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Abstract

Using multiple families of image features is a very ef-
ficient strategy to improve performance in object detection
or recognition. However, such a strategy induces multiple
challenges for machine learning methods, both from a com-
putational and a statistical perspective.

The main contribution of this paper is a novel feature
sampling procedure dubbed “Tasting” to improve the effi-
ciency of Boosting in such a context. Instead of sampling
features in a uniform manner, Tasting continuously esti-
mates the expected loss reduction for each family from a
limited set of features sampled prior to the learning, and
biases the sampling accordingly.

We evaluate the performance of this procedure with tens
of families of features on four image classification and ob-
ject detection data-sets. We show that Tasting, which does
not require the tuning of any meta-parameter, outperforms
systematically variants of uniform sampling and state-of-
the-art approaches based on bandit strategies.

1. Introduction
Machine learning methods are frequently used in com-

puter vision for pattern recognition problems that cannot be
specified analytically. Detection of faces, pedestrians, ve-
hicles, and recognition of objects or individuals, are almost
exclusively done with techniques such as Support Vector
Machines [6], Boosting [15], or forests of decision trees [3].

One of the crucial components of any machine learn-
ing approach to computer vision problems is the set of im-
age features used as input to the learning core of the sys-
tem. While machine learning is extremely good at weight-
ing multiple cues optimally, it is weak at building invariant
features. The design of measurements able to compensate
for variations of the signal due to changes in illumination or
geometrical pose is still done by human experts.

It has been demonstrated repeatedly that combining mul-
tiple families of features addressing different aspects of the
signal is an extremely efficient strategy to improve perfor-
mance [14, 11]. As shown by our experimental results

in § 5, vanilla Boosting of stumps over multiple features
reaches state-of-the-art performance. However, such tech-
niques induce two major practical difficulties: the first is the
computational cost of the training, which increases linearly
with the number of features, and the second is overfitting
the training data. Both are related to the number of features
which are actually “looked at” during training.

We propose here a straight-forward and original strategy
dubbed “Tasting” to deal with that situation, and use it to
improve the loss reduction in Boosting. This method sam-
ples a few features from every family before the training
per se, and stores their responses over each training sample.
During Boosting, every time we have to sample features to
minimize a weighted error, we use these stored features to
get an estimate of the expected reduction of the loss for each
family, and sample accordingly.

Experiments on four image classification and object de-
tection problems show that Tasting systematically outper-
forms sophisticated baselines in minimizing both the train-
ing loss and the test error, without requiring the tuning of
any parameter, contrarily to the most advanced baselines.
This makes it the best practical solution to deal with mul-
tiple families of features in a context where there are too
many features to evaluate and store at once.

We present an overview of existing methods which ad-
dress the issue of multiple families of features in § 2. Then,
in § 3, we formalize Boosting with feature sampling, and de-
scribe several baselines. We introduce our own approaches
in § 4, and provide experimental results in § 5.

2. Related works
There are essentially two ways to accelerate the train-

ing of Boosting algorithms. One is to reduce the number
of samples used to train the weak learner at every iteration.
Several methods of this kind can be found in [12]. The sec-
ond is to reduce instead the number of features examined at
every Boosting step. The first popular method of this kind
is LazyBoosting, which is very simple and efficient in prac-
tice [9, 5]. The only difference between this method and
AdaBoost is to train the weak learner over a random sub-
set of the features, instead of all of them at every iteration.
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While the sampling strategy does not matter much in the
usual case, it becomes central when dealing with multiple
families of features, and how to do it properly is not clear.
This is the subject of section § 3.2.

More recently, several algorithms have been proposed
to improve over LazyBoosting [4, 5]. They bias the sam-
pling toward features which have shown to be promising
in the past, and use a bandit approach to handle properly
the dilemma between exploiting features already known to
be good, and exploring the space of features. We describe
a few state-of-the-art methods of that kind that we use as
baselines in § 3.3.

Bandit-related approaches share similarities with the
techniques we introduce in this article, but suffer from sev-
eral weaknesses. The first one is that they estimate the qual-
ity of a feature by making an assumption of stationarity of
the loss reduction distribution associated to it, ignoring that
it depends on the sample weights. With an aggressive loss
such as the exponential one, the weights vary significantly
during training, and often become extremely unbalanced.

