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Abstract—The goal of this paper is to investigate features issue is to store audio features instead of raw audio, such
for speech/nonspeech detection (SND) having low linguistic in- that neither intelligible speech nor lexical content can be
formation from the speech signal. Towards this, we present a reconstructed [3]. While such audio features may appear to

comprehensive study of privacy-sensitive features for SND in - . L .
multiparty conversations. Our study investigates three differen be restrictive, there are different applications that wsiticcess

approaches to privacy-sensitive features. These approachare USe only the nonverbal cues in speech for the study of social
based on: (a) simple, instantaneous feature extraction methopds behavior [4]. We refer to these features as privacy-semsjtr

(b) excitation source information based methods; and (c) feat privacy-preserving) features. The term “privacy-sewusitican
obfuscation methods such as local (within 130 ms) tempo- haye different connotations in different areas of compmutin

ral averaging and randomization applied on excitation source Instead of coini ¢ . decided t
information. To evaluate these approaches for SND, we use nstead or coining a new term, in our case, we decided 1o

multiparty conversational meeting data of nearly 450 hours. On follow its use as originally proposed in the speech comnyunit
this dataset, we evaluate these features and benchmark themby Wyatt et al [3].

against standard spectral shape based features such as Mel As an alternative to storing such audio features, one can di-
Frequency Perceptual Linear Prediction (MFPLP). Fusion strate rectly implement an online speech/nonspeech detectioD{SN
gies combining excitation source with simple features show that S .
comparable performance can be obtained in both close-talking and a_ speakgr diarization system on a portable d.eV|ce and
and far-field microphone scenarios. As one way to objectively Store information based on the output. A caveat of this neetho
evaluate the notion of privacy, we conduct phoneme recognition though is that the set of possible tasks using subigh-level
studies on TIMIT. While excitation source features yield phoneme jnformation is then limited by the output of the diarizatigys-
recognition accuracies in between the simple features and the tem. For example, other sources of information, not inigdi

MFPLP features, obfuscation methods applied on the excitation th bal inf fi h fi | lopati
features yield low phoneme accuracies in conjunction with SND € verbal Information, such as emotion, language, lonatio

performance comparable to that of MFPLP features. and the background acoustic scene information are indyitab
. . lost. Another challenge concomitant with such a designahoi
Index Terms—Privacy sensitive features, speech/nonspeech de-. . SN .
tection is the computational limitation imposed by the portableicev

Towards this end, a sound sensing framework is proposed for
the limited resources available on the Apple iPhone [5].
o . An issue inherent to capturing spontaneous conversations
T HE work reported in this paper takes place in the conteyking portable recorders is the necessity of speech process
of modeling face-to-face interaction patterns using MUl techniques, including feature extraction methods, @o b
timodal sensor data [1]. Our work aims to help represent aF?é?atively robust to microphone distances from speakehis T
infer the interactions among people in various formal, semk i contrast to more conventional speech processing tasks
formal, and informal settings. Towards this goal, we wish t@nich work either with close-talking or farfield microphane
capture spontaneous, multiparty conversations usingplert \yhere the distances are either uniformly close or uniformly
_audio re_corders and supplement it with other rich_cqntéxtu@r_ Furthermore, considering the portability of the retess
information such as location, movement, and proximity.  anq the mobility that it provides the wearer, the features al
For the above purposes, recording and storing raw audigeq to be robust to changes in the ambient environment.
could breach the privacy of people whose consent has noj, this context, the full scope of our work aims at in-
been explicitly obtained [2]. One way to address this p§vagestigating robust privacy-sensitive features for taskchsas
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2009 meeting transcription system [8] use SND based on Mminclusions in Section IX.

Frequency Cepstral coefficients (MFCC) and Mel Frequency

Perceptual Linear Prediction (MFPLP) features [9] respec-

tively. While such features have been shown to be robust, a Il. RELATED WORK

potential issue with such features is that both an int@llgi |, yhig section, we present the most relevant work in privacy
speech signal and the IeX|caI'content can be reconstructedsqsitive audio features and in LP residual.

Previous approaches to privacy-sensitive features have fo
cused on either reinterpreting simple, frame-level héigay
[3], [10]) in the context of conversation analysis or compuis  privacy-sensitive features
ing long-term averages of standard spectral features ssich a ) N . .
MFCCs ( [2]) in the context of referencing and indexing large ON€ approach to privacy-sensitive audio cues relies on
personal audio logs. Benchmarking [10] the two sets ofmpﬁtorlng certain statistical pr_opert|es, such as long-texmer-
frame-level heuristics (henceforth callsimple featuresre- 2ages (of the order of a minute) of the short-term spectral-
vealed that the performance of these privacy-sensitiviefies 0ased features [2]. This approach was shown to be effective
with explicit temporal modeling is comparable to the staddai" Scene analysis tasks for referencing large personalbaudi
spectral features such as MFPLP, that do not have the priva@gs [2], [14]. Since speech is perhaps the most informative
constraint. Our subsequent study focusing on the robustfescontent in audio logs, and conversation analysis requires a
these features [11], however, found that there could be # snifi€r temporal resolution of features, in  [15] short-term
gap in performance between the privacy-sensitive and the features based on autocorrelguon were proposed for robust
privacy constrained features mismatchectonditions. speech/nonspeech ;egmentatlon. These features are meant t

In this paper, we investigate two new approaches to privadje Used for detecting speech segments and making them
sensitive representations of audio for SND along with tréhintelligible before storage.
simple features studied in [3] and [10]: (a) excitation seur In the case of automatic conversation analysis, [16] is
information based methods; and (b) feature obfuscatiorcha®robably among the earliest work on features. Here a dyadic
methods such as local temporal averaging or randomizafamn.Conversation analysis is performed using nonverbal cussca
evaluate these approaches for SND, we use multiparty ngeetfif! short-term autocorrelation and relative spectral eytro
data of nearly 450 hours. On this dataset, these approachBgse features were studied with respect to robustness to
are then analyzed on close-talking and far-field microphof@ise, robustness to microphone distance, and robustoess t
scenarios, and benchmarked against standard MFPLP fgatufgvironment. Work reported in  [3] and [13] applied these

The notion of privacy in audio remains Something that @atures to privacy-sensitive, mUltlparty conversatietedtion
difficult to quantify and evaluate. Measures of usability oRnd modeling. The focus of these studies was mainly on
corrupted speech segments [12] could be interpreted assme@@deling the dependencies between speakers in conversatio
to evaluate privacy, with high usability corresponding ol ~ More recently in [10], we reinterpreted four other claskica
privacy. More recently, studies such as [3] and [13] indicashort-term SND features as privacy-sensitive featuregs&h
that the main privacy concerns in audio are the reconshilicti features are energy [6], [17], zero crossing rate [6], [17],
ity of the linguistic information or an intelligible speecin spectral flatness [18], and kurtosis [6]. We also benchntarke
this paper, we present phoneme recognition studies as mel@i the sets of privacy-sensitive features ( [3], [10])ingl
to evaluate this notion of privacy, with higher recognitiorstandard spectral features (MFPLP) used in [9]. Furtheemor
accuracy being interpreted as lower privacy. Features subg efficacy of the temporal context for these features was
as MFPLP can be considered to be less privacy-sensitBlgown, with increases in temporal context yielding improve
since these features yield state-of-the-art phoneme nitomy Ments in performance. A context of about 500 ms was shown
performance. Similarly, simple features could be inteigute to yield performance comparable to standard spectral fesitu
as being more privacy-sensitive. Combinations with eticita in matchedconditions.
source based features and feature obfuscation methodsi@rov Motivated by the fact that real-life conversations are of-
privacy comparable to [3] and [10], while yielding statetbé- ten recorded in various environments, the robustness of the
art SND performance. privacy-sensitive features were evaluatedrniismatchecdcon-

