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Abstract

This document presents results we obtained but were unable to put in the paper because of space limitations.
The different combinations we tried are called by concatenating the names of their parts together. The possible part

names are given below in capital letters. For example,OLS-SPARSEGD-ABS-MAX-PCA-SVMrepresents the pipeline
where we first extract sparse features computed by Gradient Descent using filters obtained with the Olshausen and Field’s
algorithm [3], then we use the absolute value function for rectification, use a max-pooling operation, project the result into
an eigenspace, and finally use a Support Vector Machine for classification. We sometimes use a star (* ) as the name of one
component that is varied for an evaluation.

1. Filter Bank Learning Setup

The filter learning procedure is based on stochastic gradient descent. The objective function of Eq. (3) is minimized by
alternating optimizations over the filtersf j and the coefficientstji . Table 1 reports the recognition rates when the filters
learned with two extreme values forλlearn, λlearn = 0 andλlearn = 7, are used. Throughout the text, the best-scoring
configurations will be marked in bold. Also, we will present theℓ0 norm of the feature maps both after the feature extraction
(‖t‖

0
) and after the pooling (‖v‖

0
) steps (when relevant).

The corresponding filter banks are depicted in Fig. 1, along with the one obtained by a “proper”λlearn value. Here we
report the results forλlearn = 2 but, as explained in the paper, the same result can be obtained with smaller values, though
with a slower convergence rate.

Please note that movies showing the convergence for two different setups are included in the supplementary material.

∗This work has been supported in part by the Swiss National Science Foundation.

λlearn = 0 λlearn = 2 λlearn = 7

Figure 1: Degenerate filter banks obtained from extreme values of the regularization parameter in the filter bank learning
step, along with the one that we actually employed in our tests, corresponding toλlearn = 2.
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Table 1: Comparison of the recognition rates for the filters learned with differentλlearn values. These results were obtained
on the CIFAR-10 dataset withOLS-*-POSNEG-GAUSS-PCA-SVM. For a large range ofλextract and for a reasonable value
for λlearn (λlearn = 2), the recognition rate is high. For more extreme values forλlearn the performances tend to be worse than
the ones obtained with random filters, as shown in Table 4.

Method λextract λlearn = 0 λlearn = 2 λlearn = 7

‖t‖
0

‖v‖
0

R. Rate [%] ‖t‖
0

‖v‖
0

R. Rate [%] ‖t‖
0

‖v‖
0

R. Rate [%]

CONV 1.000 1.000 55.08 1.000 1.000 67.16 1.000 0.999 54.59
SPARSEGD 1e-4 0.869 1.000 55.91 0.838 1.000 67.28 0.965 0.999 54.11
SPARSEGD 2e-4 0.850 1.000 54.62 0.787 1.000 67.34 0.956 0.999 54.29
SPARSEGD 3e-4 0.829 1.000 56.62 0.741 1.000 67.39 0.945 0.999 54.39
SPARSEGD 4e-4 0.806 1.000 56.55 0.701 1.000 67.30 0.934 0.999 54.28
SPARSEGD 5e-4 0.782 1.000 56.64 0.665 1.000 67.24 0.922 0.999 54.36
SPARSEGD 6e-4 0.757 1.000 56.78 0.633 1.000 67.26 0.911 0.999 54.32
SPARSEGD 7e-4 0.731 1.000 56.83 0.604 1.000 67.26 0.899 0.999 54.20
SPARSEGD 8e-4 0.705 1.000 56.77 0.578 1.000 67.18 0.887 0.999 54.46
SPARSEGD 9e-4 0.679 1.000 56.83 0.555 1.000 67.24 0.876 0.999 54.37
SPARSEGD 1e-3 0.652 1.000 56.82 0.534 1.000 67.11 0.865 0.999 54.36
SPARSEGD 2e-3 0.373 0.996 55.13 0.387 0.998 66.52 0.759 0.998 54.08
SPARSEGD 3e-3 0.182 0.973 54.89 0.287 0.993 65.70 0.642 0.997 53.88
SPARSEGD 4e-3 0.123 0.940 54.48 0.173 0.965 61.69 0.293 0.987 54.11
SPARSEGD 5e-3 0.102 0.912 53.81 0.075 0.883 54.81 0.173 0.978 55.21
SPARSEGD 6e-3 0.088 0.883 53.49 0.060 0.850 53.30 0.150 0.972 55.20
SPARSEGD 7e-3 0.078 0.855 52.38 0.055 0.825 52.55 0.137 0.967 55.00
SPARSEGD 8e-3 0.069 0.827 49.74 0.050 0.802 51.78 0.126 0.963 54.61
SPARSEGD 9e-3 0.062 0.800 51.84 0.046 0.780 51.29 0.117 0.957 54.90
SPARSEGD 1e-2 0.057 0.773 49.12 0.042 0.759 50.28 0.109 0.952 53.55

