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Abstract
We propose a stochastic phoneme space transformation tech-
nique that allows the conversion of conditional source phoneme
posterior probabilities (conditioned on the acoustics) into tar-
get phoneme posterior probabilities. The source and tar-
get phonemes can be in any language and phoneme format
such as the International Phonetic Alphabet. The novel tech-
nique makes use of a Kullback-Leibler divergence based hid-
den Markov model and can be applied to non-native and ac-
cented speech recognition or used to adapt systems to under-
resourced languages. In this paper, and in the context of hybrid
HMM/MLP recognizers, we successfully apply the proposed
approach to non-native English speech recognition on the HI-
WIRE dataset.
Index Terms: Non-native speech recognition, universal
phoneme set, multilingual acoustic modeling

1. Introduction
State-of-the-art speech recognizers typically use phonemes as
sub-word units. However, training phoneme models is still
a challenging task given the high pronunciation variability of
words (within the same language), as well as the variability
of the acoustic realization of the same phoneme (within and
between languages). In this paper, we propose an approach
addressing some of the issues related to acoustic modeling
of phonemes and apply the proposed approach to non-native
speech recognition in the framework of a hybrid HMM/MLP,
using a Multilayer Perceptron (MLP) to estimate phonetic class
posteriors used in Hidden Markov Models (HMM).

A phoneme set represents the sounds of spoken language
and is specific to a language in the sense that two languages
could share some, but usually not all, phonemes. The creation
of a phoneme set and a lexicon requires linguistic expertise and
resources, which include human knowledge.

To date, ASR studies have mainly focused on the recog-
nition of speech from native speakers, while effectively rec-
ognizing speech from both native and non-native speakers is
still a major challenge. Usually, pronunciation lexicons are cre-
ated by only taking into account how native speakers pronounce
the words. Even then, it is known that acoustic realizations of
the same phoneme exhibit high variability, thus, a considerable
amount of data is necessary to properly train the models. Mod-
eling variability of the acoustic realizations becomes even more
challenging if we have to deal with non-native and accented
speech, the main reason being the influence of the native lan-
guage on the target language sound pronunciation.

In previous work [1], we found that ASR performance on
non-native speech can be improved by pooling resources from

multiple languages via a universal phoneme set. In this paper,
we boost non-native ASR performance by transforming mul-
tilingual class probabilities conditioned on the acoustics into
monolingual class probability estimates of a target language.
More specifically, we first create a universal phoneme set, and
then train universal acoustic models with data from five Euro-
pean languages. Given an entirely new target database, along
with the lexical resources, the relation between the univer-
sal phoneme set and the target phoneme set is learned on the
adaptation data by using a Kullback-Leibler divergence based
HMM, as presented in Section 2. The learned relation can be
seen as a data-driven soft mapping between two phoneme sets
that takes the acoustics into account. During recognition, the
resulting stochastic mapping is then exploited to transform the
conditional posterior probabilities of the universal phonemes
into estimates of posterior probabilities of the phonemes be-
longing to the target database. With less than two minutes of
non-native adaptation data, the proposed system yields signifi-
cant improvement compared to a system trained on native En-
glish.

2. Stochastic phoneme space
transformation

Although humans are able to produce a large variety of phones,
we assume here that all those phones, across speakers and lan-
guages, share a common acoustic space X . None or only very
few languages make use of all phones. Therefore, most lan-
guages only partially cover X .

In ASR, we usually use phonemes as sub-word units to
model human speech production. A phoneme is defined as the
smallest sound unit of a language that discriminates between
a minimal word pair [2]. In contrast to phones, phonemes are
defined in the context of a particular language. Therefore, as
visualized in Figure 1, two different phoneme sets partition the
same acoustic space differently. We consider:

• A source phoneme set Φ consisting of S phonemes sk

• A target phoneme set Ψ consisting of D phonemes dl

where k ∈ {1, . . . , S} and l ∈ {1, . . . , D}
In this paper, we investigate a new approach to map condi-

tional class probabilities of phonemes from a source phoneme
set Φ to a target phoneme set Ψ, given acoustic observations. In
general, we consider the source and target phoneme sets to be
defined in different languages. It is evident that phoneme sets
of foreign languages have a different coverage of the acoustic
space X .

More specifically, we consider the following problem:
given an MLP trained to estimate source phoneme posterior



Figure 1: Two different phoneme sets cover the same acoustic
space differently. Xs(k) and Xd(l) are acoustic subspaces as-
sociated with phonemes sk and dl respectively.

probabilities conditioned on acoustic observations, we would
like to perform ASR on a target database that makes use of a tar-
get phoneme set. No source phoneme transcriptions are avail-
able for the target database. However, we assume that the target
database can be divided into an adaptation and a testing set. For
the testing set, X̂ = {x̂1, . . . , x̂T̂ }, no transcriptions are avail-
able at all, but for the adaptation data X = {x1, . . . , xT }, we
assume access to target phoneme transcriptions, i.e. we assume
that we can associate a sequence of target phonemes to X , but
we are not able to associate a target phoneme to a particular xt.
Therefore, our approach makes use of an HMM where the states
(hidden variables) will be associated with the target phoneme
sequence.