The second weakness is the application context. With-
out additional prior knowledge on the features, the only
structure one can exploit is a form of stationarity of indi-
vidual features. Hence, improvement can be achieved only
by sampling again the exact same feature one has already
seen as promising in the past. This pushes toward reusing
the same features multiple times, which reduces the infor-
mation conveyed by the set eventually selected.

We therefore advocate for methods modeling the distri-
bution of the feature responses, from which they compute
an empirical distribution of the loss reduction, instead of di-
rectly modeling the latter. Also, we apply our approach to a
context where the full set of features is the union of multiple
families of features addressing different modalities. This
allows to model the response, and bias the sampling at the
level of sub-families instead of individual features.

3. Notation and Baselines
After introducing our notation, we present in this section

a general formulation of the feature sampling in § 3.1, and
present several baselines in § 3.2 and § 3.3. For the sake of
clarity we provide here the notation and formalization for
the Binary case only. However, we used in our experiment
AdaBoost.MH [15], which can handle multiple labels.

Let X stand for the space of images, and

(xn, yn) ∈ X × {−1, 1}, n = 1, . . . , N

a training set of images, with their labels. Let F(X ,R) be
the set of mappings from X into R, and

Fk ⊂ F(X ,R), k = 1, . . . ,K

the K families of feature extractors.

1{condition} is equal to 1 if the condition is true, 0 otherwise
N Number of training samples
K Number of families of features
Q Number of features sampled at every Boosting step
R Number of features sampled initially for tasting
X Space of images
Fk Family of features
U(F) Uniform distribution on F
(xn, yn) ∈ X × N training samples
ωs ∈ RN Weights of the samples at iteration s of boosting
S(f, ρ;ω) Score of the pair (f, ρ), equal to the absolute
value of the derivative of the loss with respect to the weight
of the stump defined by f and ρ. This is the quantity Boost-
ing tries to maximize at every step.
S∗(f ;ω) Score of the feature f , equal to maxρ S(f, ρ;ω)

Table 1. Notation

Let ωs ∈ RN stand for the signed weights of the sam-
ples, or more precisely their edges: ωsn is the derivative of
the loss with respect to the response of the classifier on sam-
ple n at step s of the learning. For instance, with the stan-
dard exponential loss

L(ϕ) =
∑
n

exp(−ynϕ(xn)),

if ϕs denotes the strong classifier built at iteration s, then
we have

ωsn = −yn exp(−yn ϕs(xn)).

We consider Boosting stumps, which are weak learners
of the form

2 · 1{f(x)≥ρ} − 1.

This means that at every iteration s, Boosting tries to pick a
feature fs and a threshold ρs which maximize a score equal
to the derivative of the loss reduction S(fs, ρs; ωs) with re-
spect to the weak-learner weight, which can be expressed
as

S(f, ρ; ω) =

∣∣∣∣∣∑
n

ωn
(
2 · 1{f(xn)≥ρ} − 1

)∣∣∣∣∣ . (1)

From this quantitiy, we also define the score S∗ of a feature
f , equal to the best score achievable with f by optimizing
the threshold ρ:

S∗(f ; ω) = max
ρ

S(f, ρ;ω). (2)

Finally, for any k, if F is a random variable uniform on
Fk, we define µωk as the distribution of S∗(F ;ω). This is the
distribution of the (derivative of the) loss reduction when
one picks f uniformly at random in Fk and then optimizes
ρ according to ω.

2
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3.1. Feature sampling

As stated above, a Boosting procedure would ideally
compute at every step, given the current weights ω of the
samples,

argmax
(f,ρ)∈∪kFk×R

S(f, ρ; ω). (3)

Unfortunately, in most of the real-world problems, partic-
ularly in computer vision, one has to cope with very large
feature sets, sometimes of infinite cardinality, and (3) can-
not be computed explicitly.

A powerful strategy is to approximate it by sampling
features: instead of looking exhaustively at ∪kFk, one can
sample Q features in this set, and pick the best among them
according to S∗.