Table 2: Class abbreviations adopted for the CIFAR-10 dataset.

Class airplane automobile bird cat deer dog frog horse ship truck
Abbreviation ai au bi ca de do fr ho sh tr

2. Classification Step Setup

We have identified three configurations for theSVMthat proved to suit our needs:

• Fast classification setup.We used the LIBSVM library, and we have performed a C-SupportVector Classification
(C-SVC) by using radial basis functions as kernels, and setting theγ parameter to 10. This is a useful configuration to
explore a large parameter space, since classification requires between 1 and 2 hours on a modern laptop.

• Best performing setup. We were able to achieve our best results on the CIFAR-10 dataset by solving an expensive
multi-class bound-constrained SVC problem withγ = 8 using the BSVM software [1]. We were unable to system-
atically adopt this classification scheme since each experiment on our computers required up to a day. The confusion
matrices corresponding to the best results are reported in Fig. 3 and Fig. 2 for16 × 16 and32 × 32 pixels images
respectively. The adopted abbreviations are reported in Table 2.

• Caltech-101 setup.The tests on the Caltech-101 dataset were performed withoutany tuning of the SVM. We have just
adopted the BSVM implementation bundled with the libHIK library, as reported in the paper, in order to take advantage
of the Histogram Intersection Kernel.



0.77 0.02 0.05 0.03 0.03 0.01 0.02 0.01 0.05 0.02

0.01 0.84 0.01 0.02 0.00 0.01 0.01 0.00 0.03 0.06

0.05 0.00 0.69 0.06 0.06 0.05 0.03 0.03 0.02 0.01

0.01 0.01 0.06 0.62 0.04 0.14 0.06 0.03 0.01 0.01

0.01 0.01 0.08 0.06 0.71 0.04 0.03 0.05 0.00 0.01

0.01 0.00 0.06 0.13 0.03 0.68 0.02 0.05 0.01 0.01

0.01 0.01 0.05 0.05 0.04 0.030.79 0.01 0.01 0.00

0.01 0.01 0.04 0.03 0.05 0.04 0.010.80 0.00 0.00

0.06 0.04 0.01 0.01 0.01 0.00 0.01 0.010.81 0.03

0.02 0.06 0.01 0.03 0.01 0.01 0.01 0.02 0.040.80

ai

au

bi

ca

de

do

fr

ho

sh

tr

ai au bi ca de do fr ho sh tr

Figure 2: Confusion matrix for our best scoring configuration, OLS-CONV-POSNEG-GAUSS-LDE-SVM, when applied on
32× 32 pixels images from the CIFAR-10 dataset. The final recognition rate is75.28%.
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Figure 3: Confusion matrix for theOLS-CONV-POSNEG-GAUSS-LDE-SVMconfiguration applied on16×16 pixels CIFAR-
10 images. The results were obtained with the same SVM configuration used for getting the best result on the full resolution
dataset, achieving a final recognition rate of70.49%.

3. Extensive Evaluation of Pipeline Components

We have performed a thorough evaluation aimed at establishing the relative importance of the pipeline’s components, in
order to properly tune our classification system.

