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Compressed Sensing

* |ldea: Merging the sampling and compression steps together
= Sampling under the Nyquist rate

* Condition: Signal to be compressible = sparse in some basis.

* Problem statement

Recovering a sparse vector © € R (||z||o = K) from M linear,
noisy measurements y = ®WVx + z, where, M<<N.

2 € RM : the noise vector
® ¢ RM*¥ : The sensing dictionary, often a random matrix.
U ¢ RY*N : The sparsifying O.N. basis.
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Compressed Sensing

* Recovery algorithms: Convex relaxation: [1/TV-minimization,
Greedy:COSAMP, ROMP, IHT,...

e Guarantees:

 Definition. Matrix A satisfies restricted isometry property (RIP)
with constant o, if for all s-sparse vectors x we have:

(1=09)ll=llz < | Az]l3 < (1 +d5) =3

e Stable recovery of all K-sparse vectors, if @V satisfies RIP
with 5C.K £ C() .

 For all subgaussian @, if 1/ > O<K 1og(N/K)) PWis RIP.

* Low cost sampling for complex recovery e.g., for I[HT
complexity of each iteration scales with MxN.
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CS Image Acquisition

* Rice Single-Pixel Camera

http://dsp.rice.edu/cscamera
® : uniformly at random selecting rows of Walsh-Hadamard matrix.

Low-cost, fast, sensitive
optical detection

)

Image encoded by DMD
and random basis
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Hyperspectral Images

« HSI: A collection of hundreds of
Images acquired simultaneously
In narrow and adjacent
spectral bands/channels.

* Applications include agriculture,
mineral exploration and
environmental monitoring.
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Hyperspectral Images

« HSI: A collection of hundreds of
Images acquired simultaneously
In narrow and adjacent
spectral bands/channels.

As it is costly to acquire each plxel of HSI, i
becomes very interesting to use CS approach'

A | V1 T\ irrrwiiLseAal 1 W ITENT 1] lvl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

@ 'L



Observation Model

* HSI are represented by a matrix x ¢ R{*V
J: spectral bands/channels
N: image resolution per channel

e Signal Priors

1) HSI is generated from few source images based on
a linear mixture model

2) Each source image is sparse in wavelet basis
3) Source images are sometimes disjoint.
4) Mixture parameters are known.
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Observation Model (Cont.)

 HSI can be decomposed as,

X = AS = AXU',
S € [0,1]"*" is the “source matrix”, rows collecting / source images,
each representing the percentage of a given material in each pixel

of the scene. Sometimes we can assume each pixel corresponds
to only one material i.e., sources are disjoint, S € {0, 1}/*¥

A € R1*! is the “mixing matrix”, whose columns are the spectral
reflectance of the respective source images (rows of S).

» ¢ RN whose rows are sparse vectors, representing the

Wavelet coefficients of the source images ( W the 2D Wavelet
basis).
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CS Acquisition for HSI

e How to recover HSI from CS measurements?

A “Jjoint recovery scheme” to exploit the correlations among
channels rather than channel-by-channel individual recovery?

e Qur contribution:

Rephrasing the CS recovery of multichannel data as the
“compressive source separation” problem by knowing the
mixture parameters.

Instead of recovering the whole data, first recover the few
underlying sparse sources!
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Sampling and Transmission

1. Taking M linear measurements per channel using a
“universal” random compression matrix

Y — X(I)T Y ¢ RI <M
2. Applying separation matrix AT = (A7 A)"1 A7, and a
thresholding operator [.]+, to extract measurements of active

SOUrces —
Y = [AY], = 2707 0T v e RIXM

7*: indices of the active sources.

3. Transmit indices 7* plus CS measurements Y to the receiver.

e Limitation. 1) A" may bring instability issues, at least /< J is
required, 2) Mixing matrix A, the spectral signature of the
existing materials in HSI must be known.
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Reconstruction Problem

* Noisy measurements at the receiver point (vector formulation),

Vec(Y) = ® Vec(Xz+) + Vec(2).

~

¢ = oV ® Id;- ,® the Kronecker product, Id;- identity matrix.

e Source reconstruction problem (Po)

5. = argminy. . z|| Vec(X)||o
st. |[Vec(Y) — ® Vec(T)||2 < e

where B:= {X e RI VN . (2w7T),; € {0,1} & Offdiag(Xx7T) = 0}.

* This is an NP hard problem!
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Reconstruction Algorithm

* We propose the following method to approximate
solution of Po:

1. 11 relaxation, solving with polynomial-time complexity

7. = argmin||Vec(Z)|:
st. |[Vec(Y) — @ Vec(Z)|| < e

2. Refinement: Projecting the solution onto the set B
through a “thresholding” step, to match the priors.

3. Once the algorithm determines the sources, the whole
HSI cube can be recovered through the mixing model.
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Simulation Results |

Setup. Synthesized HSI (N=256x256, J=128) with /"=6 distinct sources.
Experiment 1. Set M=6400, transmitting Mx/* measurements, about 0.45% of

the original HSI.
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(a)

Reconstruction of HSI using our recovery scheme, demonstrated for a slice/
channel j = 90. (a) Original data, (b) Reconstruction without thresholding step
(Normalized MSE=0.23) and (c) Reconstruction with thresholding step
(Normalized MSE=0.19).
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Simulation Results Il

* Experiment 2. Average performance evaluation of our method:
Experiments on a 64x64x64 cubic image, extracted from the original
HSI. Plots averaged over 20 independent realizations of ® and Z.
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* (a) Source separation accuracy and, (b) HSI reconstruction error of our recovery
scheme, for different SNR and compression sizes M. (¢c) Reconstruction error of
the HSI using classical CS recovery (applied separately on each channel) vs.
our source separation based recovery scheme (Source CS).
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Simulation Results Il

* Experiment 2. Average performance evaluation of our method:
Experiments on a 64x64x64 cubic image, extracted from the original
HSI. Plots averaged over 20 independent realizations of ® and Z.
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Remark: Individual channel-by-channel reconstruction requires MxdJ
measurements, whereas our method (Source CS) outperforms by
only Mx[* measurements, which significantly saves the battery life of

the transmitter (satellite) and complexity of the decoding algorithm.

our source separation based recovery scheme (Source CS).
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Real data
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e URBAN data set
HSI of size N=300x300, J=341, /=6
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Recovery Method Il

1. Source images here are no more disjoint, but
5.8 (n) =1, 1<n<N (another sort of sparsity)

2. Sources have sparse gradient variation (TV norm)
* Recovery by the following convex-minimization:

arg mgn Z 1S ||y
i

subject to “17 — SCIJTHF < €,
S >0,
Y Sin)=1, 1<n<N,
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Simulation Results lli

e CS acquisition with M=N/8, transmitting 0.21% of the whole cube!!
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Ground truth

Source reconstruction by our method
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Simulation Results IV

* HSI reconstruction from CS measurements M=N/8
(demonstrated for spectral band j=230)

Source-separation based vs. Classical TVDN
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Questions?!
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