The rest of the paper is organized as follows. Section ditions against the standard spectral features in [11]li€ikp
reviews the literature on privacy-sensitive features andar modeling the temporal context was shown to be useful in
prediction residual based features. Section Ill summarme mismatched conditions as well. Further analysis showet tha
approach. The dataset definition and the annotations,dimgu in mismatched conditions, there is a small gap in perforraanc
the dataset protocol involving the matched, the mismatched comparison with the spectral features.
and the cross-validation setups are provided in Section IV.In this paper, to bridge this gap we investigate two new
Section V discusses the implementation and the notatiorglproaches to privacy-sensitive features: (a) linearigtied
details of the SND system, comprising the features, ti{eP) residual; and (b) feature obfuscation methods such as
classifier, and the combination techniques. Parametectg®ie local temporal randomization and averaging of features; Ob
experiments are discussed in Section VI. We discuss the Slfil3cation methods have been used previously in other aspect
performance and revisit the privacy-sensitive aspectshef tof privacy in sensor data research [19]. We apply these
features in Sections VII and VIII. Finally, we draw someéechniques for privacy in audio.
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B. Linear prediction rESidual SND evaluation A&ﬁrg:‘cgii)to privacy—sensitive features z s
This section begins with a reinterpretation of LP residua é_% g c
as a privacy-sensitive feature. Subsequently, related wor | meengaudo | Standard spectial-shape based feature | SorgrEE
processing the LP residual is examined. Mmstatione 58 3 |e%
1) Privacy-sensitive reinterpretationit is generally known Simple features = "‘;_’ |2
that up to two or three formants are required to synthesize in o N = | g
.. . . JaEnEElE s P
tglllglble speech or to reconstruct the ngmal informat[@0]. . Exctaton source fearegEpresenaton R g g
ur approach to preserving privacy is based on adaptlveIF)r/ivacyevaluation L residual 1o order ©§ = E
filtering out information about these spectral peaks. Thigatset(e) _ s §§ "_gﬁ §§
approach is motivated by the source-filter model [21]. Ol:::zz::;z ‘:mh based features S8 5iles
Linear prediction (LP) analysis of speech [18] assumes thé"" Averaging Ee—5 "
source-filter model and it estimates three components:rn(a) |a T8 s

all-pole model; (b) a residual; and (c) a gain;. The vocatttra
response is modeled by the all-pole model, with the modg§: 1- Block diagram of our approach. A detailed discussibthe figure
. . . .. IS provided in Section Ill.
capacity being determined by the prediction orggr The LP
residual, obtained by inverse filtering the speech sign#éh wi (b): Privacy-sensitive and the standard spectral features
the all pole model, can be considered to be privacy-presgrvi (MFPLP) are derived from these datasets. Some issues with
This approach to privacy-sensitive features was adopted P residual are the choice of parameters, namely, its repre-
speaker change detection in [22]. sentation, the LP order, and the temporal context. Section V
2) Related work on LP residuaDepending on the predic- describes parameter selection experiments with theserésat
tion order, the LP residual contains mostly information @botheir combinations, and the notations in detail.
the excitation source of the speakers [23]. It has been showr(c,d): A separate multilayer perceptron (MLP) classifier is
that humans can recognize speakers by listening to the {rRined for each feature set for the speech/nonspeeclifidass
residual signal [24]. Previous works have exploited thist Ftion task, similar to [9]. This allows us to compare the peiva
example, the LP residual has been used as a complimentegysitive features with the reference MFPLP features, by wa
feature for speaker recognition in [25], while [23] expfoit of eliminating the effects of the classifier. MLP classifier
speaker information in the LP residual at segmental levids (ijs also useful in studying the effect of temporal context.
- 30 ms) using an autoassociative neural network. Section V-B provides more details on the MLP classifier, ehil
Another property of LP residual is that it has been shown ®ection VIl presents the SND results.
be relatively robust to additive noise [26]. The Hilbert elope (e,f,g): The notion of linguistic privacy is quantified using
of the LP residual is processed in [26] using covariangshoneme recognition studies on the TIMIT dataset. These
analysis and the periodicity property of this signal wasntheexperiments are performed with the hybrid HMM/MLP sys-
used in a voice activity detection task. tem [31]. The trained MLP classifiers used for SND are differ-
The importance of long temporal contextZ50 ms) for ent from the ones used in the hybrid HMM/MLP system. The
spectral-shape based features such as MFCC is well knowngabneme recognition results with these features are pedvid
ASR [27]. This has also been exploited for SND in [9]. In thi$n Section VIII.
paper, we investigate whether information at such temporal
scales exist in LP residual. IV. SND DATASET
Our work extends these previous works in several WayS- an issue in comparing the features is a lack of standard

Unlike [25] we use LP residual independent of the all-pol . :
model parameters. Secondly, in contrast to [26] and [23] V\géa tasets, due to privacy concerns, For this study, we used th

investiaate and then exploit lond temporal context in LBdes Scenario that was constructed in [10]. We likened the audio
) P 9 P .~ collected by subjects wearing portable audio recorders to a

P : 1E‘Ihones. In contrast to the traditional meeting room apiitina

LP residual in farfield microphone data is then evaluated. Ihere given the close-talking microphone signal, therase

the best of our knowledge, the present paper is the first work .

that exploits LP residualgin a priF\)/acy-ser?siEve SND scinar generally lies in the speech segments of the wearer ( [9), [6]
in conversation analysis, speech segments that are spgken b

I1l. OUR APPROACH the other speakers are also of interest. As a consequence of

Before we present the SND system and the results, \}\pés, crosstalk segments in the meeting room tasks are now

summarize our overall approach. Figure 1 illustrates thisgi COnsidered as speech segments.
a block diagram. These blocks are described below. )

(a): Evaluating privacy-sensitive features for speech dé Dataset and Annotations
tection entails a comparison of SND performance as well The dataset and annotations were used from our setup
as an evaluation of linguistic privacy. To evaluate SND wim [10]. The audio data consists of individual close-tatkin
construct the scenario using multiparty meeting data, hamenicrophone recordings from meetings. Groundtruths ara the
the NIST [28], AMI [29], and ICSI [30] databases. Section I\Mlerived by merging the speech-activity annotations for the
discusses the SND datasets in more detail. individual microphones, that are closer than a fixed time
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Fig. 2. A close-talking microphone recording of a meeting segmeéth the speech/nonspeech annotations on the four tidisieg microphone channels
and their merged annotation. Dark regions indicate speaghe®s and light regions indicate nonspeech segments. @-tdtking microphone recording (b)
merged annotation using the annotations from all the char(oglSpeaker 1's annotation - appears to be silent in thisierg(d) Speaker 2’s annotation for
the same meeting segment with respect to her microphone regdgiispeaker 3's annotation for the same meeting segment vgpleceto her microphone
recording - in this case, the signal in Fig. 2(a) was used talyze this annotation (f) Speaker 4's annotation for the sar@eting segment with respect to
her microphone recording.

interval of 100 ms. Since manual annotations are not camgistA, and | correspond to NIST, AMI, and ICSI datasets respec-
( [32]), forced-alignment was used to derive the annotatiotively. The 3 matched setups on NIST, ICSI, and AMI used in
for the individual microphones. More details on the forced10] are NN14, AA25, and 1136 respectively. Similarly the 6
alignment procedure used to derive the annotations can raesmatched setups used in [11] are NA15, NI16, AN24, Al26,
found in [9]. IN34, and 1A35 respectively. The cross-validation setups a

A figure illustrating this merging process for a close-tatki Al23 and IA32.
microphone recording of a meeting room speech segment is

. ; : TABLE |

_Shown Flgure_ 2. Each §peakers SND annotation for that mee'['Train and test datasets for matched, mismatched and craatation
ing segment is done with respect to whether the speaker spok@eriments. Numbers in the brackets denote the numberuos land the

or not during that segment. During this meeting segment, numbers outside denote the notation for that dataset.
speakers 1 and 2 (Figure 2(c), (d)) appear to be mostly silent FeatiresI NIST T &I oS
The annotation corresponding to the wearer of this micrapho Train 1) [ 215 | 3@8)
is shown in Figure 2(e). The merged groundtruth using the Test 4(52) | 5 (50) | 6 (350)
process discussed above is shown in Figure 2(b).

