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Abstract

There is an increasing interest in analyzing social in-
teraction from mobile sensor data, and smartphones are
rapidly becoming the most attractive sensing option. We
propose a new probabilistic relational model to analyze
long-term dynamic social networks created by physical
proximity of people. Our model can infer different inter-
action types from the network, revealing the participants
of a given group interaction, and discovering a variety of
social contexts. Our analysis is conducted on Bluetooth
data sensed with smartphones for over one year on the life
of 40 individuals related by professional or personal links.
We objectively validate our model by studying its predic-
tive performance, showing a significant advantage over a
recently proposed model.

1 Introduction

People carry their mobile phone almost everywhere. By
exploiting built-in sensors, smartphones have become at-
tractive options for large-scale sensing of human and so-
cial behavior [6, 20]. The automatically determination of a
user’s social context is a desirable functionality for the next
generation of adaptive, personalized mobile phone applica-
tions.

Integrated in phones and other mobile devices, Bluetooth
is an imperfect yet reasonable approximation for sensing so-
cial interaction. Bluetooth information can tell if two per-
sons carrying Bluetooth devices are in proximity with high
probability. Bluetooth-based proximity also offers some
important technical advantages such as low battery con-
sumption,and the ability to work in both indoor and out-
door environments. Furthermore, people are often willing
to share Bluetooth data with others. Note that, even without
installing a client software to record Bluetooth interaction
logs, people can share their Bluetooth information by set-
ting their device to discoverable mode, and in practice many
users do so on a regular basis. This is a key difference be-

tween relational Bluetooth data and other self-sensor data
such as GPS, where the observed data involves only the ac-
tual device holder.

Bluetooth has been used as a social sensor in the past
[21, 20, 6, 5]. Perhaps the simplest example is the use of
the number of discovered nearby devices as a measurement
of the human density of the environment [19]. At a public
place, one could observe many nearby devices from likely
unknown people. A different challenge is that of discover-
ing the recurrent patterns of interaction with people in our
social network (work colleagues, family members) and the
context (temporal and spatial) in which they occur in real
life. Many of these interactions take place over multiple
time scales and multiple groups: we might have breakfast
and dinner with our family every day, meet our collabora-
tors twice a week, our boss once a month, and our sport
teammates every sunday. The robust discovery of real-life
interaction types therefore call, on one hand, for methods
that are able to handle uncertainty in a principled way, and
on the other, for longitudinal data to discover these possibly
long-term effects.

In this paper, we present a probabilistic framework to
discover social context, such as a weekly group meeting or
having lunch with family members. Based on Bluetooth
information collected for a large population over several
months of daily life, our framework automatically assigns
an interaction type for each Bluetooth link between two per-
sons while discovering what these different types of group
interactions correspond to. Our work makes the following
contributions: (1) we introduce a new model, called Grou-
pUs, for interaction type discovery from proximity data, de-
signed to overcome some of the limitations of Bluetooth in-
stantaneous data by integrating longitudinal observations of
real-life proximity; (2) we conduct our analysis on an inter-
action data set spanning the life of 40 people over 12 months
of time; and (3) we show that GroupUs can infer different
interaction types from the full Bluetooth proximity data set,
and assign group membership to the individuals who best
conform them.

The structure of the paper is as follows. Section 2 re-
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views related works on Bluetooth data analysis and group
discovery on social networks. We present our method in
Section 3. The data collection framework and experimental
results are presented in Sections 4 and 5. Finally, we draw
conclusions in Section 6.

2 Related work

Our work can be positioned within the emergingbody
of work on reality mining, which analyzes human behav-
ior at large scale using mobile phones as sensors of activ-
ity [6, 20, 11]. However, the idea of using Bluetooth as a
proximity sensor is not new. For instance, Terry et al [21]
looked for pairwise proximity patterns over time. Raento et
al. [20] were among the first to propose the use of mobile
phones for large-scale context sensing, a first step towards
reality mining [6]. In [5], Eagle et al. proposed to use Blue-
tooth and phone calls data to define pairwise links between
people and in this way infer friendship networks, as an al-
ternative to questionnaire-based, self-reported data. More
recently, Mardenfeld et al. [17] proposed an algorithm for
group discovery which is based on fully connected compo-
nents of a Bluetooth proximity network. This method, how-
ever, has a number of drawbacks such as sensitivity to noise,
the inability to discover very large groups (e.g., a lecture in
an auditorium), and a complexity that grows exponentially
with respect to group size.

