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Abstract

The determination of transcriptional regulatory networksis key to the understanding of
biological systems. However, the experimental determination of transcriptional regu-
latory networks in the laboratory remains difficult and time-consuming, while current
computational methods to infer these networks (typically from gene-expression data)
achieve only modest accuracy.

The latter can be attributed in part to the limitations of a single-organism approach.
Computational biology has long used comparative and, more generally, evolutionary
approaches to extend the reach and accuracy of its analyses.We therefore use an evo-
lutionary approach to the inference of regulatory networks, which enables us to study
evolutionary models for these networks as well as to improvethe accuracy of inferred
networks. Since the regulatory networks evolve along with the genomes, we consider
that the regulatory networks for a family of organisms are related to each other through
the same phylogenetic tree. These relationships contain information that can be used
to improve the accuracy of inferred networks. Advances in the study of evolution of
regulatory networks provide evidence to establish evolutionary models for regulatory
networks, which is an important component of our evolutionary approach. We use two
network evolutionary models, abasic model that considers only the gains and losses
of regulatory connections during evolution, and anextendedmodel that also takes into
account the duplications and losses of genes.

With the network evolutionary models, we design refinement algorithms to make use
of the phylogenetic relationships to refine noisy regulatory networks for a family of or-
ganisms. These refinement algorithms include:RefineFastand RefineML, which are
two-step iterative algorithms, andProPhyCandProPhyCC, which are based on a proba-
bilistic phylogenetic model. For each algorithm we first design it with the basic network
evolutionary model and then generalize it to the extended evolutionary model. All these
algorithms are computationally efficient and are supportedby extensive experimental
results showing that they yield substantial improvement inthe quality of the input noisy
networks. In particular,ProPhyCandProPhyCCfurther improve the performance of
RefineFastandRefineML.

Besides the four refinement algorithms mentioned above, we also design an algorithm
based on transfer learning theory called tree transfer learning (TTL). TTLdiffers from the
previous four refinement algorithms in the sense that it takes the gene-expression data
for the family of organisms as input, instead of their inferred noisy networks.TTL then
learns the network structures for all the organisms at once,meanwhile taking advantage
of the phylogenetic relationships. Although this approachoutperforms an inference al-
gorithm used alone, it does not perform better thanProPhyC, which indicates that the
ProPhyCframework makes good use of the phylogenetic information.



keywords: regulatory networks, network inference, evolution, phylogenetic relation-
ships, ancestral network, refinement, gene duplication, evolutionary model, evolutionary
history, reconciliation, orthology, maximum likelihood,transfer learning

2



Résuḿe

La détermination des réseaux de contrôle transcriptionnel est essentielle à la compréhen-
sion des systèmes biologiques. Cependant, la détermination expérimentale des réseaux
de contrôle transcriptionnel dans le laboratoire reste difficile et laborieuse, tandis que
les méthodes computationnelles pour ces réseaux (généralement à partir des données
d’ expression génique) n’atteignent qu’une précision modeste. Cette dernière peut être
attribuée en partie à des limitations d’une approche restreinte à un seul organisme.

La biologie computationnelle a longtemps utilisé des approches comparatives et, plus
généralement, évolutives pour étendre la portée et laprécision de ses analyses. Nous
utilisons donc une approche évolutive pour l’inférence des réseaux de contrôle, ce qui
nous permet d’étudier les modèles d’évolution de ces réseaux ainsi que d’améliorer la
précision de l’inférerence. Comme les réseaux de contrˆole évoluent avec les génomes,
nous considérons que les réseaux de contrôle pour une famille d’organismes sont liés les
uns aux autres au travers de l’arbre phylogénétique lui-mêmes. Ces relations contien-
nent des informations qui peuvent être utilisées pour am´eliorer la précision des réseaux
reconstruits. Les progrès dans l’étude de l’évolution des réseaux de contrôle fournissent
des preuves pour établir des modèles évolutifs pour les réseaux de contrôle—ceci est
un élément important de notre approche évolutive. Nous utilisons deux modèles pour
l’évolution des réseaux, un modèlede basequi ne considère que les gains et pertes
de connexions au cours de l’évolution, et un modèlecomplexequi prend également en
compte les duplications et les pertes de gènes.

Avec les modèles d’évolution des réseaux, nous élaborons des algorithmes qui utilisent
des relations phylogénétiques pour affiner des réseaux perturbés pour une famille d’ or-
ganismes. Ces algorithmes de raffinement comprennent:RefineFastet RefineMLqui
sont algorithmes itératifs en deux étapes, etProPhyCet ProPhyCCqui sont basés sur
un modèle probabiliste phylogénétique. Pour chaque algorithme nous avons d’abord
le concevoir avec le modèle évolutif de base et ensuite le généraliser au modèle com-
plexe. Tous ces algorithmes sont informatiquement efficaces. Quantité de résultats
expérimentaux démontrent qu’ils donnent une amélioration notable de la qualité des
réseaux d’entrée. En particulier,ProPhyCet ProPhyCCaméliorent encore les perfor-
mances deRefineFastetRefineML.

En sus des quatre algorithmes mentionnés ci-dessus, nous avons également conçu un
algorithme basé sur la théorie du transfert d’apprentissage, un algorithme de transfert
d’appretissage sur arbre (TTL). TTL diffère des quatre algorithmes précédents dans le
sens où il prend les données d’expression génique pour lafamille d’organismes comme
entrée, au lieu de leurs réseaux reconstruits.TTLapprend alors les structures des réseaux
pour tous les organismes à la fois, en prenant parti des relations phylogénétiques. Bien
que cette approche surpasse un algorithme d’ inférence utilisé sur chaque réseau séparé-
ment, il ne donne pas de meilleurs résultats queProPhyC, ce qui indique queProPhyC
fait bon usage de l’information phylogénétique.



mots cĺes: regulatory networks, network inference, evolution, phylogenetic relation-
ships, ancestral network, refinement, gene duplication, evolutionary model, evolutionary
history, reconciliation, orthology, maximum likelihood,transfer learning
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Chapter 1

Introduction

Transcriptional regulatory networks are models of the cellular regulatory system that governs tran-
scription. They show how genes are up- and down- regulated bytheir associated transcription factors
in response to signals. Transcriptional regulatory networks are often modelled as directed graphs [1],
with nodes representing the genes and arcs (directed edges)representing the regulatory relationships
between these genes. The arcs can have different propertieslike sign (denoting activation or inhibi-
tion), weight, etc., that give more details about the interactions.

Due to their importance in biological processes, transcriptional regulatory networks are studied
from various aspects. First of all, the discovery of transcriptional regulatory networks, that is, the
determination of regulatory interactions between transcription factors and target genes, is of great
interest in biology and medicine. Wet-lab techniques such as chromatin immunoprecipitation (ChIP)
can be used to determine the DNA binding sites for transcription factors and thus find their target
genes. Since regulatory networks are determined only for a few organisms and this data produced by
biological experiments is growing very slowly, computational methods are developed to infer regu-
latory networks. Then, with the networks known, the networktopology properties are studied. For
example, large regulatory networks are regarded as scale-free networks, whose degree distribution
follows a power law distribution [2,3]; the network structures are hierarchical and have high modular-
ity [4–6], and there are highly repetitive subgraph patterns called network motifs [7,8]. Furthermore,
dynamic analysis of regulatory networks is also performed,to study how regulatory interactions are
activated or deactivated under different conditions in onenetwork [9], how networks grow along
with the gene duplication events [4, 10], and finally how networks evolve from one organism to an-
other [10,11]. Knowledge of the dynamics and evolution can explain how the networks have formed
into what they are. Furthermore, with sufficient data and knowledge we can predict future networks.

During my PhD I mainly worked on two of the topics above: the computational inference of
regulatory networks, and the evolution of regulatory networks. In particular, I use the evolution of
regulatory networks to improve their inference.

The inference of regulatory networks is important because the determination of regulatory net-
works is basic to all other studies, and because of the large number of genes of interest, and the limit
of wet-lab techniques, it is still difficult and time-consuming to establish regulatory connections from
bench experiments. Given high-throughput genome sequencedata and microarray gene-expression
data, computational methods are used to predict transcription factor binding sites (TFBS) and infer
regulatory networks [12]. In particular, microarray gene-expression data, as phenotypical level data
in contrast to genome sequence data, is used to infer regulatory networks. Methods using Boolean
networks [13], Bayesian networks [14], dynamic Bayesian networks (DBNs) [15], and differential
equations [16,17], and so on, have been proposed for this purpose. The networks predicted by these
algorithms, however, suffer from a high error rate. The highnoise level in the data, the paucity of well
studied networks, the many simplifications made in the models, combined with other factors (such as
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the typically large number of genes tested vs. the small number of test samples—the so-called “tall
dataset” problem), make inference difficult, in terms of both accuracy and computation.

Much effort is being made to improve the regulatory network inference in the community, most
of which focuses on improving the standalone inference model or integrating additional data to infer
the network for a single organism [18–20]. For example, methods were developed to use time-series
expression data [15,21–23], and biological techniques have been improved to obtain richer data [24].
On the other hand, computational biology has long used comparative and, more generally, evolution-
ary approaches to extend the reach and accuracy of its analyses. As species evolve, their regulatory
networks also evolve along the same lineages, so that the regulatory networks for a family of organ-
isms are related through the organismal phylogeny. These relationships can be used as additional
information to correct errors in currently available networks and obtain higher-quality networks for
a family of organisms. Therefore, instead of focusing on a single-organism inference approach, we
consider the regulatory networks for a family of species, and use an evolutionary approach to im-
prove the inference of regulatory networks, which enables us to study evolutionary models for these
networks as well as to obtain improved networks.

To design such an evolutionary approach, we have to considertwo problems. First, although
phylogenetic relationships are well established for many groups of organisms, we do not know how
their regulatory networks evolve along the phylogeny, thatis, we need a model for the evolution
of regulatory networks to apply the evolutionary relationships among networks. Second, we need
methods and algorithms which output the desired regulatorynetworks.

We turn to recent work on the evolution of biological networks to find a solution for the first
problem. The evolution of biological networks—regulatorynetworks, metabolic networks and pro-
tein interaction networks—has drawn great interest among researchers [25–27]. Among these three
types of networks, the evolution of regulatory networks is more difficult to study mainly due to the
lack of benchmark data, since transcriptional regulatory networks produced from bench experiments
are available only for a few model organisms. However, othertypes of data have been used to assist
in the comparative study of regulatory mechanisms across organisms. For example, gene-expression
data [11], sequence data such as transcription factor binding sites (TFBS) [28,29], andcis-regulatory
elements [11] have all been used in this context. Moreover, abroad range of model organisms have
been studied, including bacteria [30], yeast [11, 28], and fruit fly [29]. Although these studies have
not to date sufficed to establish a clear model for regulatorynetwork evolution, they have identified a
number of evolutionary events, such as adding or removing network edges, and the duplication and
loss of genes [4, 30–32]. In particular, Babu and his colleagues pioneered an evolutionary approach
to the study of regulatory networks inE. coli and inS. cerevisiae[4, 30, 32, 33], where they posit a
simple evolutionary model for regulatory networks, which amounts to adding edges to, or removing
edges from the network, and proceed to investigate how well such a model accounts for the dynamic
evolution of two of the best studied networks.

These studies have provided the basis for introducing evolutionary models for regulatory net-
works. We summarize two evolutionary models for regulatorynetworks. One is called abasic
model, where we consider only gain and loss of regulatory connections while the gene contents stay
the same. The other is anextendedmodel, and in this model we also take into account duplications
and losses of genes. These two models are formalized in Chapter 3.

Then, with a network evolutionary model, we design a computational framework that uses phy-
logenetic information to yield better networks than those derived with current inference algorithms.
There are two scenarios for this problem with respect to the input information:

1. The input can be the regulatory networks for a family of species inferred independently (with
any inference method), hereafter called abasemethod. In this case we design refinement
algorithms which take these noisy inferred networks as input, and output the refined version of
these networks. The refinement algorithms we have designed for this scenario are:RefineFast,
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RefineML, ProPhyC, ProPhyCC.

2. The input can also be the gene-expression data of these species. In this case, we devise a
network inference algorithm that infers the networks for all the species at the same time, while
taking the phylogenetic relationships as part of the input and constraints. For this scenario, we
have designed theTree Transfer Learning (TTL)algorithm to infer the optimal configuration
of the networks for all organisms at a time.

We have worked on both scenarios while focusing on the first one, since it is more general and not
limited to certain source of regulatory networks in terms ofboth data and inference method.

When our input is the networks for the family of organisms to be refined, we first place these
networks at the corresponding leaves of the phylogeny of this family, and consider using networks of
their ancestors as a media to store and propagate the phylogenetic information. In this case, the an-
cestral networks will be inferred from these leaf networks by an ancestral reconstruction algorithm.
However, since these leaf networks are error-prone, the reconstructed ancestral networks can help us
get refined networks only if they have lower error rate than the leaf networks. In fact, an appropriate
algorithm should be able to exclude errors and use the correct information in the leaves during an-
cestor reconstruction, given that the errors are independent across the leaves. We adaptFastML [34]
to reconstruct ancestral networks with a maximum likelihood criterion. We perform experiments to
test the accuracy of the ancestors reconstructed byFastML. Our results, which are shown in Chap-
ter 3, show that the ancestral networks have less error than the leaf networks. With this guarantee we
proceed to design refinement algorithmsRefineFastandRefineML, which directly use ancestral in-
formation to obtain refined networks, and later on two improved refinement algorithmsProPhyCand
ProPhyCC, which are based on a probabilistic graphical model and elaborately integrate the input
noisy networks, ancestral networks and the refined networksall together.

We also design a tree transfer learning (TTL) algorithm which works with the second scenario
mainly for the purpose of comparison and analysis. Prior to our work, Bourque and Sankoff [35] also
developed an algorithm to infer regulatory networks acrossa group of species whose phylogenetic
relationships are known; they used the phylogeny to reconstruct networks from the gene-expression
data of these species, under a simple parsimony criterion.

For each refinement algorithm we present, we first show how it works with the basic evolutionary
model, and then show how we extend it to work with the extendedmodel. In our experiments, the
noisy networks as input to our refinement algorithms are generated by different means: by using vari-
ous basic inference methods to infer networks from gene-expression data, or by adding artificial noise
from various distributions to the “true” regulatory networks. We use “true” regulatory networks both
generated from data simulation and from biological data collection. We perform extensive experi-
ments to test our algorithms from multiple aspects. We compare the accuracy of networks inferred
from the base inference algorithm, output from Bourque and Sankoff’s algorithm, and refined by
each of our refinement algorithms respectively. We show that, under all comparable settings,Refine-
Fast andRefineMLoutperform the base inference algorithm and Bourque and Sankoff’s algorithm,
andProPhyCandProPhyCCfurther improveRefineFastandRefineML.

In Chapter 2, we give the computational and biological backgrounds of our work, as well as a
brief introduction of the algorithm from Bourque and Sankoff. In Chapter 3, before getting to our
core algorithms, we give the details of two preliminaries, which are the two formalized networks evo-
lutionary models we use, and the accuracy tests of the ancestral networks reconstructed byFastML. In
Chapter 4 we describe our two-step iterative algorithmsRefineFastandRefineML, and show how to
extend them from the setting of basic evolutionary model to that of the extended model. In Chapter 5
we describe theProPhyCandProPhyCCalgorithms which further improveRefineFastandRefineML
with both the basic and extended network evolutionary models. In Chapter 6 we present theTTL al-
gorithm and compare it withProPhyCandProPhyCC. Finally in Chapter 7 we give conclusions.
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Chapter 2

Background

Our main refinement algorithms (RefineFast, RefineML, ProPhyCandProPhyCC) take the the noisy
regulatory networks for a family of organisms as input, and output refined version of this set of
networks. In our experiments, we obtain the noisy networks as input to the refinement by using an
existing network inference algorithm (which we call abaseinference method) to infer networks from
gene-expression data. To test the generality of our refinement algorithms, we use two different base
inference methods to infer regulatory networks from gene-expression data, one based on dynamic
Bayesian networks (DBN) and the other based on differentialequations, which are two widely used
models for network inference. For the former, we use the implementation in Murphy’s Bayesian
Network Toolbox [36]; for the latter, we useTRNinfer [17].

RefineFast, RefineML, ProPhyC, andProPhyCCall use networks of ancestral species in various
ways. RefineFastand RefineMLare two-step iterative algorithms. The noisy input networks are
placed at the corresponding leaves of the (known) phylogeny. In the first step, from the input networks
at the leaves, we infer ancestral networks; in the second step, these ancestral networks are used to
refine the leaf networks. These two steps are then repeated asneeded. To infer ancestral networks,
we use our adaptation ofFastML [34], which was initially designed to reconstruct ancestral protein
sequences with a given phylogeny.