The close-talking microphone recordings, sampled at V. SND SYSTEM

Ilgls<ll-|z,30were E{)_btalned frgn: N_II_SJ Ezf]i (’j"\:” [Zd%] and As part of the experimental setup, all SND systems have
[30] meeting room data. € fotal data adds up 1ﬁ?ﬁen constrained to have access to audio from one channel

10t0 r;ours Oft n;(_aegln% SpleTCh stpﬁl(nmng 123. meet;jn%s. %y. This section discusses the implementation and tha-not
actual amount of individual close-talking recordings adpso ional details of the features, followed by the MLP classifie

t
nearly 450 hours with NIST, AMI and ICSI contributing 52, 50 - - )
and 350 hours respectively. The training data from NIST, A ombinations of classifiers and features are discussed next

and ICSI amounted to 9, 15 and 48 hours respectively. Using

the groundtruth defined above, the overall ratio of nondpeet: Features

to speech was around 1:4.2. The amount of near-field speeclll the features are extracted by pre-emphasizing the figna
is considerably less than the amount of far-field speech wind then using a 25 ms analysis window with a 10 ms shift.
overall ratio of nonspeech: near-field speech:far-fieldeshe 1) Simple features:The first set of simple features are

being 1.4: 1: 4.8. spectral flatnessS], energy E), zero-crossing rateZ), and
kurtosis K) [10]. In our implementation of short-term spectral
B. SND dataset protocol flatness, it is derived as the ratio of the energy of the LP mode

Using the dataset described earlier, we construct matchedor (residual) to the energy of the original signal [18heT
mismatched, and cross-validation conditions. The natatioenergy feature is implemented as short-term log-energhef t
for these conditions are described in Table I. Numbers ésidignal, while kurtosis feature is implemented as the stesrtx
brackets denote the number of hours and the numbers outsiimal kurtosis. We us8EZK and EZK to denote the set of
denote the notation for that particular dataset. all four features and the set of three features respectively

For a training dataset and a test datasgtfrom the table,  The features proposed in [3] and [16] are the non-initial
we use the notatiod N or AorI}{N or AorI}xy, where N, maximum of the normalized autocorrelation, the number
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of autocorrelation peaks, and the relative spectral eptro8. MLP based SND Classifier
The relative spectral entropy feature is implemented as thep separate MLP classifier was trained on each feature

Kullback-Leibler divergence between the normalized powggt for speech/nonspeech targets based on the groundiruth

spectrum of the current frame and a normalized average Qffinition described in Section IV. The minimization of cses
the power spectra of the previous 500 frames [16]. ABL  eniropy was used as the training criterion. All the features

denote this feature set. are normalized to zero-mean and unit variance at the input
Based on our previous works ( [10], [11]), the temporadf the MLP using the global means and variances estimated
context is fixed at 51 frames and the features are augmenggdthe training data. The number of hidden and input units
with their first and second derivatives. The dimensioresiti in the MLP classifier trained for simple features and MFPLP
of SEZK EZK, and AH for each frame are 12, 9, and Yfeatures were identified by model selection in our previous
respectively. studies ( [10]). For the LP residual features these expettisne
2) Linear prediction residual based feature#/e now look were conducted on the cross-validation set. These resdts a

at some issues in using LP residual as features. summarized in Table I1.

(a) Choice of representation of the LP residu@he repre- TABLE II
sentations of the residual studied are: a real-cepstruresep- Number of input and hidden units for each MLP.
tation ([25]) with a fixed number of 12 coefficients along with _
co and a MFPLP representation with 12 coefficients along wit .g.eat“res Input Hidden
. . . imple features 51 x dim of feature 200

co. The MFPLP representation is computed using HTK [33]"p residual features || {1,31,51, 101} x dim of feature| 50
These features are augmented with delta and acceleratjorP residual with sim- 51 x dim of feature 100
coefficients. Feature selection experiments investigatine | Pl features :

. . . . L . MFPLP features 31 x dim of feature 50
choice of representation is presented in detail in Sectibhnv
either representation, with delta and acceleration coefis,
the dimensionality of the LP residual features for each &dsn
39. Delta and acceleration coefficients of LP residual ¥eld ¢ classifier and feature combinations

a small gain in performance on the cross-validation data. - N . . .
) . . Classifier combination techniques [35] typically combine
(b) LP order: We study LP residual by varying the predic-

) ’ either the decisions made by the individual classifiers sigas
tion orders from 2 to 20. The choice of the LP order presentseight to each classifier's evidence to exploit compleamgnt
a tradeoff between privacy and SND performance. information. These weights can be either estimated sthtica
(c) Temporal contextThe efficacy of temporal context for or dynamically. In our experiments, we explored one staiit a
LP residual with respect to the SND task is studied by varyinghe dynamic classifier combination technique: (a) Averggin
the temporal support from no-context (1 frame) to 101 frameise weights - static weighting (b) Inverse entropy weigtin

(with 50 frames for both left and right context). dynamic weighting. However, from our earlier paper [11] and
3) Temporal obfuscation approachThe two obfuscation from the experiments performed for this paper, it was olexrv
methods studied are: that averaging the weights performed consistently bed@in

(a) Local temporal randomizatiorEeature vectors within a thiS paper, for the sake of clarity, we only present our ssdi
block of size (V = 1, 5,9, 13) are shuffled. A uniform pseudo- 0N averaging the weights. . _ .
random number generator was used to shuffle the frames in thE€ature-level combinations are also studied to investigat
block. It can be noted that a randomization™fframes could the possibility of exploiting the correlation between feas.
result in two successive frames being separated By — 1) To this end, feature-level combinations of the LP residual
frames (equivalentl- (N — 1)- 10 ms). We chose block sizeshased features and the simple features are investigated.
up to 13 frames because results in [34] indicate that phoneti
information in the speech signal up to 230 ms can be exploited Notations

for phoneme recognition. For the discussions that follow in the remainder of the paper

(b) Local temporal averagingieature vectors within block e notations for the feature sets, the MLP based SND systems
of size (V = 1,5,9,13) are averaged. These methods argnq the combinations are summarized in Table Iil. In thestabl
applied to MFPLP and LP residual based features. the notationF(z) stands for an MLP based system trained

4) Spectral-shape based features (MFPLA)e 12 MF- for a feature (or a feature set) For example,F(E;) is an
PLP coefficients along witle, are computed using HTK. In MLP based system trained on energy with no context but with
addition, log-energy and signal kurtosis are extractedtaDedelta and acceleration coefficients. Similafy(EZ K5,) is an
and acceleration coefficients are then appended. In [9$etheMLP based system trained on energy, zero-crossing rate, and
features were augmented with a set of cross-channel baged kairtosis with 51 frame context and with delta and accelenati
tures. Since we use each microphone channel independerttefficients. To explicitly indicate feature-level comaiions
we drop the cross-channel based features, while we retiainadlsimple features with LP residual based features, we wse th
the other features. We use the notatMRPLP to denote this notation:F'(x,y). For exampleF'(LPR85,, EZK5;) denotes
feature set. The total dimensionality of this feature seefich a feature-level combination of the individual featulegBR8
frame is 45. and EZK using 51 frame context.
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TABLE IlI
Glossary of notations and their definitions.