Several other works address face-to-face interaction dis-
covery by using other types of dedicated mobile devices,
partly due to the limitations of Bluetooth to sense actual
face-to-face proximity (instead of simply detecting people
sharing an office or in adjacent offices) [9, 24, 18]. While
these dedicated devices provide a definite advantage over
Bluetooth to sense the actual interaction in terms of spatial
resolution, and use voice and infrared sensors, they need
to be worn in specific conditions to work in practice. Fur-
thermore, they typically represent an additional device that
many people might not be willing to carry in daily life.

There is a clear connection between discovering interac-
tion types and discovering places, which is a problem that
has been widely studied in mobile and ubiquitous comput-
ing using GPS or other types of location data [2, 12, 16].
Clearly, knowing that specific interactions tend to occur at
certain places represents a strong prior - friends meet at
restaurants and bars, families with children go to the park.
Our GroupUs model could be extended to include location
data in order to anchor the discovery of interaction types to
geographic or semantic locations.

In data mining and machine learning, there is much in-
terest in relational data [23]. Some methods have been pro-
posed to extract groups, which are mainly based on discov-
ering block structure from interaction, but have not been
used for social network modeling from smartphone data.
Stochastic block structure models [14, 1] aim at finding

groups for each individual in a given network. Fu et al.
[8] extended these models to dynamic networks by allow-
ing model parameters to change over the global state of the
network. The group-topic model by Wang et al. [22] used
dynamic group assignment based on text-data where people
form groups depending on the actual topic of discussion.
In the context of group interaction discovery, these models
have two common limitations: first, there is a scalability is-
sue, and second these models focus on global structure of
the network rather than finding local interactions of groups.
Importantly, the latter point makes block structure models
inefficient for extracting local parts of the network that cor-
responds to specific group interactions. Recently, Dubois et
al. [4] proposed to consider individual pairwise interactions
rather than the whole network at the same time. This sim-
ple model allows to extract local blocks of the network and
overcome the drawback of block structure models. How-
ever this advantage comes at a price as it cannot infer the
latent interactions in a collaborative fashion, taking into ac-
count the set of links in the network when assigning inter-
action type to a pairwise link.

Our model is inspired from topic models such as Latent
Dirichlet Allocation [3]. These models were popularized in
text analysis for finding relevant latent topics from a corpus
and have been recently used in individual activity modeling
tasks [7, 13]. We have reformulated and extended this idea
for interaction data, where the set of links between users at
a given time are assumed to belong to a small number of in-
teraction types. Our work differs from standard topic mod-
els on the modeling of the observation space and the nature
of the latent class that we want to recover from data (the
block structure). As mentioned earlier, the block structure
is of high relevance in social network analysis for detecting
communities with high intra-community interactions. This
is captured naturally by our model by using a conditional in-
dependence assumption between observed variables, which
also reduces the algorithmic complexity, making our model
scalable compared to existing work.

3 GroupUs : A probabilistic model for sens-
ing group interaction.

We present in this section a new probabilistic model for
analyzing dyadic interaction data, which are usually repre-
sented as a set of links between pairs of users together with
the interaction timestamp. In our framework, a user may
have multiple links to others for a given timestamp, depend-
ing on the number of nearby devices that the Bluetooth scan
detected. In this study, we consider directed links, but our
method also works with undirected links.

Data representation. The main insight in this work is
that to infer the interaction type between two users at a
given time, one could exploit not the only links involving
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the two considered users but also the links between other
nearby users. We conduct our analysis with a slice-based
approach, where all links within a short period (e.g. 10
minutes) are grouped together, forming a slice of the
dynamic network. Duplicate links are removed, which
means that there are at most 2 directed links between any
two users in a slice. Furthermore, the time of the interaction
is also key to deduce the interaction type, hence we include
the temporal information in the description of the link. A
link i is thus characterized by:

ui : the head of the link (observer device).
vi : the tail of the link (observed device).
ci : the temporal context of the link, a discrete value

that describes the corresponding time of the day and day of
the week. It always corresponds to one of 24 ∗ 7 = 168
cases of the 24× 7 grid of a weekly calendar.

si : the identifier of the time slice that the link belongs
to. si ∈ {1..S} where S is the total number of time slices.