When the basic network evolutionary model is used, all networks have equal gene contents, so
to resolve the ancestral networks we only need to infer the connections. However, with the extended
evolutionary model, since it includes gene duplications and losses, the gene content may vary across
networks. While the gene content of the leaf networks is known, we need to reconstruct the gene
content for ancestral networks, that is, to reconstruct thehistory of gene duplications and losses. A
standard approach to address this problem is to reconcile the gene trees and species tree [37–39].

In this chapter we briefly introduce the relevant topics we need for later chapters.

2.1 DBNs for Network Inference

When DBNs are used to model regulatory networks, an associated structure learning algorithm is
used to infer the networks from gene-expression data [15, 40–42]. The implementation of this algo-
rithm in the Bayesian Network Toolbox provides two optimization functions: a maximum likelihood
(ML) score and a Bayesian information criterion (BIC) score.

Let D denote the dataset used in learning andG the (structure of the) network; the algorithm
using ML scoring aims to return the structureG∗ = argmaxG logPr(D|G). However, transcriptional
regulatory networks are typically sparse graphs, so ML inferences often produce many false positive
edges. The BIC score introduces a penalty on the complexity of G to get a tradeoff between fit and
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complexity, which is defined as

logPr(D|G,Θ̂G)−0.5#GlogN (2.1)

whereΘ̂G is the ML estimate of network parameters for structureG, N is the number of samples in
datasetD, and #G is thedimensionof structureG, defined as the number of free parameters ofG.
The penalty for model complexity makes networks inferred under this criterion more conservative,
reducing the number of false positives in the networks, and thus gaining specificity at the expense of
sensitivity.

In practice, heuristic search methods are used, as well as mild restrictions on the structure of the
model, the latter aimed at reducing the huge number of possible network structures—such as a bound
on the maximum indegree of the nodes, a restriction that appears well supported by the data [13,42]
and that we use in our simulations.

2.2 Differential Equations for Network Inference

Differential equations can describe causal relationshipsamong components in a quantitative manner
and are thus well suited to model transcriptional regulatory networks [16, 17]. A regulatory system
is represented by the equationdxxx/dt = f (xxx(t))−Kxxx(t), wherexxx(t) = (x1(t), · · · ,xn(t)) denotes the
expression levels of then genes at timet andK (a matrix) denotes the degradation rates of the genes.
The regulatory relationships among genes are then characterized by f (·). Wanget al [17] produced
a tool,TRNinfer, that solves the differential equations by formulating them into linear programming
problems.

2.3 ML-based Reconstruction of Ancestral Nodes

Reconstructing ancestral information in phylogenetic work is typically in the nature of an anchoring
step in the computation, particularly in parsimony-based approaches. When we have high confidence
in the tree and the edge lengths are modest, however, an ML approach to ancestral inference can yield
accurate results;FastML [34], using a user-specified character substitution matrix, infers labels for the
internal nodes (on a site-by-site basis) that maximize the overall likelihood of the tree. The algorithm
was initially designed for protein sequences, but can be used for any type of sequence with a suitable
substitution matrix.

This algorithm assumes that each site in the protein sequences evolve independently, so it can
infer the ancestral characters for one site at a time. Fix a site, i.e., a character position in the sequence.
Let i denote a node in the tree,l i the length of the edge between nodei and its parent, anda the value
of a character at a node in the tree, chosen from a given setSof possible character values. For each
nodei and each charactera, we maintain two variables:

• Li(a): the likelihood of the best reconstruction of the subtree with root i given that the parent
of i is assigned charactera.

• Ci(a): the optimal character assigned toi given that its parent is assigned asa.

Finally, let πa denote the initial distribution of charactera andpab(l) the probability of substitution
of a with b along an edge of lengthl . For simplicity, assume that the given tree is binary; then our
adaptation of theFastML algorithm carries out these steps (see Fig. 2.1):

1. If leaf i has characterb, then, for eacha∈ S, setCi(a) = b andLi(a) = pab(l i).

2. If i is an internal node and not the root, its children arej and k, and it has not yet been
processed, then, for eacha∈ S, set
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Figure 2.1: Illustration of the FastML algorithm: calculating Li(a) andCi(a) for a nodei with two
children j andk.

• Li(a) = maxc∈S pac(l i) ·L j(c) ·Lk(c)

• Ci(a) = argmaxc∈S pac(l i) ·L j(c) ·Lk(c)

3. If there remain unvisited nonroot nodes, return to Step 2.

4. If i is the root node, with childrenj andk, assign it the valuea∈ S that maximizes
πa ·L j(a) ·Lk(a).

5. Traverse the tree from the root, assigning to each node itscharacter byCi(a).

2.4 Reconciliation of Species Tree and Gene Trees

To infer ancestral networks with the extended network evolution model, we need a full history of gene
duplications and losses. We reconstruct this history by reconciling the gene trees and the species
tree. The species tree is the phylogenetic tree whose leavescorrespond to the modern organisms;
gene duplications and losses occur along the branches of this tree. A gene tree is a phylogenetic tree
whose leaves correspond to genes in orthologous gene families across the organisms of interest; in
such a tree, geneduplicationandspeciationevents are associated with internal nodes. Fig. 2.2 shows
an example.

(a) The species tree of 4 species (b) The gene tree of the gene family “A”

Figure 2.2: The left plot shows the species tree for 4 species: S1, S2, S3 and S4. The right plot
shows the gene tree of the gene family “A” across the 4 species. The events at its internal nodes can
be determined by reconciling the two trees.
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When gene duplications and losses occur, the species trees and the gene trees may legitimately
differ in topology. Reconciling these superficially conflicting topologies—that is, explaining the
differences through a history of gene duplications and losses—is known aslineage sortingor rec-
onciliation. Given a gene tree for a gene family and the corresponding species tree (as shown in
Fig. 2.2), the reconciliation process can label the internal nodes of the gene tree with speciation and
duplication events [38,43]. This is usually done by creating a mapping between the gene treeTG and
the species treeTS. The mappingM maps every nodev in TG to a target node,M(v), in TS. Do a
post-order traversal on the gene tree, then for eachv, M(v) is assigned as follows:

• If v is a leaf node inTG, M(v) is the species from which the gene atv is obtained.

• If v is an internal node inTG, v is mapped to the least common ancestor,lca, of the target nodes
of its children, that is,M(v) = lca(M(le f tchild(v)),M(rightchild(v))).

Fig. 2.3(a) shows the same gene tree in Fig 2.2(b) with all thenodes labelled with their target nodes
obtained by the mappingM. Under the mappingM, a node inTG is determined as a duplication
node if its target node is the same as at least one of its children’s target nodes, otherwise it is a
speciation node. Thus we can determine all the speciation and duplication events in the gene tree.
Then necessary gene loss events can be inferred to consist with the speciation and duplication events.
Fig. 2.3(b) shows the same gene tree with all gene duplication, gene loss, and speciation events
labelled.

(a) The gene tree showing target nodes from the mapping M (b) The gene tree showing a solved history

Figure 2.3: The gene tree for gene family “A” across 4 species. Left: the text at each node shows
the target nodeM(v) of each nodev in the gene tree. Right: the gene tree showing a complete gene
duplication and loss history.

In practice, when a gene tree is not pre-determined, the reconstruction of the gene tree uses two
criteria: 1. the gene tree should fit the sequence data of the genes; 2. the gene tree should yield
an optimal gene duplication and loss history by the reconciliation process introduced above. While
reconstructing the optimal gene tree and history is a hard computational problem, algorithms have
been devised for it in a Bayesian framework [37] or using a simple parsimony criterion [38].

2.5 Evolution and Dynamics of Regulatory Networks

The evolution of regulatory networks is mainly attributed to the evolution of genomes [10, 44]. Mu-
tations in the genome of an organism can change the regulatory interactions in various ways. First,
mutations in the regions ofcis-regulatory elements can cause the loss of transcription factors which
bind to these elements. For example, in [11] the authors suggest thatcis-regulatory elements can be
gained or lost during the evolution of a family of 17 fungi genomes. Second, genome-level mutations
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for the transcription factors (TFs) can change their function such that they may not regulate the same
target genes. In particular, studies have shown that transcription factors evolve faster than their tar-
get genes in prokaryote organisms, and orthologous transcription factors can regulate different genes
in different organisms [30, 45]. These studies show that even with a network which contains only
orthologous TFs and target genes, the regulatory interactions can be lost or gained during evolution.

Another important evolutionary event during genome evolution is gene duplication. As a main
source of new gene functions, gene duplication also plays animportant role in the evolution of regu-
latory networks [31,32,44]. Although the studies of how gene duplication affects network evolution
are mainly performed for a single organism, where the time scale of dynamics is smaller than that in
species evolution, the results and observations can easilybe extended to cross-species studies. The
duplicated copies of a gene family tend to inherit the regulatory interactions from the original copy,
but since the duplicated copies also diverge quickly, loss and gain of interactions can happen after the
duplication. Other studies suggest apreferential attachmentmodel for the interactions of duplicated
gene copies, that is, the new copies tend to connect to genes with high degree [3, 46]. Therefore,
gene duplications result in much difference between an ancestral network and its child network. In
single organism studies, these mechanisms of gene duplication contribute to the growth of regula-
tory networks, and can also explain to certain extent the structure and connectivity attributes of large
regulatory networks.

Both the gain and loss of regulatory interactions and the duplication and loss of genes describe
the evolutionary changes on the level of a single gene or interaction. On a higher structure level
in regulatory networks, there are network motifs which appear frequently throughout the networks.
Network motifs are small subnetworks with certain patterns, like single input, multiple input and
feed-forward loop motifs [4, 7]. These motifs, however, arenot conserved during evolution, though
the evolved network still has similar abundance of these motifs [4,10].

Besides the changes in regulatory networks on large evolutionary time scale, the dynamics of
these networks on small time scale like a certain life periodwithin an individual have also been stud-
ied [9, 47]. Although a static network structure has been used to represent the regulatory network
for a certain organism, the network in an individual is not static with respect to time and change of
conditions. In [9], based on a static network ofS. cerevisiae, the authors derived the active subsets
of interactions under different conditions from the corresponding gene-expression data, and found
significant differences between the subsets. The studies ofshort-time dynamics of regulatory net-
works can provide insights for network evolution across species, but not much has been done so far
to incorporate the dynamics into cross-species studies, while most comparative analysis of regulatory
networks across species still use static network structures.

Despite the possible evolutionary changes of regulatory networks we describe above, researchers
also found that a large portion of orthologous TFs and targetgenes tend to share the same regulatory
interactions across species, and this conservation is related to the phylogenetic distance between the
organisms [4,30,48]. This provides further support for ourevolutionary approach.

2.6 Transfer Learning

The design of ourTTL algorithm is inspired by the inductive transfer learning theories in machine
learning. Transfer learning, also called multitask learning, is an approach to learnrelated tasks
simultaneously, such that what is learned for each task can interactively help other tasks to be learned
better [49–51]. It is especially useful when the data for some of the tasks is not sufficient – they can be
learned better by transferring knowledge from other well learned tasks. Transfer learning is widely
used in various problems such as classification, regression, clustering, and so on. In particular,
in [50], the authors applied the transfer learning idea to learn the structure of a set of Bayesian
networks. The relationships between different Bayesian networks are modeled as a prior probability,
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where one should specify parameters to quantify differencebetween any two networks. This prior
then links the different tasks (the different Bayesian networks) in this way. The prior contributes to
the posterior probability, and the best set of network structures (which is aconfiguration) is the one
which yields optimal posterior probability.

In our case, if we model the regulatory networks by Bayesian networks, then our goal is to find
the best configuration of networks for all organisms in the family, from the gene-expression data of
these organisms. The relationships between the networks are well defined and represented by the
phylogenetic tree. OurTTL algorithm uses the tree to do the knowledge transfer while learning the
network structures.

2.7 The Algorithm of Bourque and Sankoff

In [35], Bourque and Sankoff presented a method to generalize a single-organism network inference
algorithm to infer the network for a family of organisms simultaneously, with a parsimony criterion.
They first described the algorithm they used to infer a singlenetwork. This algorithm takes time-
series gene-expression data as input, and employs a system of differential equations to model the
regulatory network. For a genex, denote its gene-expression level at timet asxi(t). Let ai, j be the
coefficient corresponding to the regulatory impact of genej on genei. Then

dxi(t)
dt

= ∑
j=0,...,n

ai, jx j(t)

Also let yi(t) denotedxi(t)/dt, that is,yi(t) = ∑ j=0,...,nai, j x j(t). From the gene-expression data, we
have the values ofx j(t) for all genes and all time points, and the problem is to solve the values ofai, j

for all i and all j.
Then if the set of regulators for genex is Ri, we have

yi(t,Ri) = ∑
j∈Ri

ai, j x j(t) (2.2)

The task of inferring a networks is to solve for coefficientsai, j . In their case they find estimates
of ai, j , âi, j , by minimizing the square error

SSE(Ri) = ∑
t
(yi(t)− ŷi(t,Ri))

2 (2.3)

whereŷi(t,Ri) = ∑ j∈Ri
âi, j x j(t). The size ofRi is controlled to limit the number of non-zero coeffi-

cients, and thus reduce the complexity of the network.
To extend this method to consider the networks of a family of organisms at once, they modified

the optimization function so that it contains two parts: thetotal square error and the complexity of the
network of all the modern organisms, and the totalevolutionary costover the edges of the phylogeny.
This algorithm assumes the same gene content throughout thenetworks of all species, and only
considers the insertion and deletion of regulatory connections for each gene, which is equivalent to
our basic network evolutionary model. Denote the phylogenetic tree as a graphG= (V,E), assume
for each genei and for each vertex inG, v, the set of regulators isRv

i . Then the evolutionary cost is:

COST(R1
i ,R

2
i , . . . ,R

|V|
i ) = ∑

(u,v)∈E

|Ru
i ⊖Rv

i | (2.4)

where⊖ is the symmetric difference between two sets. ThisCOSTterm is added to theSSEscore
(defined in Eq. 2.3) of all modern species with a weight coefficient. This combined score is used as
a criterion to find the best sets of regulators for all the genes in all the networks inG.
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This algorithm, hereafter called theB&S algorithm, has provided a framework for using phyloge-
netic information to infer regulatory networks under the differential equation model. However, since
the algorithm requires time-series gene-expression for all the organisms as input, its application may
be limited by the input information. Furthermore, the optimization problem has high computational
complexity. So far it has only used the structure of the phylogeny when calculatingCOST, how-
ever, taking into account more information provided by the phylogeny such as edge lengths may help
improve the scoring.
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Chapter 3

Preliminaries

In this chapter we formalize the network evolutionary models which we use for our refinement al-
gorithms, and report the tests ofFastML in the accuracy of reconstructing ancestral networks from
noisy leaf networks.

3.1 Regulatory Network Evolutionary Models

We summarize two network evolutionary models, abasicmodel and anextendedmodel. In both
models, the networks are represented by binary adjacency matrices, with a 1 in the(i, j) entry denot-
ing an edge from nodei to node j. We use binary matrices for simplicity’s sake: generalization to
weighted matrices is immediate and, indeed, the additionalinformation present in a weighted matrix
should further improve the results.

For the basic model, the evolutionary operations are:

• Edge gain: an edge between two genes is generated with probabilityp01.

• Edge loss: an existing edge is deleted with probabilityp10.

We also assume that all the edges in the networks have the sameprobability to be lost, and all the non-
existing edges have the same probability to be gained at any evolutionary step. The model parameters
are thus:

• the base frequencies of 0 and 1 entries in the given networksΠ =
(

π0 π1
)

;

• the substitution matrix of 0s and 1s,P=

(

p00 p01

p10 p11

)

.

The extended model has two additional evolutionary operations, gene duplication and gene loss,
with corresponding additional model parameterspd and pl . We assume that all the genes have the
same duplication and loss rates. So the extended model not only has the the gene gain and gene loss
operations, but also has the following two operations:

• Gene duplication: a gene is duplicated with probabilitypd. After a duplication, edges for the
newly generated copy can be assigned as follows:

Neutral initialization: Create connections between the new copy and other genes randomly
according to the proportionπ1 of edges in the background network independently of the
original copy. The directions of connections are also random.
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Inheritance initialization: Connections of the duplicated copy are reported to correlate with
those of the original copy [30–32]. This observation suggests letting the new copy inherit
the connections of the original while keeping the directions of connections, then lose
some of them or gain new ones at some fixed rate [46].

Preferential attachment:The new copy gets connected to genes with high connectivity [3,46].

