iterated filter bank structure, named pyramidal directional filter bank (PDFB),
which decomposes images into directional subbands at multiple scales. The
scheme is flexible since it allows for a different number of directions at each
scale.

(2,2)

multiscale dec. directional dec.

PSfrag replacements
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ω2

(π, π)

(−π,−π)

(a)

PSfrag replacements
ω1

ω2 (π, π)

(−π,−π)

(b)

Figure 8. Pyramidal directional filter bank. (a) Block diagram. First, a standard
multiscale decomposition into octave bands is computed, where the lowpass channel
is subsampled while the highpass is not. Then, a directional decomposition with a
DFB is applied to each highpass channel. (b) Resulting frequency division, where the
number of directions is increased with frequency.

With perfect reconstruction LP and DFB, the PDFB is obviously perfect
reconstruction, and thus it is a frame operator for 2-D signals. The PDFB has
the same redundancy as the LP: up to 33% when subsampling by two in each
dimension. Combining the tight frame and orthogonal conditions for the LP
and DFB, respectively, it is easy to obtain the following result for the PDFB
[11].

Proposition 1. The PDFB is a tight frame with frame bounds equal to 1 when
orthogonal filters are used in both the LP and the DFB.

Let us point out that there are other multiscale and directional decompo-
sitions such as the cortex transform [28] and the steerable pyramid [24]. Our
PDFB differs from those in that it allows different number of directions at each
scale while nearly achieving critical sampling. In addition, we make the link to
continuous-domain construction in Section 4.

3.4. PDFB for curvelets

Next we will demonstrate that a PDFB where the number of directions is doubled

at every other finer scale in the pyramid satisfies the key properties of curvelets
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discussed in Section 2.1.. That is, we apply a DFB with bn0 − j/2c levels
or 2bn0−j/2c directions to the bandpass image bj of the LP. Thus, the PDFB
provides an efficient discrete implementation for the curvelet transform.

PSfrag replacements
ω1

ω2 (π, π)

(−π,−π)

Figure 9. Resulting frequency division by a pyramidal directional filter bank for the
curvelet transform. As the scale is refined from coarse to fine, the number of directions
is doubled at every other octave band.

A LP, with downsampling by two in each direction, is taken at every level,
providing an octave-band decomposition: the LP bandpass image bj at the level
j creates a subband with a corona support based on the interval [π2−j , π2−j+1],
for j = 1, 2, . . . , J . Combining this with a directional decomposition by a DFB,
we obtain the frequency tiling for curvelets as shown in Figure 9.

In terms of basis functions, a coefficient in the LP subband bj corresponds
to a basis function that has local support in a square of size about 2j . Then,
a basis function from a DFB with bn0 − j/2c iterated levels has support in a
rectangle of length about 2n0−j/2 and width about 1. Therefore, in the PDFB,
a basis function at the pyramid level j has support as:

width ≈ 2j and length ≈ 2j .2n0−j/2 = 2n02j/2, (3.4.1)

which clearly satisfies the anisotropy scaling relation (2.1.1) of curvelets.
Figure 10 graphically depicts this property of a PDFB implementing a

curvelet transform. As can be seen from the two pyramidal levels shown below,
the support size of the LP is reduced by four times while the number of direc-
tions of the DFB is doubled. With this, the support size of the PDFB basis
images are changed from one level to next in accordance with the curve scaling
relation. Also note that in this representation, as the scale is getting finer, there
are more directions.

4. Multiresolution Analysis

As for the wavelet filter bank, the iterated PDFB can be associated with a
continuous-domain system, which we call contourlet. This connection will be
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Figure 10. Illustration of the contourlet basis images that satisfy the curve scaling
relation. From the upper line to the lower line, the scale is reduced by four while the
number of directions is doubled.

made precise by studying the embedded grids of approximation as in the mul-
tiresolution analysis for wavelets [18, 20]. The new elements are multiple direc-
tions and the combination with multiscale.

