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ABSTRACT

One of the fundamental challenges in EEG signal processing
is the selection of a proper method to correct ocular artifacts
in the recorded electroencephalogram (EEG). Several meth-
ods have been proposed for this task. Among these methods,
two main categories, namely subspace projection and adap-
tive filtering, have gained more popularity and are widely
used in EEG processing applications. The main objective
of this paper is to perform a comparative study of the per-
formances of these methods using two measures, namely the
mean square error (MSE) and the computational time of each
algorithm. According to this study, ICA (independent com-
ponent analysis) methods appear to be the most robust but
not the fastest ones. Hence, they could be easily used for
off-line applications. Moreover, PCA (principal component
analysis) is very fast, but less accurate, so it could be used
for real-time applications. Finally, adaptive filtering appears
to have the worst performance in terms of accuracy, but it
is very fast. Therefore, it could be also used for real-time
applications, in which speed matters more than accuracy.

1. INTRODUCTION

Electroencephalographic (EEG) signal processing is becom-
ing more and more important in studying brain functionality,
especially for clinical purposes such as the diagnosis of brain
disorders. Furthermore, EEG based brain-computer interface
(BCI) systems, which aim at establishing an alternative com-
munication channel between the brain and machines or pe-
ripheral devices, have attracted an increasing interest in the
recent years. Thanks to the reasonable price and the decent
time resolution of EEG acquisition devices, this signal is now
the main tool in brain research. Thus, developing and im-
plementing advanced signal processing tools and denoising
algorithms for the analysis of the EEG signals is crucial.
The principal bottleneck in EEG signal processing stands
in the identification and removal of the undesirable non-
cerebral artifacts that interfere with the neuronal activity of
the brain and can be mistakenly taken as brain activity pat-
terns. The most common examples of such artifacts are
the electro-oculogram (EOG), electromyogram (EMG), and
electrocardiogram (ECG) emanating from ocular, muscular,
and cardiac activities, respectively, as well as other external
artifactual distortions induced by equipments, environment,
etc. Among these artifacts, the most frequent and intrusive
is the EOG, generated by the changes of the electric field of
the scalp during blinking and eye movements. These invol-
untary eye movements and blinking often cause significant
EOG artifacts especially in the frontal and central regions
of the cortex and subsequently result in the loss of recorded

data. EMG artifacts can be minimized by training the sub-
jects to avoid any head movement and facial expression dur-
ing the test, however, it is infeasible for most people to con-
trol their eye movement and avoid blinking. Therefore, the
development of appropriate EOG artifact removal methods is
a necessity in EEG studies.

Basically, the approaches proposed for dealing with
EOG-contaminated EEG signals fall into two main cate-
gories, namely rejection or correction of the contaminated
signal segments. In rejection methods, the recorded data is
often scanned by an expert and artifactual EEG segments are
excluded from the data. This approach is frequently used in
medical research due to its simplicity. However, it can be a
cumbersome procedure when analyzing long data and many
non-obvious artifacts can be neglected. The other drawback
of the rejection method is data reduction and loss, which re-
strains the use of this method.

Conventional EOG artifact correction methods include
subspace projection, such as independent component anal-
ysis (ICA) and principal component analysis (PCA), which
decompose the signal into independent and uncorrelated
components, respectively. Moreover, regression-based meth-
ods have been proposed for artifact correction. For instance,
adaptive filtering techniques [1] remove the contaminated
parts of the signal by producing an optimized estimate of
the original source. Finally, methods based on wavelet de-
composition have been developed and used to correct ocular
artifacts [2].

