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Abstract

The determination of transcriptional regulatory netwdskkey to the understanding of
biological systems. However, the experimental deterrionadf transcriptional regu-

latory networks in the laboratory remains difficult and tieensuming, while current

computational methods to infer these networks (typicalnt gene-expression data)
achieve only modest accuracy.

The latter can be attributed in part to the limitations of gh-organism approach.
Computational biology has long used comparative and, meremlly, evolutionary
approaches to extend the reach and accuracy of its anaMgetherefore use an evo-
lutionary approach to the inference of regulatory netwpudsich enables us to study
evolutionary models for these networks as well as to impitbeeaccuracy of inferred
networks. Since the regulatory networks evolve along withdenomes, we consider
that the regulatory networks for a family of organisms afatesl to each other through
the same phylogenetic tree. These relationships contfamiation that can be used
to improve the accuracy of inferred networks. Advances & gtudy of evolution of
regulatory networks provide evidence to establish evohaiy models for regulatory
networks, which is an important component of our evolutigrepproach. We use two
network evolutionary models, basic model that considers only the gains and losses
of regulatory connections during evolution, andextendednodel that also takes into
account the duplications and losses of genes.

With the network evolutionary models, we design refinemdgorithms to make use
of the phylogenetic relationships to refine noisy regulateetworks for a family of or-
ganisms. These refinement algorithms incluiRefineFastand RefineML. which are
two-step iterative algorithms, atoPhyCandProPhyCC which are based on a proba-
bilistic phylogenetic model. For each algorithm we firstigast with the basic network
evolutionary model and then generalize it to the extendetl@gonary model. All these
algorithms are computationally efficient and are suppoligaxtensive experimental
results showing that they yield substantial improvemenhéquality of the input noisy
networks. In particularProPhyCand ProPhyCCfurther improve the performance of
RefineFasandRefineML

Besides the four refinement algorithms mentioned above,lseedesign an algorithm
based on transfer learning theory called tree transfenilegT TL). TTL differs from the
previous four refinement algorithms in the sense that itddke gene-expression data
for the family of organisms as input, instead of their inégknoisy networksTTL then
learns the network structures for all the organisms at amesnwhile taking advantage
of the phylogenetic relationships. Although this approaatperforms an inference al-
gorithm used alone, it does not perform better tRaoPhyC which indicates that the
ProPhyCframework makes good use of the phylogenetic information.
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Résune

La détermination des réseaux de contrble transcripébast essentielle a la compréhen-
sion des systemes biologiques. Cependant, la dételiorinexpérimentale des réseaux
de contrdle transcriptionnel dans le laboratoire restfgcitie et laborieuse, tandis que

les méthodes computationnelles pour ces réseaux r@éntent a partir des données
d’ expression génique) n'atteignent qu’une précisiordaste. Cette derniere peut étre
attribuée en partie a des limitations d’'une approcheaewge a un seul organisme.

La biologie computationnelle a longtemps utilisé des appes comparatives et, plus
généralement, évolutives pour étendre la portée ptéaision de ses analyses. Nous
utilisons donc une approche évolutive pour l'inferenes deseaux de contrble, ce qui
nous permet d’étudier les modéles d’évolution de cesaéx ainsi que d’améliorer la
précision de l'infererence. Comme les réseaux de otm&voluent avec les génomes,
nous considérons que les réseaux de contrdle pour uniefaforganismes sont liés les
uns aux autres au travers de I'arbre phylogénétique &raes. Ces relations contien-
nent des informations qui peuvent &tre utilisées pouelemer la précision des réseaux
reconstruits. Les progres dans I'étude de I'évoluties teseaux de contrdle fournissent
des preuves pour établir des modeles évolutifs pouréssaux de contrble—ceci est
un élément important de notre approche évolutive. Ndilisans deux modéles pour
I'eévolution des réseaux, un modédke basequi ne considére que les gains et pertes
de connexions au cours de I'évolution, et un modidmplexequi prend également en
compte les duplications et les pertes de genes.

Avec les modeles d’'évolution des réseaux, nous élatsodes algorithmes qui utilisent
des relations phylogénétiques pour affiner des résearurpés pour une famille d’ or-
ganismes. Ces algorithmes de raffinement comprenriRetineFastet RefineMLqui
sont algorithmes itératifs en deux étapesPrtPhyCet ProPhyCCqui sont basés sur
un modele probabiliste phylogénétique. Pour chaqueriifgne nous avons d'abord
le concevoir avec le modele évolutif de base et ensuit&f@liser au modele com-
plexe. Tous ces algorithmes sont informatiguement effcad@uantité de résultats
expérimentaux démontrent qu’ils donnent une améiimnanhotable de la qualité des
réseaux d'entrée. En particulie?yoPhyCet ProPhyCCameéliorent encore les perfor-
mances d&kefineFaset RefineML

En sus des quatre algorithmes mentionnés ci-dessus, mons agalement congu un
algorithme basé sur la théorie du transfert d’appreagies un algorithme de transfert
d'appretissage sur arbr@TL). TTL differe des quatre algorithmes précédents dans le
sens ou il prend les données d’expression génigue pdamniéle d'organismes comme
entrée, au lieu de leurs réseaux reconstriifd. apprend alors les structures des réseaux
pour tous les organismes a la fois, en prenant parti desamdaphylogénétiques. Bien
que cette approche surpasse un algorithme d’ infereniggtlgur chaque réseau séparé-
ment, il ne donne pas de meilleurs résultats BueEPhyG ce qui indigue qué&roPhyC

fait bon usage de I'information phylogénétique.
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Chapter 1

Introduction

Transcriptional regulatory networks are models of theutallregulatory system that governs tran-
scription. They show how genes are up- and down- regulatéddiyassociated transcription factors
in response to signals. Transcriptional regulatory neterare often modelled as directed graphs [1],
with nodes representing the genes and arcs (directed edges$enting the regulatory relationships
between these genes. The arcs can have different propétiesgn (denoting activation or inhibi-
tion), weight, etc., that give more details about the inteoms.

Due to their importance in biological processes, transiomal regulatory networks are studied
from various aspects. First of all, the discovery of traipgimmal regulatory networks, that is, the
determination of regulatory interactions between traption factors and target genes, is of great
interest in biology and medicine. Wet-lab techniques swothaomatin immunoprecipitation (ChiP)
can be used to determine the DNA binding sites for transoriplactors and thus find their target
genes. Since regulatory networks are determined only fewabfganisms and this data produced by
biological experiments is growing very slowly, computatb methods are developed to infer regu-
latory networks. Then, with the networks known, the netwimpology properties are studied. For
example, large regulatory networks are regarded as sadenktworks, whose degree distribution
follows a power law distributiori [2] 3]; the network struas are hierarchical and have high modular-
ity [4H6]), and there are highly repetitive subgraph pateralled network motifs [7]8]. Furthermore,
dynamic analysis of regulatory networks is also performtedtudy how regulatory interactions are
activated or deactivated under different conditions in oaewvork [9], how networks grow along
with the gene duplication events [4,)10], and finally how rets evolve from one organism to an-
other [10, 11]. Knowledge of the dynamics and evolution casian how the networks have formed
into what they are. Furthermore, with sufficient data anddedge we can predict future networks.

During my PhD | mainly worked on two of the topics above: thenpaitational inference of
regulatory networks, and the evolution of regulatory nekso In particular, | use the evolution of
regulatory networks to improve their inference.

The inference of regulatory networks is important becabsedetermination of regulatory net-
works is basic to all other studies, and because of the largéar of genes of interest, and the limit
of wet-lab techniques, it is still difficult and time-consimg to establish regulatory connections from
bench experiments. Given high-throughput genome sequeateeand microarray gene-expression
data, computational methods are used to predict tranggrifdctor binding sites (TFBS) and infer
regulatory networks [12]. In particular, microarray gemgsression data, as phenotypical level data
in contrast to genome sequence data, is used to infer regula¢tworks. Methods using Boolean
networks [[18], Bayesian networks [14], dynamic Bayesiatwneks (DBNs) [15], and differential
equations[[16, 17], and so on, have been proposed for thimper The networks predicted by these
algorithms, however, suffer from a high error rate. The higtse level in the data, the paucity of well
studied networks, the many simplifications made in the ngyaeimbined with other factors (such as
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the typically large number of genes tested vs. the small murabtest samples—the so-called “tall
dataset” problem), make inference difficult, in terms oftbatcuracy and computation.

Much effort is being made to improve the regulatory netwaorfieiience in the community, most
of which focuses on improving the standalone inference fnmdategrating additional data to infer
the network for a single organism [18+20]. For example, mdshvere developed to use time-series
expression data [15,21-423], and biological techniques baen improved to obtain richer ddtal[24].
On the other hand, computational biology has long used coatipa and, more generally, evolution-
ary approaches to extend the reach and accuracy of its esalfs species evolve, their regulatory
networks also evolve along the same lineages, so that thiategy networks for a family of organ-
isms are related through the organismal phylogeny. Thdagamships can be used as additional
information to correct errors in currently available netigand obtain higher-quality networks for
a family of organisms. Therefore, instead of focusing omalstorganism inference approach, we
consider the regulatory networks for a family of species] ase an evolutionary approach to im-
prove the inference of regulatory networks, which enabetostudy evolutionary models for these
networks as well as to obtain improved networks.

To design such an evolutionary approach, we have to consieproblems. First, although
phylogenetic relationships are well established for maygs of organisms, we do not know how
their regulatory networks evolve along the phylogeny, ibatve need a model for the evolution
of regulatory networks to apply the evolutionary relatioips among networks. Second, we need
methods and algorithms which output the desired regulatetyorks.

We turn to recent work on the evolution of biological netwsitk find a solution for the first
problem. The evolution of biological networks—regulatomgtworks, metabolic networks and pro-
tein interaction networks—has drawn great interest amesgarchers [25—27]. Among these three
types of networks, the evolution of regulatory networks rendifficult to study mainly due to the
lack of benchmark data, since transcriptional regulat@tyvorks produced from bench experiments
are available only for a few model organisms. However, otyiges of data have been used to assist
in the comparative study of regulatory mechanisms acraggsmisms. For example, gene-expression
data[11], sequence data such as transcription factorrigriies (TFBS) [28,29], ands-regulatory
elements[[11] have all been used in this context. Moreoverpad range of model organisms have
been studied, including bacterla [30], yeast| [11, 28], anit fly [29]. Although these studies have
not to date sufficed to establish a clear model for regulatetyork evolution, they have identified a
number of evolutionary events, such as adding or removibgor& edges, and the duplication and
loss of gened |4, 30=32]. In particular, Babu and his colleagpioneered an evolutionary approach
to the study of regulatory networks B coli and inS. cerevisiadg4l30)32 33], where they posit a
simple evolutionary model for regulatory networks, whichaunts to adding edges to, or removing
edges from the network, and proceed to investigate how weli & model accounts for the dynamic
evolution of two of the best studied networks.

These studies have provided the basis for introducing geolary models for regulatory net-
works. We summarize two evolutionary models for regulatoepworks. One is called basic
model, where we consider only gain and loss of regulatoryeotions while the gene contents stay
the same. The other is axxtendednodel, and in this model we also take into account duplioatio
and losses of genes. These two models are formalized in &ff&pt

Then, with a network evolutionary model, we design a comjmrial framework that uses phy-
logenetic information to yield better networks than thoeed with current inference algorithms.
There are two scenarios for this problem with respect toripatiinformation:

1. The input can be the regulatory networks for a family ofcége inferred independently (with
any inference method), hereafter calledbasemethod. In this case we design refinement
algorithms which take these noisy inferred networks astirgnd output the refined version of
these networks. The refinement algorithms we have desigmedi$ scenario areRefineFast
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RefineML,. ProPhyC ProPhyCC

2. The input can also be the gene-expression data of thes®spdn this case, we devise a
network inference algorithm that infers the networks fbtls species at the same time, while
taking the phylogenetic relationships as part of the inpigt @onstraints. For this scenario, we
have designed th&ree Transfer Learning (TTLlgorithm to infer the optimal configuration
of the networks for all organisms at a time.

We have worked on both scenarios while focusing on the first simce it is more general and not
limited to certain source of regulatory networks in term&ath data and inference method.

When our input is the networks for the family of organisms &orbfined, we first place these
networks at the corresponding leaves of the phylogeny sffimily, and consider using networks of
their ancestors as a media to store and propagate the phgligenformation. In this case, the an-
cestral networks will be inferred from these leaf networl¢sabh ancestral reconstruction algorithm.
However, since these leaf networks are error-prone, ttanedaicted ancestral networks can help us
get refined networks only if they have lower error rate thanl¢af networks. In fact, an appropriate
algorithm should be able to exclude errors and use the ¢dnfermation in the leaves during an-
cestor reconstruction, given that the errors are indep#ratzross the leaves. We ad#&astML [34]
to reconstruct ancestral networks with a maximum likelthoaterion. We perform experiments to
test the accuracy of the ancestors reconstructegabyvL. Our results, which are shown in Chap-
ter[3, show that the ancestral networks have less error higaleaf networks. With this guarantee we
proceed to design refinement algorithRefineFastand RefineML, which directly use ancestral in-
formation to obtain refined networks, and later on two impobvefinement algorithnBroPhyCand
ProPhyCGC which are based on a probabilistic graphical model andoetdbly integrate the input
noisy networks, ancestral networks and the refined netwaltitsgether.

We also design a tree transfer learnidg ) algorithm which works with the second scenario
mainly for the purpose of comparison and analysis. Prioutoaork, Bourque and Sankoff [35] also
developed an algorithm to infer regulatory networks acegsoup of species whose phylogenetic
relationships are known; they used the phylogeny to reoactsbhetworks from the gene-expression
data of these species, under a simple parsimony criterion.

For each refinement algorithm we present, we first show howikswith the basic evolutionary
model, and then show how we extend it to work with the extendedel. In our experiments, the
noisy networks as input to our refinement algorithms are igdeé by different means: by using vari-
ous basic inference methods to infer networks from geneesson data, or by adding artificial noise
from various distributions to the “true” regulatory netisr We use “true” regulatory networks both
generated from data simulation and from biological datéectbn. We perform extensive experi-
ments to test our algorithms from multiple aspects. We camfize accuracy of networks inferred
from the base inference algorithm, output from Bourque aadk8ff's algorithm, and refined by
each of our refinement algorithms respectively. We show thrater all comparable setting3efine-
FastandRefineMLoutperform the base inference algorithm and Bourque anddianalgorithm,
andProPhyCandProPhyCCfurther improveRefineFasandRefineML

In Chaptef 2, we give the computational and biological baalgds of our work, as well as a
brief introduction of the algorithm from Bourque and Sarikdh Chaptei B, before getting to our
core algorithms, we give the details of two preliminariebjah are the two formalized networks evo-
lutionary models we use, and the accuracy tests of the aatestworks reconstructed IFgstML. In
Chaptei 4 we describe our two-step iterative algorittiteineFasandRefineML.and show how to
extend them from the setting of basic evolutionary modehéd of the extended model. In Chagtér 5
we describe th@roPhyCandProPhyCCalgorithms which further improvRefineFasandRefineML
with both the basic and extended network evolutionary nwodal Chaptel 16 we present tA@L al-
gorithm and compare it witRroPhyCandProPhyCC Finally in Chaptef]7 we give conclusions.
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Chapter 2

Background

Our main refinement algorithm&éfineFastRefineML. ProPhyCandProPhyCQ take the the noisy
regulatory networks for a family of organisms as input, amtibat refined version of this set of
networks. In our experiments, we obtain the noisy netwosksput to the refinement by using an
existing network inference algorithm (which we cabaseinference method) to infer networks from
gene-expression data. To test the generality of our refineadgorithms, we use two different base
inference methods to infer regulatory networks from gexgression data, one based on dynamic
Bayesian networks (DBN) and the other based on differeatiahtions, which are two widely used
models for network inference. For the former, we use the émgntation in Murphy’s Bayesian
Network Toolbox[[36]; for the latter, we uSeRNinfer [17].

RefineFastRefineML. ProPhyG andProPhyCCall use networks of ancestral species in various
ways. RefineFastand RefineMLare two-step iterative algorithms. The noisy input netvsoake
placed at the corresponding leaves of the (known) phyladerthe first step, from the input networks
at the leaves, we infer ancestral networks; in the secony #tese ancestral networks are used to
refine the leaf networks. These two steps are then repeateeedsed. To infer ancestral networks,
we use our adaptation &hstML [34], which was initially designed to reconstruct ancdgbratein
sequences with a given phylogeny.

When the basic network evolutionary model is used, all nétavbave equal gene contents, so
to resolve the ancestral networks we only need to infer tineections. However, with the extended
evolutionary model, since it includes gene duplicationd lasses, the gene content may vary across
networks. While the gene content of the leaf networks is kmowe need to reconstruct the gene
content for ancestral networks, that is, to reconstruchtbmry of gene duplications and losses. A
standard approach to address this problem is to reconeilgehe trees and species tiie€ [37-39].

