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Abstract

In this paper we derive convolutional filters for colour

image whitening and decorrelation. Whilst whitening can

be achieved via eigendecomposition of the image patch co-

variance, this operation is neither efficient nor biologically

plausible. Given the shift invariance of image statistics, the

covariance matrix contains repeated information which can

be eliminated by solving directly for a per pixel linear op-

eration (convolution). We formulate decorrelation as a shift

and rotation invariant filtering operation and solve directly

for the filter shape via non-linear least squares. This results

in opponent-colour lateral inhibition filters which resemble

those found in the human visual system. We also note the

similarity of these filters to current interest point detectors,

and perform an experimental evaluation of their use in this

context.

1. Introduction

According to the efficient coding hypothesis, the goal

of the visual system should be to encode the information

presented at the retina with as little redundancy as possi-

ble. From the signal processing point of view, the first step

in removing redundancy is decorrelation, which removes

the second order dependencies in the signal. This princi-

ple was explored in the context of trichromatic vision by

Buchsbaum[3] and later Ruderman [14], who found that lin-

ear decorrelation of LMS cone responses at a point matches

the opponent colour coding in the human visual system.

Spatial decorrelation is also evident in human vision; lat-

eral inhibition operations which decorrelate spatially result

in the well known visual illusion of Mach Bands [12].

Similarly, most successful techniques for interest point

detection in computer vision rely directly or indirectly on

decorrelation. For example, the commonly-used difference

of Gaussian detector [9] is in fact the linear whitening filter

for greyscale images. Similarly, the Harris corner detec-

tor [7] finds points where the local sum-square difference

function, which is inversely related to the autocorrelation,

is peaked in all directions. Comparitively little work has

gone into exploiting colour, although [15] provides a gener-

alisation of Harris corners to colour images, and [5] derives

a colour stable region detector. Using grayscale-only detec-

tors discards potentially discriminating information in the

chromaticity channels, and in the extreme case of isolumi-

nant images, all greyscale detectors will fail in the same way

as naive grey conversion algorithms do [6].

Though spatio-chromatic decorrelation has been ex-

plored in the context of human vision [14] and signal com-

pression [4], the convolutional filters to effect it were not

made explicit in these works. Matrix decomposition tech-

niques such as PCA or ZCA are often used to whiten colour

images [11, 8]. However, these formulations ignore shift

and rotation invariance, leading to a redundant parameteri-

sation. This results in lower fidelity solutions and the risk

of overfitting.

In this work we formulate spatio-chromatic decorrela-

tion as a shift invariant linear operation (convolution), and

solve directly for the filter shape that effects it. This pro-

vides an efficient way to decorrelate colour images. We also

show an application of these filters to colour interest point

detection.

2. Decorrelation and Shift Invariance

A standard approach to decorrelation/whitening is to di-

agonalise the covariance matrix of the signal

C
′ = WCW

T = I, (1)

where C = 1
N

∑N
i=1 xix

T
i is the covariance of the centred

data x, and C
′ is the covariance of x

′ after applying the

whitening transform x
′ = Wx. There are multiple solu-

tions for W; for example, whitening via PCA would project

using W = Σ
−1/2

U
T . The symmetrical solution

W = UΣ
−1/2

U
T (2)

preserves the phase of the input and is called ZCA [1] (U

and Σ contain the eigenvectors and eigenvalues of C). Note
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Figure 1: ZCA for colour images. The rows/columns of the symmetric whitening matrix W are shifted versions of each

other (large images), so the whitening transform effectively consists of a convolution with three colour filters (inset images).

that one can also decorrelate without whitening by multipli-

cation by U
T . The results of applying ZCA to a colour

image covariance matrix sampled from 106 pixels in 1000

images [10] are shown in Figure 1. The three larger im-

ages visualise the rows/columns of W. As can be seen, the

columns are all shifted versions of each other, so that mul-

tiplication by the whitening matrix W is effectively a con-

volution with the 3 colour filters shown in the inset images.

This structure is not explicitly enforced, but arises because

of the shift invariance of image statistics. This motivated us

to explicitly look for a shift-invariant linear operation (i.e.,

a convolution), that whitens colour images.

In addition to shift invariance, images also have rota-

tion and scale invariance. The scale invariance of image

statistics is well known [13], and is observed for example

in the power law distribution of amplitude spectra, A(ω) ∝
1/ω. Rotation invariance may not be exactly present in all

cases, for example, human authored images of man-made

scenes have more energy in the horizontal and vertical di-

rections [16]. However, human images of natural scenes

are almost rotation invariant, and rotation invariance is also

a desirable property in many matching applications, so we

will enforce it here also.