3.2. Uniform sampling baselines

A naive strategy would pick this Q features uniformly
in ∪kFk. However, this does not distribute the sampling
properly among the Fk. In the extreme case, if one of the
Fk had a far greater cardinality than the others, all features
would come from it. And in most of the contexts, mixing
features from the different Fks in an equilibrate manner is
critical to benefit from their complementarity.

We propose the four following baselines to pick a good
feature at every Boosting step:

• Best family picksQ features at random in a fixed fam-
ily, the one with the smallest final Boosting loss.

• Uniform Naive picksQ features at random, uniformly
in ∪kFq .

• Uniform 1.Q picks one of the feature families at ran-
dom, and then samples the Q features from that single
family.

• Uniform Q.1 picks at random, uniformly, Q families
of features (with replacement if Q > K), and then
picks one feature uniformly in each family.

The cost of running Best family isK times higher than run-
ning the other three strategies. Also, as it makes use of one
family only, we can expect its final performance to be lower
than the others. It was included for comparison only.

3.3. Bandit sampling baselines

The strategies of the previous section are purely random
and do not exploit any kind of information to bias their
sampling. Smarter strategies to deal with the problem of
exploration-exploitation trade-off were first introduced in
[4], and extended in [5]. The driving idea of these papers is
to entrust a multi-armed bandits (MAB) algorithm (respec-
tively UCB [1] and Exp3.P [2]) with the mission to sample
useful features.

The multi-armed bandits problem is defined as follows:
there are M gambling machines (i.e. the ”arms” of the ban-
dits), and at every time-step t the gambler chooses an arm
jt, pulls it, and receives a reward rtjt ∈ [0, 1]. The goal
of the algorithm is to minimize the weak-regret, that is the
difference between the reward obtained by the gambler and
the best fixed arm, retrospectively.

The first weakness of these algorithms in the context of
accelerating Boosting, that we have identified in section § 2,
is the assumption of stationarity of the loss reduction, which
cannot be easily dealt with. Even though the Exp3.P algo-
rithm does not make such an assumption explicitly, it still
ignores the sample weights, and thus can only rely on the
history of past rewards.

The second weakness, the application context, can be ad-
dressed in our multi-families setting by learning the useful-
ness of feature families instead of individual features.

Finally, another issue arises when trying to use those
algorithms in practice. As they use some kind of confi-
dence intervals, the scale of the rewards matters greatly.
For example, if all the rewards obtained are very small
(∀t, rt ≤ ε � 1), the algorithm will not learn anything,
as it expects rewards to make full use of the range [0, 1].

For this reason we also used a third multi-armed bandit
algorithm in our experiments, ε-greedy [1], which does not
suffer from that problem.

Hence, we use in our experiments the three following
baselines, using the same reward as in [5]:

• UCB picks Q features from the family that maximizes

r̄j +
√

(2 log n)/nj , where r̄j is the current average
reward of family j, nj is the number of times family j
was chosen so far, and n is the current Boosting round.

• Epx3.P maintains a distribution of weights over the
families of features, and at every round picks one fam-
ily accordingly, obtains a reward, and updates the dis-
tribution. For the precise definition of the algorithm,
see [2, 5].

• ε-greedy picks Q features from the family with the
highest current average reward with probability 1−εn,
or from a random family with probability εn, where
εn = cK/(d2n), and c and d are parameters of the
algorithm.

4. Feature Tasting
We describe here our approach called Tasting which bi-

ases the feature sampling toward promising families of fea-
tures. This is achieved by sampling a small number R of
features from each family before starting the training per se,
and at every Boosting step, in using these few features with
the current sample weights to get an estimate of the best

3
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family of Fk to use. We cannot stress enough that those
features are not the ones used to build the classifier, they
are only used to get an estimate of the best family. As those
sampled features are independent and identically distributed
samples of the feature response vectors, we can compute the
empirical mean of any functional of the said response vec-
tors, in particular the expected loss reduction.

4.1. Description

As for bandit-related methods, Tasting exploits the fact
that the full feature set is a heterogeneous union of somehow
homogeneous subsets of features. Given ω, the distribution
of the loss reduction associated to one specific family of
features (i.e. the distribution µωk introduced in § 3) has lower
variance than if the feature was picked uniformly over the
full set ∪kFk.