• Gene loss: a gene is deleted along with all its connections with probability pl .

The parameters of the extended model are thus:Π, P, pl andpd.

3.2 Verifying the Ancestral Reconstruction Procedure

We examine the accuracy of the ancestral networks reconstructed byFastML when the leaf networks
are noisy. We conjecture that during ancestor reconstruction FastML is able to eliminate much of
the noise in the leaf networks, such that the ancestral networks have lower error rate than the leaf
networks. This may not be true for all the ancestral networks, since for the ancestors which are
far from the leaves (for example, those close to the root), the distance between these ancestors and
the leaves can be big enough for some correct information to be lost on the way. However, we can
proceed to use the ancestral information for our design of a refinement algorithm, as long as the
ancestors to certain height are more accurate than the leaves.

We perform simulation experiments to test the above conjecture. We use the basic network evolu-
tionary model in these tests. Starting from a tree and a root network, we simulate the “real” evolution
along the tree, according to the network evolutionary model, to generate the “true” regulatory net-
works for all ancestors and all modern organisms. Then with certain error rates, we obtain noisy leaf
networks from the true ones, which are then used to reconstruct ancestral networks byFastML.

The data used byFastML are:

• the proportions of 0s and 1s in the networks,Π =
(

π0 π1
)

• the topology of the phylogenetic tree;

• theedge length le of each edgee, i.e., the number of changes along this edge;

• for each edge lengthle, its corresponding substitution matrix,Ps(le), which represents the
mutation probability between 0 and 1

Ps(le) =

(

p00(le) p01(le)
p10(le) p11(le)

)

The substitution matrices depend on edge length: the longerthe edge, the higher the mutation prob-
abilities. We choose aPs(1) for edge length 1 and calculatePs(le) for le ≥ 2 using an exponential
distribution,Ps(le) = Ple

s (1).
The reconstructed ancestral networks are compared with the“true” ones. For each noisy leaf

network andFastML-reconstructed ancestral network, we compare it with the corresponding true
network from simulation, and calculate thesensitivityandspecificityvalues as measurement of its
accuracy. If we compare a noisy/reconstructed networkG1 to the true networkG2, then the sensitivity
and specificity ofG1 are defined as follows:

sensitivity=
TP

TP+FN

specificity=
TN

TN+FP
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whereTP is the number of connections which are in bothG1 andG2; FP is the number of connections
which are inG1 but not inG2; TN is the number of connections which are in neitherG1 nor G2; FN
is the number of connections which are not inG1 but are present inG2.

The specificity and sensitivity values calculated for all the networks are then averaged over net-
works on the same tree level to get the “sensitivity and specificity of a level”. Fig. 3.1 shows an
illustration of experimental setup.

Figure 3.1: An illustration of the experimental setup to evaluate the performance of FastML on each
tree level

In these experiments we use trees which have 100 leaves and 8 levels. The regulatory networks
each have 16 genes. We letFastML reconstruct ancestors from leaf networks with different error
rates. Finally, since there can be different structures of atree with given numbers of leaves and
levels, we generate 100 random trees for each setting of experiments and report the averaged results.

Fig. 3.2 shows the average sensitivity and specificity values of networks on each level, which
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Figure 3.2: Leaf networks are not noisy

is again averaged on 100 tree structures. In these plots the input networks are correct networks. In
Fig. 3.2(a) the substitution rate forFastML is the same as the one we use in simulation, that is, the
“true” parameters. We see that with these parameters the specificity is better maintained from the
leaves to the root. However we can tune the parameters so thatthey favor the sensitivity more—an
example is shown in Fig. 3.2(b) with tuned parameters.

In Fig. 3.3 the input networks have respectively about 30% error in each of sensitivity and speci-
ficity. Fig. 3.3(a) shows the results where we use the same substitution rates as the simulation. We
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Figure 3.3: Leaf networks are noisy

observe that when the leaf networks are noisy, the accuracy of reconstructed ancestral networks does
increase, up to some level in the phylogenetic tree. In Fig. 3.3(a) the specificity keeps going up as
we go towards the root, while the sensitivity starts decreasing when we go too far. This matches
our conjecture and provides confidence to design refinement algorithms using ancestral information.
Similarly, if we want more improvement on sensitivity we canchange the parameters ofFastML so
that the sensitivity gets more improvement with the tradeoff of specificity, as shown in Fig. 3.3(b).
This confirms the flexibility of having different tradeoffs between sensitivity and specificity of the
reconstructed ancestral networks, thus establishing the potential for our refinement algorithms to in-
herit this flexibility. Experiments also show that the increase of accuracy from leaves to ancestors can
be obtained with a large range of parameters, though the increase can be allocated between sensitivity
and specificity in different ways. This provides the robustness basis for our refinement algorithms.
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Chapter 4

Two-step Refinement Algorithms
RefineFast and RefineML

The principle of our refinement approach is as follows: sinceregulatory networks evolve along with
genomes, we posit that the regulatory networks for a family of organisms are related to each other
through the same phylogenetic tree. Then if there are errorsin the regulatory networks for a family
of organisms, the phylogenetic relationships can be used toimprove the accuracy of these networks.
We consider a scenario where regulatory networks have been (separately) inferred for a number of
related organisms whose phylogenetic relationships are known. Our algorithmsRefineFastandRe-
fineML refine these networks by considering all of them at once, within the known phylogeny of the
organisms, to produce networks with much higher specificityand sensitivity. To make use of the phy-
logenetic relationships among this group of species for therefinement purpose, we consider ancestral
information, that is, using networks of ancestors as media to store and propagate the phylogenetic
information.

RefineFastandRefineML[52–55] work iteratively in two phases after an initialization step, which
is to obtain the regulatory networks for the family of organisms. Typically, these networks are in-
ferred from gene-expression data for these organisms, using standard inference methods. We place
these networks at the corresponding leaves of the phylogenyof the family of organisms and encode
them into binary strings by simply concatenating the rows oftheir adjacency matrix. We then en-
ter the iterative refinement cycle. In the first phase, we infer ancestral networks for the phylogeny
(strings labelling internal nodes), using our own adaptation of theFastML [34] algorithm; in the
second phase, these ancestral networks are used to refine theleaf networks. These two phases are
then repeated as needed. Our refinement algorithms are formulated within a maximum likelihood
(ML) framework and focus solely on refinement—they are algorithmic boosters for one’s preferred
network inference method.

RefineFastandRefineMLwere firstly designed on the basic network evolutionary model, then
we generalized them to fit the extended network evolutionarymodel so that they work in a broader
framework. The generalization includes many changes to usethe duplication/loss data and handle
the more complicated cases caused by the extended model. Oneof the main problems to solve
is to reconstruct the gene duplication and loss history. Besides using the existing reconciliation
algorithms for gene trees and species tree [37–39], we also designed and tested other history models
like duplication-onlyand loss-onlymodels to analyze the effect of different duplication and loss
history predictions on the performance of refinement algorithms.

We did experiments to test the performance ofRefineFastandRefineMLunder various settings,
on both simulated data and biological data. With simulated datasets, we tested the algorithms in
different aspects by altering the following factors: the size and shape of the phylogenetic tree, the
size of the networks (that is, number of genes in the networks), the evolutionary rates for networks
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(including both the rates for gain and loss of connections and those for gene duplications and losses).
To further test the generalization of our refinement algorithms, we apply different network inference
algorithms as base algorithm to predict networks as input for our refinement algorithms, and during
the data simulation procedure we use data generation methods to verify that our algorithms work
under all circumstances.

We also perform further tests to exclude confounding factors and test different aspects of our
algorithms. We investigate the source of these improvements, eliminating various simple possibilities
such as noise averaging and thus demonstrate that it is indeed the phylogenetic data that enables our
algorithm to improve upon the standard approach.RefineLocalandRefineRandomTreewere designed
and used in these tests.

We compare the networks predicted by a base inference used standalone, and those output from
our refinement algorithms. We also apply the algorithm of Bourque and Sankoff on the same datasets
and compare its output with that ofRefineFastandRefineML. Accuracy of networks is measured by
their sensitivityandspeci f icity. We plotreceiver-operator characteristic (ROC)curves with differ-
ent tradeoffs of sensitivity and specificity. The ROC curvesfor our algorithms consistently dominate
those of the standard approaches used alone; under comparable conditions, they also dominate the
results from Bourque and Sankoff.

In this chapter we first present theRefineFastand RefineMLalgorithms on the basic network
evolutionary model, followed by a description of their versions for the extended model. Then we
show in detail our experimental design, including the data generation for the simulated datasets, and
the experimental results, firstly with the basic network evolutionary model and then with the extended
model.

4.1 RefineFast and RefineML under the Basic Model

4.1.1 Overview

To get the orthologous networks to be refined by our algorithms, we use a standard network inference
method to infer networks from gene-expression data. So the input of the whole procedure is a set of
gene-expression data matrices, collected under similar experimental conditions, for several related
organisms, along with a known phylogeny (with edge lengths)for this group of organisms. (Such
phylogenies are typically well established though the edgelengths remain to be explored.) Thus there
are three dimensions to the data: the number of organisms (the number of matrices), the number of
genes (the number of rows in each matrix), and the number of test conditions (the number of columns
in each matrix).

The first step is simply to run one’s preferred algorithm for regulatory network inference, in-
dependently on each of the data matrices; in this study, we use two types of inference algorithms,
respectively based on DBN and differential equations. The resulting networks are used to label the
corresponding leaves of the phylogeny. We encode a network by the concatenation of the rows of its
adjacency matrix—every code thus represents a valid network. Note that the initial networks them-
selves are the real inputs to our algorithm; we use the gene-expression data stage in our tests solely
in order to enhance the verisimilitude of our simulations.

We then use our adaptation of theFastML algorithm to infer ancestral networks, which in turn are
used to refine the sequences at the leaves. We present below two algorithms to carry out this refine-
ment, both based on the intuition (verified in simulations) that ancestral sequences are more accurate
than those at the leaves, but only up to some height in the tree—as distant ancestral sequences suffer
from the inference errors ofFastML. The two middle steps can be iterated: starting from the newly
refined networks, we can once again infer ancestral networksand use the results to refine the leaves.

We realize that edge lengths obtained from an analysis of thesequences of (typically) a few genes
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need not reflect the amount of evolution in the regulatory networks—while both evolved on the same
tree, their respective rates of evolution could differ considerably. As we still lack the knowledge
required to formulate a more precise model of network evolution, using the same edge lengths is just
the neutral choice.

4.1.2 Inferring the initial networks

The inference algorithm we use to initialize the process is theDBN, as implemented in the Bayesian
Network Toolbox [36]. In our application, however, we want to examine the ROC curves and so need
to be able to trade off specificity and sensitivity. To this end, we modify the inference method based
on DBN by generalizing Eq. 2.1 with apenalty coefficient kp to adjust the penalty:

logPr(D|G,Θ̂G)−kp#GlogN (4.1)

wherekp varies from 0 to 0.5. Withkp = 0, we have the ML score; this is equivalent to the objective
function used in REVEAL [42, 56], which maximizes the mutualinformation between parents and
child. With kp = 0.5, the score of Eq. 4.1 reduces to the original BIC score from Eq. 2.1.

For theTRNinfer algorithm, the parameter that it provides to adjust the sparseness of the networks
does not afford sufficient control to generate sparse enoughnetworks. We thus supplement it by
applying different thresholds to the output connection matrix to choose final edges. We shall refer to
these modified inference methods asDBI for that based on the DBN model and asDEI for that based
on TRNinfer.

4.1.3 Inferring the ancestral networks

In this study our adjacency matrices are binary, with a 1 in the (i, j) entry denoting an edge from
nodei to node j. We use binary matrices for simplicity’s sake: generalization to weighted matrices
is immediate and, indeed, the additional information present in a weighted matrix should further
improve the results. Similar to the tests in Sec. 3.2, the data used byFastML are thus:

• the proportions of 0s and 1s in the networks,Π =
(

π0 π1
)

;

• the topology of the phylogenetic tree;

• theedge length le of each edgee, i.e., the number of changes along this edge;

• for each edge lengthle, its corresponding substitution matrix,Ps(le), which represents the
mutation probability between 0 and 1

Ps(le) =

(

p00(le) p01(le)
p10(le) p11(le)

)

(4.2)

The substitution matrices depend on edge length: the longerthe edge, the higher the mutation prob-
abilities. We choose aPs(1) for edge length 1 and calculatePs(le) for le ≥ 2 using an exponential
distribution,Ps(le) = Ple

s (1).

4.1.4 Refining the leaves

The underlying principle is simple: phylogenetically close organisms are likely to have similar regu-
latory networks; thus independent network inference errors at the leaves get corrected in the ancestral
reconstruction process. Obviously, however, if too much evolution occurred, the ancestral reconstruc-
tion process itself generates errors. Thus a crucial aspectof our algorithm is how to use ancestral
networks at various heights above the leaves to refine the leaves. We ran large series of experiments
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under various conditions (not shown); all showed an expected increase in accuracy when moving to
the parents of the leaves, eventually replaced by a decreasewhen moving too far above the leaves.
On the basis of our results, we chose to use only the immediateparents of the leaves for refinement—
but note that these parents are themselves the product of a global ML inference and thus reflect the
structure of the entire phylogeny.

A fast oblivious refinement algorithm: RefineFast

Our first algorithm,RefineFast, is designed to run quickly; it reposes complete trust in thenetworks
associated with the parents of the leaves, using them to replace, rather than refine, the leaf networks.

1. From the current leaves, infer ancestral nodes usingFastML.

2. For each leaf, pick its parent and evolve it (according to the length of the edge to the leaf and
its substitution matrix) to generate a new child.

3. Use these new children to replace the old leaves.

4. Repeat Steps 1–3 until the total size of the leaf networks stabilizes.

We can use the same substitution matricesPs(le) in both Step 1 and Step 2, but choosing different
substitution matrices can accelerate convergence. In practice the algorithm converges very fast, that
is, in less than 5 iterations. Denoting the number of genes ineach network byn, and the number of
leaves in the phylogenetic tree bynl , the running time of this algorithms isO(nl ·n2).

The algorithm is deliberately oblivious: it uses the original networks only in the ancestral recon-
struction, after which it replaces them with a sample network drawn from the distribution of possible
children of the parent. When the original networks are noisy(a common occurrence), this simplistic
procedure does quite well.

A nonoblivious refinement algorithm: RefineML

To use the information still present in the original leaf networks in the refinement step, we developed
an ML-based refinement algorithm,RefineML. To use the existing leaf sequences, we assign each site
of each leaf (that is, each entry of the adjacency matrix of each leaf network) abelief coefficient, kb,
which varies between 0.5 and 1. This value represents the confidence we have for each entry in the
input networks. In the DBN framework, to obtain the confidence coefficient values, we first estimate
the conditional probability tables (CPTs) of theDBI inferred networks from the gene-expression data
on the inferred structure [57], and then calculate the confidence values from the CPTs. We introduce
this procedure below.

For each genegi , if mi nodes have arcs directed togi in the inferred network, we define the
following notations:

• the expression levels of these nodes are denoted by vectoryyy= y1y2 · · ·ymi ;

• the confidence values of these arcs are denoted by vectorvbvbvb = v1
bv2

b · · ·v
mi
b ;

• we use signed weights to represent the strength of these arcs, denoted by vector
www= w1w2 · · ·wmi .

We assume that the gene-expression of a gene has two states,onandoff. Considering that if an arc is
predicted with high weight, then this arc is very likely to betrue, we assign high confidence values
to the arcs predicted with high absolute weight values. Letk be a coefficient value to normalize
probabilities, we have

k ·www·yyy= Pr(gi is on|yyy)
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Since there are 2mi configurations ofyyy, there are 2mi such equations. The value ofPr(gi is on|yyy) can
be directly taken from the CPTs. Sowww can be obtained by solving these equations, andvbvbvb derived
directly fromwww.

Having the belief coefficient values,RefineMLcan proceed to calculate the variablesLi(a) and
Ci(a) for each leafi, as defined in Sec. 2.3, wherea is the character value of the parent of leafi
inferred byFastML. For each site in the network adjacency matrices, its beliefcoefficient valuekb

can be obtained from the corresponding vectorvbvbvb. Then, usingb andc to denote a character value
whereb,c∈ S, the completeRefineMLalgorithm can be described as follows:

1. Learn the CPT parameters for the leaf networks reconstructed by the base inference algorithm
and calculate the belief coefficientkb for every site.

2. From the current leaves, infer ancestral sequences usingFastML.

3. For each leafi with valueb, set

• Li(a) = maxc∈S pac(l i) ·Qi(c)

• Ci(a) = argmaxc∈S pac(l i) ·Qi(c)

where

Qi(c) =

{

kb, b= c

1−kb, otherwise.