Hence, we can formulate the problem of estimating target
phoneme posteriors conditioned on the acoustic observation x̂t

at time t, the parameters θH of the HMM and the parameters
θM of the MLP as follows:

P (dlt|x̂t, θ) =

S∑
k=1

P (dlt|skt , x̂t, θ)P (skt |x̂t, θ) (1)

=

S∑
k=1

P (dl|sk, θ)P (skt |x̂t, θM ) (2)

where θ = {θH , θM}. The target phoneme posterior estimates,
P (dlt|x̂t, θ), can then be used to perform ASR on the target
database.

Equation (2) was obtained by making the following condi-
tional independence assumptions:

• The conditional probability P (dlt|skt , x̂t, θ) can be seen
as a similarity measure between a source phoneme sk

and a target phoneme dl. It is assumed to be time in-
variant and independent of the acoustic observation x̂t at
time t.

• The source phoneme posteriors P (skt |x̂t, θ) are obtained
with the MLP1 that was previously trained on an inde-
pendent, frame-level labeled, database that may contain
speech of the same language, a different language, or
from multiple languages. Since frame-level labeling is
available for the source database, the source phoneme

1The deployed MLP takes a temporal context of four preceding and
following frames into account. For the ease of notation, we just write
P (skt |x̂t, θ).

Figure 2: The HMM structure is “left-to-right“ and ob-
tained from the target phoneme transcriptions. Each state is
parametrized by a multinomial distribution of dimensionality S.
The transition probabilities are also parameters of the HMM.

posterior probability estimates are considered indepen-
dent of θH .

Since the states of the HMM will be associated with the tar-
get phoneme sequence, we have to estimate P (sk|dl, θ) rather
than P (dl|sk, θ). Applying Bayes rule to P (dl|sk, θ), (2) be-
comes:

P (dlt|x̂t, θ) =

S∑
k=1

P (sk|dl, θ)P (dl|θ)∑D
l=1 P (sk|dl, θ)P (dl|θ)

P (skt |x̂t, θM )

(3)
where the sum in the denominator acts as a normalization fac-
tor. Given P (skt |x̂t, θM ), the estimation of P (dlt|x̂t, θ) thus
requires us to estimate the conditional probability P (sk|dl, θ)
and the prior probability P (dl|θ).

2.1. Estimation of the conditional probability P (sk|dl, θ)

To estimate P (sk|dl, θ), we perform a Viterbi (segmentation-
maximization) training procedure. This requires that we first
forward pass all the adaptation data X through the MLP to
obtain P (skt |xt, θM ). We then use P (skt |xt, θM ) along with
the target phoneme transcriptions, to train the HMM parame-
ters θH . As illustrated in Figure 2, the deployed HMM uses
one state per target phoneme dl in a left-to-right structure that
is obtained from the target phoneme transcriptions. In Figure 2
for example, we consider an utterance that can be transcribed
as /d3/ /d1/ /d2/. Thus, the associated HMM has five states q3,
q1, q2 including non-emitting start and end states. Each state
ql, where l ∈ {1, . . . , D}, is parametrized by a multinomial
distribution yl = {yl(1), . . . , yl(S)}. The dimensionality of
yl is S, the number of source phonemes. Each dimension k of
the multinomial distribution yl can serve as an estimate of the
conditional probability of sk, given the state dl, the previously
trained MLP and the HMM:

yl(k) = P (sk|dl, θ) (4)

The transition probabilities aij , to go from state i to state j, are
also parameters of the HMM, θH = {yl, aij}. We fixed them
to 0.5 (except a01 = 1) to minimize their effect on decoding.

The multinomial distributions Y = {y1, . . . , yD} can be
optimized (maximization step) by using all the adaptation data
X and minimizing a cost function F(X,Y ), defined as follows:

F(X,Y ) =

T∑
t=1

D∑
l=1

F l(xt, y
l)δl(xt) (5)



where F l(xt, y
l) is a cost function associated with state dl and

δl(xt) is the Kronecker delta defined as:

δl(xt) =

{
1, if xt ∈ Xd(l)

0, if xt /∈ Xd(l)

where Xd(l) is the acoustic subspace that corresponds to dl.
To associate each xt with one of the acoustic subspaces Xd(l),
the HMM aligns the source phoneme posterior probability vec-
tor P = {P (s1t |xt, θM ), . . . , P (sSt |xt, θM )} with the states by
minimizing F(X,Y ) (expectation step).