In practice, this means that if a few features picked at
random in Fk perform poorly for the current ω, it is likely
that sampling from that family is not a good choice. Note
that this is a more realistic assumption than the one justi-
fying the bandit approaches described above, since it takes
into account the value of ω.

Since the numberR of features required for such an esti-
mate is far smaller than the full cardinality of the feature
families (experiments with R = 10 and R = 100 give
roughly the same results, see § 5.3), they can be stored in
memory. Hence, doing so avoids the requirement of run-
ning the full pre-computations and computations of every
family at every Boosting step, except for the families actu-
ally sampled. Also, the samples can be pre-sorted according
to each one of the R pre-sampled features, which speeds up
the selection of the optimal stumps.

Let

frk ∈ Fk, r = 1, . . . , R, k = 1, . . . ,K

be the features whose responses are stored before starting
the Boosting iterations. Then, ∀ω ∈ RN , we have,

ÊF∼U(Fk)(S
∗(F ;ω)) =

1

R

R∑
r=1

S∗(frk ;ω).

and given any σ ∈ R, we have

ÊF∼U(Fk)(max(σ, S∗(F ;ω))) =
1

R

R∑
r=1

max(σ, S∗(frk ;ω)).

The latter quantity stands for (the expectation of) what we
eventually achieve by picking a feature at random in Fk,
that is, the maximum between the score σ already achieved
and the score of the sampled feature.

From this, we define two strategies to sample
F1, . . . , FQ, which correspond to the two variants of the
uniform sampling:

• Tasting 1.Q computes the optimal family at the be-
ginning of every Boosting step, and then samples Q
features uniformly from it (the derivation of the expec-
tation of the max is given in appendix A):

k ← argmaxk ÊF1,...,FQ∼U(Fk)(maxq(S
∗(Fq;ω

s)))
for q = 1, . . . , Q do
Fq ← SampleUniformly(Fk),

end for

• Tasting Q.1 selects the optimal family for every one
of the Q features to sample, given the best score σq
achieved so far in this iteration. With the convention
that max(∅) = 0, we have:

for q = 1, . . . , Q do
σq ← max(S∗(F1;ωs), . . . , S∗(Fq−1;ωs))

kq ← argmaxk ÊF∼U(Fk)(max(σq, S
∗(F ;ωs)))

Fq ← SampleUniformly(Fkq )
end for

4.2. Analysis

The main strength of Boosting is its ability to spot and
combine complementary features. If the loss has already
been reduced in a certain “functional direction”, the scores
of weak-learners in the same direction will be low, and they
will be rejected. For instance, the firsts weak learners for
a face detector may use color-based features to exploit the
skin color. After color has been optimally exploited, only
samples with a non-standard face color would have large
weights, and other feature, for instance edge-based, would
become more informative, and be picked by Boosting.

Uniform sampling and bandit-methods account poorly
for such behavior at the family level. Uniform sampling
simply discards the sample weights, hence has no informa-
tion whatsoever about the directions which have “already
been exploited” and which should be avoided. In practice,
this means that the rejection of bad feature can only be done
at the level of the Boosting itself, which may end up with a
majority of useless features.

Bandit methods are slightly more adequate, as they
model a score for each family from previous iterations.
However, this modeling takes into account the weighting
of the samples very indirectly, as they make the assumption
that the distribution of loss reduction are stationary, while
they are precisely not. Coming back to our face-detector
example, bandit methods would go on believing that color
is informative, because it was in the previous iterations,
even if the sample weights have specifically accumulated on
faces where color is now totally useless. While the estimate
of loss reduction may asymptotically converge to an ade-
quate model, as the weight of the samples do not fluctuate
much, it is a severe weakness when they are still evolving.

4
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Figure 1. Example images from the four data-sets used for the experimental validation. Top left: first image of every digit taken from the
MNIST database. Top right: images from the INRIA Person data-set. The first three images are examples of positive samples, while the
remaining two are negative ones. Bottom left: random images from the Caltech 101 data-set. Bottom right: some of the first images of the
CIFAR-10 data-set.