Since different artifact removal algorithms are required
for each application, it is essential to chose the most ap-
propriate one depending on the problem. For instance, in
real time applications of EEG signals such as BCI systems,
epileptic seizure detection etc., fast online denoising tech-
niques are required. On the contrary, in off-line analysis of
EEG signals, algorithms with better performance are often
preferred regardless of how computationally complex and
time-consuming they are. Therefore, comparing the effi-
ciency and speed of the various proposed methods for ar-
tifact removal of the EEG signal could be of great inter-
est. Nevertheless, so far only few research studies have been
conducted in this regard [3, 4, 5]. In [3], time domain re-
gression methods are compared with frequency domain re-
gression methods, while in [4] the comparison is limited to
time regression-based techniques. More precisely, an adap-
tive filtering method is compared with a simple time re-
gression method. In [5] the compared techniques include
two methods based on regression analysis (with and without
adaptive filtering), an automated PCA, a manual PCA, and a
method based on manual selection of the artifacts using ICA.
The emphasis is given, however, to the implications of these



methods on the spectral domain of the EEG signal.

In the current study, we compare the most conventional
regression-based and the most conventional decomposition
procedures using simulated EEG data. More specifically, the
decomposition techniques include the commonly used ICA
methods (SOBI [6], Infomax [7] and FastICA [8]) and an
ICA method based on Bayesian learning and variational ap-
proximation [9]. The latter is used in order to investigate the
performance of an ICA method that takes into consideration
a possible additional Gaussian noise. The performance of
these techniques is then compared with that of PCA and of
the recursive least square (RLS) adaptive filtering that has a
better convergence than the simple least mean square (LMS)
adaptive filtering. Our aim is to present and compare the per-
formance of these algorithms both in terms of accuracy and
of computational time so as to give an insight on the methods
that can be accurately used for real-time applications, off-line
analysis or both.

The paper is organized as follows. Section 2 reviews the
methods that will be used. Section 3 describes the data used
in this study. The results and the further discussion are de-
tailed in Section 4. Finally, the conclusions are presented in
Section 5.

2. METHODS
2.1 Independent Component Analysis (ICA)

Blind source separation (BSS) [10, 11] has received consid-
erable attention due to the fact that it addresses the significant
problem of finding a suitable representation of multivariate
data. ICA is a popular method for BSS using the assumption
that the original sources are non-Gaussian, mutually inde-
pendent, and the measurements are a linear transformation
of the original sources. Under these assumptions the ICA
problem can be written as

y = Ax+u, €))]

where the observed variables (y) of dimension S are mod-
eled as a linear combination of the statistically independent
sources (x) of dimension L with added S-dimensional Gaus-
sian noise u. A is an SxL mixing matrix. If the noise is
not taken into consideration, the BSS problem represents the
simplest case for ICA.

2.1.1 FastiICA

FastICA is a fast algorithm for ICA, which can be used for
BSS and feature extraction. It was initially introduced in [8].
This algorithm is based on a fixed-point iteration scheme and
maximizes the non-Gaussianity as a measure of statistical
independence. This algorithm is publically available in the
FastICA package'.

2.1.2 SOBI

Introduced by Belouchrani et. al [6], the second-order blind
identification (SOBI) algorithm is a blind source separation
technique for temporally correlated sources. More specif-
ically, it is based on the joint diagonalization of an arbi-
trary set of covariance matrices. Therefore, it relies only on
second-order statistics of the processed signals, in contrast to

Uhttp://www.cis.hut.fi/projects/ica/fastica/

FastICA, which uses high order cumulant techniques. The al-
gorithm is implemented in the publically available EEGLAB
toolbox?.

2.1.3 RunICA

Bell and Sejnowski proposed the Infomax ICA algorithm
[7] based on a maximization of the mutual information be-
tween the sources and the sensors. Cardoso [12] showed
that information-maximization is actually identical to min-
imization of the KL-divergence between the distribution of
the output vector and the sources vector. Finally, in the same
research study, the Infomax principle was shown to coin-
cide with the maximum-likelihood principle in the case of
source separation. RunICA algorithm, which is implemented
in EEGLAB, performs ICA decomposition of input data us-
ing the Infomax ICA algorithm.

For these algorithms the sensors depend deterministically
on the independent sources. In other words, once the mixing
matrix A is found, the sources can be recovered exactly from
the observed data, using the inverse or the pseudo-inverse of
A [10].