3.1 The probabilistic model

In many cases, the observed Bluetooth data are noisy.
This may be due to technical problems of the sensor as well
as the presence of real noise. Considering a group meeting
as an example, even if all members attended the meeting,
it could happen that some links between members could be
lost due to sensor failures. Furthermore, a member of the
group could be absent from the group meeting for a few
times, we call this “reality noise” of the group meeting.

u

v

c

t

S
Ls

θs

ϕ1t

ϕ2t

ϕ3t T

Figure 1: Graphical model.

In order to handle such stochasticity of the data, we
use a probabilistic approach where observations are repre-
sented by random variables. A latent variable model is in-
troduced for capturing emergent patterns from the observa-
tions. The graphical model is illustrated in Figure 1, where
observed random variables u, v and c are represented by
shaded nodes. The latent variable t corresponds to the in-
teraction type (a cluster of related links) of the link. The
latent interaction types are not explicit but are characterized
by model parameters φ defining which users are likely to be
observer and observed person for each interaction type (φ1t
and φ2t), and which temporal contexts that interactions of
a given types are likely to happen (φ3t). Finally, θs cor-
responds to the conditional distribution of interaction types
given the slice s. Once learned, these hidden variables can

Initialization:
Draw distribution θs ∼ Dirichlet(α) for each slice s.
Draw distribution φt ∼ Dirichlet(β) for each interaction type t.

For each link of the slice s:
Draw an interaction type t|s ∼Multinomial(θs).
Draw a first person u|t ∼Multinomial(φ1t).
Draw a second person v|t ∼Multinomial(φ2t).
Draw a temporal context c|t ∼Multinomial(φ3t).

Table 1: Generative process.

be used as a summary of the observation or to generalize the
observation. Note that we use a plate representation where
each node corresponds to a number of random variables,
and the capital letters in the corners stand for the number
of variables that the node represents. More specifically, S
stands for the number of slices in the data, Ls is the number
of links in slice s, and T is the number of interaction types
that we want to discover. The generative process for a set
of links is shown in Table 1 where we use a Dirichlet prior
distribution (with parameters α and β) for model parame-
ters θ and φ = {φ1, φ2, φ3}. The Dirichlet distribution is
the conjugate prior of the Multinomial, which is chosen for
algebraic convenience.

Let L be the total number of links, (u,v, c, s) =
(ui, vi, ci, si)i=1..L be the set of observed links, and t =
(ti)i=1..L be the interaction type assignment for each link.
The joint probability of u,v, c, s and t can be obtained by
integrating over hidden parameters:

P (u,v, c, s, t;α,β) =
∫
θ,φ

P (u,v, c, s, t, θ, φ;α,β)∂θ∂φ

=
∫
θ
P (t|θ)P (θ;α)∂θ

∫
φ
P (u,v, c|t, φ)P (φ;β)∂φ

=
∏S
s=1

B(α+ns)
B(α)

∏T
t=1

B(β+mt)
B(β)

B(β+pt)
B(β)

B(β+qt)
B(β) .

(1)
where B(.) is the multinomial Beta function, ns is a T -
dimensional interaction type count vector for slice s, and
{mt,pt,qt} are the observation count vectors of interaction
type t. Mathematically, the counts are defined by:

nst =
∑L
i=1 1(si = s ∧ ti = t), mtu =

∑L
i=1 1(ti = t ∧ ui = u),

ptv =
∑L
i=1 1(ti = t ∧ vi = v), qtc =

∑L
i=1 1(ti = t ∧ ci = c).

(2)

where 1(.) denotes the indicator function. Note that the in-
tegration over hidden parameters θ and φ in Eq. 1 can be
computed efficiently since we use conjugate priors in each
elementary distribution. For space reasons, the mathemat-
ical derivations have been omitted from the paper but are
available in a supplementary appendix.