In this chapter we briefly introduce the relevant topics wedor later chapters.

2.1 DBNSs for Network Inference

When DBNs are used to model regulatory networks, an assdciitucture learning algorithm is
used to infer the networks from gene-expression data [1:312)0 The implementation of this algo-
rithm in the Bayesian Network Toolbox provides two optintiaa functions: a maximum likelihood
(ML) score and a Bayesian information criterion (BIC) score

Let D denote the dataset used in learning &the (structure of the) network; the algorithm
using ML scoring aims to return the structu® = arg maxlogPr(D|G). However, transcriptional
regulatory networks are typically sparse graphs, so MLrérfees often produce many false positive
edges. The BIC score introduces a penalty on the complekiGyto get a tradeoff between fit and
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complexity, which is defined as
logPr(D|G,8¢) — 0.5#GlogN (2.1)

where®g is the ML estimate of network parameters for structGteN is the number of samples in
dataseD, and # is thedimensionof structureG, defined as the number of free parameter&of
The penalty for model complexity makes networks inferredairthis criterion more conservative,
reducing the number of false positives in the networks, Aod gaining specificity at the expense of
sensitivity.

In practice, heuristic search methods are used, as wellldgesirictions on the structure of the
model, the latter aimed at reducing the huge number of plessédiwork structures—such as a bound
on the maximum indegree of the nodes, a restriction thatappeell supported by the data [13] 42]
and that we use in our simulations.

2.2 Differential Equations for Network Inference

Differential equations can describe causal relationsaipsng components in a quantitative manner
and are thus well suited to model transcriptional reguatatworks [16, 17]. A regulatory system

is represented by the equatidr/dt = f(x(t)) — Kx(t), wherex(t) = (xa(t), -+ ,Xn(t)) denotes the
expression levels of thegenes at timé andK (a matrix) denotes the degradation rates of the genes.
The regulatory relationships among genes are then chaestiéy f (-). Wanget al [17] produced

a tool, TRNinfer, that solves the differential equations by formulatingnthiato linear programming
problems.

2.3 ML-based Reconstruction of Ancestral Nodes

Reconstructing ancestral information in phylogenetickusrtypically in the nature of an anchoring
step in the computation, particularly in parsimony-bagggoreaches. When we have high confidence
in the tree and the edge lengths are modest, however, an Mbagpto ancestral inference can yield
accurate result&astML [34], using a user-specified character substitution matrfers labels for the
internal nodes (on a site-by-site basis) that maximize veeadl likelihood of the tree. The algorithm
was initially designed for protein sequences, but can bd fmeany type of sequence with a suitable
substitution matrix.

This algorithm assumes that each site in the protein se@gesnolve independently, so it can
infer the ancestral characters for one site at atime. Fiteais., a character position in the sequence.
Leti denote a node in the trelgthe length of the edge between nadend its parent, andthe value
of a character at a nhode in the tree, chosen from a give8 aigpossible character values. For each
nodei and each character we maintain two variables:

e Li(a): the likelihood of the best reconstruction of the subtrethwaoti given that the parent
of i is assigned charactar

e Ci(a): the optimal character assigneditgiven that its parent is assignedas

Finally, let e, denote the initial distribution of charactarand pap(1) the probability of substitution
of a with b along an edge of length For simplicity, assume that the given tree is binary; then o
adaptation of th&astML algorithm carries out these steps (see FEig. 2.1):

1. If leafi has characteb, then, for eacla € S setCi(a) = b andL;(a) = pap(l;)-

2. If i is an internal node and not the root, its children arandk, and it has not yet been
processed, then, for eaale S, set

14



Figure 2.1: Illustration of the FastML algorithm: calcuieg Lj(a) andCi(a) for a nodei with two
children j andk.

o Li(a) = maxesPac(li) - Lj(c) - Lk(c)
e Ci(a) = argmaxcspac(li) - Lj(c) - Lk(c)

3. If there remain unvisited nonroot nodes, return to Step 2.

4. If i is the root node, with childrepandk, assign it the valua € Sthat maximizes
Ta-Lj(a) - Lk(a).
5. Traverse the tree from the root, assigning to each nodatsacter byC;(a).

2.4 Reconciliation of Species Tree and Gene Trees

To infer ancestral networks with the extended network ei@miumodel, we need a full history of gene
duplications and losses. We reconstruct this history bgmeiting the gene trees and the species
tree. The species tree is the phylogenetic tree whose leavesspond to the modern organisms;
gene duplications and losses occur along the branchessdfdlei. A gene tree is a phylogenetic tree
whose leaves correspond to genes in orthologous gene damailiross the organisms of interest; in
such a tree, gerduplicationandspeciationevents are associated with internal nodes.[Fig. 2.2 shows
an example.

Ancestorl
Ancestor2 Ancestor3
—1
Gn.A S1
S1 S2 S3 sS4 Gn.A_S2 Gn.A S2 Gn.A S3 Gn.A S4 Gn.A_S4
(a) The species tree of 4 species (b) The gene tree of the gene family “A”

Figure 2.2: The left plot shows the species tree for 4 spe@ds S2, S3 and S4. The right plot
shows the gene tree of the gene family “A” across the 4 spe€ies events at its internal nodes can
be determined by reconciling the two trees.
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When gene duplications and losses occur, the species mddb@gene trees may legitimately
differ in topology. Reconciling these superficially contligy topologies—that is, explaining the
differences through a history of gene duplications anddssss known agineage sortingor rec-
onciliation. Given a gene tree for a gene family and the correspondingespéree (as shown in
Fig.[2.2), the reconciliation process can label the inlemodes of the gene tree with speciation and
duplication events [38,43]. This is usually done by crepmrmapping between the gene tiieeand
the species tre@s. The mappingl maps every node in Tg to a target nodeM(v), in Ts. Do a
post-order traversal on the gene tree, then for @abh(v) is assigned as follows:

¢ If vis aleaf node iffg, M(v) is the species from which the genevas obtained.

e If vis aninternal node ifig, v is mapped to the least common ancedta, of the target nodes
of its children, that isM(v) = lca(M(le ftchild(v)), M (rightchild(v))).

Fig.[2.3(a) shows the same gene tree in[Fig 2|2(b) with alhtides labelled with their target nodes
obtained by the mappiniyl. Under the mappind/, a node inTg is determined as a duplication
node if its target node is the same as at least one of its ehikltarget nodes, otherwise it is a
speciation node. Thus we can determine all the speciatidrdaplication events in the gene tree.
Then necessary gene loss events can be inferred to condighe/ispeciation and duplication events.
Fig.[2.3(b) shows the same gene tree with all gene duplitatiene loss, and speciation events
labelled.

Ancestorl Ancestorl

/ \
Ancestor2 Ancestor3 Ancesjor2

|speciation| |[duplication |

Angestor3

< ¥ Ancestor3 [duplication] [speciation]
Gn.A S1 Gn.A_S1 loss
52 52 S3 54 54
Gn.A_S2 Gn.AS2 Gn.A_S3 Gn.A S4 Gn.AS4 Gn.A_S2 Gn.A_S2 Gn.A_S3 Gn.A_S4 Gn.A_S4
(a) The gene tree showing target nodes from the mapping M (b) The gene tree showing a solved history

Figure 2.3: The gene tree for gene family “A” across 4 speclat: the text at each node shows
the target nod®(v) of each noder in the gene tree. Right: the gene tree showing a complete gene
duplication and loss history.

In practice, when a gene tree is not pre-determined, thexstaation of the gene tree uses two
criteria: 1. the gene tree should fit the sequence data ofdhesy 2. the gene tree should yield
an optimal gene duplication and loss history by the rect@iimh process introduced above. While
reconstructing the optimal gene tree and history is a handpbcatational problem, algorithms have
been devised for it in a Bayesian framewadrkl|[37] or using gosgnparsimony criterior [38].

2.5 Evolution and Dynamics of Regulatory Networks

The evolution of regulatory networks is mainly attributediie evolution of genomes [10,/44]. Mu-
tations in the genome of an organism can change the regyliateractions in various ways. First,
mutations in the regions afis-regulatory elements can cause the loss of transcriptictofawhich
bind to these elements. For example,[in/[11] the authorsesidbatcis-regulatory elements can be
gained or lost during the evolution of a family of 17 fungi gemes. Second, genome-level mutations
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for the transcription factors (TFs) can change their furcguch that they may not regulate the same
target genes. In particular, studies have shown that trigtisn factors evolve faster than their tar-
get genes in prokaryote organisms, and orthologous trigtiser factors can regulate different genes
in different organisms [30, 45]. These studies show thah evith a network which contains only
orthologous TFs and target genes, the regulatory interactian be lost or gained during evolution.

Another important evolutionary event during genome evoltuts gene duplication. As a main
source of new gene functions, gene duplication also playspartant role in the evolution of regu-
latory networks[[311, 32, 44]. Although the studies of howgeuplication affects network evolution
are mainly performed for a single organism, where the tina¢esof dynamics is smaller than that in
species evolution, the results and observations can dasibktended to cross-species studies. The
duplicated copies of a gene family tend to inherit the reigujainteractions from the original copy,
but since the duplicated copies also diverge quickly, loskgain of interactions can happen after the
duplication. Other studies suggespraferential attachmentnodel for the interactions of duplicated
gene copies, that is, the new copies tend to connect to geitledigh degreel[3, 46]. Therefore,
gene duplications result in much difference between anstradeetwork and its child network. In
single organism studies, these mechanisms of gene dupticadntribute to the growth of regula-
tory networks, and can also explain to certain extent thegire and connectivity attributes of large
regulatory networks.

Both the gain and loss of regulatory interactions and thdichtion and loss of genes describe
the evolutionary changes on the level of a single gene ordatien. On a higher structure level
in regulatory networks, there are network motifs which augdeequently throughout the networks.
Network motifs are small subnetworks with certain pattelik® single input, multiple input and
feed-forward loop motifs [4,/7]. These motifs, however, ao¢ conserved during evolution, though
the evolved network still has similar abundance of thesafafd,[10].

Besides the changes in regulatory networks on large evolty time scale, the dynamics of
these networks on small time scale like a certain life pewitin an individual have also been stud-
ied [9,47]. Although a static network structure has beerduserepresent the regulatory network
for a certain organism, the network in an individual is neattistwith respect to time and change of
conditions. In([9], based on a static network&fcerevisiagthe authors derived the active subsets
of interactions under different conditions from the cop@sding gene-expression data, and found
significant differences between the subsets. The studieh@t-time dynamics of regulatory net-
works can provide insights for network evolution acrosscsse but not much has been done so far
to incorporate the dynamics into cross-species studieite wiost comparative analysis of regulatory
networks across species still use static network strusture

Despite the possible evolutionary changes of regulatotwyaris we describe above, researchers
also found that a large portion of orthologous TFs and taggats tend to share the same regulatory
interactions across species, and this conservation iedela the phylogenetic distance between the
organisms([4, 30, 48]. This provides further support for @lutionary approach.

2.6 Transfer Learning

The design of oud TL algorithm is inspired by the inductive transfer learningdties in machine
learning. Transfer learning, also called multitask lemgniis an approach to leamelated tasks
simultaneously, such that what is learned for each taskrttereictively help other tasks to be learned
better [49=51]. Itis especially useful when the data forsafthe tasks is not sufficient — they can be
learned better by transferring knowledge from other welthed tasks. Transfer learning is widely
used in various problems such as classification, regressiastering, and so on. In particular,
in [50], the authors applied the transfer learning idea trethe structure of a set of Bayesian
networks. The relationships between different Bayesidwarks are modeled as a prior probability,
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where one should specify parameters to quantify differdrateveen any two networks. This prior
then links the different tasks (the different Bayesian meks) in this way. The prior contributes to
the posterior probability, and the best set of network stmas (which is aonfiguratior) is the one
which yields optimal posterior probability.

In our case, if we model the regulatory networks by Bayesitwarks, then our goal is to find
the best configuration of networks for all organisms in thaifg from the gene-expression data of
these organisms. The relationships between the netwoeke/all defined and represented by the
phylogenetic tree. OUFTL algorithm uses the tree to do the knowledge transfer whilenlag the
network structures.

2.7 The Algorithm of Bourque and Sankoff

In [35], Bourque and Sankoff presented a method to general&ingle-organism network inference
algorithm to infer the network for a family of organisms sitaneously, with a parsimony criterion.
They first described the algorithm they used to infer a simgievork. This algorithm takes time-
series gene-expression data as input, and employs a sy$tdiffecential equations to model the
regulatory network. For a gene denote its gene-expression level at titvasx;(t). Leta ; be the
coefficient corresponding to the regulatory impact of ggoe gened. Then

d a
%t) = j:gﬂnai’jxj (t)

“““

have the values ofj(t) for all genes and all time points, and the problem is to sdieevilues o#; |
for all i and allj.
Then if the set of regulators for gemés R;, we have

Vit R) =Y ajx(t (2.2)
(t.R) jZR iXj(t)

The task of inferring a networks is to solve for coefficieats. In their case they find estimates
of g j, & j, by minimizing the square error

SSHR) = Z(yi (1) —%i(t,R))? (2.3)

whereyi(t,R) = ¥ jer &,jXj(t). The size ofR is controlled to limit the number of non-zero coeffi-
cients, and thus reduce the complexity of the network.

To extend this method to consider the networks of a familyrghoisms at once, they modified
the optimization function so that it contains two parts: tthtal square error and the complexity of the
network of all the modern organisms, and the tetadlutionary cosbver the edges of the phylogeny.
This algorithm assumes the same gene content throughoutethrks of all species, and only
considers the insertion and deletion of regulatory conoestfor each gene, which is equivalent to
our basic network evolutionary model. Denote the phylogerieee as a grapls = (V,E), assume
for each genéand for each vertex i, v, the set of regulators R'. Then the evolutionary cost is:

COSTR.R:....R')= Y [R'eR (2.4)

(uv)eE

where© is the symmetric difference between two sets. T@STterm is added to th&SEscore
(defined in EqL_2]3) of all modern species with a weight coieffic This combined score is used as
a criterion to find the best sets of regulators for all the genall the networks ir6.

18



This algorithm, hereafter called ti#&S algorithm, has provided a framework for using phyloge-
netic information to infer regulatory networks under thiéesfential equation model. However, since
the algorithm requires time-series gene-expression fon@lrganisms as input, its application may
be limited by the input information. Furthermore, the opgation problem has high computational
complexity. So far it has only used the structure of the pigity when calculatin€ OST, how-
ever, taking into account more information provided by thglpgeny such as edge lengths may help
improve the scoring.
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Chapter 3

Preliminaries

In this chapter we formalize the network evolutionary msdehich we use for our refinement al-
gorithms, and report the tests EdstML in the accuracy of reconstructing ancestral networks from
noisy leaf networks.

3.1 Regulatory Network Evolutionary Models

We summarize two network evolutionary modelshasic model and arextendedmodel. In both
models, the networks are represented by binary adjacentrices with a 1 in th€i, j) entry denot-
ing an edge from nodeto nodej. We use binary matrices for simplicity’s sake: generaiirato
weighted matrices is immediate and, indeed, the additiofatmation present in a weighted matrix
should further improve the results.

For the basic model, the evolutionary operations are:

e Edge gain an edge between two genes is generated with probapiity

e Edge lossan existing edge is deleted with probabiljyp.

We also assume that all the edges in the networks have thesabrability to be lost, and all the non-
existing edges have the same probability to be gained ataytonary step. The model parameters
are thus:

e the base frequencies of 0 and 1 entries in the given networks(Tp  T4);
e the substitution matrix of 0Os and 1R = (poo p01>_
Pio P11

The extended model has two additional evolutionary opmmnatigene duplication and gene loss,
with corresponding additional model parametpgsand p;. We assume that all the genes have the
same duplication and loss rates. So the extended model lyohasthe the gene gain and gene loss
operations, but also has the following two operations:

e Gene duplicationa gene is duplicated with probabilifyy. After a duplication, edges for the
newly generated copy can be assigned as follows:

Neutral initialization: Create connections between the new copy and other genesmbnd
according to the proportiorm; of edges in the background network independently of the
original copy. The directions of connections are also ramdo
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Inheritance initialization: Connections of the duplicated copy are reported to cogelath
those of the original copy [30—=32]. This observation sutgkedting the new copy inherit
the connections of the original while keeping the direciarfi connections, then lose
some of them or gain new ones at some fixed rate [46].

Preferential attachmentThe new copy gets connected to genes with high connectRBjg4].
e Gene lossa gene is deleted along with all its connections with prdkgabp, .

The parameters of the extended model are thys?, p, andpq.