2.1.4 Variational Bayesian Independent Component Analy-
Sis

In variational Bayesian independent component analysis
(VDbICA) [9], the noise is assumed to be Gaussian, with
zero mean and diagonal precision matrix A and the distribu-
tions of the sources are represented by Mixtures of Gaussians
(MoGs) [9]. A MoG is in general of the form:

p(x) =Y me A (x|, B 1), )
k

where 7, L and f; are respectively the weights, mean vec-
tors and precision matrices of the Gaussian components. The
variational Bayesian methods in general aim at approximat-
ing intractable posterior distributions by finding an appropri-
ate distribution over the parameters and the latent variables,
such that it factorizes [9, 10]. This factorization consists of
the priors over the variables and the parameters. The varia-
tional approach of the algorithm lies on the fact that each fac-
tor of the approximate distribution iterates individually until
convergence, in order to minimize the Kullback-Leibler (KL)
divergence between the true and the approximate distribu-
tions. The VbICA algorithm used in this study is publicly
available 3.

2.2 Principal Component Analysis (PCA)

PCA is another approach to construct the mixing matrix A
and decompose the data into spatial components. In this
technique, the coefficient vectors are the normalized eigen-
vectors of the covariance matrix. They are sorted according
to the variance, with the first component having the largest
variance. The coefficient vectors constructed in this manner
are orthogonal. The main difference between PCA and ICA
is that the sources are assumed to be uncorrelated and not
statistically independent.

Zhttp://scen.ucsd.edu/eeglab/
3http://www.robots.ox.ac.uk/parg/projects/ica/riz/code.html
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Figure 1: Example of two signals selected to be the sources,
one possible observable EEG (which is a mixture of the
sources) and the illustration of the initial clean EEG with the
estimate of the FastICA .

2.3 Adaptive Filtering

In this study the RLS algorithm was used to determine the
coefficients of the adaptive filter. Briefly, the RLS algorithm
takes into account information from all the past input sam-
ples to estimate the autocorrelation matrix of the input vec-
tor. The goal of this algorithm is to produce an estimated sig-
nal which is as similar to the original source as possible, by
adjusting the filter coefficients. The merit of this algorithm
(against other adaptive filtering techniques) is the fact that
it estimates recursively the filter coefficients that minimize a
deterministic objective function [1, 13].

3. DATA

The data set used in this study was obtained from the BCI
Competition of 2008 [14]. It consists of EEG data from nine
subjects, who performed a paradigm of four different mo-
tor imagery tasks, namely the imagination of movement of
the left hand, right hand, both feet and tongue. This pub-
licly available dataset is already preprocessed (band-pass fil-
tering and line noise suppression). Three monopolar EOG
channels were also recorded and preprocessed with the same
techniques.

In order to compare the different methods of artifact cor-
rection, the signals were separated into different trials and 40
EEG segments as well as 40 representative EOG segments
were carefully selected. The duration of these segments was
two seconds. The signals were then mixed one by one using
a random mixing matrix of the form

Il «
w=|s . )

where a is the random attenuation constant of the EOG (dif-
ferent for each mixing procedure), taking values between 0

and 1. Since o should avoid taking values very close to O or
to 1 (in order for the mixture to resemble as much as possi-
ble the real contaminated EEG), ten different random o val-
ues were created for each mixing procedure and their mean
value was used for each mixing. The values were selected to
be different for each mixing case in order to take into consid-
eration the attenuation of the EOG effect with the distance to
the eye-dipole. The EEG segments were selected from the Pz
electrode, according to the 10-20 International System. The
experiment was repeated with signals from other electrodes,
but since clean EEG signals were manually selected, the re-
sults were not significantly different. A source EEG signal
is shown in Figure 1(a) and a source EOG signal in Figure
1(b). A random mixing matrix was then created following
the above-mentioned procedure, to enable the construction
of the contaminated (observed) EEG signals;

EOG EOG S

{EEGobs} _w {EEG} .
In (4), EEGobs is the observed EEG segment. A typical ob-
served EEG signal created using equation 4 is shown in Fig-
ure 1(c). Data were artificially mixed for this study because
the whole concept lies on the evaluation of the results that
are generated using the different artifact removal methods.
Therefore, real EEG data could not be taken into consider-
ation due to the fact that they are always contaminated with
EOG artifacts, and thus, there is no clean source that can be
used for evaluating the denoised signals.