3.2 Inference and parameter estimation

The proposed probabilistic model defines relations be-
tween observed variables and latent variables. These rela-
tions are parameterized by φ and θ, for instance φ1t tells
which users are likely to appear as observer in the interac-
tion of type t, φ2t tells which users are likely to be observed
in the interaction of type t, and φ3t tells which time slots in
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Algorithm 1 GroupUs learning algorithm
1: input: interaction links u,v, c, s
2: output: model parameters, θ, φ, and interaction type for each link,t.
3: initialization: Randomly assign interaction type ti for each link i
4: Compute the count nst,mtu, ptv, qtc according to Eq. 2
5: while not converged do
6: for each link i do
7: s := si. Decrement the counts: nsti --;mtiui --; ptivi --; qtici --;
8: Sample the interaction type assigment ti according to

P (ti = t|t¬i,u,v, c;α, β)
∝ (α+ nst)

β+mtui∑
u(β+mtu)

β+ptvi∑
v(β+ptv)

β+qtci∑
c(β+qtc)

9: Updating the counts: nsti ++;mtiui ++; ptivi ++; qtici ++;

10: end for
11: end while
12: Compute θ, φ according to Eq. 4

the weekly calendar interactions of type t are likely to oc-
cur. Discovering the interaction type is the process of fitting
model parameters to observed data, and then visualizing the
learned patterns based on the model parameters.

The problem of finding optimum model parameters is in-
tractable in general. However, a wide variety of approxima-
tion techniques can be used, including Laplace approxima-
tion, variational approximation, and Markov chain Monte
Carlo (MCMC). In this work, we learn the model using col-
lapsed Gibbs sampling [10], which samples the posterior
distribution P (t|u,v, c;α,β) from the conditional distri-
bution P (ti = t|u,v, c, t¬i;α,β) where t¬i denotes the
type assignment for all links but ith link. Although our
method works for general Dirichlet priors, we assume sym-
metric Dirichlet priors to simplify the presentation, and we
denote the scalar value of elements of the two vectors α,β
by α, β. Omitting derivation details for space reasons, the
Gibbs sampling equation can be written by :

P (ti = t|u,v, c, t¬i;α,β) ∝
(α+ n¬isit)

β+m¬itui∑
u(β+m

¬i
tu)

β+p¬itvi∑
v(β+p

¬i
tv )

β+q¬itci∑
c(β+q

¬i
tc )
,

(3)

where n¬ist ,m
¬i
tui , p

¬i
tvi and q¬itci are the counts for

nst,mtui , ptvi and qtci without considering the link i. For
instance, n¬ist =

∑
j 6=i 1(sj = s and tj = t). Given the

interaction type assignments for all links, we can estimate
the model parameters as follows:

θst = β+nst∑
t′ (β+nst′ )

, φ2tv = β+ptv∑
v′ (β+ptv′ )

,

φ1tu = β+mtu∑
u′ (β+mtu′ )

, φ3tc = β+qtc∑
c′ (β+qtc′ )

.
(4)

The full learning algorithm is summarized in Algorithm
1.The algorithm starts with random interaction type assign-
ments t for the set of links. Then, the interaction type for
each link is resampled iteratively until convergence. We
maintain the counts nst,mtu, ptv, qtc over iterations, which
are updated after each sampling step so that each iteration
requires only a few computations. Note that in the equation
at line 8 - Algorithm 1 is equivalent to sampling equation in
Eq. 3, since the counts were decreased just before the sam-
pling step and correspond to the counts without considering

Algorithm 2 Finding prominent users.
1: Input: P (u|t)
2: Output: most prominent users.
3: Sort users by P (u|t)
4: for n = 1 to #users do
5: Compute Kullback Leibler divergenceKL(n) between:

Pnproto : the prototype distribution with n-top participants
P (u|z) : the input distribution

6: end for
7: n∗ = argmax KL(n)
8: Return the list of top n∗ users.

the link i. After the sampling process, the algorithm out-
puts the interaction type for each link as well as estimates
of the parameters θ, φ. The overall complexity of Algo-
rithm 1 is O(KLT ) where K is the number of sampling
iterations (we set K = 100 in our experiments). Compared
to previous works [22, 17] for which the complexity grows
superlinearly (quadratically or even exponentially) with the
problem size, GroupUs scales well with the number of links
and the number of interaction types, and hence it can learn
from large-scale data in linear time.