4.1. Multiscale

Suppose that the LP in the PDFB uses orthogonal filters and downsampling by
two is taken in each dimension. Under certain conditions, the lowpass filter G
in the LP uniquely defines an orthogonal scaling function φ(t) ∈ L2(R2) via the
two-scale equation [26, 19]

φ(t) = 2
∑

n∈Z2

g[n]φ(2t− n)

Denote

φj,n = 2−jφ

(
t− 2jn

2j

)

, j ∈ Z, n ∈ Z
2. (4.1.1)

Then the family {φj,n}n∈Z2 is an orthonormal basis of Vj for all j ∈ Z. The
sequence of nested subspaces {Vj}j∈Z

satisfies the following invariance proper-
ties:

Shift invariance: f(t) ∈ Vj ⇔ f(t− 2jk) ∈ Vj , ∀j ∈ Z, k ∈ Z
2

Scale invariance: f(t) ∈ Vj ⇔ f(2−1t) ∈ Vj+1, ∀j ∈ Z.

In other words, Vj is a subspace defined on a uniform grid with intervals
2j × 2j , which characterize the image approximation at the resolution 2−j . The
difference image in the LP carries the details necessary to increase the resolution
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of an image approximation. Let Wj be the orthogonal complement of Vj in Vj−1

(also see Figure 11)
Vj−1 = Vj ⊕Wj

PSfrag replacements
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Figure 11. Multiscale subspaces generated by the Laplacian pyramid.

The LP can be considered as an oversampled filter bank where each polyphase
component of the difference signal comes from a separate filter bank channel
like the coarse signal [13]. Let Fi(z), 0 ≤ i ≤ 3 be the synthesis filters for these
polyphase components. Note that Fi(z) are highpass filters. As in the wavelet
filter bank, we associate with each of these filters a continuous function ψ(i)(t)
where

ψ(i)(t) = 2
∑

n∈Z2

fi[n]φ(2t− n).

Proposition 2. ([13]) Suppose that the LP with orthogonal filter generates an

MRA. Then for a scale j, {ψ
(i)
j,n}0≤i≤|M|−1, n∈Zd is a tight frame of Wj . For all

scales, {ψ
(i)
j,n}0≤i≤|M|−1, j∈Z, n∈Z2 is a tight frame of L2(Rd). In all cases, the

frame bounds are equal to 1.

Since Wj+1 is generated by four prototype functions, in general it is not a
shift invariant subspace, unless Fi(z) are shifted versions of a filter, or

Fi(z) = z−kiF (z) (4.1.2)

where ki are the coset representatives of the downsampling lattice (2, 2)

k0 = (0, 0)T , k1 = (1, 0)T , k2 = (0, 1)T , and k3 = (1, 1)T . (4.1.3)
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Nevertheless, based on this, we can mimic Wj+1 to be a shift invariant
subspace by denoting

µj,2n+ki
(t) = ψ

(i)
j+1,n =

∑

m∈Z2

fi[m]φj,n+m(t). (4.1.4)

With this notation, the family {µj,n}n∈Z2 is a tight frame of Wj+1 and it

resemble a uniform grid on R
2 of intervals 2j × 2j .

4.2. Multiple Directions

Suppose that the DFB’s in the PDFB use orthogonal filters. In the PDFB,
the discrete basis (3.2.2) of the DFB can be regarded as a change of basis
for the continuous subspaces from the multiscale decomposition. Although in
the PDFB, the DFB is applied to the difference signal or the Wj+1 subspaces,
we first show what happens when the DFB is applied to the multiresolution
subspaces Vj .

Proposition 3. Define

θ
(l)
j,k,n(t) =

∑

m∈Z2

g
(l)
k [m− S

(l)
k n]φj,m(t) (4.2.1)

The family {θ
(l)
j,k,n}n∈Z2 is an orthonormal basis of a directional subspace

V
(l)
j,k for each k = 0, . . . , 2l − 1. These subspaces are orthogonal with

V
(l)
j,k = V

(l+1)
j,2k ⊕ V

(l+1)
j,2k+1, and (4.2.2)

Vj =
2l−1⊕

k=0

V
(l)
j,k . (4.2.3)