3.2 Verifying the Ancestral Reconstruction Procedure

We examine the accuracy of the ancestral networks recatstibyFastML when the leaf networks
are noisy. We conjecture that during ancestor reconstnuétistML is able to eliminate much of
the noise in the leaf networks, such that the ancestral mkéatmave lower error rate than the leaf
networks. This may not be true for all the ancestral netwosksce for the ancestors which are
far from the leaves (for example, those close to the rood) distance between these ancestors and
the leaves can be big enough for some correct informatiore todt on the way. However, we can
proceed to use the ancestral information for our design @fiaement algorithm, as long as the
ancestors to certain height are more accurate than thesleave

We perform simulation experiments to test the above camjectWe use the basic network evolu-
tionary model in these tests. Starting from a tree and a retwtark, we simulate the “real” evolution
along the tree, according to the network evolutionary mobegenerate the “true” regulatory net-
works for all ancestors and all modern organisms. Then vattam error rates, we obtain noisy leaf
networks from the true ones, which are then used to recarisincestral networks sastML.

The data used blyastML are:

the proportions of Os and 1s in the networkls= (Thy  Th)

the topology of the phylogenetic tree;

theedge lengthd of each edge, i.e., the number of changes along this edge;

for each edge length, its corresponding substitution matriR(le), which represents the
mutation probability between 0 and 1

_ (poo(le) por(le)
Ps('e)‘<plo<le> pua(l >

The substitution matrices depend on edge length: the Iahgezdge, the higher the mutation prob-
abilities. We choose Bs(1) for edge length 1 and calculai(l¢) for e > 2 using an exponential
distribution,Ps(le) = Ple(1).

The reconstructed ancestral networks are compared withtri®” ones. For each noisy leaf
network andrastML-reconstructed ancestral network, we compare it with theesponding true
network from simulation, and calculate teensitivityand specificityvalues as measurement of its
accuracy. If we compare a noisy/reconstructed netv@rto the true networks,, then the sensitivity
and specificity ofG; are defined as follows:

sensitivity= TP
Y= TP1FEN

specificity= TN
P Y= INTFP
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whereT Pis the number of connections which are in b@handG,; FP is the number of connections
which are inG; but not inG,; TN is the number of connections which are in neit@gmor G,; FN
is the number of connections which are noGnbut are present ifs,.

The specificity and sensitivity values calculated for a# ttetworks are then averaged over net-
works on the same tree level to get the “sensitivity and $iogyi of a level”. Fig.[3.1 shows an
illustration of experimental setup.

--------------------------------- Level4

Level3

Level2

Levell

Figure 3.1: An illustration of the experimental setup toleste the performance of FastML on each
tree level

In these experiments we use trees which have 100 leaves awdl8.| The regulatory networks
each have 16 genes. We FdstML reconstruct ancestors from leaf networks with differembrer
rates. Finally, since there can be different structures e with given numbers of leaves and
levels, we generate 100 random trees for each setting ofiexgrats and report the averaged results.

Fig.[3.2 shows the average sensitivity and specificity \salfenetworks on each level, which
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(a) with same evolutionary rates as parameters (b) with different evolutionary rates as parame-
ters

Figure 3.2: Leaf networks are not noisy

is again averaged on 100 tree structures. In these plotsiplog metworks are correct networks. In
Fig.[3.2(a) the substitution rate féastML is the same as the one we use in simulation, that is, the
“true” parameters. We see that with these parameters troifisfig is better maintained from the
leaves to the root. However we can tune the parameters sththafavor the sensitivity more—an
example is shown in Fifj. 3.2(b) with tuned parameters.

In Fig.[3.3 the input networks have respectively about 308arén each of sensitivity and speci-
ficity. Fig.[3.3(a) shows the results where we use the sam&igution rates as the simulation. We
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Figure 3.3: Leaf networks are noisy

observe that when the leaf networks are noisy, the accufaegonstructed ancestral networks does
increase, up to some level in the phylogenetic tree. In[ER(a3} the specificity keeps going up as
we go towards the root, while the sensitivity starts deéngagrhen we go too far. This matches
our conjecture and provides confidence to design refinentgortithms using ancestral information.
Similarly, if we want more improvement on sensitivity we aarmange the parameters RdstML so
that the sensitivity gets more improvement with the traflebEpecificity, as shown in Fig. 3.3(b).
This confirms the flexibility of having different tradeoffetween sensitivity and specificity of the
reconstructed ancestral networks, thus establishingdtenpal for our refinement algorithms to in-
herit this flexibility. Experiments also show that the irecse of accuracy from leaves to ancestors can
be obtained with a large range of parameters, though thedsercan be allocated between sensitivity
and specificity in different ways. This provides the robassbasis for our refinement algorithms.
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Chapter 4

Two-step Refinement Algorithms
RefineFast and RefineML

The principle of our refinement approach is as follows: si@tpilatory networks evolve along with
genomes, we posit that the regulatory networks for a fanfilgrganisms are related to each other
through the same phylogenetic tree. Then if there are eimdbe regulatory networks for a family
of organisms, the phylogenetic relationships can be usedpmve the accuracy of these networks.
We consider a scenario where regulatory networks have lsegasately) inferred for a number of
related organisms whose phylogenetic relationships aveskn Our algorithmdRefineFasandRe-
fineMLrefine these networks by considering all of them at once,imitie known phylogeny of the
organisms, to produce networks with much higher specifanity sensitivity. To make use of the phy-
logenetic relationships among this group of species fordgfinement purpose, we consider ancestral
information, that is, using networks of ancestors as maaistdre and propagate the phylogenetic
information.

RefineFasandRefineMLU52-+55] work iteratively in two phases after an initialimat step, which
is to obtain the regulatory networks for the family of organs. Typically, these networks are in-
ferred from gene-expression data for these organismsy ssémdard inference methods. We place
these networks at the corresponding leaves of the phylogkthe family of organisms and encode
them into binary strings by simply concatenating the rowsheir adjacency matrix. We then en-
ter the iterative refinement cycle. In the first phase, weriafecestral networks for the phylogeny
(strings labelling internal nodes), using our own adaptatf the FastML [34] algorithm; in the
second phase, these ancestral networks are used to refilmatmetworks. These two phases are
then repeated as needed. Our refinement algorithms are l&gedwithin a maximum likelihood
(ML) framework and focus solely on refinement—they are atgoric boosters for one’s preferred
network inference method.

RefineFastand RefineMLwere firstly designed on the basic network evolutionary rmathen
we generalized them to fit the extended network evolutiomapgel so that they work in a broader
framework. The generalization includes many changes taheseuplication/loss data and handle
the more complicated cases caused by the extended model.ofQhe main problems to solve
is to reconstruct the gene duplication and loss history. idgssusing the existing reconciliation
algorithms for gene trees and species tre¢[[37—39], we alsigried and tested other history models
like duplication-onlyand loss-onlymodels to analyze the effect of different duplication anskslo
history predictions on the performance of refinement alors.

We did experiments to test the performancdrefineFasaind RefineMLunder various settings,
on both simulated data and biological data. With simulatathskts, we tested the algorithms in
different aspects by altering the following factors: theesand shape of the phylogenetic tree, the
size of the networks (that is, number of genes in the netwptke evolutionary rates for networks
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(including both the rates for gain and loss of connectiortsthose for gene duplications and losses).
To further test the generalization of our refinement algang, we apply different network inference
algorithms as base algorithm to predict networks as inpubtio refinement algorithms, and during
the data simulation procedure we use data generation neetboeerify that our algorithms work
under all circumstances.

We also perform further tests to exclude confounding factord test different aspects of our
algorithms. We investigate the source of these improvespetitinating various simple possibilities
such as noise averaging and thus demonstrate that it isdrideghylogenetic data that enables our
algorithm to improve upon the standard approdebfineLocahndRefineRandomTreeere designed
and used in these tests.

We compare the networks predicted by a base inference umedadbne, and those output from
our refinement algorithms. We also apply the algorithm offgae and Sankoff on the same datasets
and compare its output with that BefineFasandRefineML Accuracy of networks is measured by
their sensitivityandspecificity We plotreceiver-operator characteristic (ROCurves with differ-
ent tradeoffs of sensitivity and specificity. The ROC curfarour algorithms consistently dominate
those of the standard approaches used alone; under corngpeoalditions, they also dominate the
results from Bourque and Sankoff.

In this chapter we first present thiefineFastand RefineMLalgorithms on the basic network
evolutionary model, followed by a description of their viers for the extended model. Then we
show in detail our experimental design, including the datiaggation for the simulated datasets, and
the experimental results, firstly with the basic networkietronary model and then with the extended
model.

4.1 RefineFast and RefineML under the Basic Model

4.1.1 Overview

To get the orthologous networks to be refined by our algosthae use a standard network inference
method to infer networks from gene-expression data. Sahat iof the whole procedure is a set of
gene-expression data matrices, collected under similgererental conditions, for several related
organisms, along with a known phylogeny (with edge lengtbs}his group of organisms. (Such
phylogenies are typically well established though the éelggths remain to be explored.) Thus there
are three dimensions to the data: the number of organisrasi(thmnber of matrices), the number of
genes (the number of rows in each matrix), and the numbesbftaditions (the number of columns
in each matrix).

The first step is simply to run one’s preferred algorithm fegulatory network inference, in-
dependently on each of the data matrices; in this study, wdwes types of inference algorithms,
respectively based on DBN and differential equations. Bsalting networks are used to label the
corresponding leaves of the phylogeny. We encode a netwpottebconcatenation of the rows of its
adjacency matrix—every code thus represents a valid nktwdote that the initial networks them-
selves are the real inputs to our algorithm; we use the gepeession data stage in our tests solely
in order to enhance the verisimilitude of our simulations.

We then use our adaptation of thastML algorithm to infer ancestral networks, which in turn are
used to refine the sequences at the leaves. We present bedaaigmvithms to carry out this refine-
ment, both based on the intuition (verified in simulatiomst ancestral sequences are more accurate
than those at the leaves, but only up to some height in the-asadistant ancestral sequences suffer
from the inference errors ¢fastML. The two middle steps can be iterated: starting from the yewl
refined networks, we can once again infer ancestral netvatétsuise the results to refine the leaves.

We realize that edge lengths obtained from an analysis &fdfjgences of (typically) a few genes
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need not reflect the amount of evolution in the regulatorywoegis—while both evolved on the same
tree, their respective rates of evolution could differ ¢desably. As we still lack the knowledge
required to formulate a more precise model of network ei@hjtusing the same edge lengths is just
the neutral choice.

4.1.2 Inferring the initial networks

The inference algorithm we use to initialize the proceshefXBN, as implemented in the Bayesian

Network Toolbox[[36]. In our application, however, we wameixamine the ROC curves and so need
to be able to trade off specificity and sensitivity. To thislewe modify the inference method based
on DBN by generalizing E¢.2.1 withgenalty coefficient kto adjust the penalty:

logPr(D|G, Og) — k#GlogN (4.1)

wherek,, varies from 0 to 0.5. Wittk, = 0, we have the ML score; this is equivalent to the objective
function used in REVEAL[[42, 56], which maximizes the mutirgbrmation between parents and
child. Withk, = 0.5, the score of Ed. 4.1 reduces to the original BIC score fropiZl.

For theTRNinfer algorithm, the parameter that it provides to adjust thesgyass of the networks
does not afford sufficient control to generate sparse enoefvorks. We thus supplement it by
applying different thresholds to the output connectionrirdb choose final edges. We shall refer to
these modified inference methodszBl for that based on the DBN model and@EI for that based
on TRNinfer.

4.1.3 Inferring the ancestral networks

In this study our adjacency matrices are binary, with a 1 e(thj) entry denoting an edge from
nodei to nodej. We use binary matrices for simplicity’s sake: generalimato weighted matrices
is immediate and, indeed, the additional information prese a weighted matrix should further
improve the results. Similar to the tests in Secl 3.2, tha ds¢d byrastML are thus:

e the proportions of Os and 1s in the networkis= (o T0);
e the topology of the phylogenetic tree;
¢ theedge lengthd of each edge, i.e., the number of changes along this edge;

e for each edge length, its corresponding substitution matriR(le), which represents the
mutation probability between 0 and 1

_ Poo(le) Po1(le)
PS(Ie)_<p10(|e) pr1(l > (4-2)

The substitution matrices depend on edge length: the Idhgesdge, the higher the mutation prob-
abilities. We choose Bs(1) for edge length 1 and calculai(l¢) for Ie > 2 using an exponential
distribution,Ps(le) = Ple(1).

4.1.4 Refining the leaves

The underlying principle is simple: phylogenetically adasrganisms are likely to have similar regu-
latory networks; thus independent network inference srabthe leaves get corrected in the ancestral
reconstruction process. Obviously, however, if too muaigion occurred, the ancestral reconstruc-
tion process itself generates errors. Thus a crucial agffemnir algorithm is how to use ancestral
networks at various heights above the leaves to refine trede@Ve ran large series of experiments
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under various conditions (not shown); all showed an explicterease in accuracy when moving to
the parents of the leaves, eventually replaced by a decvelase moving too far above the leaves.
On the basis of our results, we chose to use only the immeptants of the leaves for refinement—
but note that these parents are themselves the product obal d¥iL inference and thus reflect the
structure of the entire phylogeny.

A fast oblivious refinement algorithm: RefineFast

Ouir first algorithm RefineFastis designed to run quickly; it reposes complete trust inntbigvorks
associated with the parents of the leaves, using them taaeptather than refine, the leaf networks.

1. From the current leaves, infer ancestral nodes usantML.

2. For each leaf, pick its parent and evolve it (accordindholéngth of the edge to the leaf and
its substitution matrix) to generate a new child.

3. Use these new children to replace the old leaves.
4. Repeat Steps 1-3 until the total size of the leaf netwdedtsilizes.

We can use the same substitution matriBgl$:) in both Step 1 and Step 2, but choosing different
substitution matrices can accelerate convergence. Itigeabe algorithm converges very fast, that
is, in less than 5 iterations. Denoting the number of genesah network by, and the number of
leaves in the phylogenetic tree by the running time of this algorithms &(n; - n?).

The algorithm is deliberately oblivious: it uses the orainetworks only in the ancestral recon-
struction, after which it replaces them with a sample nekvevawn from the distribution of possible
children of the parent. When the original networks are nfésgommon occurrence), this simplistic
procedure does quite well.

A nonoblivious refinement algorithm: RefineML

To use the information still present in the original leafvinatks in the refinement step, we developed
an ML-based refinement algorithiRefineML To use the existing leaf sequences, we assign each site
of each leaf (that is, each entry of the adjacency matrix ohéeaf network) delief coefficientky,
which varies between 0.5 and 1. This value represents tHedeoge we have for each entry in the
input networks. In the DBN framework, to obtain the confideroefficient values, we first estimate
the conditional probability tables (CPTs) of tb#l inferred networks from the gene-expression data
on the inferred structuré [57], and then calculate the cenfid values from the CPTs. We introduce
this procedure below.

For each gengj, if m; nodes have arcs directed gpin the inferred network, we define the
following notations:

o the expression levels of these nodes are denoted by Westgiy, - - - ym;
e the confidence values of these arcs are denoted by wactowivz - - \p';

e we use signed weights to represent the strength of thesedamsted by vector
W= WiWy - - - Wy

We assume that the gene-expression of a gene has two stategjoff. Considering that if an arc is
predicted with high weight, then this arc is very likely to thee, we assign high confidence values
to the arcs predicted with high absolute weight values. K.be a coefficient value to normalize
probabilities, we have

k-w-y=Pr(g isonly)
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Since there are™ configurations of/, there are 2 such equations. The value Bf(g; is ony) can
be directly taken from the CPTs. Socan be obtained by solving these equations, whderived
directly fromw.

Having the belief coefficient valueRefineMLcan proceed to calculate the variablge&a) and
Ci(a) for each leafi, as defined in Se€._ 2.3, wheaeis the character value of the parent of leéaf
inferred byFastML. For each site in the network adjacency matrices, its bebefficient valuek,
can be obtained from the corresponding vestprThen, usingd andc to denote a character value
whereb, c € S the completdRefineMLalgorithm can be described as follows:

1. Learn the CPT parameters for the leaf networks reconstiuny the base inference algorithm
and calculate the belief coefficieky for every site.

2. From the current leaves, infer ancestral sequences BaatigL.

3. For each leaif with valueb, set

o Li(a) = maxespac(li) - Qi(c)
e Ci(a) = argmaxes Pac(li) - Qi(c)

Qi(c):{kb, b=c

where

1-ky, otherwise.

4. For each leaff, assign its most likely character from the variaGléa).

4.2 RefineFast and RefineML under the Extended Model

Since the basic network evolutionary model considers odlieegains and losses, refinement algo-
rithms with this model require the input networks all have #ame number of genes (orthologous
across all species). Moreover, the gain or loss of an eddeaitmtodel is independent of any other
event. However, this process accounts for only a small gaggulatory network evolution; in par-
ticular, gene duplication is known to be a crucial sourceant genetic function and a mechanism of
evolutionary noveltyl[31, 32].