4. For each leafi, assign its most likely character from the variableCi(a).

4.2 RefineFast and RefineML under the Extended Model

Since the basic network evolutionary model considers only edge gains and losses, refinement algo-
rithms with this model require the input networks all have the same number of genes (orthologous
across all species). Moreover, the gain or loss of an edge in that model is independent of any other
event. However, this process accounts for only a small part of regulatory network evolution; in par-
ticular, gene duplication is known to be a crucial source of new genetic function and a mechanism of
evolutionary novelty [31,32].

The extended network evolutionary model not only enables broader application and more flexible
parameterization, but also provides a direct evolutionarymechanism for edge gains and losses. For
example, in the networks to be refined, the genes can have different numbers of copies for different
organisms.

Within this broader framework, the phylogenetic information that we use lies on two levels: the
evolution of gene contents of the networks and the regulatory interactions of the networks. The
former can be regarded as the basis of the latter, and can be obtained by inferring the history of
gene duplications and losses during evolution. We then extend our refinement algorithms [53] to
handle this data and use different models of gene duplications and losses to study their effect on the
performance of the refinement algorithms.

4.2.1 Models of gene duplications and losses

While networks evolve according to the extended network evolutionary model, a history of gene
duplications and losses is created along the evolution. However, during reconstruction, this history
may not be exactly reconstructed. Therefore, we propose other models of gene duplications and
losses to approximate the true history:
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• The duplication-only model: We assume that different gene contents are due exclusivelyto
gene duplication events.

• The loss-only model: We assume that different gene contents are due exclusivelyto gene loss
events.

We also compare outcomes when the true history is known.

4.2.2 Algorithm overview

We begin by collecting the regulatory networks to be refined.These networks may have already been
inferred or they can be inferred from gene-expression data at this point using any of the standard
network inference methods. The genes in these networks are not required to be orthologous across all
species, as the duplication/loss model allows for gene families of various sizes. Refinement proceeds
in the two-phase iterative manner already described, but adding a step for reconstruction of gene
duplication and loss history and suitably modified algorithms for ancestral reconstruction and leaf
refinement:

1. Reconstruct the history of gene duplications and losses,from which the gene contents for the
ancestral regulatory networks (at each internal node of thespecies tree) can be determined. We
present algorithms for history reconstruction with different gene duplication and loss models.

2. Infer the edges in the ancestral networks once we have the genes of these networks. We do this
using a revised version ofFastML.

3. Refine the leaf networks with new versions ofRefineFastandRefineML.

4. Repeat steps 2 and 3 as needed.

4.2.3 Inferring gene duplication and loss history

With different gene history models and input information wehave different ways to infer the gene
duplication and loss history. Theduplication-onlyand loss-onlymodels allow simplifying the in-
ference of the gene duplication and loss history and of the gene contents of the ancestors. For a
certain internal node of the phylogenetic tree, with theduplication-onlyassumption, the intersection
of the genes of all the leaves in the subtree rooted at this internal node is its set of genes, while
with the loss-onlyassumption, the union of genes in all the leaves of the subtree is the set of genes.
Gene duplication and loss histories inferred with these methods have a minimum number of gene
duplications, respectively losses — they are optimal underthe model.

With both the gene duplication and gene loss operations allowed, we use two different ways to
infer this history. One is the reconciliation algorithms introduced earlier. This method requires the
least amount of input information. It takes all the genes foreach gene family, reconstructs the gene
tree which is reconciled with the species tree so as to obtainthe gene duplication and loss history. In
our experiments, we use the parsimony-based reconciliation tool Notung [38] to get such duplication
and loss histories.

When we have the orthology assignment for each gene family across species, this information can
be leveraged for better inference of the history.FastML [34], which was designed to infer ancestral
sequences given the sequences of a family of modern organisms, can be applied in this case after the
following preprocessing. Suppose there areN different genes in all the modern organisms, we then
represent the gene content of each organism with a binary sequence of lengthN, where the value at
each position is assigned as 1 if the corresponding gene or its ortholog is present, otherwise 0.FastML
can be used to obtain an estimate of these sequences for the ancestral organisms, with a character set
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{0,1} and the substitution matrix:

Ph =

(

1− pd pd

pl 1− pl

)

.

Note that this approach assumes 1–1 orthologies, whereas orthology is a many-to-many relation-
ship. In biological practice, however, 1–1 orthologies areby far the most common.

4.2.4 Inferring ancestral networks

We obtain the gene contents for all the networks over the treefrom the previous step. In this step, we
use theFastML framework to infer the regulatory connections in the ancestral networks.

Recall thatFastML assumes independence among the entries of the adjacency matrices and re-
constructs ancestral characters one site at a time. When thebasic network evolutionary model is used,
the gene content is the same in all networks, we can assign corresponding entries across networks,
and useFastML to infer the ancestral characters for each entry at a time.

In the extended model, however, the gene content varies across networks, so it is not direct to
assign corresponding entries across networks. We solve this problem by embedding all networks into
one that includes every gene that appears in any network, taking the union of all gene sets. We then
represent a network with a ternary adjacency matrix, where the rows and columns of the missing
genes are filled with a special characterx. All networks are thus represented with adjacency matrices
of the same size. Since the gene contents of ancestral networks are known thanks to reconciliation,
the entries withx are already identified in their matrices; other entries are reconstructed by our revised
version ofFastML, with a new character setS′ = {0,1,x}. The substitution matrixP′ for S′ can be
derived from the model parameters in Chapter 3, without introducing new parameters. Without loss
of generality, we assume at each evolutionary step at most one gene duplication event and one gene
loss event can happen. This simplifies the calculation ofP′, which is now calculated as following:

P′ =





p′00 p′01 p′0x
p′10 p′11 p′1x
p′x0 p′x1 p′xx



 =





(1− pl ) · p00 (1− pl ) · p01 pl

(1− pl ) · p10 (1− pl ) · p11 pl

pd ·π0 pd ·π1 1− pd





During inference of ancestral characters for each entry, wetake special measures forx during
calculation. GivenP′, let i, j, k denote a tree node, anda,b,c ∈ S′ possible values of a character at
some node. For each charactera at each nodei, we maintain two variables:

• Li(a): the likelihood of the best reconstruction of the subtree with root i, given that the parent
of i is assigned charactera.

• Ci(a): the optimal character fori, given that its parent is assigned charactera.

On a binary phylogenetic tree, for each site, the revisedFastML then works as follows:

1. If leaf i has characterb, then, for eacha∈ S′, setCi(a) = b andLi(a) = p′ab.

2. If i is an internal node and not the root, its children arej and k, and it has not yet been
processed, then

• if i has characterx, for eacha∈ S′, setLi(a) = p′ax ·L j(x) ·Lk(x) andCi(a) = x;
• otherwise, for eacha∈ S′, setLi(a) = maxc∈{0,1} p′ac ·L j(c) ·Lk(c) and

Ci(a) = argmaxc∈{0,1} p′ac ·L j(c) ·Lk(c).

3. If there remain unvisited nonroot nodes, return to Step 2.

4. If i is the root node, with childrenj and k, assign it the valuea ∈ {0,1} that maximizes
πa ·L j(a) ·Lk(a), if the character ofi is not already identified asx.

5. Traverse the tree from the root, assigning to each node itscharacter byCi(a).
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4.2.5 Refining leaf networks: RefineFast

RefineFastuses the parent networks inferred byFastML to evolve new sample leaf networks. Be-
cause the strategy is just one of sampling, we do not alter thegene contents of the original leaves—
duplication and loss are not taken into account in this refinement step. LetAl andAp be the adjacency
matrices of a leaf network and its parent network, respectively, and letA′

l stand for the refined network
for Al ; then the revisedRefineFastalgorithm carries out the following steps:

1. For each entry(i, j) of each leaf networkAl ,

• if Al(i, j) 6= x andAp(i, j) 6= x, evolveAp(i, j) by P to getA′
l(i, j);

• otherwise, assignA′
l (i, j) = Al (i, j).

2. Use theA′
l (i, j) to replaceAl (i, j).

In this algorithm, the original leaf networks are used only in the first round of ancestral recon-
struction, after which they are replaced with the sample networks drawn from the distribution of
possible children of the parents.

4.2.6 Refining leaf networks: RefineML

To make use of the prior information (in the original leaf networks),RefineMLuses abelief coefficient
kb for each entry of the adjacency matrices of these networks, which represents how much we trust
the prediction by the base network inference algorithm. With the extended network evolution model,
the value ofkb is the combination of two items. One is the weights of the edges given by the inference
algorithm, which can be calculated from the CPT parameters of the predicted networks in the DBN
framework, as described in Sec. 4.1.4. The other depends on the distribution of the orthologs of
corresponding genes over other leaves. Denote the number ofleaves bynl , and the distance between
leaf i and leafj in the phylogenetic tree bydi j , then the second item ofkb of a certain entry for leafl
can be calculated by

∑i=1,...,nl , i 6=l hid
−1
il

∑i=1,...,nl , i 6=l d
−1
il

wherehi = 1 if leaf i has the corresponding genes,hi = 0 otherwise. This provides a weighting system
to enable the entries which are shared by more leaves to have higher confidence values, subject to the
distance between these leaves.

As in RefineFast, the refinement procedure does not alter the gene contents ofthe leaves. Using
the same notations as forFastML andRefineFast, RefineMLaims to find theA′

l which maximizes the
likelihood of the subtree betweenAp andA′

l . The revisedRefineMLalgorithm thus works as follows:

1. Learn the CPT parameters for the leaf networks reconstructed by the base inference algorithm
and calculate thebelief coefficient kb for every site.

2. For each entry(i, j) of each leaf networkAl , do:

• If Al(i, j) 6= x andAp(i, j) 6= x, let a= Ap(i, j), b= Al (i, j),

(a) letQ(c) = kb if b= c, 1−kb otherwise;
(b) calculate the likelihoodL(a) = maxc∈{0,1} pac ·Q(c);
(c) assignA′

l (i, j) = argmaxc∈{0,1} pac ·Q(c).

• Otherwise, assignA′
l (i, j) = Al (i, j).

3. UseA′
l (i, j) to replaceAl(i, j).
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4.3 Experimental Design under the Basic Model

The purpose of our experiments is to provide evidence for ourhypothesis through a detailed examina-
tion of the sensitivity and specificity characteristics of our algorithm compared to the base inference
algorithm. To test the performance of our approach, we need “noisy” regulatory networks as the
input to our refinement algorithms. We obtain these networksby applying a base inference method
on the gene-expression datasets of the family of species. Wealso need the “true” networks for these
species to calculate the accuracy of output networks.

In our simulation experiments, we generate both the “true” regulatory networks and the gene-
expression datasets. we evolve networks along a given tree from a chosen root network to obtain the
“true” leaf networks. Then, in order to reduce the correlation between generation and reconstruction
of networks, we use the leaf networks to create simulated expression data and use our preferred
network inference method to reconstruct networks from the expression data. These inferred networks
are the true starting point of our refinement procedure—we use the simulated gene expression data
only to achieve better separation between the generation ofnetworks and their refinement, and also
to provide a glimpse of a full analysis pipeline for biological data. We then compare the inferred
networks after and before refinement against the “true” networks (generated in the first step).

4.3.1 Simulated data generation

We generate test data from three pieces of information: the phylogenetic tree, the network at the
root, and the network evolutionary model (which includes evolutionary operations, and evolutionary
rates for each operation). We first generate the leaf networks from the root according to the network
evolutionary model, and use these networks as the “true” networks; then generate gene-expression
data for these leaf networks.

We need CPT parameters for each network to generate its corresponding gene-expression dataset.
These CPT parameters come from quantitative relationshipsin the networks, so we need a step of
calculating CPTs from the weights. Fig. 4.1 illustrates thewhole data generation process; in the

Figure 4.1: The data generation process

figure, the known conditions are shown with bold lines, characters in bold boxes, and the steps are
labelled with italic characters.
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To get consistent CPTs, we also evolve the quantitative relationships when generating networks
along evolution. That is, we use a root network represented by a weighted adjacency matrix with
signed weights. Then we do the following:

Denote the weighted adjacency matrix of the root network asAp. Since in the basic network
evolutionary model, there is only edge gain and loss operations, we can obtain the adjacency matrix
for its child Ac by mutatingAp according to the substitution matrix. By repeating this process as we
traverse down the tree we can obtain weighted adjacency matrices at the leaves. In other words, we
evolve the weighted networks down the tree according to the model parameters, which is standard
practice in the study of phylogenetic reconstruction [58,59].

Having the weighted leaf networks we can generate gene-expression data from them. For this
task we use both Yu’sGeneSim [60] andDBNSim[53], our own design based on the DBN model,
which are presented in more details below.

Gene-expression data generated by DBNSim

For DBNSim, we follow [42], using binary gene-expression levels, where 1 and 0 indicate that the
gene is, respectively,onandoff. Denote the expression level of genegi by xi , xi ∈ {0,1}; if mi nodes
have arcs directed togi in the network, let the expression levels of these nodes be denoted by the
vectoryyy= y1y2 · · ·ymi and the weights of their arcs by the vectorwww= w1w2 · · ·wmi . Fromyyy andwww, we
can get the conditional probabilityPr(xi |yyy). Once we have the full parameters of the leaf networks,
we generate simulated time-series gene-expression data. At the initial time point, the expression level
of genegi is generated by the initial distributionPr(xi); at timet, its expression level is generated
based onyyy at timet −1 and the conditional probabilityPr(xi |yyy).

Gene-expression data generated by GeneSim

GeneSim [60] can produce simulated gene-expression values for a given weighted network as well as
generate arbitrary network structures. In contrast to ourDBNSimmethod,GeneSim gives continuous
gene-expression levels. Denoting the gene-expression levels of the genes at timet by the vectorxxx(t),
the values at timet +1 are calculated according toxxx(t +1) = xxx(t)+ (xxx(t)−zzz)C+ ε, whereC is the
weighted adjacency matrix of the network, the vectorzzz representsconstitutive expression valuesfor
each gene, andε models noise in the data. The values ofxxx(0) andxi(t) for those genes without parents
are chosen uniformly at random from the range[0,100], while the values ofzzz are all set to 50. The
term (xxx(t)−zzz)C represents the effect of the regulators on the genes; this term needs to be amplified
for the use ofDBI, because of the required discretization. We use a factorke with the regulation term
(set to 7 in our experiments), yielding the new equationxxx(t +1) = xxx(t)+ke(xxx(t)−zzz)C+ ε.

4.3.2 Tests

Simulated data allows us to control the parameters and, moreimportantly, to get an absolute assess-
ment of accuracy. Other than possible issues about the biological verisimilitude of the simulated
data, such simulations create the risk of introducing a systematic bias in the results. We take specific
precautions against such bias, both in the design of the simulations and in the analysis.

We use a wide variety of phylogenetic trees from the literature (of modest sizes: between 20
and 60 taxa) and several choices of root networks, the lattervariations on part of the yeast network
from the KEGG database [61], as also used by Kimet al. [15]; we also explore a wide range of
evolutionary rates. Our networks are of modest size, with 16genes each—this selection makes
the gene-expression tables less “tall” and thus, at least inprinciple, less prone to generate errors in
reconstruction, thus presenting a more challenging case for a boosting algorithm.
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With two data generation methods,DBNSimandGeneSim, and two network inference algorithms
as our base algorithms,DBI andDEI, we conduct experiments with different combinations of data
generation methods and inference algorithms to verify thatour boosting algorithms work under all
circumstances. First, we use different data generation methods with the same inference algorithm.
Since the binary gene-expression data generated byDBNSimdoes not fitDEI, we useDBNSimand
GeneSim to generate data forDBI. We generate 200 time points for each gene-expression matrix,
running the generation process 10 times to obtain the mean and standard deviation. Second, we ap-
ply DBI andDEI to datasets generated byGeneSim to infer the networks. SinceDEI does not accept
large datasets (with many time points), here we used smallerdatasets than the previous group of ex-
periments with 75 time points, yielding expression level matrix of size 16×75. Since the generation
process is random according to the substitution probabilities and CPTs, we run the generation pro-
cess 20 times for each choice of tree structure and parameters and calculate the mean and standard
deviation. Finally, we conduct experiments with various evolutionary rates.

Comparing with the Bourque and Sankoff approach

Bourque and Sankoff’s algorithm [35], thereafter theB&S algorithm, also uses phylogenetic informa-
tion to improve the inference of gene networks. We thereforeconduct experiments, using continuous
data, to compare our approach to theirs.

Where is the Important Information?

