000167558 001__ 167558
000167558 005__ 20190316235152.0
000167558 0247_ $$2doi$$a10.1109/JSTSP.2011.2114326
000167558 022__ $$a1932-4553
000167558 02470 $$2ISI$$a000293713900011
000167558 037__ $$aARTICLE
000167558 245__ $$aThe Distributed Multiple Voting Problem
000167558 269__ $$a2011
000167558 260__ $$c2011
000167558 336__ $$aJournal Articles
000167558 520__ $$aA networked set of agents holding binary opinions does not seem to be able to compute its majority opinion by means of local binary interactions only. However, the majority problem can be solved using two or more bits, instead of one [1]. Pairs of agents asynchronously exchange their states and update them according to a voting automaton. This paper presents binary voting automata as well as solutions to the multiple voting problem, where agents can vote for one candidate among |C| >= 2 candidates and need to determine the majority vote. The voting automata are derived from the pairwise gossip algorithm, which computes averages. In the binary case (|C| = 2), we focus on averages in dimension 1, but in the multiple case (|C| >= 2) we quantize gossip in dimension |C | - 1, which is larger than or equal to 1. We show in particular that a consensus on majority can be reached using 15 possible states (4 bits) for the ternary voting problem, and using 100 possible states (7 bits) for the quaternary voting problem.
000167558 6531_ $$adensity classification
000167558 6531_ $$adistributed estimation
000167558 6531_ $$agossip algorithms
000167558 6531_ $$avoting problem
000167558 700__ $$0240372$$aBénézit, Florence$$g166121
000167558 700__ $$0240373$$aThiran, Patrick$$g103925
000167558 700__ $$0240184$$aVetterli, Martin$$g107537
000167558 773__ $$j5$$k4$$q791-804$$tIEEE Journal of Selected Topics in Signal Processing
000167558 8564_ $$s1129364$$uhttps://infoscience.epfl.ch/record/167558/files/05712150.pdf$$yn/a$$zn/a
000167558 909C0 $$0252454$$pLCA3$$xU10431
000167558 909C0 $$0252056$$pLCAV$$xU10434
000167558 909CO $$ooai:infoscience.tind.io:167558$$pIC$$particle$$qGLOBAL_SET
000167558 917Z8 $$x184677
000167558 917Z8 $$x103925
000167558 917Z8 $$x103925
000167558 917Z8 $$x103925
000167558 917Z8 $$x222073
000167558 937__ $$aEPFL-ARTICLE-167558
000167558 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000167558 980__ $$aARTICLE