Given shift, rotation and scale invariance, the second or-

der statistics may be encapsulated in a 1-dimensional auto-

correlation function, which measures the similarity of pixels

in any direction, at any scale and at any position. Formulat-

ing our whitening filters as 1-dimensional functions will al-

low us to use a reduced parametrisation, helping to prevent

overfitting, and we will also be able to handle longer range

correlations than possible with PCA/ZCA (e.g. computing

ZCA on 64x64 colour image patches requires factorisation

of a 36,864×36,864 matrix).

2.1. Spatial Decorrelation and DOG

We can whiten a shift-invariant signal I(x) by convolv-

ing with a filter h(x) such that the autocorrelation of the

output equals the dirac delta function. We start by comput-

ing the image autocorrelation function, by sampling the im-

age in a straight line at random positions, orientations and

scales

rI(τ) =
1

N

N
∑

k=1

Ik(x)Ik(x + τ). (3)

Ik(x) represents the image sampled at a random position,

orientation and scale. This is represented for a greyscale

image in Figure 2, leftmost plot. We then find the inverse

filter h(x) which satisfies

rI(x) ∗ rh(x) = δ(x) (4)

where δ(x) is the unit impulse, and rh(x) = h(x) ∗ h(x) is

the autocorrelation of the filter. Equivalently

PI(ω)PH(ω) = 1 (5)

where PI(ω) is the power spectrum of the signal (Fourier

transform of the autocorrelation) and PH(ω) is the power

spectrum of the filter. One could compute H(ω) and thus

h(x) by inverting the square root of the power spectrum,

with suitable priors on the high frequency components of

h(x). Instead, we choose to solve Equation 4 directly in the

spatial domain, solving for the whitening filter with mini-

mum squared intensity error for a smoothed pulse output

h∗(x) = min
h(x)

∑

x

|rI(x) ∗ (h(x) ∗ h(x)) − p(x)|2

+ λ
∑

x

(ρ(x)h(x))2 . (6)

We relax the requirement of complete decorrelation by set-

ting p(x) = g(x; 0, σ2), with a small σ of around 4 pixels.

h(x) is constrained to be symmetric i.e., h(−x) = h(x),
and we apply a weighting ρ(x) that encourages h(x) to

fall to zero as x becomes large (we have used ρ(x) =
(1+(2x/nh)2) where nh is the size of the filter). Equation 6

is solved using standard non-linear least squares solvers and

converges well from any random initialisation.
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Figure 2: Greyscale decorrelation. The difference of Gaussian filter is an effective decorrelation filter for greyscale images.

We solve for a whitening filter (centre-left) that converts the long range image correlations (top-left) to leave only residual

correlations with nearby pixels (centre-right). Adding a prior on the energy and spatial extent of the result gives a DOG like

function (top-right), with less ringing than the unsmoothed version (bottom-right).

The solution is visualised in Figure 2. The image is

convolved with a symmetric filter (centre-left column), so

that the target output autocorrelation is a smoothed pulse

(centre-right column). The solution is well modelled by a

difference of Gaussian function. This result provides some

justification as to why the popular difference of Gaussian

operation (used for example in SIFT [9]) might be a good

one in early image understanding, e.g., interest point detec-

tors – it decorrelates a greyscale input image.

2.2. Chromatic Decorrelation and Opponent
Colours

The RGB colour channels are also strongly correlated,

with overall changes in intensity affecting each channel al-

most equally and making up the majority of the signal en-

ergy. The eigenvectors of the colour correlation matrix also

have strong connection to human vision, as pointed out by

Buchsbaum [3]. If we represent the colour information us-

ing the theoretical LMS (long, medium, short wavelength)

cone responses, the principal components correspond to lu-

minance (≈95% energy), and the opponent chrominance

channels of blue-yellow and red-green (see Figure 3, left).

The eigenvectors of sRGB images are slightly different (see

Figure 3). A smaller, but still large fraction (80%) of

the energy is in an achromatic channel, with colour differ-

ences of red-blue and green-purple making up the remain-

ing decorrelated channels. These results were computed us-

ing 1000+ calibrated images from the McGill Colour Image

Database [10].

The rightmost plot in Figure 3 shows the zero-phase

whitening matrix W = UΣ
−1/2

U
T for the sRGB colour

channels. Note that there are multiple whitening transforms,

corresponding to arbitrary rotations of this matrix.