3.3 Interpreting interaction types

Our method represents interaction types in a probabilis-
tic fashion. In most applications, one may want to know
what a discovered interaction type represents in real life.
This section shows how we interpret the learned model by
considering two fundamental questions for each discovered
interaction type: (1) Who are involved?, (2) Is the interac-
tion happening at work?. This is discussed in the following.

Inferring the participants of a given type of interaction.
The learned parameter φ1t tells us the probability of ob-
serving user u given the type of interaction t, and thus we
can answer the first question based on this. Due to the vari-
ability of group size, we need a method to extract the top
users who are likely to participate in a given interaction
type. A simple method is to take the minimal set of top
users who cover at least X% (e.g. 90%) of the probability
mass. However, this method is quite sensitive to the thresh-
old and might fail to find the relevant members of a group.

Our solution is described in Algorithm 2. The algorithm
takes as input the conditional distribution over users given
an interaction type P (u|t) and outputs the list of promi-
nent users as follows. First, the list of users is sorted by
their probabilities. Then the algorithm finds the best seg-
mentation of the list of users into participants and non-
participants. As scoring function for a given segmentation
with n prominent users, we use Kullback Leibler divergence
between a prototype distribution with n users and the input
distribution. The prototype distributions are defined based
on the ideal case where the top n users have equal probabil-
ities, and the probabilities of all others are zero. Formally:
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Pnproto(u) =

{
1/n if u belong to the top n users
0 otherwise. (5)

Office interaction vs personal interaction. A person
may have many social interaction types in their daily life.
Based on the temporal context, we can infer the meaning of
the discovered interaction types. For instance, a work in-
teraction should mainly occur on working hours and not on
weekend days. Implementing this idea in our model is par-
ticularly easy given the learned parameters. Let H be the
set of office-hour time slots, i.e. from 9am-6pm Monday to
Friday. The probability that an interaction of type t occurs
during working time can be computed as:

P (H|t) =
∑
c∈H

P (c|t) =
∑
c∈H

φ3tc. (6)

Clearly, if P (H|t) is high then it is likely that the inter-
action type t corresponds to an office interaction. We de-
fine an office interaction as an interaction type t for which
P (H|t) > T0 where T0 expresses the certainty of t being
an office interaction. As we will see in Section 5, this infor-
mation is helpful to visualize data or for further analysis.

4 Large-scale proximity data
We use data from the Lausanne data collection cam-

paign, which uses a server-client architecture built for the
Nokia N95 8GB smartphone in order to collect data [15].
The software client was designed to detect and record Blue-
tooth scans, storing the logs in the phone’s memory. The
client was installed in the phone and runs in the background
in a non-intrusive way, starting automatically at startup, and
recording data on a 24/7 basis as long as the phone is on.
The log data are then uploaded daily to a server, typically
done at night, via a user-defined wifi connection.

To allow for real-life usage with respect to battery con-
sumption, the client is designed using a state machine archi-
tecture [15], which adapts the sensor sampling rate depend-
ing on the inferred phone state (e.g. static, moving, etc).
The data are recorded continuously with the only restriction
of having to recharge the phone once a day (typically done
during nights). The mobile phone scans to detect nearby
Bluetooth devices every 1-3 minutes.

We used Bluetooth data recorded continuously over 12
months of real-life on a set of 40 volunteer users (also
called observers in the following). 24 of the users are col-
leagues who work for a mid-size organization and occupy
a dozen office spaces in a building, spanning from single-
person rooms to a lecture room. The remaining 16 users
are family members from the 24 users. All volunteers were
compensated for any costs associated to the data collection.
All information about the users has been anonymized, and
only basic information about group membership has been
kept for experiments. Users carried their device as their ac-
tual (and only) phone and therefore used them in real con-
ditions. The data was recorded from September 2009 to

Accumulated proximity time (hours)

users

u
s
e

rs

 

 

10 20 30 40

5

10

15

20

25

30

35

40 0

500

1000

1500

2000

2500

3000

3500

users

u
s
e

rs

Working place relation between workers at the organization

 

 

4 8 12 16 20 24 28 32 36 40

4

8

12

16

20

24

28

32

36

40

none

nearby

next office

same office

Figure 2: Left: Accumulated proximity time between users
according to BT sensor. Users 1-24 are co-workers, users
25-40 are some of their family members. Right: Working
place relation between workers in the organization.