Finally, regarding the decomposition methods, the final
selection of the estimated EEG signal was performed by
comparing the correlation coefficient of each decomposed
signal with the corresponding source (clean) EEG signal.
The signal with the highest absolute correlation was then se-
lected. A normalized (mean = 0 and standard deviation = 1)
estimated EEG signal using FastICA is represented in Fig-
ure 1(d). The normalization was done due to the fact that
ICA methods scale the data randomly. For the comparison
of the true signals with the estimated ones, all of them were
normalized in the same way.

4. RESULTS AND DISCUSSION

In order to compare the algorithms in terms of accuracy and
speed, the mean square error (MSE) metric, as well as the
computational time of each algorithm for one decomposition
were used. The implementations were done on a Duo Pro-
cessor T7500 with 2048MB RAM. The Bootstrap hypothesis
test was applied to estimate the significant differences among
the methods. This test was chosen due to the fact that it is a
non-parametric significance test and thus it does not assume a
Gaussian distribution for the data. Furthermore, the number
of MoGs used for the variational Bayesian ICA was fixed to
5 mixtures, although the experiment was also performed us-
ing 3, 4, and 7 mixtures. Due to the fact that there were no
significant differences, the results will be presented for the
case of 5 MoGs. Finally, regarding the RLS adaptive filter,
the parameters were set up in accordance with [1].

In Figure 2, the MSE and the elapsed time values of
the six methods (FastICA, SOBI, RunICA, VbICA, adap-
tive filtering and PCA) are illustrated with box plots. Also,
Table 1 presents the mean + SE (standard error) of each
method. According to the Bootstrap hypothesis test, there
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Figure 2: MSE and elapsed time to compare the algorithms.

is no significant difference among the three basic ICA meth-
ods (FastICA, SOBI and RunICA) in terms of their MSE,
with p > 0.05. However, there is a significant difference
(with p < 0.05) between FastICA and VbICA, which indi-
cates that there is evidence against the null hypothesis that
the MSE distributions of these two methods belong to the
same population. FastICA outperforms VbICA in terms of
MSE. Furthermore, there is an even more significant differ-
ence between RunlCA and VbICA, with p < 0.01, whereas
there is no difference between SOBI and VbICA (p > 0.05).
According to the same hypothesis test, there is very signifi-
cant difference between all the methods and adaptive filter-
ing, with p < 0.001, but there is no significant difference
between PCA and VbICA (p > 0.05). Regarding the perfor-
mance of the methods in terms of the computational time,
there are significant differences among all the methods, with
p < 0.001 for every combination, apart from FastICA and
SOBI (p > 0.05).

Methods MSE time (s)
FastICA 0.02+£0.003 0.02£0.006
RunICA 0.02+£0.003 0.05+0.008
SOBI 0.02+£0.006 | 0.0240.001
Adaptive RLS 0.24+0.02 | 0.012+0.0004
VbICA 0.03+0.004 0.940.05
PCA 0.04+£0.008 | 0.003 +0.0004

Table 1: Each value is the mean =+ SE for both the MSE and
the elapsed time (in sec).

Finally, the same experiment was repeated by adding
zero-mean Gaussian noise with standard deviation SD = 0.5,
2, and 5 (signal-to-noise ratio, SNR = 20, 5 and 2 respec-
tively). According to the Bootstrap hypothesis test, for any
value of SD, the RLS adaptive filtering and the VbICA were
significantly different from the other methods. However,
there was no significant difference among the rest of the
methods, but they all deteriorated with an increase of SD (see
Figure 3). A difference was also observed regarding the com-
putational time of RunIlCA, which deteriorated as well.