Since we estimate conditional probability distributions
P (sk|dl, θ), given posterior distributions P (skt |xt, θM ), it
seems reasonable to use a Kullback-Leibler (KL) divergence
based cost function for the optimization:

F l(xt, y
l) =

S∑
k=1

P (skt |xt, θM ) log
P (skt |xt, θM )

yl(k)
(6)

Hence, this work makes use of a particular HMM structure
which is referred to as KL-based HMM [3]. KL-based HMMs
are particularly well suited to deal with posterior probabilities.
Minimizing F(X,Y ) subject to

∑S
k=1 y

l(k) = 1, yields [4]:

P ∗(sk|dl, θ) = 1

|Xd(l)|
∑

∀x∗
t∈Xd(l)

P (skt |x∗
t , θM ) (7)

where P ∗(sk|dl, θ) is the optimal estimate of P (sk|dl, θ) with
respect to the cost function F(X,Y ). The operator |·| stands
for the cardinality of a set, and the sum extends over all the
elements x∗

t associated with the acoustic subspace Xd(l).
The described HMM can be trained by applying an adapted

version of the Viterbi algorithm, using (6) as local distances and
re-estimating the multinomial distributions according to (7).

2.2. Estimation of the prior probability P (dl|θ)

As previously explained, the trained HMM can be used to as-
sign each xt to an acoustic subspace Xd(l). Prior probabilities
P (dl|θ), can thus be estimated as the relative count of acoustic
vector observations xt that are associated with Xd(l), i.e.:

P (dl|θ) = |Xd(l)|∑D
j=1 |Xd(j)|

(8)

3. Experimental setup and results
We hypothesize that the proposed approach can yield improve-
ment on non-native ASR because universal phoneme poste-
rior probabilities estimated by an MLP trained on multiple lan-
guages are more robust to pronunciation variability as observed
in non-native speech. Furthermore, we suppose that the pro-
posed stochastic phoneme space transformation is superior to
manually derived phoneme set mappings.

3.1. Source phoneme posteriors

Source phoneme posteriors are estimated on British English,
Italian, Spanish, Swiss French and Swiss German Speech-
Dat(II) databases. All SpeechDat(II) databases contain native
speech and are gender-balanced, dialect-balanced according to
the dialect distribution in a language region and age-balanced.
The databases were recorded over the telephone at 8 kHz and
are subdivided into different corpora. We only used Corpus S,

that contains ten read sentences from each of the 2000 speakers
per language.

We trained MLP-based posterior estimators with Quicknet2

software, as explained in [1], for two different source phoneme
sets in SAMPA3 format.

• English phoneme set: we used only the British English
data to train a monolingual MLP (MLP EN) to estimate
English SAMPA phoneme posteriors.

• Universal phoneme set: since all the SpeechDat(II) dic-
tionaries use SAMPA symbols, we merged phonemes
that share the same symbol across languages to build a
universal phoneme set. Two MLPs were trained to esti-
mate universal phoneme posteriors; MLP UNI (universal
MLP) with all available data and MLP sUNI (small uni-
versal MLP) with one fifth of the data randomly chosen,
to match the amount of training data available to MLP-
EN.

All the MLPs were trained from 39 Mel-Frequency Percep-
tual Linear Prediction (MF-PLP) features (C0−C12+∆+∆∆)
in a nine frame temporal context (four preceding and following
frames), extracted with HTK4, as input. The number of param-
eters in each MLP was set to 10% of the number of available
training frames. Table 1 summarizes all systems (MLP-AE is
presented in Section 3.2).

Table 1: Overview over all the phoneme posterior estimators.
The total amount of training data as well as the phoneme set
including the number of phonemes (S) are given.

System Phoneme set S Data (h)
MLP-EN SAMPA English 45 12.4
MLP-sUNI SAMPA universal 117 12.7
MLP-UNI SAMPA universal 117 63.0
MLP-AE ARPABET English 38 2.4

3.2. Target phoneme posteriors

To study the proposed approach, we used the HIWIRE [5]
database. HIWIRE is a non-native English speech corpus that
contains English utterances pronounced by natives of France
(31 speakers), Greece (20 speakers), Italy (20 speakers) and
Spain (10 speakers). The utterances contain spoken pilot or-
ders made up of 133 words and the database also provides a
grammar with a perplexity of 14.9. The dictionary is in CMU
format and makes use of 38 ARPABET5 phonemes. HIWIRE
consists of 100 recordings per speaker, of which the first 50 ut-
terances are commonly defined to serve as adaptation data and
the second 50 utterances as testing data.