Notations I Dim | Definition ]
Feature sets
EZK 9 energy, zero-crossing rate, and kurtosis (with delta ameélatation coefficients).
SEZK 12 spectral flatness, energy, zero-crossing rate, and ksrfagith delta and acceleration coefficients).
AH 9 non-initial maximum of the normalized autocorrelation, theniwer of autocorrelation peaks and the
relative spectral entropy (with delta and acceleratiorffaents).
MFPLP 45 MFPLP representation of signal with energy and kurtosis waithl delta and acceleration coefficients.
LPRS8 39 MFPLP representation ai*" order LP residual with delta and acceleration coefficients.
MLP based SND systems based on (individual and combinations of features):
F(E1) 3 energy with no context (with delta and acceleration coeffits).
F(Zy) 3 zero-crossing rate with no context (with delta and accét@racoefficients).
F(Ky) 3 kurtosis with no context (with delta and acceleration coffits).
F(FEs1) 153 energy using 51 frame context (with delta and accelerati@fficents).
F(Zs1) 153 zero-crossing rate using 51 frame context (with delta anélacation coefficients).
F(Ks1) 153 kurtosis using 51 frame context (with delta and acceleratimeificients).
F(EZKq1) 9 EZK features using no context (with delta and accelerationficosts).
F(EZKs1) 459 EZK features using 51 frame context (with delta and accelerati@fficients).
F(SEZKs1) 612 SEZKfeatures using 51 frame context (with delta and acceleratomfficients).
F(AHs1) 459 AH features using 51 frame context (with delta and acceleratimfficients).
F(LPR851) 1989 MFPLP representation of LP residual of prediction order $haiss1l frame context (with delta and
acceleration coefficients).
F(LPR851,EZK51) 2448 MFPLP representation of LP residual am¥K features using 51 frame context (with delta ahd
acceleration coefficients).
F(LPR851,SEZKs51) 2601 MFPLP representation of LP residual a®EZK features using 51 frame context (with delta ahd
acceleration coefficients).

F(MFPLP3;,DA) 403 MFPLP representation of signal with 31 frame context and outhdelta and acceleration coefficients.
F(MFPLP31) 1209 MFPLP representation of signal with 31 frame context and wgla and acceleration coefficients.
F(MFPLP31, EK, DA) 465 MFPLP representation of signal with 31 frame context withrgpeand kurtosis without delta and

acceleration coefficients.
F(MFPLPs31,EK) 1395 MFPLP representation of signal with 31 frame context withrgneand kurtosis and with delta and
acceleration coefficients.
C(LPR851,EZK51) 1989, 459 combination of F(LPRR) and F(EZKs1) using equal weights with 51 frame context.
C(LPR851,SEZK51) 1989, 612 combination of F(LPRS) and F(SEZK51) using equal weights with 51 frame context.
C(LPR851, AH51) 1989, 459 combination of F(LPRS) and F(AHs:) using equal weights with 51 frame context.
C(LPRS851,EZK51,AHs1) 1989, 459, 612 combination of F(LPRS), F(EZKs1), and F(AHs1) using equal weights with 51 frame context.
F(LPR8‘5“1””) 1989 averaged MFPLP representationld?R8features over a block of frames using 51 frame context.
F(LPR8L®) 1989 randomized MFPLP representation I0PR8 features over a block aof frames using 51 frame context
(both train and test).
F(LPRBQII 1989 randomized MFPLP representation I0PR8 features over a block af frames using 51 frame context
(only test data).

We useC(x,y) to denote a system obtained by combiningrediction order; and (c) effect of temporal context on LP
the output of individual MLP systems based on features residual. These studies were performed on the cross-tialida
andy using classifier combination. For example, the systeset, namely, Al23 and IA32. The optimal hyperparameters are
C(LPRS8;1,EZK5) does a classifier combination of thefixed for later studies in Section VII and VIII.
individual systemsF(LPRSs,) and F(EZKs,).

A. Representation of LP residual

E. SND evaluation measure . . . .
. . We study the 2 choices of representations of LP residual dis-
For evaluation of SND, we use the area under the receivey,

. h istics (AROC . | ssed in Section V-A2: MFPLP and cepstral representation.
operating ¢ ar.acterlst]cs ( )curve as a meF“C to gta u Figure 3 shows the comparison between the 2 representations
speech detection, as in [6], [10], [11] . The receiver opegat

o . ; ! with two different temporal contexts - no context and 51
characteristics (ROC) curve is plotted by varying the dilee frames context on the Al23 dataset. It can be observed that
threshold on the posterior probability estimates provitgd

MFPLP representation yields a better performance with both
the SND MLP. A value of50% for the AROC indicates a P Y b

. temporal contexts. This trend was observed on IA32 dataset
random performance and value t#0% indicates a perfect

e . as well.
classification. Furthermore, this measure was selectetiato t

the evaluation measure is not biased towards a prior distrib o
tion of speech and nonspeech. B. Prediction order
We now focus on the MFPLP representation in Figure 3 and
VI. PARAMETER SELECTION FOR FEATURE EXTRACTION  jnyestigate the choice of LP order. As the prediction order
BASED ON LINEAR PREDICTION RESIDUAL increases, the all pole model approximates the envelope of
We now conduct studies on the parametrization of L#e short-time power spectrum better. Consequently, we see
residual: (a) choice of representation of LP residual; (B) La drop in the performance for SND as the prediction order is
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Fig. 3. Choice of representation of linear prediction residual o22dataset. Fig. 4. Effect of temporal context on the MFPLP representation oédr
The two representations of the residual studied in this pape cepstrum prediction residual on Al23 dataset. This plot shows foudfedént temporal
and MFPLP. The x-axis is the linear prediction order and ysais the SND contexts - no context, 31 frame context, 51 frame context, 41 frame
performance in area under the receiver operating curve (8RCrhis figure context. The x-axis is the linear prediction order and ysais the SND
also compares the two representations with two differemipiral contexts - performance in area under the receiver operating curve (&8RO

no context and 51 frame context.

increased. We note that the LP residual contains both nrageli VII. SND PERFORMANCERESULTS

and excitation errors. As the LP order increases beyond 10,

the contribution of the error in the residual signal is mginl This section presents the results for simple features and
due to the excitation error component. excitation source features on matched and mismatched con-

The vocal tract system is typically characterized by ufitions. Further analyzes are performed on close-talking a
to five resonances in the 0 to 4 kHz range. An LP ordéar-field microphone recording scenarios. Feature-leve a
in the range 8 to 14 can model between 2 to 5 formangassifier-level combinations are also investigated. Thet n
Revisiting the performance versus privacy tradeoff, an L$ection VIl discusses phoneme recognition results to tifyan
order of 8 seems appropriate for the SND task, since tREvacy. As a means to enforce stricter privacy on excitatio
first two formants are important for synthesizing an inggtile ~ source features in terms of phoneme recognition rates, eve th
speech signal [20]. discuss the obfuscation methods.

The results are reported in Table IV for NIST, AMI, and
ICSI meeting data. In the discussion that follows, N, A, and
| refer to NIST, AMI and ICSI datasetsd — B refers to

Figure 4 compares the performances when the tempot system being trained on a dataset A and being tested on
context of the LP residual features is increased. This pldtdataset B. The dataset protocol, mentioned in Section, IV-B
shows four different tempora| contexts - no context, 31 ﬁarﬂs also mentioned for the respective columns in the table.
context, 51 frame context, and 101 frame context. A substan-The second column lists the overall performance of each
tial gain in performance can be observed when the temposgistem. We observe that the combination of simple features
context is increased from 1 frame to 31 frames. In generglelds benefit over individual systems, with exception of th
there is a small gain for most LP orders when the contextasldition of spectral flatness tB6(EZK5;) [11]. LP residual
increased from 31 frames to 51 frames. An increase in contéxdsed systems yield better performance than simple feature
from 51 frames to 101 frames does not yield any gain. Fetowever, combinations of simple features with LP residual
F(MFPLPs, EK), on the other hand, we observed that thgield substantial gain in performance. For example, the bes
performance saturates at around 31 frames. This obsewvatierforming simple feature based syste®EZ K51, AHs1)
is consistent with studies in [9]. These trends were obskerve yields 83.4% while the best performing system with LP
on IA32 dataset as well. residual, C(LPRS851, AH5;), yields 86.3%. Furthermore, we
see that this system gives comparable or better performance
than F(M FPLPs;, EK) (85.0%). We note that the addition
of delta and acceleration features, in addition to energy an

To conclude this section, we fix the values of the followingurtosis, yields gains td'(M FPLPs, DA).
hyperparameters: (a) LP residual representation is MFEYP; We now further analyze the features in both matched and
LP order is 8; and (c) Temporal context is 51 frames. mismatched conditions.