Tasting addresses this weakness by keeping the ability to
properly estimate the value of each family, given the cur-
rent sample weights, hence the ability to discard families of
features redundant with features already chosen. In some
sense, Tasting can be seen as a Boosting at the family level.

5. Experiments
We demonstrate the effectiveness of our approach on

four standard image classification and object detection data-
sets, using nineteen to thirty-three families of features. We
compare the Tasting approach with the baselines of § 3.

The implementations of both the families of features,
and of the feature sampling and Boosting algorithms will
be published under the GPL v2.0 open-source license at the
time of publication of this article. Together with the freely
available data-sets used for the experiments, this will ensure
the reproducibility of the results presented here.

5.1. Feature families

The feature families used in our experiments on all but
the Caltech 101 data-set can be divided into three cate-
gories. (1) Image transforms: identity, grayscale conver-
sion, Fourier and Haar transforms, gradient image, local bi-
nary patterns (ILBP/LBP). (2) Intensity histograms: sums
of the intensities in random image patches, grayscale and
color histograms of the entire image. (3) Gradient his-
tograms: histograms of (oriented and non oriented) gra-
dients, Haar-like features.

The families from the first category typically have a large
number of features, usually proportional to the number of
pixels in the image. Some of them do not pre-process the
images (identity, grayscale conversion, LBP, etc.) while

some pre-transform them to another space, prior to access-
ing any feature (typically the Fourier and Haar transforms).

Families from the second and third categories being his-
tograms, they usually contain much fewer features (typi-
cally of the order of a few hundreds to a few thousands),
but require some pre-processing to build the histograms.

For the Caltech 101 data-set we used the same features
as [11] in their experiments. They used five type of features
(PHOG Shape descriptors, Appearance (SIFT) descriptors,
Region Covariance, Local Binary Patterns, V1S+ (normal-
ized Gabor filters)). More details can be found in the ref-
erenced paper. Those features are computed in a spatial
pyramid, where each scale of the pyramid is considered as
being part of a different family, leading to a total of 39 fea-
ture families. The number of features families used in our
experiments (33) differ from [11] as they also compute a
‘subwindow-kernel’ of SIFT features that we did not use.

5.2. Data-Sets

The first data-set that we used is the MNIST handwritten
digits database [13]. It contains 10 classes and its training
and testing sets consist respectively of 60,000 and 10,000
grayscale images of resolution 28×28 pixels. The total
number of features on this data-set is 16,451.

The second data-set that we used is the INRIA Person
data-set [8]. It is composed of a training and a testing set
respectively of 2,418 and 1,126 color images of pedestri-
ans of dimensions 64×128 pixels cropped from real-world
photographs, along with 1,219 and 453 “background” im-
ages not containing any people. We extracted 10 negative
samples from each one of the background image, follow-
ing the setup of [8]. The total number of features on this
data-set is 230,503.

5
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Final Boosting loss (log10)

Methods
Data-sets

MNIST INRIA Person Caltech 101 CIFAR-10
Q = 10 Q = 10 Q = 100 Q = 10 Q = 100 Q = 10 Q = 100

Best family? -4.91 -9.05 -12.97 -52.36 -57.80 -0.68 -0.69
Uniform Naive -5.32 -10.00 -21.14 -50.21 -57.44 -0.93 -1.01
Uniform 1.Q -3.80 -10.96 -19.04 -43.13 -48.21 -0.85 -0.91
Uniform Q.1 -5.04 -12.52 -24.42 -48.23 -55.40 -0.91 -1.01
UCB? -5.26 -14.11 -26.14 -48.21 -53.82 -0.90 -0.92
Exp3.P? -5.35 -13.30 -23.84 -46.65 52.24 -0.91 -0.92
ε-greedy? -5.38 -15.41 -27.14 -53.24 -58.91 -0.91 -0.97
Tasting 1.Q -5.97 -17.01 -28.54 -52.70 -58.05 -0.94 -1.02
Tasting Q.1 -5.97 -17.01 -28.63 -52.88 -57.35 -0.94 -1.02

Table 2. Final Boosting loss (log10) on each of the four data-sets and for each method with different values of Q. Methods highlighted
with a ? require the tuning of meta-parameters which have been optimized by training fully multiple times.