2.3. Combining Spatial and Chromatic Decorrela­
tion

After having found whitening operations for spatial and

chromatic dimensions separately, it seems natural to inves-

tigate the joint objective, i.e., to find a decorrelating filter

for both space and chromaticity togther. In this case, the

whitening is achieved via convolution with a matrix func-

tion

I
′(x) = H(x) ∗ I(x) (7)

so that each whitened output in I
′ =

[

r′ g′ b′
]

is the

convolution of 3 channel colour filter (one row of H(x))
with the input (∗ denotes matrix convolution), i.e.,





r′(x)
g′(x)
b′(x)



 =





hrr(x) hrg(x) hrb(x)
hgr(x) hgg(x) hgb(x)
hbr(x) hbg(x) hbb(x)



 ∗





r(x)
g(x)
b(x)



 . (8)

The whitened image autocorrelation function is

RI′(τ) = E
(

I
′(x)I′(x + τ)T

)

(9)

= E
(

H(x) ∗ I(x) . I(x + τ)T ∗ H(x)T
)

(10)

= H(x) ∗ RI(τ) ∗ H(x)T (11)

Thus for whitening of the output we require
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Figure 3: Chromatic Decorrelation. Left: PCA of log-LMS cone responses. Centre: PCA of RGB pixel values. Right: ZCA

(symmetric whitening matrix) for RGB pixel values. The lower row shows the combination of the colour space transform

with a spatial difference of Gaussian function.





hrr hrg hrb

hgr hgg hgb

hbr hbg hbb



 ∗





rIrr
rIrg

rIrb

rIgr
rIgg

rIgb

rIbr
rIbg

rIbb



 ∗





hrr hrg hrb

hgr hgg hgb

hbr hbg hbb





T

=





δ(x) 0 0
0 δ(x) 0
0 0 δ(x)



 (12)

where each quantity is a function of x, but this has been

dropped for clarity i.e., rIrr
≡ rIrr

(x) and hrr ≡ hrr(x).
Note that there are actually only 6 colour correlation func-

tions due to symmetry, i.e., the matrix RI(τ) is symmetric.

This could be written more simply as

H(x) ∗ RI(x) ∗ H(x)T = I (13)

where I is the 3× 3 identity matrix. This objective is analo-

gous to PCA/ZCA (Equation 1), but without the redundant

parameters as it explicitly takes into account the shift invari-

ance. Though Equation 13 expresses strict equality, in prac-

tice we solve using a least squares objective for smoothed

pulses, with a prior penalising the overall filter energy as in

Equation 6.

The results are shown in Figure 4. We have shown the

results with a weak prior (lower 3 rows), and a strong prior

encouraging the filter to perform the whitening with most

of it’s energy concentrated towards the origin (top 3 rows).

The filters again take on a difference of Gaussian form rem-

iniscent of 2.1, with colour differences similar to 2.2. Inter-

estingly, the difference of Gaussians for each filter are all at

approximately the same scale, suggesting that they are ac-

tually just DOG filters in a transformed colour space. We

have verified this result empirically by plotting the differ-

ence of Gaussian function in a ZCA whitened colour space

in Figure 3 (right column).

Since the whitening transform derived above alters the

amount of energy in the luminance/colour components, we

experimented with the orthogonal colour decorrelation as

well. We constrained the first filter to be pure luminance,

and ran the same optimisation (see Figure 5). The results

have a similar form to Figure 3 central column – i.e. the

spatio-chromatic decorrelating filters are again DOG filters

in a decorrelated colour space. This agrees with the result

found by Rudermann [14] that the spatio-chromatic decor-

relation is a composition of independent chromatic and spa-

tial decorrelations. It also allows the filters to be imple-

mented very efficiently (by a linear transform of the colour

channels, followed by seperable convolution and subtrac-

tion).

3. Colour Interest Points

As noted previously, grayscale decorrelation is an effec-

tive operation for interest point detection. In the following

section we test our colour decorrelation filters as colour in-

terest point detectors. Following Lowe [9] we find inter-

est points where the DOG function is maximised in scale

and space. After applying the linear transforms introduced

in the previous section, we compute a Laplacian pyramid

with 3 scales per octave and a maximum of 8 octaves. Ex-

trema are localised by finding maxima in a 3×3×3 region

of scale-space.

In the remainder of this section, we will refer to the

results obtained using the whitening filters of Figure 4 as

wdog and to those obtained using the opponent colour

decorrelation filters of Figure 5 as odog. For comparison
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Figure 4: Colour image whitening filters (wdog). The image autocorrelations (left) are whitened by convolution with three

colour filters (centre-left, right) to give a new signal with small residual spatio-chromatic correlations (centre-right). Applying

a reduction prior to encourage parsimonious solutions results in DOG-like filters with less ringing (top three rows) compared

to solving without the prior (lower three rows).
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Figure 5: Opponent colour decorrelation filters (odog).

purposes, we also compute equivalent results using a stan-

dard DOG detector on a greyscale image (dog) and on each

RGB band separately (rgb), the luminance channel only (w-

b), the red-blue channel only (r-b), and the green-purple

channel only (g-p). We also plot results obtained by choos-

ing points at random (rand) to provide a baseline.