The extended network evolutionary model not only enableader application and more flexible
parameterization, but also provides a direct evolutiomaegchanism for edge gains and losses. For
example, in the networks to be refined, the genes can hawatiffnumbers of copies for different
organisms.

Within this broader framework, the phylogenetic inforroatihat we use lies on two levels: the
evolution of gene contents of the networks and the regulatieractions of the networks. The
former can be regarded as the basis of the latter, and canthmeib by inferring the history of
gene duplications and losses during evolution. We themedxtair refinement algorithms [53] to
handle this data and use different models of gene duplitatmd losses to study their effect on the
performance of the refinement algorithms.

4.2.1 Models of gene duplications and losses

While networks evolve according to the extended networkutiamary model, a history of gene
duplications and losses is created along the evolution. édew during reconstruction, this history
may not be exactly reconstructed. Therefore, we proposer otiodels of gene duplications and
losses to approximate the true history:
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e The duplication-only modelWe assume that different gene contents are due excludively
gene duplication events.

e The loss-only modeWe assume that different gene contents are due exclusivglgne loss
events.

We also compare outcomes when the true history is known.

4.2.2 Algorithm overview

We begin by collecting the regulatory networks to be refirdtese networks may have already been
inferred or they can be inferred from gene-expression dathis point using any of the standard
network inference methods. The genes in these networkoarequired to be orthologous across all
species, as the duplication/loss model allows for geneliiegrof various sizes. Refinement proceeds
in the two-phase iterative manner already described, biingda step for reconstruction of gene
duplication and loss history and suitably modified alganighfor ancestral reconstruction and leaf
refinement:

1. Reconstruct the history of gene duplications and logsas, which the gene contents for the
ancestral regulatory networks (at each internal node dépleeies tree) can be determined. We
present algorithms for history reconstruction with diffiet gene duplication and loss models.

2. Infer the edges in the ancestral networks once we havestiesgf these networks. We do this
using a revised version ¢hstML.

3. Refine the leaf networks with new versiondReffineFasandRefineML

4. Repeat steps 2 and 3 as needed.

4.2.3 Inferring gene duplication and loss history

With different gene history models and input information ave different ways to infer the gene
duplication and loss history. Thduplication-onlyandloss-onlymodels allow simplifying the in-
ference of the gene duplication and loss history and of thne gntents of the ancestors. For a
certain internal node of the phylogenetic tree, withdlplication-onlyassumption, the intersection
of the genes of all the leaves in the subtree rooted at thésriat node is its set of genes, while
with the loss-onlyassumption, the union of genes in all the leaves of the seilidgrthe set of genes.
Gene duplication and loss histories inferred with thesehoud have a minimum number of gene
duplications, respectively losses — they are optimal utidemodel.

With both the gene duplication and gene loss operationsvatlp we use two different ways to
infer this history. One is the reconciliation algorithmsraduced earlier. This method requires the
least amount of input information. It takes all the genesefach gene family, reconstructs the gene
tree which is reconciled with the species tree so as to obtaigene duplication and loss history. In
our experiments, we use the parsimony-based reconailitdial Notung [38] to get such duplication
and loss histories.

When we have the orthology assignment for each gene famibgaspecies, this information can
be leveraged for better inference of the histdrgstML [34], which was designed to infer ancestral
sequences given the sequences of a family of modern organism be applied in this case after the
following preprocessing. Suppose there Hrdifferent genes in all the modern organisms, we then
represent the gene content of each organism with a binaneseg of lengtiN, where the value at
each position is assigned as 1 if the corresponding gengantitolog is present, otherwisefastML
can be used to obtain an estimate of these sequences forcémstraih organisms, with a character set
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{0,1} and the substitution matrix:

_(1-pg Pd
H1_< P 1—p|>

Note that this approach assumes 1-1 orthologies, wherdadagy is a many-to-many relation-
ship. In biological practice, however, 1-1 orthologies laydar the most common.

4.2.4 Inferring ancestral networks

We obtain the gene contents for all the networks over theftope the previous step. In this step, we
use theFastML framework to infer the regulatory connections in the arregstetworks.

Recall thatFastML assumes independence among the entries of the adjacentgesaind re-
constructs ancestral characters one site at a time. Whéa#ienetwork evolutionary model is used,
the gene content is the same in all networks, we can assigaesponding entries across networks,
and userastML to infer the ancestral characters for each entry at a time.

In the extended model, however, the gene content variesaoetworks, so it is not direct to
assign corresponding entries across networks. We solvithblem by embedding all networks into
one that includes every gene that appears in any netwotikgt#ike union of all gene sets. We then
represent a network with a ternary adjacency matrix, whieeerows and columns of the missing
genes are filled with a special characteAll networks are thus represented with adjacency matrices
of the same size. Since the gene contents of ancestral kstam known thanks to reconciliation,
the entries withx are already identified in their matrices; other entries ecemstructed by our revised
version ofFastML, with a new character s& = {0,1,x}. The substitution matri®’ for S can be
derived from the model parameters in Chapier 3, withoubchicing new parameters. Without loss
of generality, we assume at each evolutionary step at mesgene duplication event and one gene
loss event can happen. This simplifies the calculatioR ofvhich is now calculated as following:

Poo  Por  Pox (I1-p)-poo (A=p)-Por P
P=|Po Pu Px|=1@-p)po @A=p)-pu P
Po Pa P Pd - T Pd- T4 1—pg

During inference of ancestral characters for each entrytake special measures ferduring
calculation. GiverP, leti, j, k denote a tree node, aiadb,c € S possible values of a character at
some node. For each characéeat each node we maintain two variables:

e Li(a): the likelihood of the best reconstruction of the subtrethwaoti, given that the parent
of i is assigned character

e Ci(a): the optimal character far given that its parent is assigned charaeter
On a binary phylogenetic tree, for each site, the revigatML then works as follows:
1. If leafi has characteb, then, for eacta € S, setCi(a) = bandL;(a) = pj,,.
2. If i is an internal node and not the root, its children arandk, and it has not yet been
processed, then
e if i has charactex, for eacha € S, setl;(a) = pj,-Lj(X) - Lk(x) andCi(a) = x;
e otherwise, for each € S, setlLi(a) = Max.cg 1} Pac- Lj(C) - Lk(c) and
Ci(a) = argmae(o.1} Pac- Lj(C) - Lk(C).
3. If there remain unvisited nonroot nodes, return to Step 2.

4. If i is the root node, with childrenp andk, assign it the valua € {0,1} that maximizes
Tu-Lj(a)-Lk(a), if the character of is not already identified as

5. Traverse the tree from the root, assigning to each nodatsacter byC;(a).
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4.2.5 Refining leaf networks: RefineFast

RefineFasuses the parent networks inferred BystML to evolve new sample leaf networks. Be-
cause the strategy is just one of sampling, we do not altegehe contents of the original leaves—
duplication and loss are not taken into account in this refew step. Lefy andA, be the adjacency
matrices of a leaf network and its parent network, respelgtiand letA stand for the refined network
for Ay; then the revise®RefineFasalgorithm carries out the following steps:

1. For each entryi, j) of each leaf networld,

o if A(i,]) # xandAy(i, j) # X, evolveAy(i, j) by P to getA((i, j);
e otherwise, assigh(i, j) = A(i, j).

2. Use theA((i, ]) to replaceA (i, j).

In this algorithm, the original leaf networks are used omlthe first round of ancestral recon-
struction, after which they are replaced with the samplevaits drawn from the distribution of
possible children of the parents.

4.2.6 Refining leaf networks: RefineML

To make use of the prior information (in the original leafwmetks), RefineMLuses delief coefficient
ky for each entry of the adjacency matrices of these network&harepresents how much we trust
the prediction by the base network inference algorithmhWie extended network evolution model,
the value ok, is the combination of two items. One is the weights of the edgeen by the inference
algorithm, which can be calculated from the CPT parametitiseopredicted networks in the DBN
framework, as described in Séc. 4]1.4. The other dependbkeodistribution of the orthologs of
corresponding genes over other leaves. Denote the numheavess by, and the distance between
leafi and leafj in the phylogenetic tree by, then the second item & of a certain entry for lealf
can be calculated by

Sic1..n. iz hidy
Sictm. iyt

whereh; = 1 if leafi has the corresponding genbs= 0 otherwise. This provides a weighting system
to enable the entries which are shared by more leaves to lgtverftonfidence values, subject to the
distance between these leaves.

As in RefineFastthe refinement procedure does not alter the gene contettie tfaves. Using
the same notations as fBastML andRefineFastRefineMLaims to find theAl which maximizes the
likelihood of the subtree betwee, andA|. The revisedRefineMLalgorithm thus works as follows:

1. Learn the CPT parameters for the leaf networks reconstiuny the base inference algorithm
and calculate thbelief coefficient kfor every site.

2. For each entryi, j) of each leaf networky, do:

o If AN, j) #xandAp(i, ) #x leta=Ap(i, ), b=A(,]j),
(@) letQ(c) =k, if b=c, 1—k, otherwise;
(b) calculate the likelihood (a) = max.c(o,1} Pac- Q(C);
(c) assignA((i, J) = argmaxc(o 1} Pac- Q(C).

e Otherwise, assigh(i, j) = Al(i, ).

3. UseA((i, j) to replaceA (i, ).

32



4.3 Experimental Design under the Basic Model

The purpose of our experiments is to provide evidence fohgpothesis through a detailed examina-
tion of the sensitivity and specificity characteristics af algorithm compared to the base inference
algorithm. To test the performance of our approach, we needsy” regulatory networks as the
input to our refinement algorithms. We obtain these netwbykapplying a base inference method
on the gene-expression datasets of the family of speciealS8teneed the “true” networks for these
species to calculate the accuracy of output networks.

In our simulation experiments, we generate both the “tr@gufatory networks and the gene-
expression datasets. we evolve networks along a givenroeed chosen root network to obtain the
“true” leaf networks. Then, in order to reduce the correlatbetween generation and reconstruction
of networks, we use the leaf networks to create simulatedesgpn data and use our preferred
network inference method to reconstruct networks from ¥peassion data. These inferred networks
are the true starting point of our refinement procedure—veetiis simulated gene expression data
only to achieve better separation between the generatioetaforks and their refinement, and also
to provide a glimpse of a full analysis pipeline for biologliclata. We then compare the inferred
networks after and before refinement against the “true” adtsv(generated in the first step).

4.3.1 Simulated data generation

We generate test data from three pieces of information: Hyogenetic tree, the network at the
root, and the network evolutionary model (which includesletionary operations, and evolutionary
rates for each operation). We first generate the leaf netwfookn the root according to the network
evolutionary model, and use these networks as the “trueforés; then generate gene-expression
data for these leaf networks.

We need CPT parameters for each network to generate itsporrding gene-expression dataset.
These CPT parameters come from quantitative relationshifise networks, so we need a step of
calculating CPTs from the weights. Fig. 4.1 illustrates Wiwle data generation process; in the
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Figure 4.1: The data generation process

ne- Exp%es

figure, the known conditions are shown with bold lines, cbma in bold boxes, and the steps are
labelled with italic characters.
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To get consistent CPTs, we also evolve the quantitativeéioakhips when generating networks
along evolution. That is, we use a root network represented Wweighted adjacency matrix with
signed weights. Then we do the following:

Denote the weighted adjacency matrix of the root networldgs Since in the basic network
evolutionary model, there is only edge gain and loss opmratiwe can obtain the adjacency matrix
for its child A; by mutatingA,, according to the substitution matrix. By repeating thisoess as we
traverse down the tree we can obtain weighted adjacencycestt the leaves. In other words, we
evolve the weighted networks down the tree according to tbhdanparameters, which is standard
practice in the study of phylogenetic reconstruction [®8, 5

Having the weighted leaf networks we can generate geneessijon data from them. For this
task we use both Yu'seneSim [60] and DBNSIim[53], our own design based on the DBN model,
which are presented in more details below.

Gene-expression data generated by DBNSim

For DBNSim we follow [42], using binary gene-expression levels, vehgrand O indicate that the
gene is, respectivelpn andoff. Denote the expression level of gemédy x;, X € {0,1}; if m nodes
have arcs directed tg in the network, let the expression levels of these nodes hetdée by the
vectory = y1y> - - - Ymy and the weights of their arcs by the veotor= wyws; - - - Wi, . Fromy andw, we

can get the conditional probabilifyr(x|y). Once we have the full parameters of the leaf networks,
we generate simulated time-series gene-expression detfae hitial time point, the expression level
of geneg; is generated by the initial distributioBr(x;); at timet, its expression level is generated
based oty at timet — 1 and the conditional probabilityr(x|y).

Gene-expression data generated by GeneSim

GeneSim [60] can produce simulated gene-expression values foremgixeighted network as well as
generate arbitrary network structures. In contrast tdaBiNSimmethod,GeneSim gives continuous
gene-expression levels. Denoting the gene-expressiefslefithe genes at timeby the vectox(t),
the values at timé+ 1 are calculated according %6t + 1) = X(t) + (X(t) —2)C + €, whereC is the
weighted adjacency matrix of the network, the ve@ogpresentgonstitutive expression valuésx
each gene, andmodels noise in the data. The valuex(@) andx;(t) for those genes without parents
are chosen uniformly at random from the ran@gl00, while the values ot are all set to 50. The
term (X(t) — z)C represents the effect of the regulators on the genes; thisrteeds to be amplified
for the use oDBI, because of the required discretization. We use a f&gtwith the regulation term
(set to 7 in our experiments), yielding the new equasitint 1) = X(t) + ke(X(t) —2)C + €.

4.3.2 Tests

Simulated data allows us to control the parameters and, mmertantly, to get an absolute assess-
ment of accuracy. Other than possible issues about thegiialoverisimilitude of the simulated
data, such simulations create the risk of introducing aesyatic bias in the results. We take specific
precautions against such bias, both in the design of thelaiimns and in the analysis.

We use a wide variety of phylogenetic trees from the liteat{of modest sizes: between 20
and 60 taxa) and several choices of root networks, the ledigations on part of the yeast network
from the KEGG databasé _[61], as also used by kKiral. [15]; we also explore a wide range of
evolutionary rates. Our networks are of modest size, wittgpébes each—this selection makes
the gene-expression tables less “tall” and thus, at legstimtiple, less prone to generate errors in
reconstruction, thus presenting a more challenging caselfoosting algorithm.
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With two data generation method3BNSimandGeneSim, and two network inference algorithms
as our base algorithm&BI andDEI, we conduct experiments with different combinations ofdat
generation methods and inference algorithms to verify dhiatboosting algorithms work under all
circumstances. First, we use different data generatiomadstwith the same inference algorithm.
Since the binary gene-expression data generatdaBiySimdoes not fitDEI, we useDBNSimand
GeneSim to generate data fdDBI. We generate 200 time points for each gene-expressionxmatri
running the generation process 10 times to obtain the mekstandard deviation. Second, we ap-
ply DBI andDEI to datasets generated 8gneSim to infer the networks. SindeEl does not accept
large datasets (with many time points), here we used snddlasets than the previous group of ex-
periments with 75 time points, yielding expression levetnxaf size 16x 75. Since the generation
process is random according to the substitution probsiland CPTs, we run the generation pro-
cess 20 times for each choice of tree structure and parasretercalculate the mean and standard
deviation. Finally, we conduct experiments with variouslationary rates.

Comparing with the Bourque and Sankoff approach

Bourgue and Sankoff’s algorithm [35], thereafter B&S algorithm, also uses phylogenetic informa-
tion to improve the inference of gene networks. We thereforaluct experiments, using continuous
data, to compare our approach to theirs.

Where is the Important Information?

Although we use only the direct parents to refine the leavesaeh iteration, the leaves receive
information from the whole tree, since tiastML algorithm assigns states to every internal node
based on global information. We claim that the use of thibalinformation is necessary. To verify
this claim, we build a variation of our algorithms, that wdl daefineLocal where the ancestral
reconstruction stops once the parents of leaves are readhedresulting ancestral reconstruction,
in other words, is now limited to exactly the parts of the weed in the leaf refinemeriRefineLocal
works with bothRefineFastand with RefineML. since it does not alter the refinement phase of the
algorithm.

Part of the improvement is due to noise averaging, takinguatdge of the independence in errors
among the leaf networks. We claim that noise averaging regdan the correct phylogeny cannot
produce the type of improvement we see. To verify this claim,build a procedure that we call
RefineRandomTrewrhich runs our full refinement procedures (either one)doess it on a tree where
the initial inferred networks were randomly assigned todsa Since the tree topology is unchanged,
the averaging effect over the data remains globally simbat the phylogenetic relationships are
destroyed. We run 100 such randomized tests and report the behavior.