The third data-set that we used is Caltech 101 [10] due
to its wide usage and the availability of already computed
features [11]. It consists of color images of various dimen-
sions organized in 102 visual classes (101 objects plus an
additional background class). We sampled 15 training ex-
amples and 20 distinct test examples from every class, as
advised on the data-set website. The total number of fea-
tures on this data-set is 360,630.

The fourth and last data-set that we used is CIFAR-10
[7]. It is a labeled subset of the 80 tiny million tiny images
data-set. It contains 10 classes and its training and testing
sets consist respectively of 50,000 and 10,000 color images
of size 32×32 pixels. The total number of features on this
data-set is 29,879.

5.3. Results

We tested the proposed Tasting methods of § 4, against
the baselines described in § 3.2 and § 3.3 on the four bench-
mark data-sets described above in § 5.2 using the standard
train/test cuts. We report the results of doing 10,000 Boost-
ing rounds using AdaBoost.MH on all data-sets but INRIA
Person, for which we report only 3,000, having observed
nearly no gain in doing more.

The parameters of the baselines – namely the scale of
the rewards for UCB and Exp3.P, and the c/d2 ratio of ε-
greedy – were optimized by trying all values of the form
2n, n = {0, 1, ..., 11}, and keeping the one leading to the
smallest final Boosting loss on the training set. We set the
values of the parameters of Exp3.P to η = 0.3 and λ = 0.15
as recommended in [5].

Our methods require only one parameter to be set, the
numberR of features to store from each family before train-
ing. We used the value R = 100 in all our experiment, but
we observed that setting it to 10 only marginally affects its
performance, increasing the test error by less than 0.02%
on average, and reducing the (logarithm of) the loss by less
than 3%.

Table 2 shows the final Boosting loss after 10,000 itera-
tions (3,000 for INRIA Person), while figure 2 shows some
of the test errors during training. The results we obtain
are close to state-of-the-art. On the MNIST data-set, we
obtain 0.85% classification error. The best results on this
base (0.39%) are achieved with methods tuned for character
recognition, and training with synthetic deformations or un-
supervised learning with additional data. We are not aware
of a generic and non-tuned learning procedure that outper-
forms ours.

On the INRIA pedestrian data-set, we achieve 0.30%
classification error rate, again without any form of tun-
ing or bootstrapping. Taking the best point on the ROC
curves for six methods designed for pedestrian detec-
tion [16], we get with our number of negative samples:
0.01·1126+0.001·4530

1126+4530 = 0.28%.
On Caltech 101 we get 35% classification error using

15 training examples, second among the eight methods re-
ported in [11]. Finally on CIFAR-10 our results (30% clas-
sification error) are the best among the ones listed in [7]
(35% classification error at best, ignoring the ones obtained
by pre-training with massive amounts of additional data).

The two methods presented in this paper, Tasting 1.Q
and Tasting Q.1 obtain virtually identical results, and al-
ways lead to the fastest loss reduction, at the exception of
the Caltech 101 data-set, where they rank second after the
ε-greedy method. They also obtain the best or close to
the best test errors, with remarkable stability. The meth-
ods managing to marginally beat them only do it after a
large number of iterations, and are beaten by a large mar-
gin in some other conditions. Beside, the meta-parameters
of the bandit baselines were optimized by running the train-
ing fully twelve times. The good performance of the Uni-
form methods can be attributed to the fact that most of the
features that we used are relevant to the problem, but their
performance can become arbitrarily bad in the presence of
uninformative feature families.
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Figure 2. Mean test error on the four data-sets for each method with two different values of Q. The two versions of Tasting provides very
similar test error on the four data-sets, and are the best on three, and perform well on the fourth. Experiments with other values of Q show
similar trends.

Table 3 shows the proportions of each family of features
used in the classifier on the pedestrian task, when built using
the different sampling strategies. The Tasting procedures
concentrate the sampling over a restricted sub-set of feature
families. While it contains only 5 families of features out
of 19, and 19,300 features out of 230,503, the third group
of feature families constitutes 69% of the features in the
classifier with Tasting 1.Q and 61% with Tasting Q.1.