Proof: (Sketch) This result is proved by induction on the number of decomposi-
tion levels l of the DFB, in much the same way for the wavelet packets bases [8]

(see also [19]). Assume that {θ
(l)
j,k,n}n∈Z2 is an orthonormal basis of a subspace

V
(l)
j,k . To increase the directional resolution, an extra level of decomposition by a

pair of orthogonal filters is applied to the channel represented by g
(l)
k that leads

to two channels with equivalent filters g
(l+1)
2k and g

(l+1)
2k+1 . This transforms the

orthonormal basis {θ
(l)
j,k,n}n∈Z2 in two orthonormal families {θ

(l+1)
j,2k,n}n∈Z2 and

{θ
(l+1)
j,2k+1,n}n∈Z2 . Each of these families generates a subspace with finer direc-

tional resolution that satisfy the “two-direction” equation (4.2.3). With this,
starting from the orthonormal basis {φj,n}n∈Z2 of Vj , all other orthonormal
bases follow. 2
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Figure 12 illustrates the “two-direction” subspace splitting by the DFB in

the frequency domain. In the spatial domain, V
(l)
j,k is a subspace at a scale 2j

and a direction k among all 2l directions.
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Figure 12. Multidirectional subspaces generated by the DFB.

Applying the directional decomposition by the family (3.2.2) onto the detail
subspace Wj+1 as done by the PDFB, we obtain the similar result.

Proposition 4. Define

ρ
(l)
j,k,n(t) =

∑

m∈Z2

g
(l)
k [m− S

(l)
k n]µj,m(t) (4.2.4)

The family {ρ
(l)
j,k,n}n∈Z2 is a tight frame of a subspace W

(l)
j+1,k with frame

bounds equal to 1, for each k = 0, . . . , 2l − 1. These subspaces are orthogonal
with

W
(l)
j+1,k = W

(l+1)
j,2k ⊕W

(l+1)
j,2k+1, and (4.2.5)

Wj+1 =

2l−1⊕

k=0

W
(l)
j+1,k. (4.2.6)

Proof: This result is obtained by applying Proposition 2 to the subspaces in
Proposition 3. 2

Figure 13 shows a graphical representation of the subspaces in Proposition 4,

seen in the frequency domain. The reason for {ρ
(l)
j,k,n}n∈Z2 to be an overcom-

plete system for W
(l)
j+1,k is because it uses the same sampling grid as the bigger

subspace V
(l)
j,k .
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Figure 13. Multidirectional subspaces generated by the PDFB.

Recall that Wj+1 is not shift invariant but the following result establishes

that its subspaces W
(l)
j+1,k are since they are generated by a single prototype

function.

Proposition 5. Let us denote

ρ
(l)
j,k(t) =

∑

m∈Z2

g
(l)
k [m]µj,m(t) (4.2.7)

Then for l ≥ 2

ρ
(l)
j,k,n(t) = ρ

(l)
j,k(t− 2jS

(l)
k n) (4.2.8)

Proof: By direct substitution and a change of variable. 2

Consequently, the subspacesW
(l)
j+1,k satisfy the following shift invariant prop-

erty:

f(t) ∈W
(l)
j+1,k ⇔ f(t− 2jS

(l)
k n) ∈W

(l)
j+1,k, ∀n ∈ Z

2. (4.2.9)

This says that the directional multiscale subspaces W
(l)
j+1,k are defined on a

rectangular grid with intervals 2j+l−1 × 2j+1 (or 2j+1 × 2j+l−1, depending on
whether it is basically horizontal or vertical). By substituting (4.1.4) into (4.2.7),

we can write the prototype function ρ
(l)
j,k(t) directly as a linear combination of
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the scaling function φj,m(t) as

ρ
(l)
j,k(t) =

3∑

i=0

∑

n

g
(l)
k [2n+ ki]

(
∑

m∈Z2

fi[m]φj,n+m

)

=
∑

m∈Z2

(
3∑

i=0

∑

n∈Z2

g
(l)
k [2n+ ki]fi[m− n]

)

︸ ︷︷ ︸

c
(l)
k

[m]

φj,m(t). (4.2.10)

The sequence c
(l)
k [m] resemble a summation of convolutions between g

(l)
k [m]

and fi[m], thus it is a highpass and directional filter. Equation (4.2.10) reveals

the “contourlet-like” behavior of the prototype function ρ
(l)
j,k(t) where it is seen

as a grouping of “edge-detection” elements at a scale j and along a direction k.