4.3.3 Measurements

We want to examine the predicted networks at different wélsensitivity and specificity. For
DBI, on each dataset, we apply different penalty coefficientgadict regulatory networks, from 0
to 0.5, with an interval of 5, which results in 11 discrete penalty coefficients. Fahgzenalty
coefficient, we apphRefineFastRefineML. RefineLocal and RefineRandomTreen the predicted
networks. FoDEI, we also choose 11 thresholds for each predicted weightegection matrix to
get networks on various sparseness levels. For each tidesleapplyRefineFastRefineLocaland
RefineRandomTramn the predicted networks. We measure specificity and seatystb evaluate the
performance of the algorithms and plot the values, as medsun the results for various penalty
coefficients (forDBI) and thresholds (foDEI) to yield ROC curves. Recall that in such plots, the
larger the area under the curve, the better the results.
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4.4 Results and Discussion under the Basic Model

We show results on two representative trees: Trebas 41 nodes on 6 levels and is better balanced
than treeT 2, which has 37 nodes on 7 levels. Both trees were generathdmwigxpected evolutionary
rate of 22 events (gain or loss of a regulatory arc in the network) dgeend resulting leaf networks
have from 23 to 38 edges.

4.4.1 On boosting under different experimental settings
Different gene-expression data generation methods, sam&@rence algorithm

Fig.[4.2 shows the average performancdrefineFastRefineML.andDBI on 10 noiseless datasets
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Figure 4.2: ROC curves for DBI and boosting algorithms ondhisets generated by DBNSIim

generated bYpBNSimon treesT1 (left) and T2 (right). Throughout the range of parameters, our two
algorithms clearly dominatBBI, with RefineMLalso dominating the simpldRefineFastfor every
penalty coefficient, both sensitivity and specificity argioved fromDBI to RefineFasand further
improved fromRefineFasto RefineML. as easily seen on the right. Sample standard deviations
of sensitivity and specificity for these three methods onrnbiseless datasets drl are shown as
ellipses, the loci of one standard deviation around eachtp®he separation between the curves is
almost always larger than the standard deviations, so thiatssertions of dominance of one method
over another hold, not only on average, but also in the vagbrihaof cases. Also, as this figure
demonstrates, the boosting effect remains similar onrdiffiephylogenies—and so we present results
only onT1 hereafter.

All three algorithms behave on the noisy datasets much aseondiseless ones. Our refinement
algorithms yield more improvement on the noisy datasetsctwére closer to the real data and thus
cause more difficulties fobBI methods, yielding a larger margin for improvement. We thusas
results for noiseless datasets only, as the level of impnewt caused by our algorithms can only
increase as the noise level in the data increases.[Fig. dv@ssthe results of the three algorithms
on the noiseless datasets generatedsényeSim on Tl The boosting effects are much the same as
seen in Fig[4]2, but it is clear that tREBI base algorithm does worse on the datasets generated by
GeneSim than on those generated BYBNSim as might be expected.
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Different inference algorithms, same gene-expression dageneration method

The datasets used in this experiment are generateehySim. Fig.[4.4 shows the ROC curves of
DBI andDEl, along withRefineFasboosting, on the same datasets; the refinement algorittariycle
dominates the base algorithms.
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Figure 4.3: ROC curves for DBI and boosting al-
gorithms on the datasets generated by GeneSi

Different evolutionary rates

The expected evolutionary rate (average edge length) wad iiixall experiments presented above.
High rates of evolution cause various difficulties in phyagtic reconstruction; In particular, they
causesaturation where the apparent number of evolutionary changes needegblain the observed
differences underestimates the actual number of change®tburred over time. This problem is
aggravated when each character has only two states, as amgaehto the same character cancel
each other. We thus expect our method to become less efexdievolutionary rates increase. To
study this problem, we conducted experiments on Tré&vith a root network of 16 nodes and 24
edges, using different evolutionary rates to generategheretworks. Fid. 4]5 shows ROC curves
for RefineMLand DBI with evolutionary rates of .32, 476 and 667 on noiseless datasets. The
loss in performance as the rate of evolution increases & éte both methods; sincBBI itself
suffers (perhaps because some networks produced in théatimnuviolate implicit assumptions),
the loss in performance &efineMLis a combination of worsened leaf networks returne®By and
worsened ancestral reconstruction BagtML. Yet boosting is evident in all cases and performance
remains excellent at the very high evolutionary rate %64 most paths from the root to a leaf in
the tree have 5 edges and so, at that rate, have an expectgld ¢35, so that the expected
number of changes from the root network almost equals thebrumf edges of that network—a
very challenging problem and one that is remarkably weilelhere.

4.4.2 On performance with respect to the B&S algorithm

SinceB&S requires continuous time-series gene-expression datasevihe same datasets, generated
by GeneSim, as in Fig[4.4. Fid._4]6 presents the performancB&s$ andRefineFasbased on both
DBI andDEI. The results 08&S are shown as a cloud of points, obtained under differentnpaier
settings.B&S does better than plaiDEI, but is clearly dominated by olRefineFasbased orDEI,
meaning that our refinement algorithm gains more improveitiamB&S does.
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Figure 4.5: ROC curves for DBI and RefineML Figure 4.6: Performance for B&S and Refine-
under various evolutionary rates Fast based on DBI and DEI

4.4.3 On applying ML globally

We described earlieRefineLocal a variant of our algorithms that infers ancestral netwarkty
for the part of the tree that is used in the refinement phase.us#ethis algorithm to show that
the improvement wrought in the leaves by our algorithms tisegphylogenetic information of the
whole tree, not just the information present in the subfomeduced by direct parents of leaves.
Fig.[4.7(a) compares the performanceR#fineFastvith that of its localized version on noiseless
datasets generated BBNSim(the same datasets as in Sec. 4.4.1), while[Fig. 4.7(b) teesaime
for RefineMLon the same datasets. The plots are very simiRefineLocals clearly worse than
the original algorithms, especially in terms of sensiivitn fact, RefineLocabased orRefineFast
does worse thaDBl—due to the fact that the ancestral inference proceduredates significant
additional errors when limited to small subtrees. On theiottand RefineLocabased orRefineML
outperformsDBI—indicating that there is significant information presemthie leaves, independent
of the ancestral reconstruction.
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Figure 4.7: ROC curves for DBI and RefineLocal, showing Ré&fast (left) and RefineML (right)

4.4.4 On phylogenetic information

In Sec[4.3.2 we introducedefineRandomTreavhich carries out our full algorithms, but on a tree
where the leaves have been reshuffled randomly. Its purpds@lemonstrate that the improvements
we observe are not due entirely to noise averaging amongé#tieétworks. Fid. 418 compares the
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Figure 4.8: ROC curves for DBl and RefineRandomTree, withriR€iast (left) and RefineML (right)

performance oRefineFas(left) andRefineML(right) run on the correct phylogenetic tree with the
average performance (over 100 runs) of the same algorithraftar randomly reshuffling leaf labels.
Both RefineFastand RefineMLshow clearly worse performance on the reshuffled trees thahe
correct one. The results on the shuffled trees are stillhibte the base algorithidBI, which shows
the error averaging effect of the trees. However, this im@noent depends on the performance of the
base algorithm: in other experiments (not shown) with laggne-expression datasets, whBigl
does betterRefineFasbn the shuffled trees does not outperfddil, while RefineMLwith shuffled
trees does. Overall, the results demonstrate the valuerdatphylogenetic data, the value of the
information present in the original leaf networks, and theraging effect of the trees.

4.5 Experimental Design under the Extended Model

45.1 Data simulation

Similar to Sec[[4.3]1, in these experiments, the “true” ek& for the organisms and their gene-
expression data are both generated, starting from threespa input information: the phylogenetic

tree, the network at the root, and the evolutionary model.rethuce the systematic bias during
data simulation and result analysis, we use various phyketietrees from the literature and several
choices of root networks. We also explore a wide range ofutianlary rates, especially different

rates of gene duplication and loss. The root network is of@sbdize, between 14 and 17 genes,
a relatively easy case for inference algorithms and thusalwore challenging case for a boosting
algorithm.

We first generate the leaf networks that are used as the “taggilatory networks for the cho-
sen organisms. Since we need quantitative relationshigiseimetworks in order to generate gene-
expression data from each network, in the data generatimceps, we use adjacency matrices with
signed weights. Weight values are assigned to the root mketwielding a weighted adjacency ma-
trix Ap. To get the adjacency matrix for its chil.,, according to the extended network evolution
model, we follow two steps: evolve the gene contents andveuible regulatory connections. First,
genes are duplicated or lost Imy and p;. If a duplication happens, a row and column for this new
copy will be added td\, the values initialized either according to theutral initializationmodel or
theinheritance initializationmodel. (We conducted experiments under both models.) Watedie
current adjacency matrix &. Secondly, edges iA;, are mutated according fay; and pip to get
Ac. We repeat this process as we traverse down the tree to attdghted adjacency matrices at the
leaves, which is standard practice in the study of phylotieneconstruction([58, 59].
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To test our refinement algorithms on different kinds of datause botibBNSimand Yu'sGen-
eSim [60] (which are introduced in Selc. 4.8.1) to generate gespeession data from the weighted
leaf networks.

4.5.2 Groups of experiments

With two data generation method3BNSimandGeneSim, and two base inference algorithni38I
andDElI, we conduct experiments with different combinations obdgtneration methods and infer-
ence algorithms to verify that our boosting algorithms worlder all circumstances. First, we use
DBNSimto generate data fdbBl. We generate I8time points for a network withn genes, since
larger networks generally need more samples to gain inferancuracy comparable to smaller ones.
Second, we applpEl to datasets generated BgneSim to infer the networks. Since tHeEI tool
TRNinfer does not accept large datasets (with many time points), Wwenese smaller datasets than
the previous group of experiments with at most 75 time poifsr each setup, experiments with
different rates of gene duplication and loss are conducted.

For each combination of rates of gene duplication and lass deneration methods, and base
network inference methods, we get the networks inferre@BY or DEI for the family of organ-
isms. We then run refinement algorithms on each set of netweitk different gene duplication and
loss histories: thduplication-onlyhistory, theloss-onlyhistory, the history reconstructed BygstML
given the true orthology assignment, and that reconstluzyeNotung [38] without orthology infor-
mation as input. Besides, since simulation experimentsvalis to record the true gene duplication
and loss history during data generation, we can also tesidberacy of the refinement algorithms
with the true history, without mixing their performance wihat of gene tree reconstruction or rec-
onciliation. Each experiment is run 10 times to obtain agengerformance.

We again show the performance of the algorithms in ROC cupased on different settings of
sensitivity and specificity. WitlDBI, to get inferred networks with different tradeoffs of sdiniy
and specificity, we apply different penalty coefficients tedict regulatory networks, from 0 to%)
with an interval of 005, which results in 11 discrete penalty coefficients. WEI, we choose
11 thresholds for each predicted weighted connection rmsitrjet networks on various sparseness
levels.

4.6 Results and Discussion under the Extended Model

We used different evolutionary rates to generate the néswfor the simulation experiments. [n 53]
we tested mainly edge gain or loss rates; here we focus dngettferent gene duplication and loss
rates. We also conducted experiments on various combirsatibgene-expression data generation
methods and network inference methods. The inferred nksmeere then refined by refinement
algorithms with different models of gene duplications aogsks.

We do not directly compare the extended model with the basiche two do not lend them-
selves to a fair comparison—for instance, the basic modglires equal gene contents across all
leaves, something that can only be achieved by restridtieglata to a common intersection, thereby
catastrophically reducing sensitivity.

Since the results of usingeutral initialization andinheritance initializationin data generation
are very similar, we only show results with theutral initializationmodel. We first refine networks
with the true gene duplication and loss history to test thee pperformance of the refinement al-
gorithms, then we present and discuss the results of refimeahgorithms with several other gene
evolution histories, which are more suitable for the agtian on real biological data. All results we
show below are averages over 10 runs.
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4.6.1 Refine with true history of gene duplications and losse

In Fig.[4.9, we show the results of the experiments MBNSimused to generate gene-expression
data, andBI as base inference algorithm. All results wibiB| inference that we show are on one
representative phylogenetic tree with 35 nodes on 7 leweld the root network has 15 genes. The
left plot has a relatively high rate of gene duplication aossl (resulting in 20 duplications and 23
losses along the tree), while the right one has a slightlyetorate (with 19 duplications and 15
losses), again averaged over 10 runs.

Given the size of the tree and the root network, these arerhigh of gene duplication and loss,
yet, as we can see from Fig. 4.9, the improvement gained bgefinement algorithms remains clear
in both plots, whileRefineMLfurther dominatefRefineFasin both sensitivity and specificity, thanks
to the appropriate reuse of the inferred leaf networks.
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Figure 4.9: Performance with extended evolution model@Bdinference method, and true history
of gene duplications and losses.

In the experiments witlDEIl network inferenceGeneSim is used to generate continuous gene-
expression data. In these experiments, the root networkthagenes, and the phylogenetic tree has
37 nodes on 7 levels. The average performancBBf and RefineFasbver 10 runs is shown in
Fig.[4.10. We also show results for two different evolutigneates: Fig[ 4.10(&) has higher gene
duplication and loss rates, resulting in 15 duplicationd @rosses, while datasets in Fig. 4.10(b)
have an average of 8 duplications and 3 losses. DBEtool aims to infer networks with small
gene-expression dataseRefineFassignificantly improves the performance of the base algarjth
especially the sensitivity. (Sensitivity f@EI is poor in these experiments, because of the inherent
lower sensitivity of TRNinfer, as seen in[[53] and also because of the reduced size of tlee gen
expression datasets.) Since the difference between tieedygrication and loss rates in Fig. 4.10(a)
and Fig[4.10(B) is large, we can observe more improvemehigird.10(b), which has lower rates.
This is because high duplication and loss rates give risddma overall gene population, yet many
of them exist only in a few leaves, so that there is not mucHgggnetic information to be used to
correct the prediction of the connections for these genes.

4.6.2 Refine withduplication-only and loss-only histories

We have seen from Figk. 4.9 ahd 4.10 that our two refinemenotitdms improve the networks
inferred by bothDBI and DEI. Since the accuracy dBI is much better than that @EI, which
causes more difficulty for refinement algorithms, and sReéneMLdoes clearly better thaRefine-
Fast hereafter we only show results wilyBl inference andrRefineFastefinement, which are on the
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Figure 4.10: Performance with extended evolution modelRiBbinference method, and true history

of gene duplications and losses.

same datasets as used in 4.9.
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Figure 4.11: Performance with extended evolution model B8Rl inference method, with
duplication-onlyandloss-onlyhistories.

Fig.[4.11 shows the comparison of the performanc®Bf and RefineFastwith respectively
the true gene duplication and loss history, thuplication-onlyhistory and thdoss-onlyhistory as-
suming correct orthology assignment. Téheplication-onlyand loss-onlyassumptions are at the
opposite (and equally unrealistic) extremes of possibldetsoof gene family evolution — their only
positive attribute is that they facilitate the reconstiarctof that evolution. Yet we see th&efine-
Faststill improves the base network inference algorithm witthbmodels. The performance of the
duplication-onlyhistory differs between Fif. 4.11{a) and Hig. 4.11L(b): ig.[A.11(@), it does worse
than the true history and tHess-onlyhistory, while in Fig[ 4.11(B), its performance is compéeab
with the other two. This is because there are more gene Idsaasgene duplications in the left
plot, but more gene duplications than gene losses in theplgh which theduplication-onlyhistory
matches better. The performance of lib&s-onlyhistory appears to be steady and not much affected
by different evolutionary rates.
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4.6.3 Refine with inferred histories of gene duplications athlosses

In Fig.[4.12, we show the performance REfineFastwith various inferred gene duplication and
loss histories, compared to that with the true hist@iastML is applied to infer history with correct
orthology information as described earlier. To test theiwalf having good orthology information,
we also assign orthologies at random and thenRaseML to infer ancestral gene contents. In each
run, the refinement procedure with this history is repeat&diries to get average results over 20
random orthology assignments. Finally, we b&gung to reconstruct a gene duplication and loss
history without orthology inputNotung not only infers the gene contents for ancestral networkts, bu
also alters the gene contents of the leaves.
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Figure 4.12: Performance with extended evolution model2Bdinference method, with inferred
mixture histories.

In both Fig[4.12(3) and Fif. 4.12(b) tRestML reconstructed history with correct orthology does
as well as the true history. In fact, the history is very aately reconstructed, which explains why
the two curves agree so much. However, with the history retcocted byFastML under random
orthology assignments, the refinement algorithm only imesoslightly over the base algorithm.
With Notung inferenceRefineFasstill dominatesDBI in Fig.[4.12(b), but not in Fid. 4.12(a) which
has higher evolutionary rates.

4.6.4 On using histories of gene duplications and losses,cgarthology assignments

Our experiments with various evolutionary histories leaddveral conclusions:

1. Good orthology assignments are important.

2. When we have good orthology assignments, the refinemgatithims need not rely on the
true history of gene duplications and losses. We can us@$iseonlyhistory or the history
reconstructed byastML, both of which are easy to build and lead to performance amtd
that of the true history.