Although we use only the direct parents to refine the leaves ateach iteration, the leaves receive
information from the whole tree, since theFastML algorithm assigns states to every internal node
based on global information. We claim that the use of this global information is necessary. To verify
this claim, we build a variation of our algorithms, that we call RefineLocal, where the ancestral
reconstruction stops once the parents of leaves are reached. The resulting ancestral reconstruction,
in other words, is now limited to exactly the parts of the treeused in the leaf refinement.RefineLocal
works with bothRefineFastand withRefineML, since it does not alter the refinement phase of the
algorithm.

Part of the improvement is due to noise averaging, taking advantage of the independence in errors
among the leaf networks. We claim that noise averaging not based on the correct phylogeny cannot
produce the type of improvement we see. To verify this claim,we build a procedure that we call
RefineRandomTree, which runs our full refinement procedures (either one), butdoes it on a tree where
the initial inferred networks were randomly assigned to leaves. Since the tree topology is unchanged,
the averaging effect over the data remains globally similar, but the phylogenetic relationships are
destroyed. We run 100 such randomized tests and report the mean behavior.

4.3.3 Measurements

We want to examine the predicted networks at different levels of sensitivity and specificity. For
DBI, on each dataset, we apply different penalty coefficients topredict regulatory networks, from 0
to 0.5, with an interval of 0.05, which results in 11 discrete penalty coefficients. For each penalty
coefficient, we applyRefineFast, RefineML, RefineLocal, andRefineRandomTreeon the predicted
networks. ForDEI, we also choose 11 thresholds for each predicted weighted connection matrix to
get networks on various sparseness levels. For each threshold, we applyRefineFast, RefineLocal, and
RefineRandomTreeon the predicted networks. We measure specificity and sensitivity to evaluate the
performance of the algorithms and plot the values, as measured on the results for various penalty
coefficients (forDBI) and thresholds (forDEI) to yield ROC curves. Recall that in such plots, the
larger the area under the curve, the better the results.
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4.4 Results and Discussion under the Basic Model

We show results on two representative trees: treeT1 has 41 nodes on 6 levels and is better balanced
than treeT2, which has 37 nodes on 7 levels. Both trees were generated with an expected evolutionary
rate of 2.2 events (gain or loss of a regulatory arc in the network) per edge and resulting leaf networks
have from 23 to 38 edges.

4.4.1 On boosting under different experimental settings

Different gene-expression data generation methods, same inference algorithm

Fig. 4.2 shows the average performance ofRefineFast, RefineML, andDBI on 10 noiseless datasets
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Figure 4.2: ROC curves for DBI and boosting algorithms on thedatasets generated by DBNSim

generated byDBNSimon treesT1 (left) andT2 (right). Throughout the range of parameters, our two
algorithms clearly dominateDBI, with RefineMLalso dominating the simplerRefineFast: for every
penalty coefficient, both sensitivity and specificity are improved fromDBI to RefineFastand further
improved fromRefineFastto RefineML, as easily seen on the right. Sample standard deviations
of sensitivity and specificity for these three methods on thenoiseless datasets onT1 are shown as
ellipses, the loci of one standard deviation around each point. The separation between the curves is
almost always larger than the standard deviations, so that our assertions of dominance of one method
over another hold, not only on average, but also in the vast majority of cases. Also, as this figure
demonstrates, the boosting effect remains similar on different phylogenies—and so we present results
only onT1hereafter.

All three algorithms behave on the noisy datasets much as on the noiseless ones. Our refinement
algorithms yield more improvement on the noisy datasets, which are closer to the real data and thus
cause more difficulties forDBI methods, yielding a larger margin for improvement. We thus show
results for noiseless datasets only, as the level of improvement caused by our algorithms can only
increase as the noise level in the data increases. Fig. 4.3 shows the results of the three algorithms
on the noiseless datasets generated byGeneSim on T1. The boosting effects are much the same as
seen in Fig. 4.2, but it is clear that theDBI base algorithm does worse on the datasets generated by
GeneSim than on those generated byDBNSim, as might be expected.
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Different inference algorithms, same gene-expression data generation method

The datasets used in this experiment are generated byGeneSim. Fig. 4.4 shows the ROC curves of
DBI andDEI, along withRefineFastboosting, on the same datasets; the refinement algorithm clearly
dominates the base algorithms.
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Figure 4.3: ROC curves for DBI and boosting al-
gorithms on the datasets generated by GeneSim
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Figure 4.4: Results for DBI and DEI with
RefineFast boosting on GeneSim generated
datasets

Different evolutionary rates

The expected evolutionary rate (average edge length) was fixed in all experiments presented above.
High rates of evolution cause various difficulties in phylogenetic reconstruction; In particular, they
causesaturation, where the apparent number of evolutionary changes needed to explain the observed
differences underestimates the actual number of changes that occurred over time. This problem is
aggravated when each character has only two states, as two changes to the same character cancel
each other. We thus expect our method to become less effective as evolutionary rates increase. To
study this problem, we conducted experiments on treeT1 with a root network of 16 nodes and 24
edges, using different evolutionary rates to generate the leaf networks. Fig. 4.5 shows ROC curves
for RefineMLand DBI with evolutionary rates of 2.32, 4.76 and 6.67 on noiseless datasets. The
loss in performance as the rate of evolution increases is clear for both methods; sinceDBI itself
suffers (perhaps because some networks produced in the simulation violate implicit assumptions),
the loss in performance ofRefineMLis a combination of worsened leaf networks returned byDBI and
worsened ancestral reconstruction byFastML. Yet boosting is evident in all cases and performance
remains excellent at the very high evolutionary rate of 4.76: most paths from the root to a leaf in
the tree have 5 edges and so, at that rate, have an expected length of 23.5, so that the expected
number of changes from the root network almost equals the number of edges of that network—a
very challenging problem and one that is remarkably well solved here.

4.4.2 On performance with respect to the B&S algorithm

SinceB&S requires continuous time-series gene-expression data, weuse the same datasets, generated
by GeneSim, as in Fig. 4.4. Fig. 4.6 presents the performance ofB&S andRefineFastbased on both
DBI andDEI. The results ofB&S are shown as a cloud of points, obtained under different parameter
settings.B&S does better than plainDEI, but is clearly dominated by ourRefineFastbased onDEI,
meaning that our refinement algorithm gains more improvement thanB&S does.

37



0 0.05 0.1 0.15 0.2 0.25
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1−specificity

se
ns

iti
vi

ty

 

 

DBI ( 2.32 )
DBI+RefineML ( 2.32 )
DBI ( 4.76 )
DBI+RefineML ( 4.76 )
DBI ( 6.67 )
DBI+RefineML ( 6.67 )

Figure 4.5: ROC curves for DBI and RefineML
under various evolutionary rates
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Figure 4.6: Performance for B&S and Refine-
Fast based on DBI and DEI

4.4.3 On applying ML globally

We described earlierRefineLocal, a variant of our algorithms that infers ancestral networksonly
for the part of the tree that is used in the refinement phase. Weuse this algorithm to show that
the improvement wrought in the leaves by our algorithms usesthe phylogenetic information of the
whole tree, not just the information present in the subforest induced by direct parents of leaves.
Fig. 4.7(a) compares the performance ofRefineFastwith that of its localized version on noiseless
datasets generated byDBNSim(the same datasets as in Sec. 4.4.1), while Fig. 4.7(b) does the same
for RefineMLon the same datasets. The plots are very similar:RefineLocalis clearly worse than
the original algorithms, especially in terms of sensitivity. In fact, RefineLocalbased onRefineFast
does worse thanDBI—due to the fact that the ancestral inference procedure introduces significant
additional errors when limited to small subtrees. On the other hand,RefineLocalbased onRefineML
outperformsDBI—indicating that there is significant information present in the leaves, independent
of the ancestral reconstruction.
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Figure 4.7: ROC curves for DBI and RefineLocal, showing RefineFast (left) and RefineML (right)

4.4.4 On phylogenetic information

In Sec. 4.3.2 we introducedRefineRandomTree, which carries out our full algorithms, but on a tree
where the leaves have been reshuffled randomly. Its purpose is to demonstrate that the improvements
we observe are not due entirely to noise averaging among the leaf networks. Fig. 4.8 compares the
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Figure 4.8: ROC curves for DBI and RefineRandomTree, with RefineFast (left) and RefineML (right)

performance ofRefineFast(left) andRefineML(right) run on the correct phylogenetic tree with the
average performance (over 100 runs) of the same algorithm run after randomly reshuffling leaf labels.
Both RefineFastandRefineMLshow clearly worse performance on the reshuffled trees than on the
correct one. The results on the shuffled trees are still better than the base algorithmDBI, which shows
the error averaging effect of the trees. However, this improvement depends on the performance of the
base algorithm: in other experiments (not shown) with larger gene-expression datasets, whereDBI
does better,RefineFaston the shuffled trees does not outperformDBI, while RefineMLwith shuffled
trees does. Overall, the results demonstrate the value of correct phylogenetic data, the value of the
information present in the original leaf networks, and the averaging effect of the trees.

4.5 Experimental Design under the Extended Model

4.5.1 Data simulation

Similar to Sec. 4.3.1, in these experiments, the “true” networks for the organisms and their gene-
expression data are both generated, starting from three pieces of input information: the phylogenetic
tree, the network at the root, and the evolutionary model. Toreduce the systematic bias during
data simulation and result analysis, we use various phylogenetic trees from the literature and several
choices of root networks. We also explore a wide range of evolutionary rates, especially different
rates of gene duplication and loss. The root network is of modest size, between 14 and 17 genes,
a relatively easy case for inference algorithms and thus also a more challenging case for a boosting
algorithm.

We first generate the leaf networks that are used as the “true”regulatory networks for the cho-
sen organisms. Since we need quantitative relationships inthe networks in order to generate gene-
expression data from each network, in the data generation process, we use adjacency matrices with
signed weights. Weight values are assigned to the root network, yielding a weighted adjacency ma-
trix Ap. To get the adjacency matrix for its childAc, according to the extended network evolution
model, we follow two steps: evolve the gene contents and evolve the regulatory connections. First,
genes are duplicated or lost bypd and pl . If a duplication happens, a row and column for this new
copy will be added toAp, the values initialized either according to theneutral initializationmodel or
the inheritance initializationmodel. (We conducted experiments under both models.) We denote the
current adjacency matrix asA′

c. Secondly, edges inA′
c are mutated according top01 and p10 to get

Ac. We repeat this process as we traverse down the tree to obtainweighted adjacency matrices at the
leaves, which is standard practice in the study of phylogenetic reconstruction [58,59].
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To test our refinement algorithms on different kinds of data,we use bothDBNSimand Yu’sGen-
eSim [60] (which are introduced in Sec. 4.3.1) to generate gene-expression data from the weighted
leaf networks.

4.5.2 Groups of experiments

With two data generation methods,DBNSimandGeneSim, and two base inference algorithms,DBI
andDEI, we conduct experiments with different combinations of data generation methods and infer-
ence algorithms to verify that our boosting algorithms workunder all circumstances. First, we use
DBNSimto generate data forDBI. We generate 13n time points for a network withn genes, since
larger networks generally need more samples to gain inference accuracy comparable to smaller ones.
Second, we applyDEI to datasets generated byGeneSim to infer the networks. Since theDEI tool
TRNinfer does not accept large datasets (with many time points), herewe use smaller datasets than
the previous group of experiments with at most 75 time points. For each setup, experiments with
different rates of gene duplication and loss are conducted.

For each combination of rates of gene duplication and loss, data generation methods, and base
network inference methods, we get the networks inferred byDBI or DEI for the family of organ-
isms. We then run refinement algorithms on each set of networks with different gene duplication and
loss histories: theduplication-onlyhistory, theloss-onlyhistory, the history reconstructed byFastML
given the true orthology assignment, and that reconstructed by Notung [38] without orthology infor-
mation as input. Besides, since simulation experiments allow us to record the true gene duplication
and loss history during data generation, we can also test theaccuracy of the refinement algorithms
with the true history, without mixing their performance with that of gene tree reconstruction or rec-
onciliation. Each experiment is run 10 times to obtain average performance.

We again show the performance of the algorithms in ROC curvesbased on different settings of
sensitivity and specificity. WithDBI, to get inferred networks with different tradeoffs of sensitivity
and specificity, we apply different penalty coefficients to predict regulatory networks, from 0 to 0.5,
with an interval of 0.05, which results in 11 discrete penalty coefficients. WithDEI, we choose
11 thresholds for each predicted weighted connection matrix to get networks on various sparseness
levels.

4.6 Results and Discussion under the Extended Model

We used different evolutionary rates to generate the networks for the simulation experiments. In [53]
we tested mainly edge gain or loss rates; here we focus on testing different gene duplication and loss
rates. We also conducted experiments on various combinations of gene-expression data generation
methods and network inference methods. The inferred networks were then refined by refinement
algorithms with different models of gene duplications and losses.

We do not directly compare the extended model with the basic,as the two do not lend them-
selves to a fair comparison—for instance, the basic model requires equal gene contents across all
leaves, something that can only be achieved by restricting the data to a common intersection, thereby
catastrophically reducing sensitivity.

Since the results of usingneutral initializationand inheritance initializationin data generation
are very similar, we only show results with theneutral initializationmodel. We first refine networks
with the true gene duplication and loss history to test the pure performance of the refinement al-
gorithms, then we present and discuss the results of refinement algorithms with several other gene
evolution histories, which are more suitable for the application on real biological data. All results we
show below are averages over 10 runs.
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4.6.1 Refine with true history of gene duplications and losses

In Fig. 4.9, we show the results of the experiments withDBNSimused to generate gene-expression
data, andDBI as base inference algorithm. All results withDBI inference that we show are on one
representative phylogenetic tree with 35 nodes on 7 levels,and the root network has 15 genes. The
left plot has a relatively high rate of gene duplication and loss (resulting in 20 duplications and 23
losses along the tree), while the right one has a slightly lower rate (with 19 duplications and 15
losses), again averaged over 10 runs.

Given the size of the tree and the root network, these are highrates of gene duplication and loss,
yet, as we can see from Fig. 4.9, the improvement gained by ourrefinement algorithms remains clear
in both plots, whileRefineMLfurther dominatesRefineFastin both sensitivity and specificity, thanks
to the appropriate reuse of the inferred leaf networks.
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(a) Results with higher gene duplication and loss rates
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(b) Results with lower gene duplication and loss rates

Figure 4.9: Performance with extended evolution model andDBI inference method, and true history
of gene duplications and losses.

In the experiments withDEI network inference,GeneSim is used to generate continuous gene-
expression data. In these experiments, the root network has14 genes, and the phylogenetic tree has
37 nodes on 7 levels. The average performance ofDEI andRefineFastover 10 runs is shown in
Fig. 4.10. We also show results for two different evolutionary rates: Fig. 4.10(a) has higher gene
duplication and loss rates, resulting in 15 duplications and 7 losses, while datasets in Fig. 4.10(b)
have an average of 8 duplications and 3 losses. TheDEI tool aims to infer networks with small
gene-expression datasets.RefineFastsignificantly improves the performance of the base algorithm,
especially the sensitivity. (Sensitivity forDEI is poor in these experiments, because of the inherent
lower sensitivity ofTRNinfer, as seen in [53] and also because of the reduced size of the gene-
expression datasets.) Since the difference between the gene duplication and loss rates in Fig. 4.10(a)
and Fig. 4.10(b) is large, we can observe more improvement inFig. 4.10(b), which has lower rates.
This is because high duplication and loss rates give rise to alarge overall gene population, yet many
of them exist only in a few leaves, so that there is not much phylogenetic information to be used to
correct the prediction of the connections for these genes.

4.6.2 Refine withduplication-only and loss-only histories

We have seen from Figs. 4.9 and 4.10 that our two refinement algorithms improve the networks
inferred by bothDBI andDEI. Since the accuracy ofDBI is much better than that ofDEI, which
causes more difficulty for refinement algorithms, and sinceRefineMLdoes clearly better thanRefine-
Fast, hereafter we only show results withDBI inference andRefineFastrefinement, which are on the
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Figure 4.10: Performance with extended evolution model andDEI inference method, and true history
of gene duplications and losses.

same datasets as used in Fig. 4.9.
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(a) Results with higher gene duplication and loss rates
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(b) Results with lower gene duplication and loss rates

Figure 4.11: Performance with extended evolution model andDBI inference method, with
duplication-onlyandloss-onlyhistories.