C. Temporal context

D. Selected parameters
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TABLE IV
Performance of features (in percentage of area under RO®) avicontext of 51 frames, in matched and mismatched conditibhe second column lists the
overall performance of each system. N, A, and | refer to NM¥I, and ICSI datasetsd — B refers to the system being trained on a dataset A and being
tested on a dataset B. The table is grouped into blocks ohpyhsensitive and non privacy-sensitive features. Foheamumn and for each block, the best
performance is highlighted in bold. The dataset protocantioned in Section IV-B, is also mentioned for the respeatblumns in the table.

Features All datasets N A | N—A | N—lI A—N | A=l I—-N | I=A
NN14 | AA25 | 1136 NA15 | NI16 AN24 | AlI26 IN34 | 1A35
Performance Matched conditions Mismatched conditions
Summary
Privacy-sensitive features
F(EZKs51) 80.5 84.1 90.8 | 82.0 82.0 75.5 86.0 80.3 825 | 86.7
F(SEZKs51) 79.4 84.0 91.5 81.5 79.7 715 86.7 80.6 83.6 87.2
F(AHs) 81.3 83.3 90.3 | 85.7 86.0 75.7 85.3 78.9 83.6 | 88.1
C(EZKs1,AHs1) 83.4 86.0 91.5 86.2 87.2 78.1 87.5 82.7 85.0 89.1
F(LPR851) 84.8 83.0 90.9 | 89.0 84.5 79.6 83.4 85.3 83.3 | 87.8
F(LPR851,SEZKs51) 84.7 86.7 91.3 | 88.9 85.6 79.0 86.7 84.1 86.0 | 87.6
F(LPR851,EZKs51) 85.2 86.1 91.1 89.5 84.2 80.2 86.6 84.5 84.9 88.4
C(LPR851,SEZKs51) 85.0 86.8 92.1 88.3 86.9 79.2 87.0 85.3 85.5 89.3
C(LPR851,EZKs51) 85.4 86.7 91.8 88.6 87.2 81.1 86.9 84.6 85.1 89.1
C(LPRS851,AHs1) 86.3 86.1 91.8 89.8 88.4 82.0 86.4 86.1 85.1 89.8
C(LPR851,EZKs1, AHs1) 86.0 87.5 92.0 88.9 88.7 81.8 87.8 85.4 86.0 90.0
Non privacy-sensitive features
F(MFPLP3;,DA) 81.8 83.0 91.6 | 89.8 82.9 65.6 85.5 86.8 84.3 | 89.7
F(MFPLPs;) 83.6 83.4 91.4 | 90.7 85.3 71.5 85.1 86.4 85.0 | 90.2
F(MFPLP3;, EK, DA) 83.0 846 | 911 | 879 849 | 735 | 865 | 84.8 || 843 | 884
F(MFPLPs31, EK) 85.0 84.5 91.6 | 89.9 87.4 77.2 86.1 86.3 85.3 | 90.0
A. Analysis on matched conditions B. Analysis on mismatched conditions

From Table 1V, it can be seen that the performance of theFor the mismatched conditions, it can be seen that
LP residual based SND system with a context of 51 framdbe LP residual based SND system is generally bet-
denoted byF(LPRS8s;) is slightly less thanF(EZKs,), ter than F(EZKs ) and F(SEZKs;). The comparison
F(SEZKs,), F(AHs;) and F(MFPLPs;;,DA) for the with F(AHs,) and F(MFPLP3;, DA) is more mixed for
NIST dataset. On the AMI dataset, all the features are cofi{ LPR8s;).
parable. Whereas, for the ICSI dataset, the LP residual isCombining LP residual with SEZK at feature-level
significantly better (at leasto) thanEZK, SEZK andAH vyields a small, if any, gain in performance. Compari-
and it is comparable t&'(M F'PLPs;, DA). son between?(LPR8s5,, EZKs5,) and F(LPRSs5,, SEZK)

Next, we consider the feature combination studies. Table Bystems yields mixed results. Similar to matched con-
shows that on matched conditiods(LPR851, SEZ K1) and ditions, F(LPR85,,SEZKs) and F(LPR851, EZKj5;)
F(LPRS8s1, EZK5,) yield superior performance in compar-yield superior performance in comparison with EZ K1),
ison with F(EZK5,), F(SEZK5,), and F(AHs,). These F(SEZKs,), andF(AHzy).
systems are comparable with the systems baseti/ 6h° L P In contrast to feature combination methods, the classifier
on all the three datasets. combination methods typically yield a bigger and a more

Combining eitherAH or EZK features with residual basedconsistent gain. Furthermore, from Table IV, we observé tha
features through classifier combination scheme yieldslaimisimilar to feature combinations,(LPRS851, EZK5;1) yields
results. In matched conditions combining ba@thl and EZK mixed results in comparison withtC'(LPR851, SEZ K51 ).
with the residual based features through classifier contibima This shows that the addition of the spectral flatness measure
methods does not yield consistent improvements over comtbes not add significant complementary information to the
nations with just one of the feature sets. classifier. Combining eitheiH or EZK features with residual

We now analyze the performance 8f FPLP features. based features through classifier combination schemedsyiel
It can be noted that the addition of delta and acceleratisimilar results.
coefficients or energy and kurtosis t6(M FPLPs;, DA) Unlike the matched conditions, combiniidH with residual
does not increase the performance significantly. In matchedsed features appears to be better than combm#ig with
conditions it appears that simple spectral based systeesidual based features through classifier combinatiorh-met
F(MFPLP3;,DA), is sufficient for state-of-the-art perfor-ods. For example, on the-Al column, C(LPRS85;, AHs;)
mance. yields a performance 086.1% while C(LPR851, EZKj51)

Finally, the best performance for the privacy-sensitive-feyields a performance o84.6%. Furthermore, unlike the
tures on the NIST, AMI, and ICSI datasets &e5%, 92.1%, matched conditions, combining all the three privacy-demsi
and 89.8% respectively. The best performances achieved Isystems through classifier combination methods, yields, in
the non privacy-sensitive features on the same datasets gegeral, a more consistent gain in performance than conini
84.6%, 91.6%, and90.1% respectively. We see that both setgust two of them.
of features are comparable on matched conditions. Regarding the performance of the spectral-shape based fea-
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TABLE V
SND performance analysis (in percentage of area under R@@)atched and matched conditions (AA25, 1136). The tabledsmed into blocks of
privacy-sensitive and non privacy-sensitive features.dach column and for each block, the best performance isligigied in bold. The dataset protocol,
mentioned in Section IV-B, is also mentioned for the regpecolumns in the table.