Therefore, taking into account both the significant dif-
ferences (indicated by the p—values) and Table 1, common
ICA techniques (FastICA, RunICA and SOBI) appear to be

the most robust methods, VbICA and PCA are following in
robustness, whereas adaptive filtering showed the poorest be-
havior in terms of accuracy. Improved performance could
probably be obtained if two EOG channels were used in-
stead of one to better describe the EOG artifacts. Neverthe-
less, in terms of computational time, adaptive filtering and
PCA seem to be the fastest, while VbICA appears to have
the slowest behavior. Regarding the conventional ICA meth-
ods, both FastICA and SOBI seem to be faster than RunICA.
In addition, SOBI seems to be the most consistent among
ICA methods since it differs significantly from the rest with
a lower value of SE.

The performance of VbICA is quite poor in comparison
with the other methods due to its large computational com-
plexity. A possible explanation for diverging a lot from the
other techniques, especially the other ICA techniques, is the
fact that VbICA approaches the problem from a probabilistic
point of view (since additional noise is assumed) and it in-
tegrates the decomposition into two parts. More specifically,
the source densities, mixing matrix and noise covariance are
estimated from the observed data and then the unmixing pro-
cedure is inferred. However, the rest of the ICA algorithms
use a maximum likelihood approach to estimate the sources,
but they reconstruct them deterministically, using directly the
pseudo-inverse of the mixing matrix.

A noteworthy limitation of ICA algorithms is that they
perform unsupervised learning and hence, the order of the
estimated sources is random. Therefore, if the order of the
sources has to be retained, another automated routine has to
be implemented, in order to map the sources with their cor-
responding sensors. Obviously, this makes the use of ICA
difficult for real-time applications. Moreover, the artifactual
components have to be selected either manually or by imple-
menting an automated routine. This issue can be solved by
sorting the components in terms of variance maximization
and reject the ones with the highest variance. Another au-
tomated way of artifact detection after ICA decomposition,
is based on sorting the components in terms of power spec-
tral density (PSD) maximization of the lowest frequencies.
According to this technique, components with the highest
PSD in the lower frequencies are excluded. However, the
latter technique is time consuming and can be used only for
off-line applications. Since PCA automatically ranges the
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components based on variance maximization, it is easier to
detect the artifactual components. In particular, the latter are
observed in the main principal components, since they corre-
spond to a greater variance. Obviously, this is not an issue
for adaptive filtering, due to the fact that the denoising is
performed individually for each sensor. Finally, ICA tech-
niques scale the data randomly and hence extra information
is needed in order to identify changes in the amplitude and
sign of the components.

5. CONCLUSIONS

In this paper, subspace projection and adaptive filtering
methods were used to eliminate EOG artifacts in recorded
EEG signals. It was shown that conventional ICA methods
do not seem to differ much in terms of accuracy, whereas
FastICA and SOBI seem to be faster than RunIlCA, SOBI
being the most consistent one. Since they are the most robust
and quite fast, with SOBI having the lowest computational
complexity, they could be used in real-time applications if
the order of the sources is not important, or in off-line anal-
ysis otherwise. The same accounts for PCA which is quite
fast and robust, so it could constitute an effective solution for
both off-line and real-time applications. Finally, adaptive fil-
tering could be also used for real-time applications, such as
BClIs, although it has poorer performance in comparison with
the others, and it would probably behave better by acquiring
both vertical and horizontal EOG signals.

A possible extension to the current study could be to
compare the performance of no-reference artifact correction
algorithms in order to explore their behavior without the
EOG channel. Due to the fact that in many research stud-
ies the EOG reference channel is not acquired, it is quite
challenging to develop algorithms that can identify and re-
move the EOG artifacts. Moreover, the current study could
be further extended in order to include signal decomposition
methods for artifact manipulation, such as wavelet decom-
position and empirical mode decomposition. According to
these techniques, the decomposed signal has to be further
processed in order to manipulate the artifactual components,
by using either fixed thresholding methods or adaptive ones.
The former do not perform well, due to the fact that they do
not consider the properties of the different kinds of artifacts,
since they are based on predefined thresholds. However, the
latter seem quite promising, and it is very challenging to ex-

plore the behavior of adaptive algorithms considering both
time and frequency characteristics of the signal.
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