Fig. 4.11 shows the comparison of the performance ofDBI and RefineFastwith respectively
the true gene duplication and loss history, theduplication-onlyhistory and theloss-onlyhistory as-
suming correct orthology assignment. Theduplication-onlyand loss-onlyassumptions are at the
opposite (and equally unrealistic) extremes of possible models of gene family evolution — their only
positive attribute is that they facilitate the reconstruction of that evolution. Yet we see thatRefine-
Faststill improves the base network inference algorithm with both models. The performance of the
duplication-onlyhistory differs between Fig. 4.11(a) and Fig. 4.11(b): in Fig. 4.11(a), it does worse
than the true history and theloss-onlyhistory, while in Fig. 4.11(b), its performance is comparable
with the other two. This is because there are more gene lossesthan gene duplications in the left
plot, but more gene duplications than gene losses in the right plot, which theduplication-onlyhistory
matches better. The performance of theloss-onlyhistory appears to be steady and not much affected
by different evolutionary rates.
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4.6.3 Refine with inferred histories of gene duplications and losses

In Fig. 4.12, we show the performance ofRefineFastwith various inferred gene duplication and
loss histories, compared to that with the true history.FastML is applied to infer history with correct
orthology information as described earlier. To test the value of having good orthology information,
we also assign orthologies at random and then useFastML to infer ancestral gene contents. In each
run, the refinement procedure with this history is repeated 20 times to get average results over 20
random orthology assignments. Finally, we useNotung to reconstruct a gene duplication and loss
history without orthology input;Notung not only infers the gene contents for ancestral networks, but
also alters the gene contents of the leaves.
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(a) Results with higher gene duplication and loss rates
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(b) Results with lower gene duplication and loss rates

Figure 4.12: Performance with extended evolution model andDBI inference method, with inferred
mixture histories.

In both Fig. 4.12(a) and Fig. 4.12(b) theFastML reconstructed history with correct orthology does
as well as the true history. In fact, the history is very accurately reconstructed, which explains why
the two curves agree so much. However, with the history reconstructed byFastML under random
orthology assignments, the refinement algorithm only improves slightly over the base algorithm.
With Notung inferenceRefineFaststill dominatesDBI in Fig. 4.12(b), but not in Fig. 4.12(a) which
has higher evolutionary rates.

4.6.4 On using histories of gene duplications and losses, and orthology assignments

Our experiments with various evolutionary histories lead to several conclusions:

1. Good orthology assignments are important.

2. When we have good orthology assignments, the refinement algorithms need not rely on the
true history of gene duplications and losses. We can use theloss-onlyhistory or the history
reconstructed byFastML, both of which are easy to build and lead to performance similar to
that of the true history.

4.7 Discussion and Conclusions

We present algorithms, models and experimental support forour claim that phylogenetic information
can be used to improve the inference of regulatory networks for a family of related organisms. Our
approach is best viewed as a booster for existing inference algorithms and can, in principle, be used
with any favored network inference tool and any favored phylogenetic reconstruction algorithm.
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Specifically, we present versions of our evolutionary approach for two network evolutionary models,
the basic model and the extended model. As the extended modeltakes into account gene duplication
and loss events during evolution, which are thought to play acrucial role in evolving new functions
and interactions [31,32], the algorithms with this extension have a broader range of applicability.

Furthermore, to give a comprehensive analysis of the factors which affect the performance of
the refinement algorithms under the extended evolutionary model, we conducted experiments with
different histories of gene duplications and losses, and different orthology assignments. Results of
experiments under various settings show the effectivenessof our refinement algorithms with the new
model throughout a broad range of gene duplications and losses.
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Chapter 5

Probabilistic Phylogenetic Refinement
Models ProPhyC and ProPhyCC

In Chapter 4, we presentedrefinementalgorithmsRefineFastandRefineML, based on phylogenetic
information and using a likelihood framework, that boost the performance of any chosen base net-
work inference method. They are two-step iterative algorithms. The networks to be refined are
placed at the corresponding leaves of the (known) phylogeny. In the first step, ancestral networks
for the phylogeny (strings labelling internal nodes) are inferred; in the second step, these ancestral
networks are used to refine the leaf networks. These two stepsare then repeated as needed. On both
simulated and biological data, thereceiver-operator characteristic (ROC)curves for our algorithms
consistently dominated those of the base methods used alone.

Although RefineFastandRefineMLallow us to exploit from the phylogenetic information, we
wonder whether there are ways to make further use, and, ideally, make full use of this information.
For example, when using ancestral networks to refine the leafnetworks inRefineFastandRefineML,
we only used the direct parents of the leaves to correct the leaves. We choose to use only the direct
parents as a tradeoff between the accuracy of ancestral network reconstruction and the distance to the
leaves, but a way to reasonably use all ancestors should makebetter use of the ancestral information.

Therefore, we design a probabilistic phylogenetic model and associated algorithms, that we call
ProPhyC, to refine regulatory networks for a family of organisms [62]. As with RefineFastandRe-
fineML, ProPhyCtakes as input a phylogenetic tree and inferred networks fora family of organisms,
and uses the phylogenetic relationships to produce refined networks. Compared to the previous two-
step algorithms,ProPhyC is an integrated model which has input noisy networks, output refined
networks, and ancestral networks all in one graphical model. This framework can accommodate a
large variety of evolutionary models of regulatory networks with only slight modifications, as we
demonstrate in the methods section. Given that the evolution of regulatory networks is not yet well
understood and given the several different models for regulatory network evolution [28, 32, 35], a
comprehensive refinement model like this is highly desirable. We present algorithms and experi-
mental results in this refinement model for both the basic andthe extended network evolutionary
models. We also show how to calculate and incorporate position-specific confidence values from
input networks predicted by base inference methods.

We begin by describingProPhyC, our probabilistic phylogenetic model to refine regulatorynet-
works and the associated refinement algorithms under the twonetwork evolutionary models. We then
present an analysis of a comprehensive collection of experiments designed to assess our model and
its associated algorithms. The accuracy of the output is calculated by comparing the output with the
“true” networks for the chosen family of organisms, where the “true” networks are either obtained
through simulation or collected from biological datasets.We compare the accuracies of the networks
produced by the base methods (especially dynamic Bayesian inference,DBI, the method devised for

45



DBNs) and of the networks after refinement, to get absolute assessments. In order to get relative
assessments, we also useRefineFastand RefineMLto refine the same networks and compare the
outcome with that ofProPhyC. Extensive experimental results on both biological and synthetic data
confirm that our model (through its associated refinement algorithms) yields substantial improve-
ment in the quality of inferred networks over all current methods, including our ownRefineFastand
RefineML.

5.1 Models and Methods

5.1.1 TheProPhyC model: probabilistic phylogenetic refinement

ProPhyCis a probabilistic phylogenetic model designed to refine theinferred regulatory networks for
a family of organisms by making use of known phylogenetic information for the family. ProPhyC is
also a graphical model: the phylogeny of this family is the main information to determine its structure
as illustrated in Fig. 5.1. The shaded nodes labeled in uppercase represent the input noisy networks,
while the nodes labeled in lower case represent the correct networks that we want to infer. In turn, the
correct networks are the leaves of the rooted phylogenetic tree of these organisms; internal nodes in
this tree correspond to ancestral regulatory networks. Theedges in this graph can thus be classified
into two categories: (i) edges in the phylogenetic tree and (ii) edges from correct leaf networks to
noisy ones. The first category of edges represents the evolution from a parent network to a child
network, while the second category represents the error-prone process of inferring networks from
latent correct networks. The parameters for this model are the substitution matricesP and Q. P
represents the transition parameters from an ancestral network to its child network, subject to the
network evolutionary model.Q represents the difference from the “true” networks to the inferred
(observed, from the point of view of theProPhyCmodel) noisy networks, which is associated with
one’s confidence in the base network inference method.

Figure 5.1: TheProPhyCmodel

The input information for this model is thus the phylogenetic tree, the noisy leaf networks, and
the network evolutionary model. With a dynamic programmingalgorithm to maximize the likelihood
of the whole graph, we can infer all of the ancestral networksand the “true” leaf networks. These
“true” leaf networks inferred are the refined versions of thenoisy input networks for these organisms.
This framework can be generalized to fit different network evolutionary models. We name the basic
refinement algorithm after the model and call it theProPhyCalgorithm.

Some base inference methods can predict regulatory networks with different confidence on dif-
ferent edges or non-edges, so in this caseQ can vary for different entries of different leaf networks.
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Our model can incorporate these position-specific confidence values to get better refinements. We
name this version of the refinement algorithmProPhyCC.

In our phylogenetic probabilistic model as illustrated in Fig. 5.1, we know the networks only
for the shaded nodes, and all other networks are to be inferred. We use a dynamic programming
algorithm to find the configuration of these networks which maximizes the likelihood of the entire
model. We number the unknown nodes in Fig. 5.1 from 1 tont , wherent denotes the number of
nodes in the phylogenetic tree.

5.1.2 ProPhyC under the basic model

Under the basic model, all networks have the same size and gene contents. Each network is repre-
sented by its binary adjacency matrix, so the character set is S= {0,1}. The parameters to calculate
the likelihood are those from the evolutionary model,Π andP, and the error parameter for the base
inference method,Q= (qi j ). We assume independence between the network entries, so that we can
process separately each entry in the adjacency matrices. Let i, j, k denote nodes in the tree and
a,b,c∈ Sdenote possible values of a character. For each charactera at each nodei, we maintain two
variables:

• Li(a): the likelihood of the best reconstruction of the subtree with root i, given that the parent
of i is assigned charactera.

• Ci(a): the optimal character fori, given that its parent is assigned charactera.

When the phylogenetic tree is binary, our inference algorithm works as follows:

1. For each leaf nodei, if its corresponding noisy network has characterb, then for eacha∈ S,
setLi(a) = maxc∈Spac ·qcb andCi(a) = argmaxc∈Spac ·qcb.

2. If i is an internal node and not the root, its children arej andk, and it has not yet been processed,
then for eacha ∈ S, setLi(a) = maxc∈S pac ·L j(c) ·Lk(c) andCi(a) = argmaxc∈S pac ·L j(c) ·
Lk(c).

3. If there remain unvisited nonroot nodes, return to Step 2.

4. If i is the root node, with childrenj andk, assign it the valuea∈ S that maximizesπa ·L j(a) ·
Lk(a).

5. Traverse the tree from the root, assigning to each node itscharacter byCi(a).

The running time of this algorithm isO(nl ·n2), wheren is the number of genes in each network, and
nl is the number of leaves in the phylogenetic tree.

5.1.3 ProPhyC under the extended model

The extended model includes gene duplications and losses, so that the gene content may vary across
networks. While the gene content of the leaf networks is known, we need to reconstruct the gene
content for ancestral networks, that is, to reconstruct thehistory of gene duplications and losses. This
part can be solved by using an algorithm to reconcile the genetrees and species tree [37–39] or by
the algorithms that we presented in earlier work under theduplication-onlyor loss-onlymodel [55].

Under the basic model, we assume independence among the entries of the adjacency matrices
and so greatly simplify the computation. To enable us to do the same under the extended model, we
embed each network into a larger one that includes every genethat appears in any network. We then
represent a network with a ternary adjacency matrix, where the rows and columns of the missing
genes are filled with a special characterx. All networks are thus represented with adjacency matrices
of the same size. Since the gene contents of ancestral networks are known thanks to reconciliation,

47



the entries withx are already identified in their matrices; the other entries are reconstructed by the
refinement algorithm using the new character setS′ = {0,1,x}. The substitution matrixP′ for S′ can
be derived from the model parameters, without introducing new parameters. Assuming that at most
one gene duplication and one gene loss can happen at each evolutionary step, we have:

P′ =





p′00 p′01 p′0x
p′10 p′11 p′1x
p′x0 p′x1 p′xx



 =





(1− pl ) · p00 (1− pl ) · p01 pl

(1− pl ) · p10 (1− pl ) · p11 pl

pd ·π0 pd ·π1 1− pd



 .

We also extend the parameterQ to beQ′ to fit the new character setS′:

Q′ =





q′00 q′01 q′0x
q′10 q′11 q′1x
q′x0 q′x1 q′xx



 =





q00 q01 0
q10 q11 0

0 0 1



 .

The transition probabilities inQ′ remain the same as inQ, since the gene contents of the “true”
and corresponding noisy network are the same. For each charactera at each tree nodei, we calculate
Li(a) andCi(a) for each site with the following procedure:

1. For each leaf nodei, if its corresponding noisy network has characterb, then for eacha∈ S′,
setLi(a) = maxc∈S′ p′ac ·q

′
cb andCi(a) = argmaxc∈S′ p′ac ·q

′
cb.

2. If i is an internal node and not the root, its children arej and k, and it has not yet been
processed, then

• if i has characterx, for eacha∈ S′, setLi(a) = p′ax ·L j(x) ·Lk(x) andCi(a) = x;

• otherwise, for eacha∈S′, setLi(a)=maxc∈S p′ac·L j(c) ·Lk(c) andCi(a)= argmaxc∈S p′ac·
L j(c) ·Lk(c).

3. If there remain unvisited nonroot nodes, return to Step 2.

4. If i is the root node, with childrenj andk, assign it the valuea∈ S that maximizesπa ·L j(a) ·
Lk(a), if the character ofi is not already identified asx.

5. Traverse the tree from the root, assigning to each node itscharacter byCi(a).

5.1.4 Refinement algorithmProPhyCC using confidence values

ParameterQ (or Q′) models the errors introduced in the base inference process; its values are ob-
tained from one’s confidence in that method and in the source data. TheProPhyCalgorithm uses
the same matrix for all entries in all leaf networks. When sufficient information is available to pro-
duce different confidence values for different entries in different networks, we can take advantage
of the extra information through theProPhyCCalgorithm. That is,ProPhyCCis an extended ver-
sion ofProPhyCwhich takes advantage of position-specific confidence values for different entries in
different networks. These values are embedded inQ′.

If the noisy networks are predicted from gene-expression data by DBN models, to obtain the
confidence values, we first estimate the conditional probability tables (CPTs) of theDBI inferred
networks from the gene-expression data on the inferred structure [57], and then calculate the confi-
dence values from the CPTs, as described in Sec. 4.1.4. Underthe extended network evolutionary
model, the confidence values also take into account the distribution of the orthologs of a certain gene
family over all leaf networks, as described in Sec. 4.2.6.
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5.2 Experimental Design under the Basic Model

As a first indicator of the performance ofProPhyC, we design a preliminary comparison between
ProPhyCandRefineFastwith simulated networks. On given phylogenetic trees, we evolve networks
from a root network along the edges of the phylogenetic tree according to the basic network evo-
lutionary model to obtain networks for modern organisms, which we take as the true regulatory
networks for these organisms. To get the noisy networks usedas input to our refinement methods,
we randomly pick entries in the adjacency matrices of the true networks and reverse the values to get
erroneous networks. We then applyProPhyCandRefineFaston these noisy networks and compare
the networks refined by these two methods.

Since regulatory networks are usually reconstructed from gene-expression data, we follow the
same path in the following experiments. We use standard network inference algorithms to infer
regulatory networks for the family of organisms from their gene-expression data, and then use our
approach to refine the inferred networks. In the results presented here, the base algorithm is dynamic
Bayesian inference (DBI). To obtain a detailed assessment of the performance of theProPhyCmodel,
we conduct simulation experiments for both network evolutionary models. With the basic network
evolutionary model, we also apply our refinement algorithmsto biological data that we assembled
for 12Drosophilaspecies.

In experiments with both the basic and the extended network evolutionary model, we take specific
precautions against systematic bias during data simulation and result analysis. We use a wide variety
of phylogenetic trees from the literature (of modest sizes:between 20 and 60 taxa) and several
choices of root networks, the latter variations on part of the yeast network from the KEGG database
[61], as also used by Kimet al. [15]. The root network is of modest size, between 14 and 17 genes,
a relatively easy case for inference algorithms and thus also a more challenging case for a boosting
algorithm. We explore a wide range of evolutionary rates, including rates of gene duplication and
loss, and of edge gain and loss, to verify that our approach works under all circumstances.

5.2.1 Data simulation

In simulation experiments, we generate gene-expression data from simulated leaf networks. This
step helps in decoupling the generation and the reconstruction phases. The data simulation procedure
consists of two main steps: (i) generate the “true” leaf networks and (ii) generate the gene-expression
data, the whole process starting from three pieces of input information: the phylogenetic tree, the
network at its root, and the evolutionary model.DBNSim, based on the DBN model [53], is used to
generate gene-expression data from the “true” networks. The details of the generation of simulated
data are described in Sec. 4.3.1.

For all experiments on simulated gene-expression data, since the data generation process is sam-
pling from a distribution, for each choice of tree structureand parameters, we run the generation
process 10 times to obtain mean and standard deviation. Whenthe networks are evolved under the
basic network evolutionary model, for each leaf network, wegenerate 200 time points for its gene-
expression matrix withDBNSim.