We compute repeatability statistics for our interest point

designs using the Mikolajczyk1 dataset. We eliminated two

classes –“boat” (greyscale) and “ubc” (variable jpeg com-

pression) – deemed irrelevant for this comparison. Since

repeatability increases as more points are added to (reach-

ing 100% when every image point is detected), we fix the

number of interest points extracted from each image to 500

using a non-maximal suppression algorithm [2]. We plot

the cumulative repeatability curves for epsilon in the range

0-10 pixels. In the multi-band cases, we treat all detections

together in the non-maximal suppression step to avoid re-

peated detections.

The results are shown in Figure 6. We see that there is

no clear winner in terms of repeatibility across all datasets

– for example, green-purple interest points give the best re-

sults on “bark” with red-blue performing poorly, yet on the

“wall” dataset this performance is reversed. In half of the

cases greyscale interest points give the best results, whilst in

1http://www.robots.ox.ac.uk/∼vgg/research/affine/

the other half colour interest points give better repeatibility.

However, repeatibility does not tell the full story, as a key

benefit of colour interest points is simply the ability to find

more detections from a given size of image. In this case

the question is: “how much extra information is provided

by the colour channels?”. To test this, we re-ran the exper-

iments, extracting equal numbers of points in each colour

band, and eliminated any duplicate detections between the

bands. Duplicate detections were defined as points falling

within ǫ = 4 pixels of another interest point. The results are

shown in Figure 7. We compare the utility of adding extra

colour bands for rgb and odog points: rgb1: red only, rgb2:

red+green, rgb2:red+green+blue, odog1: luminance only,

odog2: luminance + red-blue, odog3: luminance + red-blue

+ green-purple. The striking result here is that adding extra

interest points in the odog decorrelated colour channels is

much more worthwhile than adding extra interest points in

the independent red, green and blue channels. This can be

explained by the fact that the RGB channels are highly cor-

related, so there is a much larger chance of repeat detections

between the channels.

4. Conclusions

We have demonstrated a framework for explicit optimi-

sation of shift-invariant filters for spatio-chromatic image
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Figure 6: Repeatability on the Mikolajyzck dataset (left-right, top-bottom: bark, bikes, graffiti, leuven, trees, wall). odog:

orthogonal colour decorrelation filters, wdog: colour whitening filters, dog: greyscale DOG, rgb: DOG on each of RGB

channels, w-b: luminance only, r-b: red-blue, g-p: green-purple, rand: uniform random distributed points. Colour DOG

detectors give equal or better results to greyscale in half of the cases.

0 2 4 6 8 10
0

1000

2000

3000

4000

5000

epsilon/pixels

n
u

m
b

e
r 

m
a

tc
h

e
d

 

 

odog1

odog2

odog3

rgb1

rgb2

rgb3

0 2 4 6 8 10
0

1000

2000

3000

4000

epsilon/pixels

n
u

m
b

e
r 

m
a

tc
h

e
d

 

 

odog1

odog2

odog3

rgb1

rgb2

rgb3

0 2 4 6 8 10
0

1000

2000

3000

4000

epsilon/pixels

n
u

m
b

e
r 

m
a

tc
h

e
d

 

 

odog1

odog2

odog3

rgb1

rgb2

rgb3

0 2 4 6 8 10
0

1000

2000

3000

4000

5000

epsilon/pixels

n
u

m
b

e
r 

m
a

tc
h

e
d

 

 

odog1

odog2

odog3

rgb1

rgb2

rgb3

0 2 4 6 8 10
0

1000

2000

3000

4000

epsilon/pixels

n
u

m
b

e
r 

m
a

tc
h

e
d

 

 

odog1

odog2

odog3

rgb1

rgb2

rgb3

0 2 4 6 8 10
0

1000

2000

3000

4000

5000

epsilon/pixels

n
u

m
b

e
r 

m
a

tc
h

e
d

 

 

odog1

odog2

odog3

rgb1

rgb2

rgb3

Figure 7: Number of independent matches on the Mikolajyzck dataset (left-right, top-bottom: bark, bikes, graffiti, leuven,

trees, wall). rgb1: red only, rgb2: red+green, rgb2: red+green+blue, odog1: luminance only, odog2: luminance + red-blue,

odog3: luminance + red-blue + green-purple. Note that the number of independent matches using the decorellating filters is

far higher than independent DOG filters on RGB.
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Figure 8: Colour Interest Points. Decorrelating the colour channels leads to a larger number of independent DOG detections

(401 compared to 343 using RGB in this example). Duplicate detections are shown in red.

decorrelation. Using this formulation, we derived colour

lateral inhibition filters that resemble those found in the

humna visual system. We have also tested our decorrela-

tion filters as interest point detectors, finding that the new

detectors find more independent matches than difference of

Gaussian filters on RGB.
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