AMI ICSI A—l ICSI dataset
AA25 1136 Al26
Matched conditions Mismatched conditiong Performance
Summary
Features Close-talk [ Far-field | Close-talk [ Far-field || Close-talk | Far-field | Far-field
Privacy-sensitive features
F(Eq) 89.7 74.6 92.4 68.4 92.0 68.4 68.4
F(Ky) 89.6 75.7 92.7 68.2 90.8 68.5 68.4
F(Z1) 64.3 61.9 54.9 51.0 57.0 51.9 51.5
F(Es51) 94.1 86.0 96.0 735 92.8 72.5 73.0
F(Ks1) 94.3 86.9 95.5 74.4 92.2 72.5 73.5
F(Zs1) 88.9 80.0 81.8 67.1 82.0 61.0 64.1
F(EZK) 90.3 77.8 92.0 70.4 89.7 71.0 70.7
F(EZKs1) 95.3 90.2 95.0 79.4 934 78.0 78.7
F(AHs1) 94.9 89.8 96.1 84.1 91.6 77.2 80.7
F(LPRS851) 95.1 90.4 96.1 87.8 94.5 83.7 85.8
C(LPR851,AHs1) 96.0 91.4 97.5 88.5 96.1 84.3 86.4
C(LPR851,EZKs1,AHs1) 96.2 91.7 97.4 87.5 96.1 83.6 85.6
Non privacy-sensitive features

F(MFPLPgl,m) 95.1 91.3 95.4 85.3 954 85.3 85.3
F(MFPLPs31, EK) 94.8 91.4 95.4 88.9 93.2 85.1 87.0

tures, it can be noted that the addition of delta and acd@era Furthermore, even when no context is used, combinations of
coefficients to MFPLP coefficients yields a more consistesingle features yield a bigger gain for the far-field casentha
gain than in the matched condition case. Adding energy atite close-talking case.
kurtosis, also in general, yields improvements. The agidliaf Next, we analyze the performance of systems based on
delta and acceleration in conjunction with energy and lgisto spectral-shape based features. As we had noticed in peeviou
also yields a consistent gain in performance. experiments [10], in comparison with AMI meetings, ICSI
meetings were recorded in a larger meeting room with speak-
ers being farther apart. This results in the signal-to-aoégio
(SNR) of the speech signal of a speaker who is farther from a
In order to gain better understanding, we further analyzfose-talking microphone to be lower. We had hypothesized
the features with respect to close-talking and far-fieldroric that spectral features such @ FPLP handle this case
phones. In general, we expect the close-talking data in thgre effectively. This is indeed observed to be true when
matched conditions to be the easiest, while far-field data we compareF (M FPLPs;, DA) (85.3%) with F(EZKs10)
the mismatched conditions to be the hardest. This was dqre.4%) and F'(Es1o) (73.5%) using the far-field scoring, for
not only to evaluate the privacy-sensitive features in éhefCS| dataset in the matched conditions.
conditions, but also to investigate if the performance galne We also observed thak'(LPRS8s5;), while performing at
to temporal context and due to feature/classifier comtwnati similar performance levels td'(EZKsip) on AMI near
are consistent under all conditions. and far-field evaluations performs significantly better whe
To perform this analysis, the two-class groundtruth for SNBvaluated on ICSI far-field dataset. Furthermore, we see tha
on the test set was split into a three-class groundtrutiseelothe LP residual has complementary information compared to
talking speech, far-field speech, and nonspeech. Closiegal F(AHs;). Also, LP residual performs similar td/ FPLP
groundtruths corresponding to the close-talking micro@so features on the ICSI dataset using the far-field scoring in
were used for generating the three-class groundtruths. R@fatched conditions. Lastly, in matched conditions, forftre
curves are plotted fofclose-talking speecihonspeech and field scoring, combining botAH andEZK with residual based
{far-field speecmonspeech, and the area under the ROCfeatures through classifier combination methods does etd yi
(AROC) is computed. consistent improvements over combinations with jkt
1) Analysis on matched condition§he results are listed 2) Analysis on mismatched conditionsTable V also
in Table V. It can be observed from the table that for apresents the results for the far-field and the close-talkases
single features such as energy, zero-crossing, and ksyrtbsi in mismatched conditions. From the table, we observe aaimil
increase in performance due to an increase in context is mtnend for a single feature such as energy, wherein there is an
significant in the far-field case than the close-talking c&se increase in performance due to an increase in context for the
an example, for energy, due to the increase in temporal xpntdar-field scenario. But it is interesting to note that wheeréhis
the gain in performance is nearly2% in the far-field case no context, the performance 6§ EZ K, ) is similar or slightly
on the AMI dataset, whereas, for the close-talking case, therse than?(E;) andF'(K;) for the close-talking case, while
gain due to increase in context is less thi&h Similar trends it is better than all the three single features for the fddfie
can also be observed for ICSI dataset for the single featurssenario. On the other hand, when there is a temporal support

C. Analysis on close-talking and far-field microphones



10 SUBMITTED TO IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE RBCESSING

TABLE VI
o1 Phoneme recognition accuraégj for MFPLP and LP residual of order 8
-------------------------------------------------------------- for different randomization and averaging block sizes.elainprediction
residual is shown as LPR. Randomization can be performedajoonly test
65 data - second column or (b) both train and test data with ciffé seeds -
next two columns.

§ Block size (V) LPR LPR [ MFPLP LPR
= Clean train Randomized train| Averaging
] Randomized tesf Randomized test
§ 1 53.8 53.8 68.0 53.8
& 5 42.3 44.1 63.7 50.7
9 33.7 35.1 55.0 45.1
13 28.0 29.1 46.1 39.8
. , , . . : EZK (no randomization): 40.8
2 * ° ® Lincar Prediction order 1 0 oo AH (no randomization): 31.2

Fig. 5. Phoneme recognition accuracy for the residual based featuarious .
LP orders on TIMIT. The x-axis shows the LP order while thexigahows A. Dataset for phoneme recognition

the phoneme accuracy iV4). Phoneme recognition accuracy of reference . .
MEPLP features is shown as a red dotted line. Phoneme recognition studies were performed on TIMIT

database (4.3 hours), sampled at 16kHz. Experiments were
conducted excluding the ‘sa’ dialect sentences. The trgini

. . data consists of 3000 utterances from 375 speakers, cross-
of 51 frames,F(EZK3) is consistently better than ENergY alidation data consists of 696 utterances from 87 speakers

based and kurtosis based systems for both the close-talkg}% the test data set consists of 1344 utterances from 168

and the far-field case. ) ) ) speakers. The hand-labeled dataset using 61 labels is chappe
We observe that’(LPR85;), while performing at slightly to the standard set of 39 phonemes [34].
better levels thanF'(EZK519) on close-talking evaluations,

performs significantly better when evaluated on far-fielthda
This along with the observations in the matched cond®- Phoneme recognition system
tions case, strongly suggests that excitation based &satur Features are mean/variance normalized across the training
F(LPRSs;) are robust not only with respect to distance, bufata set. A three layered MLP is used to estimate the phoneme
also robust with respect to mismatched ambient conditionsasterior probabilities. MLP consists of 1000 hidden ynits
This result is supported by robustness studies on LP rdsidaad 39 output units with softmax nonlinearity, represemtin
such as [26]. the phoneme classes. The input layer uses a temporal context
In the A— | mismatched scenario we have chosen fasf 9 frames on the features generated at a frame rate of 100 Hz,
this table, the spectral-shape based features yield the heigh delta and acceleration coefficients. The MLP is trained
performances in both close-talking and far-field scenallés using standard back propagation algorithm by minimizing th
have omitted the other mismatched conditions since thel$rercross entropy error criterion. The phoneme recognition ex-
were similar. LP residual features in combination with dienp periments are performed using the hybrid HMM/MLP system
features, show performance comparablé\fé’PLP features reported in [31]. The phoneme sequence is decoded using the

in other far-field scenarios. Viterbi algorithm, where each phoneme is represented by a
left-to-right, 3-state HMM, enforcing a minimum duratiofi o
VIIl. REVISITING PRIVACY 30 ms. The emission likelihood in each of the three states is