Since extensive experimentations on the Caltech-101 dataset are prohibitively expensive owing to the resolution of the
images, the tests reported below were performed on the CIFAR-10 dataset where the images were resized to16× 16 pixels.
Unless otherwise stated, the standard deviation for Gaussian pooling is2.

Table 3 compares the recognition rates for different non-linearities. The presence of a non-linearity step is important for
getting good results [2].POSNEGoutperformedABSwith both learned and handcrafted filter banks, even though the latter
is the one traditionally used in state-of-the-art systems.Despite this result, in the experiments with the Caltech-101 dataset
we have adopted theABSnonlinearity, sincePOSNEGhas the drawback of doubling the descriptor’s size.

In order to assess the importance of a learned filter bank compared to using a random or an handcrafted filter bank, we
performed thorough experimentations adopting different the filter banks in the feature extraction step of our pipeline. Table 4
shows the recognition rate when 49 randomly generated filters are employed, while Table 5 compares in the same way learned



Table 3: Comparison between non-linearities for both learned and handcrafted filter banks. The pipeline configuration is
*-CONV-*-GAUSS-PCA-SVM. POSNEGoutperformedABSwith both learned and handcrafted filter banks.

Method Rec. Rate [%]

OLS LM

POSNEG 67.16 66.18
ABS 63.17 62.83
NONE 35.61 37.01

Table 4: Comparison of the recognition rates achieved with different λextract values when random filters are used in the
extraction stageRND-*-POSNEG-GAUSS-PCA-SVM. Random filters work surprisingly well but not as well as learned ones.

Method λextract ‖t‖
0

‖v‖
0

Rec. Rate [%]

CONV 1.000 0.999 58.13
SPARSEGD 1e-4 0.811 0.999 59.40
SPARSEGD 2e-4 0.802 0.999 59.39
SPARSEGD 3e-4 0.794 0.999 59.39
SPARSEGD 4e-4 0.786 0.999 58.97
SPARSEGD 5e-4 0.778 0.999 59.45
SPARSEGD 6e-4 0.769 0.999 57.28
SPARSEGD 7e-4 0.761 0.999 58.95
SPARSEGD 8e-4 0.752 0.999 58.92
SPARSEGD 9e-4 0.744 0.999 59.55
SPARSEGD 1e-3 0.736 0.999 59.71
SPARSEGD 2e-3 0.654 0.999 58.88
SPARSEGD 3e-3 0.579 0.999 58.26
SPARSEGD 4e-3 0.507 0.999 60.17
SPARSEGD 5e-3 0.434 0.998 57.18
SPARSEGD 6e-3 0.353 0.993 59.65
SPARSEGD 7e-3 0.251 0.970 57.70
SPARSEGD 8e-3 0.130 0.887 52.61
SPARSEGD 9e-3 0.058 0.787 53.02
SPARSEGD 1e-2 0.044 0.747 51.98

and handcrafted filter banks, both using SVM and approximate-NN classification schemes.
Even though the results presented in Table 5 seems to indicate that only little advantage is gained by learning the filter

bank compared to using an handcrafted one, the results shownin Table 6 demonstrate that if one takes the “off-the-shelf”
Leung-Malik filter bank (that is, it does not alter it by a whitening step), the recognition rate drops below the one achieved
by the randomly generated filter bank.

Table 7 lists the results achieved by learned filters on the Caltech-101 dataset when both 15 and 30 training samples are
used (as it is usually done in literature).

Matching Pursuit is an algorithm that can be used to obtain feature maps with the desired degree of sparsity. In our
experiments, as reported in the paper, it did not succeed in providing an effective representation in terms of recognition rate
(see Table 8).

The feature maps obtained by the feature extraction stage can be easily used to provide a reconstruction of the input
image. Table 9 shows some of those reconstruction for a giveninput image and for the different algorithms and filter banks
employed, along with theℓ2 reconstruction error and the representation’sℓ0 norm.

Figure 4 presents an analoguous visual inspection for an image taken from the Caltech-101 dataset. Owing to the expensive
computations required, we were unable to provide an image for theSPARSEMPfeature extraction stage.