4.3. Multiscale and multidirection

Finally, integrating over scales we have the following result for the contourlet

frames on the space L2(R2).

Theorem 1. For a sequence of finite positive integers {lj}j≤j0
the family

{φj0,n(t), ρ
(lj)
j,k,n(t)}j≤j0, 0≤k≤2lj−1, n∈Z2 (4.3.1)

is a tight frame of L2(R2). For a sequence of finite positive integers {lj}j∈Z
, the

family

{ρ
(lj)
j,k,n(t)}j∈Z, 0≤k≤2lj−1, n∈Z2 (4.3.2)

is a directional wavelet tight frame of L2(R2). In each case, the frame bounds
are equal to 1.

Proof: This result is obtained by applying Proposition 4 to the following de-
compositions of L2(R2) into mutual orthogonal subspaces:

L2(R2) = Vj0 ⊕




⊕

j≤j0

Wj



 , and

L2(R2) =
⊕

j∈Z

Wj .

2

As discussed in Section 3.4., the tight frame in (4.3.1) provides a curvelet-
like expansion when the number of directions is doubled at every other finer
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scale. This means that if at the scale 2j0 we start with an lj0-level DFB (which
has 2lj0 directions) then at finer scales 2j , j < j0, the number of decomposition
levels by the DFB should be:

lj = blj0 − (j − j0)/2c, for j ≤ j0. (4.3.3)

Thus the embedded grid of approximation for the curvelet PDFB expansion
at the scale 2j is 2bn0+j/2c × 2j for basically horizontal directions and 2j ×
2bn0+j/2c for near vertical directions, where n0 = lj0 − j0/2 + 2. Figure 14
illustrates this sampling pattern at different scales and directions. The main
point to note here is that in the refinement process, one spatial dimension is
refined at twice the speed as the other spatial dimension.

(a) (b)

(c) (d)

PSfrag replacements

w

w

l

l

w/4

w/4

l/2

l/2

Figure 14. Embedded grids of approximation in spatial domain for a PDFB that
implements the curvelet transform. These are four illustrative subspaces Wj,k repre-
senting coarser vs. finer scales and basically horizontal vs. basically vertical directions.
Each subspace is spanned by the shifts of a curvelet prototype function given in (4.2.7).
The sampling intervals match with the supports of the prototype function, for example
width w and length l, so that the shifts would tile the R

2 plane.

Figure 10 and Figure 14 give a complete view of the multiresolution approx-
imation of our curvelet construction based on the PDFB. They clearly show a
refinement scheme where the resolution increases in both spatial and direction
domain when going from coarse to fine scale, and the basis elements exhibit the
anisotropy scaling relation for curves.
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5. Numerical Experiments

Figure 15 shows an example image that is transformed by the PDFB imple-
menting the discrete ridgelet transform. As we can see, the coefficients in the
transform domain are very sparse – significant coefficients are located around
edges and in the right directional subbands. With non-linear approximation
using the PDFB, smooth regions are represented efficiently by the small size
lowpass image while smooth edges are efficiently represented by a few direc-
tional local coefficients.

(a) (c)

(b)

Figure 15. Example of PDFB. (a) Input image. (b) Magnitudes of PDFB coefficients.
(c) Reconstruction from one PDFB subband. The LP uses the biorthogonal “9-7”
filters, while the DFB’s use the biorthogonal “23-45” quincunx filters designed by
Phoong et al. [23] with support sizes equal to 23 × 23 and 45 × 45.

For comparison, Starck et al. [25] describe a different approach for the digital
curvelet transform, in which they directly “discretize” the continuous definition.
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Their implementation uses the discrete Radon transform on image blocks, and
thus the number of represented directions, which equals the block size, is re-
duced by half for every finer scale. This is unlike the curvelet construction
in continuous space, or our construction. Furthermore, there is a redundancy
factor equals to 16J + 1 in their implementation compared with 1.33 in ours.