] ) ] _ the same, and is derived from the output of the MLP.
So far we have investigated simple features and LP residual

based features. Before we investigate the temporal obfus-

cation approach, we briefly revisit privacy. To the best df- Privacy as phoneme error rate

our knowledge, quantitatively benchmarking audio feature Figure 5 plots the recognition accuracies with respect to
for privacy has not been studied before in the literaturcreasing LP orders using the phoneme recognition sydtem.
Some possible ways to benchmark linguistic privacy in aud@an be observed that as the LP order increases the recognitio
features could be: (a) human speech recognition rates asfcuracies drop. We note that an increase in LP order by
the synthesized speech from the privacy-sensitive featflle 2 can allow an extra complex conjugate pole pair to be
subjective assessments of the privacy-sensitivity ofufest modeled, possibly modeling an extra formant. Since lower
by human subjects (c) automatic speech recognition ratmsler formants generally carry more linguistic informatio
using the privacy-sensitive features. Since synthesigpggech one could expect the performance to drop when the LP order
using simple features is not trivial, we prefer ASR studias fis increased.

quantifying privacy. ASR accuracies are generally regbrte From Figure 5, LP residual for a prediction order of 8 has a
in the literature using phoneme recognition rates or womhoneme recognition accuracy $3.8%. We remark that the
recognition rates. The latter is more complex for assessipgjoneme recognition experiments using simple featlEg
privacy due to the differences in vocabulary sizes, dieti@s, andAH features, with delta and acceleration coefficients, and
and language models. a 9 frame context, yielded accuracies 45f.8% and 31.2%
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TABLE VII
Performance of averaged/randomized test features (ingmtage of area under ROC) with a context of 51 frames, in ntigdmed conditions. The second
column lists the overall performance of each system. N, A,laefer to NIST, AMI, and ICSI| datasetd. — B refers to the system being trained on a
dataset A and being tested on a dataset B. Rx denotes rarat@mizvith a block sizeV = z. The table is grouped into blocks of reference, averaged, an
randomized (both train and test or test alone) features. &ach column and for each block, the best performance is igiyeld in bold. The dataset
protocol, mentioned in Section IV-B, is also mentioned fer respective columns in the table.

Features All datasets N A | N—A | N—l A—N | A=l I—-N | I—-A
NN14 | AA25 | 1136 NA15 | NI16 AN24 | AlI26 IN34 | 1A35
Performance Matched conditions Mismatched conditions
Summary
F(LPR851) 84.8 83.0 90.9 [ 89.0 845 [ 79.6 83.4 | 85.3 83.3 | 87.8
C(LPR851,AHs1) 86.3 86.1 91.8 | 89.8 88.4 | 82.0 86.4 | 86.1 85.1 | 89.8
C(LPR851,EZK51,AHs1) || 86.0 87.5 92.0 | 88.9 88.7 | 81.8 87.8 | 854 86.0 | 90.0
F(MFPLPs1, EK) 85.0 84.5 91.6 | 89.9 87.4 | 77.2 86.1 | 86.3 85.3 | 90.0
Averaged features
F(LPRS?f’ 84.4 82.4 90.8 89.5 84.8 78.6 82.2 84.9 82.0 87.5
F(LPR8§19 84.2 81.4 90.7 89.2 84.5 78.6 81.5 84.9 81.6 87.1
F(LPR3A) 83.9 813 | 904 | 89.1|] 835 | 786 || 80.8 | 839 || 813 | 873
C(LPR8Z, AHl51) 85.9 856 | 91.7 | 89.9] 881 | 812 || 859 | 854 || 84.6 | 89.6
Randomized{train + tes} condition
F(LPRB?f’ 85.0 83.0 90.7 89.3 83.3 80.6 82.9 85.2 83.0 87.5
F(LPRB?I9 83.9 82.3 90.4 88.4 82.9 78.9 81.8 84.3 82.1 87.1
F(LPR8LI3) 83.3 81.3 | 90.1 | 88.0| 823 | 77.8 815 | 84.0 || 81.4 | 86.2
C(LPR8E AHs:) 85.7 856 | 915 | 894 87.8 | 81.0 || 86.0 | 856 || 845 | 89.3
Clean train condition + randomized test condition
F(LPR85015 84.8 83.1 90.5 | 89.2 84.4 | 79.9 82.5 | 85.0 83.1 | 87.8
F(LPR85019) 84.0 82.3 90.2 88.6 83.7 78.8 81.9 84.1 82.5 87.4
F(LPR8SS) 83.1 815 | 89.9 | 878 829 | 777 || 811 | 833 | 818 | 87.0
C(LPRSE AHs1) 85.6 856 | 915 | 895 87.8 | 80.9 || 859 | 852 || 84.6 | 89.6

respectively. The performance of ari*8order LP residual these methods (randomization, averaging) on LP residual in
(53.8%) lies between that of the simple features and thbe next section.
MFPLP features@8.0%).

E. Analysis of SND performance for obfuscation methods in
D. Enforcing stricter privacy requirements matched condition

Table VI lists the phoneme recognition accuracies for ob- Table VIl reports results for obfuscation methods. For
fuscation methods on LP residual and MFPLP features ftite sake of quick reference, we repeat the results of the
different block sizes. We note here that randomization aan following SND systems from Table IV:F(LPRS851),
performed for (a) only test data - second column in the tabi&(LP R85, AHs,), C(LPR851,EZ K51, AHs1), and
or (b) both train and test data with different seeds - next two(M FPLPs;, EK). We now summarize the SND
columns in the table. The difference between the two stemerformance under three categories in matched conditions.
from the fact that in the second case, the MLP has been traineda) Averaging featuresBoth train and test sets are locally
with noisy targets. It can be observed that randomizeditrgin averaged with various block sizé§. It can be observed that
improves the performance and that as the block $¥zéor for averaging with block size®/ equal to 5, 9, or 13 frames,
randomization increases, the performances of LP residuhl dhere is a small drop in performance in comparison with
MFPLP decrease. the case where there is no averaginy.LPRS:®, AHs,),

Similarly, we observe from the table that local averagindenoting the classifier combination of the system trainee on
also provides privacy through a decrease in phoneme recogviFPLP representation @& order LP residual with 13 frame
tion accuracies as a function of block size, with randonmrat averaging and the system trained BOAHs, ), is comparable
providing correspondingly lower phoneme accuracies thawith the state-of-the-art systemt(M FPLPsy, EK).
averaging. For example, LP residual with 13-frame aveg@gin (b) Randomizedtrain + test} conditions:In this case, we
yields 39.8% while LPR with 13 randomization yield29.1%. train randomized features with the correspondingly symchr

Furthermore, LP residual with a randomization block size @fized groundtruths. The train and test datasets are razédmi
13 yields a phoneme accuracy2sf.1%, which is much lower with different seeds. It can be observed that §F order
than EZK and is also lower tha\H. This shows that while LP residual with a randomization siz& equal to 5 or 9
linear prediction (with varying prediction orders) prog&gla frames, there is no appreciable difference in performance i
degree of control in the allowing linguistic informationrip comparison with no randomization. On the other hand, for
vacy), another approach to control the linguistic inforim@t a randomization size of 13 frames, there is a small drop in
can be exploited through temporal randomization or avaragi performance.