4.7 Discussion and Conclusions

We present algorithms, models and experimental suppodtfioclaim that phylogenetic information
can be used to improve the inference of regulatory netwarka family of related organisms. Our
approach is best viewed as a booster for existing inferelgmgitams and can, in principle, be used
with any favored network inference tool and any favored pgghetic reconstruction algorithm.
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Specifically, we present versions of our evolutionary apphofor two network evolutionary models,
the basic model and the extended model. As the extended rad@slinto account gene duplication
and loss events during evolution, which are thought to plasuaial role in evolving new functions
and interactions [31, 32], the algorithms with this extendnave a broader range of applicability.

Furthermore, to give a comprehensive analysis of the factdrich affect the performance of
the refinement algorithms under the extended evolutionarglein we conducted experiments with
different histories of gene duplications and losses, affdrdnt orthology assignments. Results of
experiments under various settings show the effectiveofessr refinement algorithms with the new
model throughout a broad range of gene duplications anddoss
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Chapter 5

Probabllistic Phylogenetic Refinement
Models ProPhyC and ProPhyCC

In Chaptef#, we presentedfinementlgorithmsRefineFastind RefineML, based on phylogenetic
information and using a likelihood framework, that boost gerformance of any chosen base net-
work inference method. They are two-step iterative alparg. The networks to be refined are
placed at the corresponding leaves of the (known) phylagémyhe first step, ancestral networks
for the phylogeny (strings labelling internal nodes) arferired; in the second step, these ancestral
networks are used to refine the leaf networks. These two atepghen repeated as needed. On both
simulated and biological data, tireceiver-operator characteristic (ROGurves for our algorithms
consistently dominated those of the base methods used alone

Although RefineFastand RefineMLallow us to exploit from the phylogenetic information, we
wonder whether there are ways to make further use, and)ydeske full use of this information.
For example, when using ancestral networks to refine thenketaforks inRefineFasandRefineML,
we only used the direct parents of the leaves to correct theege We choose to use only the direct
parents as a tradeoff between the accuracy of ancestrabrataconstruction and the distance to the
leaves, but a way to reasonably use all ancestors should Inettles use of the ancestral information.

Therefore, we design a probabilistic phylogenetic modél associated algorithms, that we call
ProPhyC to refine regulatory networks for a family of organisms! [6&8F with RefineFasandRe-
fineML, ProPhyCtakes as input a phylogenetic tree and inferred networka family of organisms,
and uses the phylogenetic relationships to produce refiatdonks. Compared to the previous two-
step algorithmsProPhyCis an integrated model which has input noisy networks, dutefined
networks, and ancestral networks all in one graphical modkis framework can accommodate a
large variety of evolutionary models of regulatory netwsrkith only slight modifications, as we
demonstrate in the methods section. Given that the evalatioegulatory networks is not yet well
understood and given the several different models for e¢g} network evolution [28, 32, 85], a
comprehensive refinement model like this is highly desgablVe present algorithms and experi-
mental results in this refinement model for both the basic tAedextended network evolutionary
models. We also show how to calculate and incorporate pas#jpecific confidence values from
input networks predicted by base inference methods.

We begin by describin@roPhyC our probabilistic phylogenetic model to refine regulatoeg-
works and the associated refinement algorithms under thadtveork evolutionary models. We then
present an analysis of a comprehensive collection of exygeris designed to assess our model and
its associated algorithms. The accuracy of the output @utated by comparing the output with the
“true” networks for the chosen family of organisms, where ttrue” networks are either obtained
through simulation or collected from biological datas&t® compare the accuracies of the networks
produced by the base methods (especially dynamic Bayetienrence DBI, the method devised for
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DBNSs) and of the networks after refinement, to get absolutesssnents. In order to get relative
assessments, we also URefineFastand RefineMLto refine the same networks and compare the
outcome with that oProPhyC Extensive experimental results on both biological andlsstic data
confirm that our model (through its associated refinemerdrikgns) yields substantial improve-
ment in the quality of inferred networks over all current haets, including our owiRRefineFasand
RefineML

5.1 Models and Methods

5.1.1 TheProPhyC model: probabilistic phylogenetic refinement

ProPhyCis a probabilistic phylogenetic model designed to refinarifegred regulatory networks for
a family of organisms by making use of known phylogenetioiinfation for the family. ProPhyC is
also a graphical model: the phylogeny of this family is themmaformation to determine its structure
as illustrated in Fid. 5]1. The shaded nodes labeled in upas represent the input noisy networks,
while the nodes labeled in lower case represent the coredwbnks that we want to infer. In turn, the
correct networks are the leaves of the rooted phylogeneticdf these organisms; internal nodes in
this tree correspond to ancestral regulatory networks. etiges in this graph can thus be classified
into two categories: (i) edges in the phylogenetic tree d@heédges from correct leaf networks to
noisy ones. The first category of edges represents the molitom a parent network to a child
network, while the second category represents the ermrepprocess of inferring networks from
latent correct networks. The parameters for this model lagestibstitution matriceB and Q. P
represents the transition parameters from an ancestmabrieto its child network, subject to the
network evolutionary modelQ represents the difference from the “true” networks to tHeried
(observed, from the point of view of tHeroPhyCmodel) noisy networks, which is associated with
one’s confidence in the base network inference method.

Figure 5.1: Thé’roPhyCmodel

The input information for this model is thus the phylogendtee, the noisy leaf networks, and
the network evolutionary model. With a dynamic programmalgprithm to maximize the likelihood
of the whole graph, we can infer all of the ancestral netwaikd the “true” leaf networks. These
“true” leaf networks inferred are the refined versions ofribesy input networks for these organisms.
This framework can be generalized to fit different networ&lettonary models. We name the basic
refinement algorithm after the model and call it iwPhyCalgorithm.

Some base inference methods can predict regulatory nedweth different confidence on dif-
ferent edges or non-edges, so in this c@sean vary for different entries of different leaf networks.
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Our model can incorporate these position-specific confieleatues to get better refinements. We
name this version of the refinement algoritfroPhyCC

In our phylogenetic probabilistic model as illustrated iig.F5.1, we know the networks only
for the shaded nodes, and all other networks are to be idfeMée use a dynamic programming
algorithm to find the configuration of these networks whichximmzes the likelihood of the entire
model. We number the unknown nodes in Kig] 5.1 from ytowheren; denotes the number of
nodes in the phylogenetic tree.

5.1.2 ProPhyC under the basic model

Under the basic model, all networks have the same size arelg@smients. Each network is repre-
sented by its binary adjacency matrix, so the charactes&eti{0,1}. The parameters to calculate
the likelihood are those from the evolutionary modélandP, and the error parameter for the base
inference methodQ = (). We assume independence between the network entries,tseeltan
process separately each entry in the adjacency matricesi, ek denote nodes in the tree and
a,b,c € Sdenote possible values of a character. For each chamaterach nodé we maintain two
variables:

e Li(a): the likelihood of the best reconstruction of the subtrethwaoti, given that the parent
of i is assigned charactar

e Ci(a): the optimal character far given that its parent is assigned charaeter
When the phylogenetic tree is binary, our inference alboritvorks as follows:

1. For each leaf nodg if its corresponding noisy network has charadigethen for eacla € S
setLi(a) = Maxes Pac- Geb ANACi (@) = arg Maxes Pac - deb:

2. Ifiisaninternal node and not the root, its children paadk, and it has not yet been processed,
then for eacha € S setlL;(a) = maxespPac-L;j(C) - Lk(c) andCi(a) = argmaxecsPac- L;j(C) -
Lk(C).

3. If there remain unvisited nonroot nodes, return to Step 2.

4. If i is the root node, with childrepandk, assign it the valua € Sthat maximizesty-Lj(a) -
Lk(a).
5. Traverse the tree from the root, assigning to each nodadtsacter byCi(a).

The running time of this algorithm i®(n, - n?), wheren is the number of genes in each network, and
n is the number of leaves in the phylogenetic tree.

5.1.3 ProPhyC under the extended model

The extended model includes gene duplications and losséisasthe gene content may vary across
networks. While the gene content of the leaf networks is kmowe need to reconstruct the gene
content for ancestral networks, that is, to reconstruchisiry of gene duplications and losses. This
part can be solved by using an algorithm to reconcile the ¢rees and species tree [87+39] or by
the algorithms that we presented in earlier work undewdth@ication-onlyor loss-onlymodel [55].
Under the basic model, we assume independence among tieseaftthe adjacency matrices
and so greatly simplify the computation. To enable us to @éostime under the extended model, we
embed each network into a larger one that includes every thamappears in any network. We then
represent a network with a ternary adjacency matrix, whieegerows and columns of the missing
genes are filled with a special characteAll networks are thus represented with adjacency matrices
of the same size. Since the gene contents of ancestral hatace known thanks to reconciliation,
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the entries withx are already identified in their matrices; the other entriesraconstructed by the
refinement algorithm using the new character$et {0,1,x}. The substitution matrif’ for S can

be derived from the model parameters, without introduciegy parameters. Assuming that at most
one gene duplication and one gene loss can happen at eaatianaly step, we have:

Poo  Por  Pox (1-p) Poo (I—p)-Por P
P=(pPo Pu Px]=|@=p)p0o (Q—p)-pi1 P
Po Pa P Pd - To Pd- Ty 1— pg

We also extend the paramet@ito beQ' to fit the new character s&:

/ Qoo o1 Yox Qoo Go1 O
Q=|dw %1 dy]|=[(adw0 aqu O
Go Ga G 0 0 1

The transition probabilities i@’ remain the same as @, since the gene contents of the “true”
and corresponding noisy network are the same. For eachatbesiat each tree nodewe calculate
Li(a) andC;(a) for each site with the following procedure:

1. For each leaf nodg if its corresponding noisy network has charadiethen for eacta € S,
setL;(a) = MaXxes Pac- U ANACi(a) = argMaxes Pac: Oep-

2. If i is an internal node and not the root, its children @arandk, and it has not yet been
processed, then

e if i has charactex, for eacha € S, setl;(a) = pj,-Lj(X) - Lk(x) andCi(a) = x;
¢ otherwise, foreache S, setlj(a) = Maxes Pac- Lj(C) - Lk(c) andCi(a) = arg maxes Pac-
Lj(c)-Lk(c).

3. If there remain unvisited nonroot nodes, return to Step 2.

4. If i is the root node, with childrepandk, assign it the valua € Sthat maximizesty - Lj(a) -
Lk(a), if the character of is not already identified as

5. Traverse the tree from the root, assigning to each nodadtsacter byCi(a).

5.1.4 Refinement algorithmProPhyCC using confidence values

ParameteR (or Q') models the errors introduced in the base inference prpdssgalues are ob-
tained from one’s confidence in that method and in the souat®. dT heProPhyCalgorithm uses
the same matrix for all entries in all leaf networks. Wherfisight information is available to pro-
duce different confidence values for different entries iffedént networks, we can take advantage
of the extra information through theroPhyCCalgorithm. That isProPhyCCis an extended ver-
sion of ProPhyCwhich takes advantage of position-specific confidence sdiredifferent entries in
different networks. These values are embedded in

If the noisy networks are predicted from gene-expressida g DBN models, to obtain the
confidence values, we first estimate the conditional prdibabables (CPTs) of thédBI inferred
networks from the gene-expression data on the inferredtstei [57], and then calculate the confi-
dence values from the CPTs, as described in[Sec]4.1.4. tmelextended network evolutionary
model, the confidence values also take into account thetison of the orthologs of a certain gene
family over all leaf networks, as described in Sec. 4.2.6.
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5.2 Experimental Design under the Basic Model

As a first indicator of the performance BfoPhyG we design a preliminary comparison between
ProPhyCandRefineFaswith simulated networks. On given phylogenetic trees, wih&/networks
from a root network along the edges of the phylogenetic tmeraing to the basic network evo-
lutionary model to obtain networks for modern organismsjciWiwe take as the true regulatory
networks for these organisms. To get the noisy networks asddput to our refinement methods,
we randomly pick entries in the adjacency matrices of the tretworks and reverse the values to get
erroneous networks. We then apyoPhyCandRefineFasbn these noisy networks and compare
the networks refined by these two methods.

Since regulatory networks are usually reconstructed fremeegxpression data, we follow the
same path in the following experiments. We use standardanktimference algorithms to infer
regulatory networks for the family of organisms from theémg-expression data, and then use our
approach to refine the inferred networks. In the resultsgmtes! here, the base algorithm is dynamic
Bayesian inferencédBl). To obtain a detailed assessment of the performance &frtifehyCmodel,
we conduct simulation experiments for both network evohery models. With the basic network
evolutionary model, we also apply our refinement algoritiimbiological data that we assembled
for 12 Drosophilaspecies.

In experiments with both the basic and the extended netwardkgonary model, we take specific
precautions against systematic bias during data simalatial result analysis. We use a wide variety
of phylogenetic trees from the literature (of modest sizestween 20 and 60 taxa) and several
choices of root networks, the latter variations on part efyhast network from the KEGG database
[61], as also used by Kimt al.[15]. The root network is of modest size, between 14 and 1&gen
a relatively easy case for inference algorithms and thusalwore challenging case for a boosting
algorithm. We explore a wide range of evolutionary ratesluiding rates of gene duplication and
loss, and of edge gain and loss, to verify that our approacksumder all circumstances.

5.2.1 Data simulation

In simulation experiments, we generate gene-expressitanfoam simulated leaf networks. This
step helps in decoupling the generation and the reconstnughases. The data simulation procedure
consists of two main steps: (i) generate the “true” leaf ek and (ii) generate the gene-expression
data, the whole process starting from three pieces of imgatration: the phylogenetic tree, the
network at its root, and the evolutionary modBBNSim based on the DBN model [53], is used to
generate gene-expression data from the “true” networks. dBtails of the generation of simulated
data are described in Séc. 413.1.

For all experiments on simulated gene-expression datee ¢ive data generation process is sam-
pling from a distribution, for each choice of tree structared parameters, we run the generation
process 10 times to obtain mean and standard deviation. Wieemetworks are evolved under the
basic network evolutionary model, for each leaf network,geaerate 200 time points for its gene-
expression matrix witlbBNSim

5.2.2 Biological data collection

Despite the advantages of simulation experiments (whilchvedn exact assessment of the perfor-
mance of the inference and refinement algorithms), resnltsaogical data are highly desirable, as
such data may prove quite different from what was generatedi simulations.

To test the refinement algorithms on biological data, we niedtrue” networks for the chosen
organisms as benchmark to calculate the accuracies of ducped and refined networkslran-
scription factor binding sit§ TFBS) data is used to study regulatory networks, assuntiagthe
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regulatory interactions determined by transcription dadiinding share many properties with the
real interactions [28, 29, 63]. Given this close relatiopdbetween regulatory networks and TFBSs
and given the large amount of available data on TFBSs, wesehtwouse TFBS data to derive regu-
latory networks for the organisms as their “true” netwoée add noise into these “true” networks
to obtain noisy networks as input of our refinement algorithm

We use transcription factor binding site (TFBS) data for Bresophila family (whose phy-
logeny is well studied) with 12 organismB. simulans D. sechellia D. melanogasterD. yakuba
D. erecta D. ananassaeD. pseudoobscutaD. persimilis D. willistoni, D. mojavensisD. virilis,
andD. grimshawi The TFBS data is drawn from the work of Kiet al. [64], where the TFBSs are
annotated for all 12 organisms on bik-regulatory modules (CRMs). 7 transcription factors were
studied in their work, which arB®stat Bicoid, Caudal Hunchback Knirps, Kruppel andTailless
Since each CRM corresponds to a target gene, we get a regutestivvork with 58 nodes for each
organism. These networks are used as the “true” regulattryanks for these 12 organisms.

5.2.3 Tests with biased leaves

In biology, it is usually the case that in one family, with é&hble data and knowledge, we can get
relatively high quality networks for only a few organismshite a majority of organisms have poor
guality networks due to lack of data and study. This formsaish case for ouProPhyCCalgorithm:
some input leaf networks have significantly higher configevalues than others. Here we test how
ProPhyCCperforms when there are only a small number of “good” netwankhe input.

We simulate the noisy leaf networks as input to BrePhyCCalgorithm, where a proportion
of them have higher noise rate than others. Starting fronpanetwork and a phylogenetic tree,
we simulate the evolution according to the basic model, atdhge “true” leaf networks. With a
fixed number of “good” leaves, we randomly choose the set obdj leaves. Then we add noise
to the “true” leaf networks according to their error rateggts biased noisy leave2roPhyCCis
then applied to refine these leaf networks, with the confidesatues derived from the error rates. In
particular, we investigate the case where the specificiyoise than sensitivity in the networks with
high noise, since in reality there are usually a large nurobéalse positives in the noisy networks.