The introduction of noise in the images enabled us to explorethe behavior of the pipeline in a context different from the
one usually faced by the systems usually present in literature. We performed our tests on32 × 32 pixels images in order to



Table 5: Comparison of the recognition rates between learned (OLS) and Leung-Malik (LM) filters with whitening, for
convolution and different values ofλextractand for different classification methods (SVMandNN) with *-*-POSNEG-GAUSS-
PCA-*. Using sparsity, we can automatically learn filters that perform at least as good as carefully designed ones.

Method λextract OLS LM

Rec. Rate [%] Rec. Rate [%]

‖t‖
0

‖v‖
0

SVM NN ‖t‖
0

‖v‖
0

SVM NN

CONV 1.000 1.000 67.16 44.07 1.000 1.000 66.18 42.69
SPARSEGD 1e-4 0.838 1.000 67.28 45.48 0.569 0.91766.45 42.99
SPARSEGD 2e-4 0.787 1.000 67.34 45.86 0.505 0.907 66.37 43.71
SPARSEGD 3e-4 0.741 1.000 67.39 45.53 0.458 0.900 66.31 43.46
SPARSEGD 4e-4 0.701 1.000 67.30 45.15 0.418 0.893 66.37 43.65
SPARSEGD 5e-4 0.665 1.000 67.24 45.53 0.382 0.885 65.99 44.21
SPARSEGD 6e-4 0.633 1.000 67.26 45.75 0.349 0.878 66.18 44.13
SPARSEGD 7e-4 0.604 1.000 67.26 45.21 0.320 0.870 65.90 43.66
SPARSEGD 8e-4 0.578 1.000 67.18 45.98 0.294 0.862 65.89 43.82
SPARSEGD 9e-4 0.555 1.000 67.24 45.95 0.275 0.855 66.08 44.58
SPARSEGD 1e-3 0.534 1.000 67.11 45.25 0.259 0.849 65.9844.68
SPARSEGD 2e-3 0.387 0.998 66.52 45.59 0.169 0.796 64.93 44.66
SPARSEGD 3e-3 0.287 0.993 65.70 45.99 0.124 0.745 63.83 43.89
SPARSEGD 4e-3 0.173 0.965 61.69 44.97 0.097 0.698 62.56 43.65
SPARSEGD 5e-3 0.075 0.883 54.81 44.56 0.078 0.654 61.06 43.99
SPARSEGD 6e-3 0.060 0.850 53.30 44.15 0.064 0.613 59.42 43.97
SPARSEGD 7e-3 0.055 0.825 52.55 44.02 0.054 0.574 58.06 42.73
SPARSEGD 8e-3 0.050 0.802 51.78 43.89 0.046 0.538 56.40 42.35
SPARSEGD 9e-3 0.046 0.780 51.29 43.13 0.040 0.504 54.66 42.87
SPARSEGD 1e-2 0.042 0.759 50.28 43.13 0.034 0.472 53.34 41.55

have a better visual evaluation of the impact of the noise andof the fidelity of reconstruction with the different architectures
(see Figure 6). Figure 5 also presents the effect that the different noise types have on the considered test image.

We have systematically analyzed the different components of the pipeline and observed the effects of the different tunings
on the final recognition rate. Since the importance of the pooling stage has been discussed in many recent papers, we carefully
evaluated the different strategies (see Table 10).

MAX pooling was revealed to be inferior to Gaussian pooling. Table 11 provides a more extensive evaluation for different
values ofλextract. As can be seen, representation’s sparsity isnot preserved byMAX pooling. This result can also be observed
in Table 7 for the Caltech-101 case.

To better tune the Gaussian pooling step, we explored differentσ values. The results are reported in Table 12.
Finally, we investigated several solutions for the subspace projection step, and we reported the results in Table 13. The

number afterRP represents the cardinality of the final descriptor. SinceRP achieves results that are not excessively bad
compared toPCAandLDE but with a fraction of the computational cost, we also evaluated the dependence of the recognition
rate on the final descriptor’s size (see Table 14).
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Table 6: Comparison of the recognition rates achieved with differentλextract values when non-whitened Leung-Malik filters
are used (LM-*-POSNEG-GAUSS-PCA-*). The performances are much worse than the ones obtained with the whitened
filters.