From the table, it can be seen that obfuscation methods on LKc) Clean train condition + randomized test condition:
residual yields lower phoneme recognition accuracies tman In this case, we use the trained MLP nets on the original
spectral-shape based features. For this reason, we patstiunrandomized features with the corresponding unrandammize
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groundtruths and test them on the randomized test data.€nahnalyzed for close-talking and far-field microphone sciesar

NIST and ICSI datasets, there is a drop of abb&t, which To quantify the notion of privacy, we conducted phoneme

is not substantial in comparison with the performance drapcognition studies on TIMIT. Our investigations suggést t

observed in phoneme recognition. Furthermore, in both tH@lowing.

case and in the previous case, combination With features 1) Simple featuresWe evaluated the robustness of two sets

yields state-of-the-art performance. of simple privacy-sensitive features: (a) energy, zerssirg
rate, spectral flathess measure, and kurtosis. (b) Auteleerr

F. Analysis of SND performance for obfuscation methods §{pn @nd spectral entropy based features. Explicitly miogel

mismatched condition thg temporal con.text is useful in matched and mlsmatqhed con
_ditions. For all single features such as energy, zero-orgss

From the Table VI, the performance of the features in m'%fgd kurtosis, the increase in performance due to an increase

matched conditions for the obfuscation methods is analyzg temporal context is more significant in the far-field case

underAt\he sa_me. lcategoges. b d that f . _than the near-field case. Furthermore, combinations oflesing
(2) veraging. t can be observed that for averaging wit eatures yield a bigger gain for the far-field case than the
block sizesN equal to 5, 9, or 13 frames, there is a sma

) ) . _ lose-talking case. Our studies also show that statees&th
_drop n perfo_rmance in comparison with the case where_z th &rformance, comparable to MFPLP features, can be achieved
Is no averaging, except for the-AN case where there Is aby these simple features for the close-talking scenario.

drop of 2.6%. . . . . 2) Excitation source informationCharacterizing the exci-

(b) Randomized{train + t?St}. conQ|t|ons: Unlike the tation source information using LP residual, we showed that
maFched case, for a randomization size of 13 frames, thPl’;\r>‘<aploiting temporal support of up to 51 frames can yield sig-
is, in general, a_performance drop of abat. Qn _the other nificant gains in the performance. The residual based featur
hand, the_ drop in performan(_:e for the combination wAlH while performing at only slightly better levels than simple
features is sma_II (less tha]'% in all case_s). .. features on close-talking evaluations, performs signitiya

(c) Clean train conditions + randomized test conditions; etter when evaluated on far-field data. We also observed

Like t?he g;tc_hed case thereH|s a perform%r.]cet.drop A(:L lit fiat excitation based features are robust not only witheesp
more hart’o In many cases. However, combination w to distance, but also with respect to mismatched conditions

i/rlleld?;c_)mparatble performances to unrandomized case (Imion strategies combining LP residual with simple fesgur
anlzin mos cases). show that state-of-the-art performance can be obtainedtim b

. lize the ad h | I Miatched and mismatched conditions, on close-talking and fa
tion, to normalize the advantage that a larger temporaleotnt ¢ microphone scenarios.

provides SND in the randomization case, we increased t €3) Local temporal randomization and averagirigée inves-

temporal context of features for phoneme recognition exptngted the use of local temporal randomization and aveagi

'mef“sf totﬁ_s mlf{Ch a'sl'h5'1 fra}mgs (perfoanlﬁd n;]odel selectl to 130 ms) on the LP residual features. These approaches
again for this se up\;\./ r']s O?y ecrealsz he P ongme_{eg used a small drop in SND performance. However, combi-
nition accuracies. We therefore conclude that randonuiaati o i,ns of the randomized or averaged features with simple

affects phoneme recognition much more (arodfd) than it o,y reg yield state-of-the-art SND performance at strict

does SND (aroun@?). . rivacy requirements, defined in terms of phoneme recagniti
The second column lists the overal_l performanc_e of eag curacies. These approaches can also be applied to MFPLP

system. We observe that, for obfuscation methods in genetahy o5 However, it was noted that it would yield higher

there is a drop in SND performance for LP residual featureﬁl’]oneme recogniti’on accuracies.

However, this drop in performance is small: for example, 13 4) Putting privacy and SND performance togethate

frame averaging yields a drop in performancetb¥%, and a quantified privacy in audio through phoneme recognitionlstu

13 frame rando_mlza'uon yields a drop n perform_ancali% ies on TIMIT. On the one hand, standard spectral featurds suc
F(_)r the L_P residual systems combined with simple feature‘:% MFPLP yielded, not surprisingly, state-of-the-art #oe
this drop is even lesser. recognition accuracies. On the other hand, simple features
yielded much lower phoneme recognition accuracies. LRI+esi
IX. FINAL DISCUSSION ANDCONCLUSION ual based features yielded phoneme recognition accuracies
Our study investigated three different approaches to gyiva between the simple features and the standard spectraideatu
sensitive features for speech/nonspeech detection (SNDjth the LP order determining the actual performance. Local
These approaches are based on: (a) simple, instantandeature obfuscation methods such as temporal randomizatio
feature extraction methods (b) excitation source inforomat or averaging caused a substantial fall in phoneme recogniti
based methods (c) local feature obfuscation methods sysgrformance, with randomization yielding lower phoneme ac
as temporal averaging and randomization. To evaluate theseacies. SND performance, on the other hand, was rekativel
features, we used the multiparty conversational meetirig danaffected by the temporal obfuscation methods. While it
of nearly 450 hours. On this dataset, we evaluated these fesaknown that the information in the temporal dynamics of
tures and benchmarked them against state-of-the-artrapedhe speech signal can be exploited for phoneme recognition,
shape-based features (MFPLP), on matched and mismatchedever, for SND the combination of results showing the
conditions. To gain further insights, the results were theémportance of temporal context and the relative insengjtiv
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to randomization leads to the conclusion that there is gerhg13] D. Wyatt, T. Choudhury, and J. Bilmes, “Conversationedtion and

more information in the statistics of the frames in the terapo ~ SPeaker segmentation in privacy-sensitive situated speteta,” in
Proceedings of InterspeecB007.

support than in the actual temporal dynamics. [14] D.P.W. Ellis and K. Lee, “Features for segmenting andsilging long-
5) Future Work: We remark that there is a balance between  duration recordings of personal audio,” roceedings of Workshop on
privacy, SND performance, and computational load. While _Statistical and Perceptual Audio Processir&p04.

. . . K. Lee and D. P. W. Ellis, “Voice activity detection in y®nal audio
LP residual and obfuscation based approaches yield S recordings Using autocorrelogram compensation,”’Pimceedings of

performance comparable to state-of-the-art MFPLP feature Interspeech2006.

these features incur an extra computational load to ens{f@ S- Basu, “Conversational scene analysis’ Ph.D. disten, Mas-
. . . hi . sachusetts Institute of Technology. Dept. of ElectricagiBaering and
stricter privacy. We would like to assess this computationa  computer Science, 2002.

load on a portable device. [17] B. S. Atal and L. R. Rabiner, “A pattern recognition apach to voiced-

; roposed phoneme recognition to unvoiced—silen_ce classificatio_n with applications_to s;bet_ecognition,”
In this paper, we have prop P 9 IEEE Transactions on Acoustics, Speech, and Signal Procgs®l. 24,

investigate the comp_lex issue oflgssessir?g privacy in audio p5 201-212, 1976.
Complementary social acceptability studies are needed [18] J. Makhoul, “Linear prediction: A tutorial reviewProceedings of IEEE
determine reasonable norms on measured phoneme accu;adg}/."o'- 63, pp. 561-580, 1975.

. . . L. J. Krumm, “A survey of computational location privacyRersonal and
Our earlier work [22] investigated excitation source bas Ubiquitous Computingvol. 13, pp. 391-399, August 2009.

features for a privacy-sensitive speaker change detetdgk [20] R. Donovan, “Trainable speech synthesis,” Ph.D. diaten, Cam-

imi ; ; bridge University, 1996.
Pre“mmary experiments applymg these methods to spea 1r] G. Fant,Acoustic Theory of Speech ProductiorMouton, Haag, 1960.

diarization show promising performances for both exaiati 25] s H. K. Parthasarathi, M. Magimai.-Doss, D. Gaticaeerand
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