August 2010 and corresponds to more than 2 million non-
empty Bluetooth scans.

5 Experimental results and discussion
We begin by presenting a global view of the data. Figure

2(left) shows the accumulated proximity time between users
in the population according to the Bluetooth sensor. The 24
workers in the organization are numbered from 1 to 24 and
ordered by the office they nominally occupy.

Figure 2(right) shows the working place relation between
workers according to four cases: i) co-office workers (same
office), whose phones should detect each other quite often;
ii) workers in adjacent offices (next office) are very likely to
detect each other, but depending on their relative position;
iii) workers in nearby offices (nearby) but not as close as
the two first cases; and (iv) none of the above. These plots
reflect the fact that in reality co-workers have high chance
to see each other if their offices are close, and people spend
more time with their relatives than with co-workers.

5.1 Robustness of Bluetooth as proximity
sensor

Bluetooth data is quite noisy, it often happens that a
Bluetooth device does not detect all nearby devices in a
scan. We present in this section a basic analysis of robust-
ness of Bluetooth proximity sensor in a real condition.

We start by considering a subset of the data consisting of
the weekly meetings of a group of 10 members for whom
we know the exact meeting schedule over the recording pe-
riod. Based on this, we would like to estimate the rate at
which the phone of each person successfully detects other
participants. To this end, we divide each group meeting into
time slices of short duration, and draw links between peo-
ple within each time slice. The ground truth for each group
meeting is simply a fully connected graph using the peo-
ple present at the meeting. We consider both directed and
undirected graphs for the evaluation:
• An asymmetric link from user u to user v corresponds

to the fact that u observed v during the slice.
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Figure 3: Proximity detection rate of Bluetooth sensor for
group meeting data.

• A symmetric link between u and v corresponds to the
fact that u observed v or v observed u.

Figure 3 reports the rate of link detection as a function
of time slice duration. As can be seen, the duration of the
slice is crucial as increasing the “observation” period also
increases the rate of link detection. The plot also suggests to
consider a slice duration of at least 5 minutes in order to ob-
tain near optimal link detection rate with Bluetooth sensor.
Looking at the result for asymmetric link, we found that the
Bluetooth sensor has a proximity detection rate of 0.5 at 10
minutes time slice. The rate can be improved by considering
Bluetooth data from two users, this corresponds to the case
of symmetric link where the proximity detection rate are
roughly 25% better than the case of asymmetric link. Slices
of 10 minutes are therefore a conservatively good choice.

We continue with the analysis with GroupUs algorithm.
First we highlight some typical examples of discovered in-
teraction types, we then study the evolution of interactions
over time in real events. Finally, we evaluate objectively the
predictive performance of GroupUs.

5.2 Discovered interaction types

We ran GroupUs with T = 40 in order to capture a
few family interactions and office interactions, and we set
α = 0.1, β = 0.1 and T0 = 0.5. Starting from random ini-
tialization, the algorithm refines model parameters in each
Gibbs sampling iteration. We observed that the convergence
is reached after about 30 iterations (see movie in supple-
mentary marterial).

Using the classification method in Section 3.3, we found
15 office interaction types and 25 family interaction types.
We start with some examples of discovered interaction
types, visualized with the pairwise matrix of interaction (i.e.
φ1t

ᵀφ2t) and the distribution of temporal context over the
weekly calendar (φ3t) in Figure 4. The first two interaction
types (a-b) correspond to working place interactions, where
these groupings (the first one involving users 1-3, and the
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Figure 4: Typical discovered interactions visualized with
pairwise interaction matrix (φ1tᵀφ2t) between users and the
distribution of temporal context (φ3t).
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Figure 5: Evolution of office interaction over time. Some
emergent events such as holidays can be observed.