6. Conclusion
The Tasting approach presented in this paper is ex-

tremely straight-forward and avoids the need for setting
multiple parameters, in particular to control the trade-off
between exploration and exploitation. In practice, the only
parameter to set is the number of features R sampled ini-
tially to estimate the expected loss reduction during train-
ing. As stated in § 5.3, the process is remarkably stable to
changes of that value.

The distribution required to select a good family of fea-
tures at every step is that of the loss reduction µωk , which is

a distribution on R. It is the projection of a distribution on
RN , projection which is not known a priori. As described in
§ 4.1 and justified in § 4.2, Tasting relies on the ability to es-
timate the loss reduction given any weighting of the training
samples. We have chosen to use an empirical model, that is
to store actual responses over samples, instead of fitting an
analytical density model. It may be possible to choose the
later strategy, and summarize the information provided by
feature responses for instance with a Gaussian model. How-
ever, it is not clear how such a model could lead to a proper
estimate of the distribution of the loss reduction when ω
is strongly unbalanced. A third option would be to use an
analytical model of the loss reduction itself, estimated on-
the-fly at every Boosting step, given ω. This may be a nice
approach to dealing with long tails, or other behavior poorly
reflected with a small sample set.

From a computational perspective, the methods we have
proposed here have a cost composed of a dominant term
proportional to the number of families actually used at every
step, but still have a dominated term linear with the number

7



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

ICCV
#549

ICCV
#549

ICCV 2011 Submission #549. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

INRIA Person (Q = 10)
Best Uniform Bandits Tasting

family Naive 1.Q Q.1 UCB Exp3.P ε-greedy 1.Q Q.1
- 4% 5% 3% 3% 3% 1% - -
- 12% 5% 3% 3% 4% 1% - -
- 1% 5% 1% 2% 2% 1% - -
- 2% 6% 2% 2% 3% 1% - -
- 9% 5% 6% 7% 7% 7% 6% 6%
- 9% 5% 6% 4% 5% 1% 1% 2%
- 27% 5% 10% 9% 9% 14% 12% 18%
- 6% 5% 3% 3% 4% 1% - -
- 6% 5% 4% 3% 3% 1% 1% -
- 5% 5% 3% 3% 3% 1% - -
- - 5% 2% 2% 2% 1% - 1%
- - 5% 3% 3% 3% - 1% 1%
- - 5% 6% 5% 5% 3% 3% 4%
- - 5% 4% 6% 5% 6% 7% 5%
- - 5% 5% 4% 4% 1% 3% 4%
- 2% 5% 10% 9% 8% 9% 9% 11%
- 2% 5% 11% 8% 10% 7% 8% 11%
- 7% 5% 9% 11% 9% 15% 23% 15%

100% 8% 5% 9% 13% 11% 31% 26% 20%

Table 3. Proportions of features from each family used by each
method. Each row corresponds to one of the 19 families of fea-
tures, and horizontal lines separate the three groups defined in
§ 5.1. For clarity, percentages have been rounded to their closest
integral values, and zeros have been replaced by hyphens.

K of feature families itself. We would like to deal eventu-
ally with hundreds or thousands of such families, for which
the second term will be of importance. Such a context
will require to handle properly the exploration/exploitation
dilemma: The approximation of µωk could be done in an
adaptive manner, both in term of computation and mem-
ory usage, by investing more resources on the families of
features which have proved to be useful in the previous it-
erations. This would in practice add to Tasting a bandit-like
component which is currently missing.
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A. Derivation of the expectation of Tasting 1.Q
Given F1, . . . , FQ independent, and identically dis-

tributed, uniform over {1, . . . , R}. And v1 ≤ v2 ≤ · · · ≤
vR, we have:

E

(
Q

max
q=1

vFq

)
=

R∑
r=1

P

(
Q

max
q=1

Fq = r

)
vr

=

R∑
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(
P

(
Q

max
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Fq ≤ r
)
− P
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Q

max
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))
vr

=
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RQ
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rQ − (r − 1)Q

)
vr

= vR +
1

RQ
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rQ(vr − vr+1)
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