Method λextract ‖t‖
0

‖v‖
0

Rec. Rate [%]

SVM NN

CONV 0.999 0.997 55.52 37.03
SPARSEGD 1e-4 0.610 0.840 50.54 30.85
SPARSEGD 2e-4 0.595 0.838 51.61 30.93
SPARSEGD 3e-4 0.583 0.837 51.33 30.78
SPARSEGD 4e-4 0.572 0.836 51.43 31.01
SPARSEGD 5e-4 0.562 0.834 52.12 30.79
SPARSEGD 6e-4 0.554 0.833 52.17 30.48
SPARSEGD 7e-4 0.545 0.832 51.85 30.87
SPARSEGD 8e-4 0.538 0.831 52.26 30.72
SPARSEGD 9e-4 0.531 0.831 52.16 30.99
SPARSEGD 1e-3 0.524 0.830 52.37 30.81
SPARSEGD 2e-3 0.474 0.823 52.02 30.85
SPARSEGD 3e-3 0.438 0.816 52.92 30.87
SPARSEGD 4e-3 0.410 0.809 52.88 31.36
SPARSEGD 5e-3 0.386 0.801 53.79 31.33
SPARSEGD 6e-3 0.365 0.792 53.73 30.99
SPARSEGD 7e-3 0.347 0.783 53.63 31.12
SPARSEGD 8e-3 0.331 0.774 53.58 30.93
SPARSEGD 9e-3 0.316 0.763 53.75 31.50
SPARSEGD 1e-2 0.302 0.753 53.39 31.92

Table 7: Comparison of the recognition rates achieved with different λextract values when learned filters, initialized with
random noise, are used on the Caltech-101 dataset with 30 and15 training samples (OLS-*-ABS-MAX-SPM-SVM). Feature
maps obtained with plain convolution outperform sparsifiedones.

Method λextract ‖t‖
0

‖v‖
0

Rec. Rate [%]

30 samples 15 samples

CONV 1.000 1.000 52.63 43.80
SPARSEGD 1e-4 0.706 0.940 44.36 37.92
SPARSEGD 1e-3 0.488 0.847 46.01 37.70
SPARSEGD 5e-3 0.367 0.649 45.68 37.68
SPARSEGD 1e-2 0.170 0.505 45.05 37.66
SPARSEGD 2.5e-2 0.076 0.285 45.33 38.09
SPARSEGD 5e-2 0.034 0.146 44.13 36.71
SPARSEGD 1e-1 0.014 0.059 41.24 34.76



Table 8: Recognition rate comparison when Matching Pursuitis employed with learned filters on16 × 16 images (OLS-
SPARSEMP-POSNEG-GAUSS-PCA-SVM). Even when the reconstruction error and the sparsity levelare similar to those
obtained with gradient descent, the recognition rates are significantly lower.

‖t‖
0

‖v‖
0

Rec. Rate [%]

0.0010 0.0558 35.6
0.0020 0.0947 35.1
0.0039 0.1548 34.7
0.0077 0.2474 31.2
0.0155 0.3811 32.1
0.0309 0.5553 34.1
0.0618 0.7466 37.2
0.1237 0.9107 41.7
0.2473 0.9947 42.0

Table 9: Images reconstructed from the internal representations obtained by the different filter banks. Sparse representations
are very effective in providing a low-error reconstructionwith few coefficients.

OLS-SPARSEMP
Original image ‖t‖

0
= 0.1633

Reconstruction error=0.00006

OLS-CONV OLS-SPARSEGD
‖t‖

0
= 1.000 ‖t‖

0
= 0.195

Reconstruction error=0.0021 Reconstruction error=0.00014

LM-CONV LM-SPARSEGD
‖t‖

0
= 1.000 ‖t‖

0
= 0.349

Reconstruction error=0.0464 Reconstruction error=0.0029

Table 10: Comparison between pooling strategies for different subspace projections, (OLS-CONV-POSNEG-*-*-SVM).