We test the performance BiroPhyCCwith different numbers of “good” leaves. With each num-
ber, we choose different sets from all the leaves and getvitrage performance. With each chosen
set, we also run the steps of adding noise and refinementpteuitnes to get average performance.
Finally, each time we applproPhyCCwe test the effect of using different parametersfarPhyCC

5.2.4 Measurements

We want to examine the predicted networks at different weélsensitivity and specificity. With
DBI, we can use a penalty coefficient to modulate the weight opé&malty on structure complexity
when inferring the regulatory networks in a DBN framework, as to obtain different tradeoffs
between sensitivity and specificity. On each dataset, why aifferent penalty coefficients to predict
regulatory networks, from 0 to.B, with an interval of 05, which results in 11 discrete coefficients.
For each penalty coefficient, we apply our approach (and asthod chosen for comparison) on
the predicted networks, measure specificity and sengijtaitd plot the values into ROC curves. (In
these ROC plots, the closer the curves are to the top lefecaffrthe coordinate space, the better the
results.)
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5.3 Experimental Results under the Basic Model

We begin with a preliminary comparison betwdermPhyCandRefineFasbn simulated noisy net-
works, to demonstrate the large improvement over the bést msults. We then proceed to more
detailed results. With networks inferred from gene-exgimsdata as input fdProPhyG ProPhyCC
RefineFasand RefineML. we conducted experiments with different combinations eifworks evo-
lutionary models and types of datasets. Under each settiagghow both the absolute and relative
assessments. Part of the data we use comes from the Draséghilly—we briefly discuss our
results for this family.

5.3.1 Preliminary comparison with simulated networks

In these experiments, for bofroPhyC and RefineFastwe test a wide range of parameters (the
substitution probabilities), and plot a point ¢f — specificity vs. sensitivityfor each parameter
setting. Fig[ 5.2 shows the results on a phylogenetic tr&& obdes on 6 levels. The cloud generated
by ProPhyCconsistently dominates that generatedR®sfineFastunder various parameters. Within
the ProPhyCframework, all ancestral networks, networks of modern wigyas, and observed noisy
networks are well integrated within the graphical modet] s allows us to take better advantage
of the phylogenetic information than in our previous twegsapproach.
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Figure 5.2: Preliminary comparison BfoPhyCandRefineFast

5.3.2 Performance on simulated data
Absolute results: comparison with the base inference algdhm DBI

We show experimental results on two representative traeshas 37 nodes on 7 levels and the other
has 41 nodes on 6 levels. We only plot part of the curves withénl1 penalty coefficients to give a
more detailed view of the comparison. Hig.]5.3 shows theltestiProPhyCandProPhyCCon the
networks predicted bipBl. We can see th@&roPhyCandProPhyCCimprove both sensitivity and
specificity significantly over the base inference algoritbl. The improvement remains similar
on different tree structuresProPhyCCfurther improvesProPhyC which shows the advantage of
using position-specific confidence values. For exampledtts in Fig[5.3(d) marked by triangles
correspond to the same penalty coefficient on the three suibde can see that in going frobBI

to ProPhyCQ the sensitivity increases from 77% to 86%, while the spatifincreases from 86%
to 96%. Similar improvements can be observed with (i) otleed; (ii) other evolutionary rates; (iii)
other base methods.
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Relative results: comparison with the previous best

Fig.[5.4 shows the same experiments as in [Fid. 5.3, but adgescitor RefineFastand RefineML
to provide a comparison between different refinement aghies Among the four refinement al-
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Figure 5.4: Results of refinement algorithms with the bastevork evolutionary model, comparison
of ProPhyCandProPhyCCwith RefineFast and RefineML

gorithms,ProPhyCCandRefineMLtake advantage of the position-specific confidence valuleighw
gives them better performance tHaroPhyCandRefineFastProPhyCCis obviously the best among
all refinement algorithms, whileroPhyCoutperformsRefineFast From Fig[5.8 and Fig. 5.4, we
conclude that refinement algorithms under our new modelesfdpm not only the base inference
algorithm, but also previous refinement algorithms on sataed data.

5.3.3 Performance on biological data

In these experiments we use datasets collected for 12 spafdeosophilg whose phylogenetic tree
is illustrated in Fig[ 5.6. The nodes of the regulatory neksaonsist of 7 transcription factors and
51 CRMs, such that an interaction between a transcriptiotofaand a CRM implies an interaction
between this transcription factor and the target gene af @RM. The transcription factors and
CRMs we choose are involved in the control of anterior-pimtesegmentation in the blastoderm
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stage embryo.

D. simulans
D. sechellia

D. meianogaster

melanogaster subgroup

D. yakuba

melanogaster group

D. erecta
D.

Sophophora %‘: D. pseudoobscura
D. persimilis

willistoni group

D. willistoni
repleta group : .
D. mojavensis
- D. virilis
virilis group

D. gril
Hawaiian drosophila

Figure 5.5: The phylogeny connecting the 12 Drosophilaisg€65].

Two parameters are used to add noise into the “true” netwiorksbtain noisy networks: one
is the rate to introduce false positive, the other to intcmdfalse negative. We use different noisy
rates to get noisy networks with different false positived éalse negatives. Then for each set of
noisy networks we usBroPhyCto obtain refined networks with different parameter sestirf§jgl5.6
shows the accuracies of these networks plotted as points.clolid of points folProPhyCclearly
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Figure 5.6: Results dProPhyCwith basic network evolutionary model on biological datase

dominates that of the noisy networks, and the two clouds atieseparated; the average improvement
brought byProPhyCis roughly 7% in each of sensitivity and specificity.

ProPhyCallows tradeoffs between sensitivity and specificity byngdilifferent parameters. Ta-
ble[5.1 shows three examples.

Table 5.1: Examples of performance of ProPhyC with diffeeeemphasis of improvement

sensitivity (noisy— refined) specificity (noisy- refined)
improve both 59.9% — 66.3% 800% — 86.5%
focus on sensitivity| 59.5% — 69.2% 693% — 72.7%
focus on specificity, 57.7% — 585% 701% — 80.0%

In Fig.[5.7 we show 3 versions of the Drosophila melanogasterork: the “true” network, the
noisy network with random noisy, and the network refinedPbyPhyCbased on the noisy network.
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Figure 5.7: Comparison of the “true” network, the noisy ratey and the refined network for D.
melanogaster in one run of our test. Nodes in green are tiptisn factors. In parts (b) and (c),
edges in red are true edges (present in the true network)haise in solid black are false positive
edges (not present in the true network), while those in dhbleck are false negatives (present in
the true network, but not in the network under study).

5.3.4 Results with biased leaves

We show the results d?roPhyCCrefining the leaf networks with different noise rates. Ttez=twe
use here has 19 leaves and 7 levels. We test the number oftgaaebs from 1 to 19. With each
number of “good” leaves, we randomly choose 100 sets of “fG@EaVes to get the average results.
In the input networks, the “good” leaves have around 80%iteitsand 80% specificity, while the
“bad” leaves have 40% specificity and 60% sensitivity.

In Fig.[5.8 we show the results &froPhyCCwith 2 different parameter settings. We plot the
specificity and sensitivity values of the “good” leaves ahdd” leaves separately, along with the
increase of the number of “good” leaves.[Tn 5.8(a) the pataneetting aims to improve both sen-
sitivity and specificity. We can see that both the specifiaitg sensitivity for the high-noise leaves
get improved even when there is only one good leaf, thougth#ogood leaves their accuracy values
become lower when there are very few of them. The accuraej@®sented by all the four solid
lines increase along with the increase of the number of geadels. With 6 good leaves out of 19
the specificity of good leaves improves. With 8 good leavedr thensitivity also improves. The
specificity of high-noise leaves, which is the lowest measwant in the input networks, has the most
significant improvement. These results show that only a sergll number of good leaves can lead
to significant improvement for the high-noise leaves.

Fig.[5.8(b) is obtained with a different parameter settirigiolv favors sensitivity. Therefore
the sensitivity of both low-noise and high-noise leavesraueh improved when there is only one
good leaf, with loss of specificity of the low-noise leavesiththe increase of the number of good
leaves, the two sensitivity values keep improving, while $pecificity for the low-noise leaves soon
approaches its original value, and that for the high-nakserds grows even faster and still has the
most improvement. All in all, these experimental resultsvsithe effectiveness d?roPhyCCwhen
the input networks are biased, especially its ability of iaying the high-noise leaves with a small
number of good leaves, which is the most likely scenario Witthogical data.
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Figure 5.8: Results dProPhyCwith biased leaves. Dashed lines show the accuracy valdesbe
refinement, while solid lines after refinementBgpPhyCC

5.4 Experimental Design under the Extended Model

With the extended evolutionary model, conducting expenitnevith real data involves several extra
steps besides the refinement step, each of which is a pdEmii@e of errors. For example, assuming
we have identified gene families of interest, we need to bgéde trees or assign orthologies for
these genes to be able to reconstruct a history of duplicatmd losses. Any error in gene tree
reconstruction or orthology determination leads to magdiérrors in the history of duplications and
losses. Assessing the results under such circumstanckadgmniedge of the true networks and many
complex sources of errar) is not possible, so we turned talsition for this part of the testing. This
decision does not prejudice our ability to apply our apphotacreal data and to infer high-quality
networks: it only reflects our inability to compute precisgewaracy scores on biological data.

5.4.1 Data

In these experiments we use simulated networks and gemesmipn data for the modern organisms.
The “true” networks are simulated with the same method astieeused for testing thRefineFast
and RefineMLalgorithms described in S€c. 4.b.1, and the gene-expreskita is generated with
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the sameDBNSimprocedure. We generate i8me points of gene-expression data for a leaf net-
work with n genes, since larger networks generally need more samplgairtanference accuracy
comparable to smaller ones.

5.4.2 Tests

When the leaf networks are evolved under an evolutionaryeainibet includes gene loss and dupli-
cation (the extended model), the networks can have diffegene contents across organisms, that
is, the genes can have different numbers of copies in diffeseganisms. In this case, we know
the gene contents only for the input leaf networks, not feraghcestral networks. Therefore, before
running the refinement algorithni®soPhyCor ProPhyCGC we add a preprocessing step to obtain the
gene contents of the ancestral networks, by inferring thee ghiplication and loss history during
evolution.

In Chaptei ¥4 we analyzed various duplication-loss histooglels and their effect on the perfor-
mance ofRefineFasandRefineML The simulation experiments showed that accurate histdoy-i
mation with reliable orthology assignments help the refieehalgorithms to get good performance.
Here we tesProPhyCand ProPhyCCwith two representative histories. One is the “true” higtor
which is available in the framework of simulation experirtserwith this history we can exclude
the error introduced by the history inference step, andpiaistly the performance of the refinement
algorithms. The other is the history inferred by gene tresk species tree reconciliation algorithms
without any prior information, the only option when dealinigh biological data. We usigotung [38]
as the reconciliation tool.

The rates of gene duplication and loss during evolution @taar factor that can affect the per-
formance of refinement algorithms. To get a comprehensisesasment oProPhyCandProPhyCC
under different conditions, we conduct simulation experits with different gene duplication and
loss rates.

We start our inference and refinement procedures with gepession data. We first ugeBl
to infer networks for the leaf organisms, then run refinena@gorithms on each set of networks
with the two gene duplication and loss histories: the trigadny and the history reconstructed by
Notung [38]. In the following we show results on one representagiiglogenetic tree with 35 nodes
on 7 levels, and a root network of 15 genes. Since the redulisinng the neutral initialization model
or the inheritance initialization model in data generatma very similar, we only show results with
the neutral initialization model. For each experiment wevshwo plots: the left plot has relatively
low rates of gene loss (resulting in 19 duplications and E5ds along the tree on average), while
the right one has high rates of gene loss (with 20 duplicataomd 23 losses).

The results are also shown in ROC curves, where differerditdgty and specificity settings are
obtained in the same fashion as described in[Sec]5.2.4.

5.5 Experimental Results under the Extended Model

5.5.1 Absolute comparison, with true history

Figs.[5.9 shows the comparisonifoPhyC ProPhyCCand the base inference algoritidiBI, with

the true gene duplication and loss history. Given the sizb@tree and the root network, the rates
of gene duplication and loss are quite high, yet, as we cafre@eFig.[5.9, the improvement gained
by our refinement algorithms remains significant in bothglealmost as much as the improvement
gained with the basic network evolutionary model shown . [Bi3. ProPhyCCfurther dominates
ProPhyCin both sensitivity and specificity, thanks to the appragriase of the position-specific
confidence values. We obtain similar improvements withtfigotrees; (ii) other evolutionary rates;
and (iii) other base methods.
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Figure 5.9: Results of refinement algorithms with extendettvark evolutionary model, comparison
of ProPhyCandProPhyCCwith base inference algorithidBI, with true gene duplication and loss
history

5.5.2 Relative comparison, with true history
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Figure 5.10: Results of refinement algorithms with extengleivork evolutionary model, compari-
son of ProPhyCandProPhyCCwith RefineFast and RefineML, with true gene duplication ass$ |
history

Fig.[5.10 shows us results of the same experiments as il Bgb&t with the performance of
RefineFasandRefineML We see that althougRefineFastind RefineMLstill clearly improveDBI,
the improvement is not as big as that in Fig.l5.4 with the bagautionary model. This is because
the gene duplication and loss events during evolution gseeto a large overall gene population, yet
many of them exist only in a few leaf networks, so that theneotsmuch phylogenetic information
to be used to correct the prediction of the connections fesdlgeneskRefineFasandRefineMLare
affected by this shortage, howeveroPhyCandProPhyCCare more robust and easily outperform
RefineFasandRefineML

5.5.3 Absolute comparison, with inferred history

Here we usélotung to reconstruct the gene duplication and loss history withoy orthology input.
In these experiments, with reliable gene tree inplatung correctly predicts gene duplication events
(modulo changes in the networks), but usually misses the lpms events when they happen to leaf
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species (it shows those events as happening earlier om#msgyks). Furthermoralotung not only
infers the gene contents for ancestral networks, but atecsahe gene contents of the leaves, which
causes some difficulty for the refinement procedure.
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Figure 5.11: Results of refinement algorithms with extengleivork evolutionary model, compari-
son ofProPhyCandProPhyCCwith DBI, with inferred gene duplication and loss historyNytung

Fig.[5.11 shows the results BfoPhyCandProPhyCCwith Notung-reconstructed gene contents
for the ancestral networks. We see that in Fig. 5.11(a) Woesnds of théroPhyCcurve have lost a
little specificity while gaining sensitivity or vice versatradeoff rather than an outright gain. How-
ever,ProPhyCdominate<DBI through the useful range of specificity and sensitivity. ig.[5.11(b),
ProPhyCbarely improvesDBI, because the high rate of gene loss reduces the performémee o
finement algorithms in two ways: first a high rate affects thfgrmance oNotung (which does a
poor job at inferring losses); secondly it increases tha fmipulation of genes and decreases the fre-
guency of occurrence of an ortholog in the leaf networkss thmiting the phylogenetic information.

However,ProPhyCCstill improvesDBI significantly in both plots. Our probabilistic framework
can incorporate the prior information in an appropriate Wsyas to gain good performance even
when the phylogenetic information, including the histofygene duplication and loss, is noisy and
incomplete.

5.6 Discussion and Conclusion

In this chapter, we propose a probabilistic phylogenetidehalesigned to improve the regulatory
network inference for a family of organisms by using the plggnetic relationships among these
organisms. This model and its refinement algorititnePhyCandProPhyCCcan easily be adapted
to work with different network evolutionary models.

We conduct experiments on both simulated and biologica ttatest the performance of the re-
finement algorithms, and compare them with our previousegfant algorithmfefineFasandRe-
fineML With both the basic and extended network evolutionary nspdiee corresponding versions
of ProPhyCand ProPhyCCoutperform those oRefineFastind RefineML, and all four refinement
algorithms improve the base inference algorithBl. The improvement dProPhyCandProPhyCC
over RefineFastand RefineMLis more significant with the extended network evolutionarydsed,
where the performance &tefineFastind RefineMLis affected by the decrease of the phylogenetic
information for each ortholog, y&roPhyCandProPhyCCare hardly influenced. Our probabilistic
phylogenetic model is thus quite robust against changdweset network evolutionary models.

These refinement algorithms not only output the refined négtsydut also the ancestral networks
which can help in analyzing the evolution of regulatory nerive.
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Our probabilistic phylogenetic model can easily be extdrid® a probabilistic graphical model
to incorporate the evolution of both the regulatory netwaskd the binding sites.
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Chapter 6

Tree Transfer Learning Algorithm

In Chaptef 4 andl5 we presented our refinement algoritRefineFastRefineML,. ProPhyG and
ProPhyCQ all of which attempt to refine the regulatory networks foraenfly or organisms using
the phylogenetic relationships; the latter two further ioye the performance of the former two.
All four algorithms work under the scenario where the inguthie noisy regulatory networks of the
family of organisms, and the output is the refined versiorheté networks.