Since HIWIRE was recorded at 16 kHz, the recordings
were down-sampled to 8 kHz to “match” the recording con-
ditions of the SpeechDat(II) data. Then, the same MF-PLP
feature analysis was applied and passed through each of the
three MLPs (MLP-EN, MLP-sUNI and MLP-UNI) to estimate
source phoneme posteriors. P (sk|dl, θ) and P (dl|θ) were
estimated on the adaptation data, as explained in Section 2.
The testing set was used to estimate target phoneme posteri-
ors, P (dlt|x̂t, θ), according to (3). The target phoneme pos-
teriors were then divided by the priors P (dl|θ) and a hybrid
HMM/MLP system [6] was used to perform ASR.

2http://www.icsi.berkeley.edu/Speech/qn.html
3http://www.phon.ucl.ac.uk/home/sampa/
4http://htk.eng.cam.ac.uk/
5http://www.speech.cs.cmu.edu/cgi-bin/cmudict



For the sake of comparison, system MLP-AE was trained
on the HIWIRE adaptation set. Target phoneme alignments
were obtained with system MLP-UNI. During MLP training,
90% of the data was used for training and the remaining
10% for validation. System MLP-AE directly estimates target
phoneme posteriors P (dlt|x̂t) and does not involve an HMM-
based phoneme space transformation. Thus, system MLP-AE
has no access to P (dl|θ) and makes use of the priors estimated
by system MLP-UNI to perform hybrid ASR.

3.3. Results

We investigated all the systems described in Table 1 and com-
pared them to the baseline that was reported in [5].

Table 2: Word accuracies on the HIWIRE testing set. The base-
line was reported in [5]. Systems MLP-AE, MLP-EN, MLP-
sUNI and MLP-UNI are described in Table 1.

base MLP-AE MLP-EN MLP-sUNI MLP-UNI
91.4 92.8 92.6 93.7 96.0

The baseline system used Mel-Frequency Cepstral Coeffi-
cients with Cepstral Mean Subtraction and was trained on the
TIMIT database that contains read American English speech,
recorded at 16 kHz. The baseline system did not use the adap-
tation set. System MLP-AE, yields a better performance than
the baseline. The performance of system MLP-AE is not sig-
nificantly different from the performance of system MLP-EN,
that was trained on 12.4 hours of native English SpeechDat(II)
data. For the significance test, we used the bootstrap estimation
method [7] and a confidence interval of 95%. System MLP-
sUNI was trained on 12.7 hours of multilingual data and signif-
icantly outperforms system MLP-EN. MLP-UNI was trained on
five times more multilingual data than MLP-sUNI, which also
yields significant improvement.

Table 3: Word accuracies on the HIWIRE testing set if source
phonemes are manually mapped to target phonemes.

base MLP-AE MLP-EN MLP-sUNI MLP-UNI
- - 83.2 83.5 88.8

Table 3 presents results for a manual mapping between
source phonemes and target phonemes. We converted all in-
volved phoneme sets to IPA6 format and then mapped source
and target phonemes that share the same IPA symbol. For each
target phoneme without matching source phoneme, we manu-
ally selected the most similar source phoneme according to the
IPA chart. For the complete manual mapping table, see [4].

The results from Tables 2 and 3 prove our hypothesis and
confirm that the novel approach can be used to transform robust
universal phoneme posteriors to monolingual phoneme posteri-
ors and improve ASR performance on non-native speech. The
huge performance gap between the proposed approach and a
manual mapping shows that manually derived one-to-one map-
pings are detrimental to ASR systems and illustrates that target
and source phoneme sets have significant differences in their
coverage of X .

3.4. Corollary

The HIWIRE database provides us with 144 minutes of adap-
tation data, enough to train a complete system. In Table 4, we

6http://www.langsci.ucl.ac.uk/ipa/

show that the proposed approach yields equal performance with
only ten minutes of adaptation data. If we use only one minute
and 40 seconds of data (manually chosen to cover the whole tar-
get phoneme space), the system still yields significant improve-
ment compared to systems MLP-AE and MLP-EN. Thus, the
proposed approach has potential for fast adaptation of systems,
to perform ASR for under-resourced languages.

Table 4: Performance of system MLP-UNI with different
amounts of adaptation data (in minutes).

Data (in minutes) 144 32 10 2.7 1.7
Word accuracy 96.0 96.2 96.0 95.1 93.8

4. Conclusion
We proposed a stochastic phoneme space transformation ap-
proach and applied it to non-native ASR. The contribution of
this paper is twofold. 1) We showed that different phoneme
sets cover the same acoustic space differently and that manu-
ally derived phoneme mappings are detrimental to ASR sys-
tems. However, only ten minutes of data along with phoneme
transcriptions are sufficient to transform multilingual phoneme
posterior probabilities to monolingual English phoneme pos-
terior probabilities. 2) We demonstrated that the transformed
multilingual phoneme posteriors yield significant improvement
on non-native ASR compared to native and non-native English
systems.

In future, we intend to apply the proposed approach to ASR
for under-resourced languages.
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