5.2.2 Biological data collection

Despite the advantages of simulation experiments (which allow an exact assessment of the perfor-
mance of the inference and refinement algorithms), results on biological data are highly desirable, as
such data may prove quite different from what was generated in our simulations.

To test the refinement algorithms on biological data, we needthe “true” networks for the chosen
organisms as benchmark to calculate the accuracies of the predicted and refined networks.Tran-
scription factor binding site(TFBS) data is used to study regulatory networks, assuming that the
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regulatory interactions determined by transcription factor binding share many properties with the
real interactions [28, 29, 63]. Given this close relationship between regulatory networks and TFBSs
and given the large amount of available data on TFBSs, we choose to use TFBS data to derive regu-
latory networks for the organisms as their “true” networks.We add noise into these “true” networks
to obtain noisy networks as input of our refinement algorithm.

We use transcription factor binding site (TFBS) data for theDrosophila family (whose phy-
logeny is well studied) with 12 organisms:D. simulans, D. sechellia, D. melanogaster, D. yakuba,
D. erecta, D. ananassae, D. pseudoobscura, D. persimilis, D. willistoni, D. mojavensis, D. virilis,
andD. grimshawi. The TFBS data is drawn from the work of Kimet al. [64], where the TFBSs are
annotated for all 12 organisms on 51cis-regulatory modules (CRMs). 7 transcription factors were
studied in their work, which areDstat, Bicoid, Caudal, Hunchback, Knirps, Kruppel, andTailless.
Since each CRM corresponds to a target gene, we get a regulatory network with 58 nodes for each
organism. These networks are used as the “true” regulatory networks for these 12 organisms.

5.2.3 Tests with biased leaves

In biology, it is usually the case that in one family, with available data and knowledge, we can get
relatively high quality networks for only a few organisms, while a majority of organisms have poor
quality networks due to lack of data and study. This forms a special case for ourProPhyCCalgorithm:
some input leaf networks have significantly higher confidence values than others. Here we test how
ProPhyCCperforms when there are only a small number of “good” networks in the input.

We simulate the noisy leaf networks as input to theProPhyCCalgorithm, where a proportion
of them have higher noise rate than others. Starting from a root network and a phylogenetic tree,
we simulate the evolution according to the basic model, and get the “true” leaf networks. With a
fixed number of “good” leaves, we randomly choose the set of “good” leaves. Then we add noise
to the “true” leaf networks according to their error rates toget biased noisy leaves.ProPhyCCis
then applied to refine these leaf networks, with the confidence values derived from the error rates. In
particular, we investigate the case where the specificity isworse than sensitivity in the networks with
high noise, since in reality there are usually a large numberof false positives in the noisy networks.

We test the performance ofProPhyCCwith different numbers of “good” leaves. With each num-
ber, we choose different sets from all the leaves and get the average performance. With each chosen
set, we also run the steps of adding noise and refinement multiple times to get average performance.
Finally, each time we applyProPhyCCwe test the effect of using different parameters forProPhyCC.

5.2.4 Measurements

We want to examine the predicted networks at different levels of sensitivity and specificity. With
DBI, we can use a penalty coefficient to modulate the weight of thepenalty on structure complexity
when inferring the regulatory networks in a DBN framework, so as to obtain different tradeoffs
between sensitivity and specificity. On each dataset, we apply different penalty coefficients to predict
regulatory networks, from 0 to 0.5, with an interval of 0.05, which results in 11 discrete coefficients.
For each penalty coefficient, we apply our approach (and any method chosen for comparison) on
the predicted networks, measure specificity and sensitivity, and plot the values into ROC curves. (In
these ROC plots, the closer the curves are to the top left corner of the coordinate space, the better the
results.)
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5.3 Experimental Results under the Basic Model

We begin with a preliminary comparison betweenProPhyCandRefineFaston simulated noisy net-
works, to demonstrate the large improvement over the best prior results. We then proceed to more
detailed results. With networks inferred from gene-expression data as input forProPhyC, ProPhyCC,
RefineFastandRefineML, we conducted experiments with different combinations of networks evo-
lutionary models and types of datasets. Under each setting,we show both the absolute and relative
assessments. Part of the data we use comes from the Drosophila family—we briefly discuss our
results for this family.

5.3.1 Preliminary comparison with simulated networks

In these experiments, for bothProPhyCand RefineFast, we test a wide range of parameters (the
substitution probabilities), and plot a point of(1− specificity) vs. sensitivityfor each parameter
setting. Fig. 5.2 shows the results on a phylogenetic tree of37 nodes on 6 levels. The cloud generated
by ProPhyCconsistently dominates that generated byRefineFastunder various parameters. Within
theProPhyCframework, all ancestral networks, networks of modern organisms, and observed noisy
networks are well integrated within the graphical model, and this allows us to take better advantage
of the phylogenetic information than in our previous two-step approach.
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Figure 5.2: Preliminary comparison ofProPhyCandRefineFast

5.3.2 Performance on simulated data

Absolute results: comparison with the base inference algorithm DBI

We show experimental results on two representative trees: one has 37 nodes on 7 levels and the other
has 41 nodes on 6 levels. We only plot part of the curves withinthe 11 penalty coefficients to give a
more detailed view of the comparison. Fig. 5.3 shows the results of ProPhyCandProPhyCCon the
networks predicted byDBI. We can see thatProPhyCandProPhyCCimprove both sensitivity and
specificity significantly over the base inference algorithmDBI. The improvement remains similar
on different tree structures.ProPhyCCfurther improvesProPhyC, which shows the advantage of
using position-specific confidence values. For example, thedots in Fig. 5.3(a) marked by triangles
correspond to the same penalty coefficient on the three curves. We can see that in going fromDBI
to ProPhyCC, the sensitivity increases from 77% to 86%, while the specificity increases from 86%
to 96%. Similar improvements can be observed with (i) other trees; (ii) other evolutionary rates; (iii)
other base methods.
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Figure 5.3: Results of refinement algorithms with basic network evolutionary model, comparison of
ProPhyCandProPhyCCwith base inference algorithmDBI. In part (a), the dotted lines join data
points for the same model penalty coefficient

Relative results: comparison with the previous best

Fig. 5.4 shows the same experiments as in Fig. 5.3, but adds curves forRefineFastandRefineML
to provide a comparison between different refinement approaches. Among the four refinement al-
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Figure 5.4: Results of refinement algorithms with the basic network evolutionary model, comparison
of ProPhyCandProPhyCCwith RefineFast and RefineML

gorithms,ProPhyCCandRefineMLtake advantage of the position-specific confidence values, which
gives them better performance thanProPhyCandRefineFast. ProPhyCCis obviously the best among
all refinement algorithms, whileProPhyCoutperformsRefineFast. From Fig. 5.3 and Fig. 5.4, we
conclude that refinement algorithms under our new model outperform not only the base inference
algorithm, but also previous refinement algorithms on simulated data.

5.3.3 Performance on biological data

In these experiments we use datasets collected for 12 species ofDrosophila, whose phylogenetic tree
is illustrated in Fig. 5.5. The nodes of the regulatory networks consist of 7 transcription factors and
51 CRMs, such that an interaction between a transcription factor and a CRM implies an interaction
between this transcription factor and the target gene of this CRM. The transcription factors and
CRMs we choose are involved in the control of anterior-posterior segmentation in the blastoderm
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stage embryo.

Figure 5.5: The phylogeny connecting the 12 Drosophila species [65].

Two parameters are used to add noise into the “true” networksto obtain noisy networks: one
is the rate to introduce false positive, the other to introduce false negative. We use different noisy
rates to get noisy networks with different false positives and false negatives. Then for each set of
noisy networks we useProPhyCto obtain refined networks with different parameter settings. Fig.5.6
shows the accuracies of these networks plotted as points. The cloud of points forProPhyCclearly
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Figure 5.6: Results ofProPhyCwith basic network evolutionary model on biological datasets

dominates that of the noisy networks, and the two clouds are well separated; the average improvement
brought byProPhyCis roughly 7% in each of sensitivity and specificity.

ProPhyCallows tradeoffs between sensitivity and specificity by using different parameters. Ta-
ble 5.1 shows three examples.

Table 5.1: Examples of performance of ProPhyC with difference emphasis of improvement

sensitivity (noisy→ refined) specificity (noisy→ refined)
improve both 59.9%→ 66.3% 80.0%→ 86.5%

focus on sensitivity 59.5%→ 69.2% 69.3%→ 72.7%
focus on specificity 57.7%→ 58.5% 70.1%→ 80.0%

In Fig. 5.7 we show 3 versions of the Drosophila melanogasternetwork: the “true” network, the
noisy network with random noisy, and the network refined byProPhyCbased on the noisy network.
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(a) The “true” network for D.
melanogaster

(b) The noisy network for D.
melanogaster. (Sensitivity 73.19%,

specificity 70.42%)

(c) The refined network for D.
melanogaster. (Sensitivity 84.20%,

specificity 73.02%)

Figure 5.7: Comparison of the “true” network, the noisy network, and the refined network for D.
melanogaster in one run of our test. Nodes in green are transcription factors. In parts (b) and (c),
edges in red are true edges (present in the true network) and those in solid black are false positive
edges (not present in the true network), while those in dashed black are false negatives (present in
the true network, but not in the network under study).

5.3.4 Results with biased leaves

We show the results ofProPhyCCrefining the leaf networks with different noise rates. The tree we
use here has 19 leaves and 7 levels. We test the number of “good” leaves from 1 to 19. With each
number of “good” leaves, we randomly choose 100 sets of “good” leaves to get the average results.
In the input networks, the “good” leaves have around 80% sensitivity and 80% specificity, while the
“bad” leaves have 40% specificity and 60% sensitivity.

In Fig. 5.8 we show the results ofProPhyCCwith 2 different parameter settings. We plot the
specificity and sensitivity values of the “good” leaves and “bad” leaves separately, along with the
increase of the number of “good” leaves. In 5.8(a) the parameter setting aims to improve both sen-
sitivity and specificity. We can see that both the specificityand sensitivity for the high-noise leaves
get improved even when there is only one good leaf, though forthe good leaves their accuracy values
become lower when there are very few of them. The accuracies represented by all the four solid
lines increase along with the increase of the number of good leaves. With 6 good leaves out of 19
the specificity of good leaves improves. With 8 good leaves their sensitivity also improves. The
specificity of high-noise leaves, which is the lowest measurement in the input networks, has the most
significant improvement. These results show that only a verysmall number of good leaves can lead
to significant improvement for the high-noise leaves.

Fig. 5.8(b) is obtained with a different parameter setting which favors sensitivity. Therefore
the sensitivity of both low-noise and high-noise leaves aremuch improved when there is only one
good leaf, with loss of specificity of the low-noise leaves. With the increase of the number of good
leaves, the two sensitivity values keep improving, while the specificity for the low-noise leaves soon
approaches its original value, and that for the high-noise leaves grows even faster and still has the
most improvement. All in all, these experimental results show the effectiveness ofProPhyCCwhen
the input networks are biased, especially its ability of improving the high-noise leaves with a small
number of good leaves, which is the most likely scenario withbiological data.
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(a) With parameter setting 1 forProPhyCC
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(b) With parameter setting 2 forProPhyCC

Figure 5.8: Results ofProPhyCwith biased leaves. Dashed lines show the accuracy values before
refinement, while solid lines after refinement byProPhyCC.

5.4 Experimental Design under the Extended Model

With the extended evolutionary model, conducting experiments with real data involves several extra
steps besides the refinement step, each of which is a potential source of errors. For example, assuming
we have identified gene families of interest, we need to buildgene trees or assign orthologies for
these genes to be able to reconstruct a history of duplications and losses. Any error in gene tree
reconstruction or orthology determination leads to magnified errors in the history of duplications and
losses. Assessing the results under such circumstances (noknowledge of the true networks and many
complex sources of error) is not possible, so we turned to simulation for this part of the testing. This
decision does not prejudice our ability to apply our approach to real data and to infer high-quality
networks: it only reflects our inability to compute precise accuracy scores on biological data.

5.4.1 Data

In these experiments we use simulated networks and gene-expression data for the modern organisms.
The “true” networks are simulated with the same method as theone used for testing theRefineFast
and RefineMLalgorithms described in Sec. 4.5.1, and the gene-expression data is generated with
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the sameDBNSimprocedure. We generate 13n time points of gene-expression data for a leaf net-
work with n genes, since larger networks generally need more samples togain inference accuracy
comparable to smaller ones.

5.4.2 Tests

When the leaf networks are evolved under an evolutionary model that includes gene loss and dupli-
cation (the extended model), the networks can have different gene contents across organisms, that
is, the genes can have different numbers of copies in different organisms. In this case, we know
the gene contents only for the input leaf networks, not for the ancestral networks. Therefore, before
running the refinement algorithmsProPhyCor ProPhyCC, we add a preprocessing step to obtain the
gene contents of the ancestral networks, by inferring the gene duplication and loss history during
evolution.

In Chapter 4 we analyzed various duplication-loss history models and their effect on the perfor-
mance ofRefineFastandRefineML. The simulation experiments showed that accurate history infor-
mation with reliable orthology assignments help the refinement algorithms to get good performance.
Here we testProPhyCandProPhyCCwith two representative histories. One is the “true” history
which is available in the framework of simulation experiments; with this history we can exclude
the error introduced by the history inference step, and testpurely the performance of the refinement
algorithms. The other is the history inferred by gene tree and species tree reconciliation algorithms
without any prior information, the only option when dealingwith biological data. We useNotung [38]
as the reconciliation tool.

The rates of gene duplication and loss during evolution is another factor that can affect the per-
formance of refinement algorithms. To get a comprehensive assessment ofProPhyCandProPhyCC
under different conditions, we conduct simulation experiments with different gene duplication and
loss rates.

We start our inference and refinement procedures with gene-expression data. We first useDBI
to infer networks for the leaf organisms, then run refinementalgorithms on each set of networks
with the two gene duplication and loss histories: the true history and the history reconstructed by
Notung [38]. In the following we show results on one representativephylogenetic tree with 35 nodes
on 7 levels, and a root network of 15 genes. Since the results of using the neutral initialization model
or the inheritance initialization model in data generationare very similar, we only show results with
the neutral initialization model. For each experiment we show two plots: the left plot has relatively
low rates of gene loss (resulting in 19 duplications and 15 losses along the tree on average), while
the right one has high rates of gene loss (with 20 duplications and 23 losses).

The results are also shown in ROC curves, where different sensitivity and specificity settings are
obtained in the same fashion as described in Sec. 5.2.4.

5.5 Experimental Results under the Extended Model

5.5.1 Absolute comparison, with true history

Figs. 5.9 shows the comparison ofProPhyC, ProPhyCCand the base inference algorithmDBI, with
the true gene duplication and loss history. Given the size ofthe tree and the root network, the rates
of gene duplication and loss are quite high, yet, as we can seefrom Fig. 5.9, the improvement gained
by our refinement algorithms remains significant in both plots – almost as much as the improvement
gained with the basic network evolutionary model shown in Fig. 5.3. ProPhyCCfurther dominates
ProPhyC in both sensitivity and specificity, thanks to the appropriate use of the position-specific
confidence values. We obtain similar improvements with (i) other trees; (ii) other evolutionary rates;
and (iii) other base methods.
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Figure 5.9: Results of refinement algorithms with extended network evolutionary model, comparison
of ProPhyCandProPhyCCwith base inference algorithmDBI, with true gene duplication and loss
history

5.5.2 Relative comparison, with true history
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Figure 5.10: Results of refinement algorithms with extendednetwork evolutionary model, compari-
son ofProPhyCandProPhyCCwith RefineFast and RefineML, with true gene duplication and loss
history

Fig. 5.10 shows us results of the same experiments as in Fig. 5.9, but with the performance of
RefineFastandRefineML. We see that althoughRefineFastandRefineMLstill clearly improveDBI,
the improvement is not as big as that in Fig. 5.4 with the basicevolutionary model. This is because
the gene duplication and loss events during evolution give rise to a large overall gene population, yet
many of them exist only in a few leaf networks, so that there isnot much phylogenetic information
to be used to correct the prediction of the connections for these genes.RefineFastandRefineMLare
affected by this shortage, however,ProPhyCandProPhyCCare more robust and easily outperform
RefineFastandRefineML.