second one involving users 5-11) clearly correspond to the
working place ground truth (compare with Fig. 2(right).
Note that these interactions spread over working times but
have low probability at lunch time, which indicate that these
coworkers do not eat together often. The low probabilities
for some days of the week reflect the fact that some workers
telecommute and so do not come to the organization every
day.The two next interaction types (c-d) are interesting as
more people are involved and the temporal context reveals
that these are not daily interactions. Figure 4(c) corresponds
to a weekly group meeting on Fridays followed by lunch in
reality. Note that this group is spread over 4 different of-
fices, and some of its members appear as most prominent
users of other discovered interaction types (e.g. Figure 4(b))
which highlights the probabilistic advantage of GroupUs.
The interaction type in Figure 4(d) reflects a weekly big
meeting of the organization on Tuesday afternoons where
all members are expected to attend. This is an example of
a highly localized type of event that is correctly inferred by
GroupUs. Note that some occasional interactions between
workers are also assigned to this type of global interaction,
explaining why there is some “noise” in the weekly calen-
dar. Finally, we show two examples of family interaction
in Figure 4(e-f). Note that, while many family interaction
types were discovered, they have similar temporal context
and differ mainly in the set of involved users.

5.3 Interaction over time

Although our method does not take into account abso-
lute calendar temporal information (that is, beyond weekly
schedule), we can nonetheless study the evolution of prox-
imity interactions over time. Figure 5 plots the number of
work interactions for each day of the data collection period.
Office interactions were inferred according to the method
described in Section 3.3. As can be seen, we can see some
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Figure 6: Autocorrelation of family interaction (blue) and
office interaction (red). The x-axis corresponds to days, y-
axis corresponds to autocorrelation value

emergent events from the plot such as Christmas vacation
(Dec 23 - Jan 4), Easter weekend( April 2 - 5), and other
holidays. All of these are characterized by lower values.
The plot also shows big events of the organization. For in-
stance, the highest pick at December 1, 2009 was actually
the annual party of the organization.

We also compare the periodicity of office interactions
with personal interactions. Figure 6 shows the autocorre-
lation of these two kinds of interactions for the population
of 24 workers. As can be seen, the weekly periodicity of
work interaction is very clear while weekly periodicity of
family interaction is quite weak. Note that this analysis
can be applied to each interaction type to distinguish be-
tween periodic group interaction (such as weekly meetings)
and occasional group interactions (examples not shown for
space reasons). These results confirm some findings by Ea-
gle and Pentland [6] but on a different organization and with
a robust probabilistic approach that significantly reduces the
presence of noise in Bluetooth data.

5.4 Predictive performance

In this section, we evaluate our method by studying the
predictive performance unseen data, an very important task
in context-aware mobile application. Our main goal is to
validate the learning capability of the proposed model by
studying the likelihood on unseen data. For this reason,
we do not consider a real-time prediction task and com-
pare with predictive models such as ARIMA. The last two
months of data are for testing, and we learn the model with
different training sets, varying from 2 (last) months to 10
months of data from all users.

As a baseline, we adapted the Marginal Product Mix-
ture Model (MPMM) which was proposed recently for an-
alyzing phone call data [4]. As discussed in Section 2, this
model also aims at finding latent classes of interaction, but it
can only infer the latent class from a single link. On the con-
trary, our model infers the interaction type of a user based
on his interactions with others and also based on the inter-
actions among other people in the group.

Figure 7 plots the test log-likelihood for different train-
ing sizes. As can be seen, GroupUs outperforms clearly
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Figure 7: Log-likelihood on the test data.

the MPMM model in term of predictive performance thanks
to the more accurate modeling assumption. In general, the
more data the more accurate GroupUs is, but note that us-
ing “too old” data (the case of 10 months) might not help
improving predictive performance.

6 Conclusion
We proposed a new probabilistic model for discovering

interaction types from large-scale proximity data. We con-
ducted our analysis on Bluetooth proximity data involving
40 users in which 24 of them are co-workers at the same or-
ganization. We objectively evaluated our method by study-
ing predictive performance, showing a significant advantage
over a recently proposed model. We are interested in ex-
tending this work to include additional nearby Bluetooth
devices in the analysis, thus considering an extended pop-
ulation of volunteer data providers and others. While more
data provides the opportunity for more accurate learning of
social context, one key challenge will be to work with un-
known devices. Using only Bluetooth data, we showed that
GroupUs can infer relevant interactions such as office in-
teractions and family interactions without any supervision.
One could incorporate other type of data (e.g. GPS) into
GroupUs in order to enrich the context of the interaction,
therefore providing more details on the discovered interac-
tion types.
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