Method Rec. Rate [%]

PCA LDE RP256

GAUSS 67.16 67.13 66.07
MAX 62.62 61.91 59.92
BOXCAR 63.33 63.33 61.33

Table 11: Recognition rates forOLS-*-POSNEG-MAX-PCA-SVMon16× 16 pixel images.

Method λextract ‖t‖
0

‖v‖
0

Rec. Rate [%]

CONV 1.000 0.996 62.64
SPARSEGD 1e-4 0.826 0.991 62.98
SPARSEGD 1e-3 0.510 0.983 62.71
SPARSEGD 1e-2 0.163 0.805 57.93
SPARSEGD 1e-1 0.007 0.070 34.55



Original image OLS-SPARSEGD
‖t‖

0
= 0.34

Reconstruction error = 1.9e-2

LM-SPARSEGD RND-SPARSEGD
‖t‖

0
= 0.44 ‖t‖

0
= 0.71

Reconstruction error = 1.7e-2 Reconstruction error = 1.1e-2

Figure 4: An image taken from the Caltech-101 dataset and whitened, along with the image reconstructed from thet vectors
for different methods.

Original image Low Gaussian noise Strong Gaussian noise Low structured noise Strong structured noise

Figure 5: An original image, along with the same image with the different noise types added.



Noisy image,
SNR=14.3dB

OLS-SPARSEMP
‖t‖

0
= 6e − 5

error=0.0104

OLS-SPARSEMP
‖t‖

0
= 0.0051

error=0.0088

OLS-SPARSEMP
‖t‖

0
= 0.0102

error=0.0079

LM-CONV
‖t‖

0
= 1.0000

error=0.0613

LM-SPARSEGD
λC = 0.002

‖t‖
0

= 0.0683

error=0.0117

LM-SPARSEGD
λC = 0.001

‖t‖
0

= 0.2029

error=0.0088

LM-SPARSEGD
λC = 0.0005

‖t‖
0

= 0.3978

error=0.0087

OLS-CONV
‖t‖

0
= 1.0000

error=0.0097

OLS-SPARSEGD
λC = 0.01

‖t‖
0

= 0.0081

error=0.0081

OLS-SPARSEGD
λC = 0.005

‖t‖
0

= 0.0493

error=0.0127

OLS-SPARSEGD
λC = 0.001

‖t‖
0

= 0.2770

error=0.0061

Figure 6: An original image with strong Gaussian noise added, along with the reconstructions obtained by the different
architectures for different parametrizations. The error value represents the reconstruction error, the first term of Eq. (4) of the
paper.

Table 12: Comparison between differentσ values for Gaussian pooling for different subspace projection strategies and non-
linearities (OLS-CONV-*-*-*-SVM). σ = 2.0 represents a good compromise forPOSNEGandABS.

σ Subspace Proj. Rec. Rate [%]

POSNEG ABS

1.0 PCA 66.26 63.93
1.0 LDE 66.26 64.06
2.0 PCA 67.16 63.17
2.0 LDE 67.13 63.62
3.0 PCA 67.20 63.81
3.0 LDE 67.25 63.82
4.0 PCA 67.13 63.83
4.0 LDE 67.14 63.57



Table 13: Comparison between the tested subspace projections, for both learned and handcrafted filter banks and for both
POSNEGandABS(*-CONV-*-GAUSS-*-SVM). PCAandLDE perform equally well in our experiments.

Method Rec. Rate [%]

OLS LM

POSNEG ABS POSNEG ABS

PCA 67.16 63.17 66.18 62.83
LDE 67.13 63.62 66.34 62.93
RP256 66.07 62.93 64.10 61.26

Table 14: Comparison between the recognition rate when random projections are adopted for the subspace projection step,
as a function of the number of retained values (OLS-CONV-POSNEG-GAUSS-*-SVM). Keeping 256 dimensions is almost as
good as keeping 4 times more.

Method Rec. Rate [%]

RP64 59.45
RP128 63.08
RP256 66.07
RP512 66.26
RP1024 66.54