5.5.3 Absolute comparison, with inferred history

Here we useNotung to reconstruct the gene duplication and loss history without any orthology input.
In these experiments, with reliable gene tree input,Notung correctly predicts gene duplication events
(modulo changes in the networks), but usually misses the gene loss events when they happen to leaf
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species (it shows those events as happening earlier on the lineages). Furthermore,Notung not only
infers the gene contents for ancestral networks, but also alters the gene contents of the leaves, which
causes some difficulty for the refinement procedure.
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Figure 5.11: Results of refinement algorithms with extendednetwork evolutionary model, compari-
son ofProPhyCandProPhyCCwith DBI, with inferred gene duplication and loss history byNotung

Fig. 5.11 shows the results ofProPhyCandProPhyCCwith Notung-reconstructed gene contents
for the ancestral networks. We see that in Fig. 5.11(a), the two ends of theProPhyCcurve have lost a
little specificity while gaining sensitivity or vice versa,a tradeoff rather than an outright gain. How-
ever,ProPhyCdominatesDBI through the useful range of specificity and sensitivity. In Fig. 5.11(b),
ProPhyCbarely improvesDBI, because the high rate of gene loss reduces the performance of re-
finement algorithms in two ways: first a high rate affects the performance ofNotung (which does a
poor job at inferring losses); secondly it increases the total population of genes and decreases the fre-
quency of occurrence of an ortholog in the leaf networks, thus limiting the phylogenetic information.

However,ProPhyCCstill improvesDBI significantly in both plots. Our probabilistic framework
can incorporate the prior information in an appropriate way, so as to gain good performance even
when the phylogenetic information, including the history of gene duplication and loss, is noisy and
incomplete.

5.6 Discussion and Conclusion

In this chapter, we propose a probabilistic phylogenetic model designed to improve the regulatory
network inference for a family of organisms by using the phylogenetic relationships among these
organisms. This model and its refinement algorithmsProPhyCandProPhyCCcan easily be adapted
to work with different network evolutionary models.

We conduct experiments on both simulated and biological data to test the performance of the re-
finement algorithms, and compare them with our previous refinement algorithmsRefineFastandRe-
fineML. With both the basic and extended network evolutionary models, the corresponding versions
of ProPhyCandProPhyCCoutperform those ofRefineFastandRefineML, and all four refinement
algorithms improve the base inference algorithmDBI. The improvement ofProPhyCandProPhyCC
over RefineFastandRefineMLis more significant with the extended network evolutionary model,
where the performance ofRefineFastandRefineMLis affected by the decrease of the phylogenetic
information for each ortholog, yetProPhyCandProPhyCCare hardly influenced. Our probabilistic
phylogenetic model is thus quite robust against changes in these network evolutionary models.

These refinement algorithms not only output the refined networks, but also the ancestral networks
which can help in analyzing the evolution of regulatory networks.
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Our probabilistic phylogenetic model can easily be extended into a probabilistic graphical model
to incorporate the evolution of both the regulatory networks and the binding sites.
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Chapter 6

Tree Transfer Learning Algorithm

In Chapter 4 and 5 we presented our refinement algorithmsRefineFast, RefineML, ProPhyC, and
ProPhyCC, all of which attempt to refine the regulatory networks for a family or organisms using
the phylogenetic relationships; the latter two further improve the performance of the former two.
All four algorithms work under the scenario where the input is the noisy regulatory networks of the
family of organisms, and the output is the refined version of these networks.

The positive results from extensive tests on these models and algorithms confirm the usefulness
of phylogenetic information in obtaining better inferenceof regulatory networks. Clearly, however,
there is a limit to the improvement brought by the phylogenetic information. DoesProPhyCcome
close to this limit? With the same input and output setting, we can not find or design an algorithm
which outperformProPhyC, so we try another scenario, where the input data is the gene-expression
data for the family of organisms instead of the noisy networks. Under this scenario, we devise an
entirely different approach to the incorporation of phylogenetic information,Tree Transfer Learning
(TTL). TTLcombines the concept of transfer learning [49,66] with a phylogenetic tree, using the ba-
sic network evolutionary model. WhereasProPhyCis a framework for refinement that takes the net-
works to be refined as input,TTL is a direct inference algorithm that uses both gene-expression data
and phylogenetic relationships. Throughout our experiments, ProPhyCdominatesTTL, although
the two often return comparable results. That such different approaches reach similar accuracy under
many settings suggests thatProPhyC(which, unlikeTTL, does not have access to the gene-expression
data) uses much, perhaps most, of the phylogenetic information.

6.1 The Tree Transfer Learning (TTL) Algorithm

Our TTL approach is illustrated in Fig. 6.1. It infers the regulatory networks for a family of organ-
isms directly from gene-expression data and all in one step.This algorithm is inspired by the transfer
learning algorithms in machine learning. Transfer learning is to learn multiple (related) tasks simul-
taneously while applying the relationships among the tasks. In our case, the multiple tasks are the
inference of regulatory networks for the organisms in the family, and the relationships among the
tasks are the phylogenetic relationships among the organisms.

Define a configurationG= {G1,G2, ...,Gnl } as a set of networks for the leaf organisms; the goal
of TTL is to find an optimal configurationG∗. We define an optimization score calledTTL score, Sttl ,
and an optimal configurationG∗ is one that maximizesSttl .

For each configurationG, theTTL scoreSttl consists of two parts, the fitness of a configuration
to the gene-expression dataSdata and the score measuring how well the networks are related through
the phylogenetic treeStree. Denote the number of leaves in the phylogenetic tree asnl , the gene-
expression data and the network structure for theith leaf asDi andGi respectively,Sdata is the sum
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Figure 6.1: Illustration of theTTLapproach

of the Bayesian information criterion (BIC) score over all leaves:

Sdata=
nl

∑
i=1

logPr(Di|Gi ,Θ̂Gi )−kp#Gi logNi

whereΘ̂Gi is the ML estimate of parameters forGi, #Gi is the number of free parameters ofGi, Ni is
the number of samples inDi, andkp is the penalty coefficient for network structure complexity.

Denote the adjacency matrices of the nodes in the tree asA1,A2, . . . ,Ant , the number of genes in
a network asn, and the edges of the tree ase1,e2, . . . ,ene wherene is the number of edges in the tree;
thenStree is calculated as follows:

Stree=
n

∑
i=1

n

∑
j=1

(logPr(Aroot(i, j)|Π)+
ne

∑
k=1

logPr(Ap(i, j),Ac(i, j)|P,ek))

whereAp andAc are respectively the adjacency matrices for the parent and the child networks at
the current edgeek. The adjacency matrices for all tree nodes can be obtained while generating the
configuration from the root network. HavingSdata andStree, we can getSttl by

Sttl = Sdata+ks ·Stree

whereks is the coefficient to adjust the weights forSdata andStree.
Since searching in the space of all configurations to findG∗ is computationally too expensive,

we use the phylogenetic relationships between the leaf networks to reduce the searching space. The
strategy is: instead of searching in the space of configurations, we search in the space of possible
structures of the root network. For each root structure, we generatenc configurations according to
the network evolutionary model, and we choose asG∗ the configuration which gives the bestTTL
score among those generated by all root structures.

We assume that the regulator set for each gene is independentof those of other genes, so in
practice we can determine the incoming edges for one gene at atime, and assemble the incoming
edges for all genes to get the final networks. That is, for eachgeneg, we find the best configuration
of the incoming edges tog over all leaf networks, which we denote asG∗

g. The correspondingTTL
score for a configurationGg is denoted asSg

ttl . Therefore, with the above definition of theTTLscore,
theTTLalgorithm is shown in Algorithm 1.

6.2 Comparison ofProPhyC, ProPhyCC, and TTL

Here we show the comparison ofProPhyC, ProPhyCCandTTL based on the basic network evo-
lutionary model. In these experiments, we use a phylogenetic tree of 37 nodes on 6 levels, and
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Algorithm 1 theTTLalgorithm
for each geneg in the networkdo

Sg
max⇐−∞;

for each set of incoming edges forg in the root networkGg
root do

Generatenc configurations of incoming edges forg in the leaf networks according to the
network evolutionary model;
for each configurationGg = {Gg

1,G
g
2, ...,G

g
nl } do

Calculate the current scoreSg
ttl ;

if Sg
ttl > Sg

max then
Sg

max⇐ Sg
ttl ;

G∗
g ⇐ Gg;

end if
end for

end for
end for
Assemble theG∗

g for all g to getG∗.

compare the performance ofProPhyC, ProPhyCC, andTTLstarting with simulated gene-expression
data as input. The basic network evolutionary model is applied to all three algorithms, and we use a
small network size of 7 genes. Experiments are conducted with a wide range of parameters for each
algorithm to test their overall performance and robustnessto parameter settings.

The two plots in Fig. 6.2 show the ROC curves of all three algorithms averaged over multiple runs
and again respectively averaged over all parameter settings, with different sizes of gene-expression
data. The left plot shows the results where 5 time points of gene-expression data are generated for
each organism, while the right plot corresponds to 20 time points. Note that unlike the previous plots,
in Fig. 6.2 the curves are plotted with full scale from 0 to 1 atboth axes.
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Figure 6.2: Comparison ofProPhyC, ProPhyCCandTTL

In Fig. 6.2(a), comparingProPhyCandTTL, we can see that the curves forProPhyCandTTL
are almost coincident, while in Fig. 6.2(b) the curve forProPhyCslightly dominates that ofTTL.
The two plots together show that the transfer learning approach does not outperformProPhyC. The
observation thatTTL performs better in Fig. 6.2(a) than in Fig. 6.2(b) relative to ProPhyCshows
its advantage on small gene-expression datasets. This is because, with smaller datasets, the base
inference algorithm (which infers a single network from thecorresponding gene-expression dataset)
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outputs networks of low quality; sinceProPhyC takes these networks as input, its performance is
affected by this limited input information.TTL, on the other hand, uses the gene-expression datasets
for all leaf organisms when inferring their networks simultaneously, and the phylogenetic information
is also applied at the same time to help obtain better prediction, which brings its overall performance
to the level ofProPhyCon small datasets. The running time ofTTL is nc times of that ofProPhyC
including the time to runDBI, wherenc is the number of configurations generated for each root
structure. This value increases with the scale of the tree ornetworks, soTTL is much slower than
ProPhyC.

Although ProPhyC is affected by the poor performance ofDBI on small datasets,ProPhyCC
benefits from the confidence values of the prediction of the base inference algorithm, which gives us
a distribution of the leaf networks instead of a single configuration, and leads to better performance
even with small datasets (see Fig. 6.2(a)).

We also test whether combiningProPhyCandTTL will allow ProPhyCto benefit from the ad-
vantage ofTTL with small datasets, so that this combined method will give better results than either
ProPhyCor TTL. That is, in these experiments, we take the output networks of TTLand useProPhyC
to refine these networks. We again apply various parameter settings on bothTTLandProPhyC: firstly
TTL outputs multiple sets of leaf networks corresponding to multiple parameter settings, then each
set is refined byProPhyCusing various parameters. The final performance is obtainedby averaging
over all the output sets fromProPhyC.

Fig. 6.3 shows the results of this combined algorithm on the same datasets as in Fig. 6.2. The ROC
curves are averaged over different parameter settings ofProPhyCapplied onto different outcomes of
TTL. In both plots of Fig. 6.3, the curves of the combined algorithm are almost identical to but very
slightly above those ofTTL, so they do not improve over the curves ofProPhyC. Thus, combining
the two algorithms does not help improve the performance ofProPhyC. Since the output networks
already fit the phylogenetic relationships well according to the mechanism ofTTL, ProPhyCdoes
not alter the networks much in such a case. Therefore, we claim that, when the input information
is of low-quality or limited, there is not much space to improve overProPhyC, since it has already
made good use of the available information.
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Figure 6.3: Comparison ofProPhyCandTTL, and the combination ofProPhyCandTTL

We have presented most of our results with ROC curves, and thearea under curves (AUC) is a
standard measure for the accuracy of network inference. Theplots in Figs. 6.2 and 6.3 are shown
in full scale to show the AUC. One observation from these figures is that, in some plots, it is not
obvious that the points marked on the dominating curve are better than the points corresponding to
the same penalty coefficients on the curve below. For example, in Fig. 6.2(a), although the curve for

64



TTLhas larger AUC than that ofDBI, not every point on the former curve has both better sensitivity
and specificity than its corresponding point on the latter curve. However, the performance ofTTL
is still better thanDBI according to the AUC measure, since for any point on theDBI curve, there
always exist some points on theTTLcurve to its upper left. Similar patterns can be observed in some
of the previous plots from Fig. 5.3 to Fig. 5.11, with the curves forDBI andProPhyCin Fig. 5.11(a)
as an example.

6.3 Discussion and Conclusion

Tree Transfer Learning (TTL) is an approach based on inductive transfer learning, whichapplies the
phylogenetic information as it infers the leaf networks. Devised in a very different framework,TTL
is compared withProPhyCandProPhyCCover a range of parameters. Under various conditions,
TTL approaches the performance ofProPhyCbut does not outperform it, which again verifies the
strength ofProPhyCin integrating the phylogenetic information in its probabilistic graphical model.
ProPhyCCperforms better than the other two, which shows thatProPhyCCnot only exploits the
phylogenetic information, but also takes advantage of prior information, so as to get the best networks
with the information available.
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Chapter 7

Conclusion and Discussion

In this dissertation, I presented the main algorithms we developed for refining regulatory networks for
a family of organisms by the phylogenetic relationships among these organisms. These algorithms
require an evolutionary model for regulatory networks, andI proposed two such models.

The two topics, the computational inference and the evolutionary analysis of regulatory networks
are related to each other, in the sense that advances in one can assist research in the other. On the one
hand, improvement in the inference can provide more reliable data for the study of evolution; on the
other hand, progress of studies on network evolution will allow us to better model the phylogenetic
relationships between regulatory networks of multiple organisms. Through a refinement procedure
(like RefineFast, RefineML, ProPhyCandProPhyCC) or a transfer learning method (likeTTL) we
can then get better inference of the networks. In this mannerthese two lines of research assist each
other especially when there is a third step in-between, which is to obtain more benchmark data via
wet-lab experiments. These experiments can again be guidedby the output from the refinement
algorithms: during the generation of new data in biology, benchmark experiments are often guided
by results from computational predictions, especially from comparative studies, so as to save time
and cost.

In previous chapters we have described our refinement algorithms RefineFast, RefineML, Pro-
PhyC andProPhyCC. These algorithms aim to use phylogenetic information to refine the (noisy)
networks of a family of organisms, and their effectiveness has been confirmed by a large collection
of experiments. We also designed a tree transfer learning (TTL) algorithm which takes the gene-
expression data of the organisms as input, and infers their regulatory networks all at once while tak-
ing into account their phylogenetic relationships.ProPhyCandProPhyCC, which use a probabilistic
phylogenetic model, are shown to have the best performance among all.

In all the algorithms mentioned above, we use simple networkevolutionary models which are the
basic model and the extended model introduced in Chapter 3. Simple models often turn out to be safe
and robust in computation, and when we want to use a more complex model to include more factors,
we often need to seek a tradeoff between model complexity andexactness, therefore it is prudent
to start with simple models. On the other hand, we hope that asknowledge of network evolution
advances, we will be able to formulate more realistic modelswhich are also widely accepted. We
expect that with these improved models our refinement framework will work better. For example, it
would be interesting to take into account the effect of external environmental factors on the evolution
of regulatory networks.

In our network evolutionary models we represent the regulatory networks by their binary ad-
jacency matrices. We know that in reality the regulatory connections are not binary – they exist
in various strengths. In fact we have worked out versions of our refinement algorithms where the
regulatory connections are represented by continuous values, but we could not evaluate their perfor-
mance since there is no standard measurement to assess the quality of quantitative networks, so they
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are not presented in this thesis. As more data becomes available regulatory networks will be better
quantified.

Furthermore, during the calculation of all the five algorithms, to simplify the computation we
assumed that the entries in the adjacency matrices are independent of each other, so that when recon-
structing ancestral networks (inRefineFastandRefineML) or inferring the unknown “true” networks
(in ProPhyCandProPhyCC), or calculating theStree score (inTTL), we could deal with only one
entry in all the networks at one time, instead of using the whole network for each organism. A similar
independency assumption is widely used for genome and protein sequences in various contexts, such
as the ancestral reconstruction for protein sequences [34], or phylogenetic tree reconstruction [67].
Both assumptions are false in biology, that is, the interactions in regulatory networks or nucleotides
clearly do not evolve independently. In the case of regulatory networks, it can be useful to consider
the dependency between some interactions, such as the interactions of genes from the same gene fam-
ily. To solve the increased complexity caused to our refinement algorithms, one may consider using
thevariational inferencetechnique from machine learning, which provides an efficient approxima-
tion when calculating the global likelihood for a set of variables with complex dependencies [68,69].
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