We now evaluate the non-linear approximation performance of the PDFB
that implements the discrete curvelet transform and compare it with the per-
formance by the 2-D discrete wavelet transform (DWT2). In these NLA ex-
periments, for a given value M , we select the M -most significant coefficients
in each transform domain, and then compare the reconstructed images from
these sets of M coefficients. The wavelet transform used in the experiments
is a biorthogonal transform with the “9-7” filters [7, 27] and 6 decomposition
levels. The PDFB also uses the “9-7” filters in the LP decomposition. While
the DFB in the PDFB uses the “23-45” biorthogonal quincunx filters designed
by Phoong et al. [23]. The number of decomposition levels by the DFB at the
finest pyramidal scale is 5, which leads to 32 directions.

Note that in this case, both the DWT2 and the PDFB transforms share
the same multiscale detailed subspaces Wj as defined in Section 4.1., which are
generated by the “9-7” lowpass filters. The difference is that in the DWT2,
each subspace Wj is represented by a basis with three directions, whereas in the
PDFB it is represented by a redundant frame with many more directions. Since
the two transforms share the same detailed subspaces, it is possible to restrict
the comparison in these subspaces. We expect that most of the refinement
actions would happen around the image edges. Figure 16 and Figure 17 show
sequences of non-linear approximated images at the finest subspace Wj using
the DWT2 and the PDFB, respectively. We observe that the wavelet scheme
slowly refines the detailed image by isolated “dots” along the contours, while the
contourlet scheme quickly refines by well-adapted “sketches”. The improvement
by the PDFB can be seen both in terms of visual quality and reconstruction
error.

Finally, Figure 18 shows a detailed comparison of two non-linear approxi-
mated images by the DWT2 and the PDFB. We clearly see that fine contours
(directional textures on cloths) are better represented by the contourlet trans-
form compared to the wavelet transform. For more experimental results, we
refer to [10].

6. Conclusion

In this work, we constructed a discrete transform that can offer a sparse rep-
resentation for piecewise smooth images, as promised by the curvelet theory.
We first identified two key features of curvelets that could lead to an improve-
ment over the wavelet transform, namely directionality and anisotropy. From
this we proposed a new filter bank structure, the pyramidal directional filter
bank (PDFB), that can provide a multiscale and directional decomposition for
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M = 2, MSE = 1.70e−04 M = 4, MSE = 1.70e−04 M = 8, MSE = 1.69e−04

M = 16, MSE = 1.67e−04 M = 32, MSE = 1.65e−04 M = 64, MSE = 1.61e−04

M = 128, MSE = 1.54e−04 M = 256, MSE = 1.45e−04 M = 512, MSE = 1.33e−04

Figure 16. Sequence of images showing the non-linear approximation at the finest
scale of the DWT2. M is the number of the most significant coefficients; MSE is the
mean square error against the projection of the input image into the finest detailed
subspace. The input is the “Peppers” image.

images with a small redundancy factor. The PDFB provides a frame expansion
for images with frame elements like contour segments, and thus is also called
the contourlet transform. The connection between the developed discrete and
continuous-domain constructions was made precise via a new directional mul-
tiresolution analysis, which provides successive refinements at both spatial and
directional resolution. The contourlet transform can be designed to satisfy the
anisotropy scaling relation for curves and thus it provides a curvelet-like de-
composition for images. Experiments with real images indicate the potential of
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M = 2, MSE = 1.69e−04 M = 4, MSE = 1.69e−04 M = 8, MSE = 1.67e−04

M = 16, MSE = 1.64e−04 M = 32, MSE = 1.61e−04 M = 64, MSE = 1.56e−04

M = 128, MSE = 1.51e−04 M = 256, MSE = 1.44e−04 M = 512, MSE = 1.37e−04

Figure 17. Same as in Figure 16 but with the PDFB. Note that the PDFB shares
the same detailed subspace with the DWT2.

contourlets in image processing applications.
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