The positive results from extensive tests on these modelsakgorithms confirm the usefulness
of phylogenetic information in obtaining better infereraferegulatory networks. Clearly, however,
there is a limit to the improvement brought by the phylogeniefformation. DoedProPhyCcome
close to this limit? With the same input and output setting,can not find or design an algorithm
which outperformProPhyG so we try another scenario, where the input data is the grepeession
data for the family of organisms instead of the noisy networidnder this scenario, we devise an
entirely different approach to the incorporation of phydagtic informationTree Transfer Learning
(TTL). TTLcombines the concept of transfer learning [49, 66] with dgignetic tree, using the ba-
sic network evolutionary model. WhereRsoPhyCis a framework for refinement that takes the net-
works to be refined as input,TLis a direct inference algorithm that uses both gene-exioreskata
and phylogenetic relationships. Throughout our expertmd@ProPhyC dominatesTTL, although
the two often return comparable results. That such difteapproaches reach similar accuracy under
many settings suggests tixoPhyC(which, unlikeTTL, does not have access to the gene-expression
data) uses much, perhaps most, of the phylogenetic infavmat

6.1 The Tree Transfer Learning (TTL) Algorithm

Our TTL approach is illustrated in Fig. 6.1. It infers the regulgitoetworks for a family of organ-
isms directly from gene-expression data and all in one §tkjs algorithm is inspired by the transfer
learning algorithms in machine learning. Transfer leagrigito learn multiple (related) tasks simul-
taneously while applying the relationships among the tagk®ur case, the multiple tasks are the
inference of regulatory networks for the organisms in thailfig and the relationships among the
tasks are the phylogenetic relationships among the onganis

Define a configuratios = {G1, Gy, ...,Gy, } as a set of networks for the leaf organisms; the goal
of TTLis to find an optimal configuratio8*. We define an optimization score call€diL score Sy,
and an optimal configuratio@* is one that maximizeS;, .

For each configuratiofs, the TTL scoreS; consists of two parts, the fitness of a configuration
to the gene-expression d&g,:, and the score measuring how well the networks are relatedghr
the phylogenetic tre&§ee. Denote the number of leaves in the phylogenetic trem athe gene-
expression data and the network structure forithdeaf asD; andG; respectively Sjata is the sum
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Figure 6.1: lllustration of th& TL approach

of the Bayesian information criterion (BIC) score over alwes:
n "
Sata = leog Pr(Di|Gi, Og;) — kp#Gi logN;
i=

whereC:)Gi is the ML estimate of parameters @, #G; is the number of free parameters@&f N; is
the number of samples ID;, andk; is the penalty coefficient for network structure complexity

Denote the adjacency matrices of the nodes in the trég. @, ..., A, the number of genes in
a network as), and the edges of the tree@sey, .. ., e,, wherene is the number of edges in the tree;
thenS,ee is calculated as follows:

Sree— Z Ji(log Pr(Avaor(i, 1)) + kilogpr(Apa, ). Al )IP.e))

whereA, and A; are respectively the adjacency matrices for the parent laahild networks at
the current edgex. The adjacency matrices for all tree nodes can be obtaindd génerating the
configuration from the root network. Havir®jaia andSee, We can geg; by

Stl = Sjata+ ks‘ Sree

whereks is the coefficient to adjust the weights &z andSiee.

Since searching in the space of all configurations to @ds computationally too expensive,
we use the phylogenetic relationships between the leafarksito reduce the searching space. The
strategy is: instead of searching in the space of configumrstiwe search in the space of possible
structures of the root network. For each root structure, amegaten. configurations according to
the network evolutionary model, and we chooseézighe configuration which gives the beETL
score among those generated by all root structures.

We assume that the regulator set for each gene is indepeafiéimbse of other genes, so in
practice we can determine the incoming edges for one gendimtaand assemble the incoming
edges for all genes to get the final networks. That is, for ggcieg, we find the best configuration
of the incoming edges tg over all leaf networks, which we denote @§. The corresponding TL
score for a configuratioy is denoted asj,. Therefore, with the above definition of tAdL score,
the TTL algorithm is shown in Algorithril1.

6.2 Comparison ofProPhyC, ProPhyCC, and TTL

Here we show the comparison BfoPhyG ProPhyCCand TTL based on the basic network evo-
lutionary model. In these experiments, we use a phylogenete of 37 nodes on 6 levels, and
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Algorithm 1 the TTLalgorithm
for each geng in the networkdo
ax < —0;
for each set of incoming edges fgin the root networkGy,; do
Generaten. configurations of incoming edges fgrin the leaf networks according to the
network evolutionary model;
for each configuratio®y = {G$,GJ, ...,G, } do
Calculate the current sco@l;
if §, > Shaxthen
Shax< SJ“;
GS < Gg;
end if
end for
end for
end for
Assemble thés; for all g to getG™.

compare the performance BfoPhyG ProPhyCG andTTL starting with simulated gene-expression
data as input. The basic network evolutionary model is appi all three algorithms, and we use a
small network size of 7 genes. Experiments are conductddamtide range of parameters for each
algorithm to test their overall performance and robustbeggrameter settings.

The two plots in Fig_6J2 show the ROC curves of all three algors averaged over multiple runs
and again respectively averaged over all parameter settmith different sizes of gene-expression
data. The left plot shows the results where 5 time points abggxpression data are generated for
each organism, while the right plot corresponds to 20 timetpoNote that unlike the previous plots,
in Fig.[6.2 the curves are plotted with full scale from 0 to bath axes.
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Figure 6.2: Comparison ¢&roPhyG ProPhyCCandTTL

In Fig.[6.2(a), comparing’roPhyCand TTL, we can see that the curves 8roPhyCand TTL
are almost coincident, while in Fif. 6.2(b) the curve RibPhyCslightly dominates that of TL.
The two plots together show that the transfer learning aagraloes not outperforfaroPhyC The
observation thal TL performs better in Fid. 6.2(a) than in F[g. 6.2(b) relatiseProPhyC shows
its advantage on small gene-expression datasets. Thic@de with smaller datasets, the base
inference algorithm (which infers a single network from twgresponding gene-expression dataset)
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outputs networks of low quality; sinderoPhyCtakes these networks as input, its performance is
affected by this limited input informatior. TL, on the other hand, uses the gene-expression datasets
for all leaf organisms when inferring their networks sinankously, and the phylogenetic information

is also applied at the same time to help obtain better piedicivhich brings its overall performance

to the level ofProPhyCon small datasets. The running timeTofL is n; times of that ofProPhyC
including the time to rurDBI, wheren, is the number of configurations generated for each root
structure. This value increases with the scale of the tramtworks, sol TL is much slower than
ProPhyC

Although ProPhyCis affected by the poor performance BBI on small datasetRroPhyCC
benefits from the confidence values of the prediction of thse liaference algorithm, which gives us
a distribution of the leaf networks instead of a single canfigion, and leads to better performance
even with small datasets (see Hig. 6.P(a)).

We also test whether combinirRyoPhyCand TTL will allow ProPhyCto benefit from the ad-
vantage ofT TL with small datasets, so that this combined method will giettds results than either
ProPhyCor TTL. Thatis, in these experiments, we take the output netwdrk3 band usd’roPhyC
to refine these networks. We again apply various parametargseon bothT TLandProPhyC firstly
TTL outputs multiple sets of leaf networks corresponding totiplel parameter settings, then each
set is refined byProPhyCusing various parameters. The final performance is obtdigeaveraging
over all the output sets frofdiroPhyC

Fig.[6.3 shows the results of this combined algorithm on #imesdatasets as in Hig.6.2. The ROC
curves are averaged over different parameter settingsoffhyCapplied onto different outcomes of
TTL. In both plots of Figl 6.3, the curves of the combined aldponitare almost identical to but very
slightly above those of TL, so they do not improve over the curvesRibPhyC Thus, combining
the two algorithms does not help improve the performanceroPhyC Since the output networks
already fit the phylogenetic relationships well accordioghe mechanism of TL, ProPhyCdoes
not alter the networks much in such a case. Therefore, wmdlzt, when the input information
is of low-quality or limited, there is not much space to imy@mverProPhyG since it has already
made good use of the available information.
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Figure 6.3: Comparison &roPhyCandTTL, and the combination droPhyCandTTL

We have presented most of our results with ROC curves, andrdgunder curves (AUC) is a
standard measure for the accuracy of network inference. pldts in Figs[6.2 anf 6.3 are shown
in full scale to show the AUC. One observation from these fgus that, in some plots, it is not
obvious that the points marked on the dominating curve attersthan the points corresponding to
the same penalty coefficients on the curve below. For exarimpkg.[6.2(a), although the curve for
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TTL has larger AUC than that @Bl, not every point on the former curve has both better seitgitiv
and specificity than its corresponding point on the latteveu However, the performance dfTL
is still better tharDBI according to the AUC measure, since for any point onDiB curve, there
always exist some points on tA@L curve to its upper left. Similar patterns can be observedines
of the previous plots from Fi¢. 5.3 to Fig. 5111, with the @s\orDBI andProPhyCin Fig.[5.11(a)
as an example.

6.3 Discussion and Conclusion

Tree Transfer Learningl{TL) is an approach based on inductive transfer learning, wagigties the
phylogenetic information as it infers the leaf networks.viBed in a very different frameworK; TL

is compared witiProPhyCand ProPhyCCover a range of parameters. Under various conditions,
TTL approaches the performanceRioPhyCbut does not outperform it, which again verifies the
strength ofProPhyCin integrating the phylogenetic information in its proladic graphical model.
ProPhyCCperforms better than the other two, which shows faPhyCCnot only exploits the
phylogenetic information, but also takes advantage of imformation, so as to get the best networks
with the information available.
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Chapter 7

Conclusion and Discussion

In this dissertation, | presented the main algorithms weliged for refining regulatory networks for
a family of organisms by the phylogenetic relationships agnthese organisms. These algorithms
require an evolutionary model for regulatory networks, bptbposed two such models.

The two topics, the computational inference and the evahatiy analysis of regulatory networks
are related to each other, in the sense that advances in o@assiat research in the other. On the one
hand, improvement in the inference can provide more ralidata for the study of evolution; on the
other hand, progress of studies on network evolution wlitivalus to better model the phylogenetic
relationships between regulatory networks of multipleapigms. Through a refinement procedure
(like RefineFastRefineML,. ProPhyCandProPhyCQ or a transfer learning method (liKETL) we
can then get better inference of the networks. In this matimeese two lines of research assist each
other especially when there is a third step in-between, wisi¢co obtain more benchmark data via
wet-lab experiments. These experiments can again be gbigede output from the refinement
algorithms: during the generation of new data in biologyadienark experiments are often guided
by results from computational predictions, especiallyrfroomparative studies, so as to save time
and cost.

In previous chapters we have described our refinement #igmiRefineFastRefineML, Pro-
PhyC and ProPhyCC These algorithms aim to use phylogenetic information fmeethe (noisy)
networks of a family of organisms, and their effectiveneas been confirmed by a large collection
of experiments. We also designed a tree transfer learfifidy) (algorithm which takes the gene-
expression data of the organisms as input, and infers thgidatory networks all at once while tak-
ing into account their phylogenetic relationshipsoPhyCandProPhyCG which use a probabilistic
phylogenetic model, are shown to have the best performancagall.

In all the algorithms mentioned above, we use simple netwedtutionary models which are the
basic model and the extended model introduced in Chaptantl&models often turn out to be safe
and robust in computation, and when we want to use a more esxmpbdel to include more factors,
we often need to seek a tradeoff between model complexityeaadtness, therefore it is prudent
to start with simple models. On the other hand, we hope th&nawledge of network evolution
advances, we will be able to formulate more realistic modgigh are also widely accepted. We
expect that with these improved models our refinement fraoriewill work better. For example, it
would be interesting to take into account the effect of exdbenvironmental factors on the evolution
of regulatory networks.

In our network evolutionary models we represent the regayabetworks by their binary ad-
jacency matrices. We know that in reality the regulatoryramtions are not binary — they exist
in various strengths. In fact we have worked out versionsufrefinement algorithms where the
regulatory connections are represented by continuougsabut we could not evaluate their perfor-
mance since there is no standard measurement to assesaliheafiquantitative networks, so they
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are not presented in this thesis. As more data becomesl@eaitgulatory networks will be better
quantified.

Furthermore, during the calculation of all the five algarith) to simplify the computation we
assumed that the entries in the adjacency matrices areandept of each other, so that when recon-
structing ancestral networks (RefineFasandRefineML) or inferring the unknown “true” networks
(in ProPhyCand ProPhyCQ, or calculating theS,ee score (inTTL), we could deal with only one
entry in all the networks at one time, instead of using theleshetwork for each organism. A similar
independency assumption is widely used for genome andipistguences in various contexts, such
as the ancestral reconstruction for protein sequences ¢8shylogenetic tree reconstruction [67].
Both assumptions are false in biology, that is, the intémastin regulatory networks or nucleotides
clearly do not evolve independently. In the case of regyabetworks, it can be useful to consider
the dependency between some interactions, such as thecinbdes of genes from the same gene fam-
ily. To solve the increased complexity caused to our refimgrakyorithms, one may consider using
the variational inferencetechnique from machine learning, which provides an efficagaproxima-
tion when calculating the global likelihood for a set of adnlies with complex dependenciesl[68, 69].
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Springer, 2011.
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Xiuwei Zhang and Bernard M.E. Moret. Refining transcriptional regulatory networks
using network evolutionary models and gene histories. BMC' Algorithms for Molecular
Biology, 5(1):1, 2010.

Xiuwei Zhang and Bernard M.E. Moret. Improving inference of transcriptional
regulatory networks based on network evolutionary models. In Proc. 9th Workshop
on Algs. in Bioinformatics (WABI’09), volume of Lecture Notes in Computer Science,
5724: 415-428, Springer, 2009.

Xiuwei Zhang and Bernard M.E. Moret. Boosting the performance of inference
algorithms for transcriptional regulatory networks using a phylogenetic approach.
In Proc. 8th Workshop on Algs. in Bioinformatics (WABI’08), Lecture Notes in
Computer Science, 5251: 245-258. Springer, 2008.

Xiuwei Zhang, Maryam Zaheri, Bernard M.E. Moret. Using phylogenetic relation-
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ACADEMIC
EXPERIENCE

CONFERENCE
PRESENTATIONS

International Conference on BioMedical Engineering and Informatics (BMEI'08), 1:
186-193, 2008.

Xiuwei Zhang, Zhidong Deng and Dandan Song. A new neural network approach for
RNA secondary structure prediction, Journal of Tsinghua University (Science and
Technology), 46(10): 1793-1796, 2006.

Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland,

Teaching Assistant Sep. 2006 — 2010
Have worked as teaching assistant for the following courses:

e Advanced Algorithms, given by Prof. Bernard M.E. Moret.

e Computational molecular biology, given by Prof. Bernard M.E. Moret.

e Topics in Bioinformatics I, given by Prof. Bernard M.E. Moret, Prof. Philipp
Bucher, and Prof. Felix Naef.

Journal Referee PLoS ONE
BMC Proceedings

Conference Referee RECOMB, ISMB, etc.

May 2011 Oral presentation at the Tth Int’l Symp. Bioinformatics Research &
Appls (ISBRA’11), Changsha (China), for the paper “ProPhyC: a Probabilistic Phy-
logenetic Model for Refining Regulatory Networks”.

Feb. 2011  Oral presentation at the SIB (Swiss Institute of Bioinformatics) Days,
Biel (Switzerland).

Nov. 2010  Oral presentation at the 7th Annual RECOMB Satellite on Regulatory
Genomics and the 6th Annual RECOMB Satellite on Systems Biology, New York.
Title: “Phylogenetic modeling uncovers finer structure of regulatory networks”.

Feb. 2010  Poster presentation at the SIB (Swiss Institute of Bioinformatics) Days,
Montreux (Switzerland).

Dec. 2009  Poster presentation at the 6th Annual RECOMB Satellite on Regulatory
Genomics and the 5th Annual RECOMB Satellite on Systems Biology, Boston.

Sep. 2009 Oral presentation at the 9th Workshop on Algorithms in Bioinfor-
matics WABI'09, Philadelphia, for the paper “Improving inference of transcriptional
regulatory networks based on network evolutionary models”.

Apr. 2009  Oral presentation at the 8th International Conf. on Information Pro-
cessing in Cells and Tissues IPCAT’09, Ascona (Switzerland).

Jan. 2009  Poster presentation at the SIB (Swiss Institute of Bioinformatics) Days,
Fribourg (Switzerland).

Nov. 2008  Poster presentation at the 5th Annual RECOMB Satellite on Regula-
tory Genomics, Boston.

Sep. 2008  Oral presentation at the 8th Workshop on Algorithms in Bioinformatics
WABT08, Karlsruhe (Germany), for the paper “Boosting the performance of inference



algorithms for transcriptional regulatory networks using a phylogenetic approach”.

May 2008 Oral presentation at the 1st IEEE Conference on Biomedical Engi-
neering and Informatics BMET'08, Sanya (China), for the paper “Using phylogenetic
relationships to improve the inference of transcriptional regulatory networks”.



