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Compressed Sensing
 Idea: Merging the sampling and compression steps together
⇒ Sampling under the Nyquist rate

 Condition: Signal to be compressible ≡ sparse in some basis.

 Problem statement 
Recovering a sparse vector              (               ) from M linear, 
noisy measurements                        , where, M<<N.
             : the noise vector
                  : The sensing dictionary, often a random matrix. 
                             : The sparsifying O.N. basis.  
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x ∈ RN

Φ ∈ RM×N

‖x‖0 = K

z ∈ RM

y = ΦΨx + z

Ψ ∈ RN×N



Compressed Sensing
 

 Recovery algorithms: Convex relaxation: l1/TV-minimization, 
Greedy:COSAMP, ROMP, IHT,... 

 Guarantees: 
 Definition. Matrix    satisfies restricted isometry property (RIP) 

with constant     if for all s-sparse vectors x we have: 

 Stable recovery of all K-sparse vectors, if        satisfies RIP 
with                 .

 For all subgaussian    , if                             ,       is RIP.
 Low cost sampling for complex recovery e.g., for IHT 

complexity of each iteration scales with M×N.
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ΦΨ
(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22

δs

A

δc.K ≤ C0

Φ M ! O
(
K log(N/K)

)
ΦΨ



CS Image Acquisition
 Rice Single-Pixel Camera

http://dsp.rice.edu/cscamera
    : uniformly at random selecting rows of Walsh-Hadamard matrix.
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Hyperspectral Images

• HSI: A collection of hundreds of 
images acquired simultaneously
 in narrow and adjacent 
spectral bands/channels. 

 
• Applications include agriculture, 
   mineral exploration and 
   environmental monitoring. 
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 As it is costly to acquire each pixel of HSI, it 
becomes very interesting to use CS approach!



Observation Model
 HSI are represented by a matrix

J: spectral bands/channels
N: image resolution per channel

 Signal Priors
1) HSI is generated from few source images based on 
a linear mixture model 
2) Each source image is sparse in wavelet basis  
3) Source images are sometimes disjoint. 
4) Mixture parameters are known.
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X ∈ RJ×N
+



Observation Model (Cont.)
 HSI can be decomposed as,

                    is the “source matrix”, rows collecting I source images, 
each representing the percentage of a given material in each pixel 
of the scene. Sometimes we can assume each pixel corresponds 
to only one material i.e., sources are disjoint,

               is the “mixing matrix”, whose columns are the spectral 
reflectance of the respective source images (rows of S). 

             whose rows are sparse vectors, representing the 
Wavelet coefficients of the source images (     the 2D Wavelet 
basis).
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X = AS = AΣΨT .
S ∈ [0, 1]I×N

Σ ∈ RI×N

A ∈ RJ×I
+

S ∈ {0, 1}I×N

Ψ



CS Acquisition for HSI
 How to recover HSI from CS measurements?

A “joint recovery scheme” to exploit the correlations among 
channels rather than channel-by-channel individual recovery? 

 Our contribution:
Rephrasing the CS recovery of multichannel data as the 
“compressive source separation” problem by knowing the 
mixture parameters.

Instead of recovering the whole data, first recover the few 
underlying sparse sources!
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Sampling and Transmission
1. Taking M linear measurements per channel using a 

“universal” random compression matrix

2. Applying separation matrix                             , and a  
thresholding operator [.]+, to extract measurements of active 
sources

    : indices of the active sources.

3. Transmit indices     plus CS measurements    to the receiver.

 Limitation. 1)     may bring instability issues, at least I ≤ J  is 
required, 2) Mixing matrix A, the spectral signature of the 
existing materials in HSI must be known. 
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Y = XΦT

A† = (AT A)−1AT

Y = [A†Y ]+ = ΣI∗ΨT ΦT .

I∗

I∗ Y

A†

Y ∈ RJ×M

Y ∈ RI×M



Reconstruction Problem
 Noisy measurements at the receiver point (vector formulation),

                       ,    the Kronecker product,        identity matrix.  

 Source reconstruction problem (P0)     

where

 This is an NP hard problem! 
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Vec(Ỹ ) = Φ̃Vec(ΣI∗) + Vec(Z).

Φ̃ = ΦΨ⊗ IdI∗ ⊗ IdI∗

Σ̂I∗ = argminΣ∈B‖Vec(Σ)‖0
s.t. ‖Vec(Ỹ )− Φ̃Vec(Σ)‖2 ≤ ε

B := {Σ ∈ RI∗×N : (ΣΨT )ij ∈ {0, 1} & Offdiag(ΣΣT ) = 0}.



Reconstruction Algorithm
 We propose the following method to approximate 

solution of P0:

1. l1 relaxation, solving with polynomial-time complexity

2. Refinement: Projecting the solution onto the set    
through a “thresholding” step, to match the priors.

3. Once the algorithm determines the sources, the whole 
HSI cube can be recovered through the mixing model. 
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Σ̂I∗ = argmin‖Vec(Σ)‖1
s.t. ‖Vec(Ỹ )− Φ̃Vec(Σ)‖2 ≤ ε

B



Simulation Results I
Setup. Synthesized HSI (N=256×256, J=128) with I*=6 distinct sources.

Experiment 1. Set M=6400, transmitting M×I* measurements, about 0.45% of 
the original HSI.

Reconstruction of HSI using our recovery scheme, demonstrated for a slice/
channel j = 90. (a) Original data, (b) Reconstruction without thresholding step 
(Normalized MSE=0.23) and (c) Reconstruction with thresholding step 
(Normalized MSE=0.19).
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Simulation Results II
 Experiment 2. Average performance evaluation of our method: 

Experiments on a 64×64×64 cubic image, extracted from the original 
HSI. Plots averaged over 20 independent realizations of     and Z.

 (a) Source separation accuracy and, (b) HSI reconstruction error of our recovery 
scheme, for different SNR and compression sizes M. (c) Reconstruction error of 
the HSI using classical CS recovery (applied separately on each channel) vs. 
our source separation based recovery scheme (Source CS).
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Remark:  Individual channel-by-channel reconstruction requires M×J
measurements, whereas our method (Source CS) outperforms by
only M×I* measurements, which significantly saves the battery life of
the transmitter (satellite) and complexity of the decoding algorithm.



Real data
 URBAN data set

HSI of size N=300×300, J=341, I = 6
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4. NUMERICAL RESULTS
In this section we present some numerical results for hyperspectral unmixing and image enhancement. The
data under consideration is a HYDICE hyperspectral image called Urban which is publicly avaiable.23 After
removing the water absorption bands, Urban is a 163-band image. We chose 6 endmembers from the image
using N-FINDR5 plus manual adjustment. The endmembers selected and their spectral signatures are shown in
Figure 1.

Figure 1. Endmember selection on the Urban image. Left: The pixels selected as endmembers. Right: The spectral
signatures of the endmembers.

4.1 Spectral Unmixing Results
We performed linear spectral unmixing using the LSL1 model described in Section 2.2. The minimization was
carried out by the Split Bregman method with a fixed number of iterations. We chose the parameters γ = 5×10−7

and µ = 0.1. The computation takes approximately 0.01 seconds to unmix each pixel in the image, running on
a dual core desktop with 2.99GHz processor and 1.96GB memory.

The six fraction planes indicating the abundance of each endmember are shown in Figure 2. Qualitatively,
the unmixing result appears to be correct. The fraction planes effectively segment the roads and buildings in the
original image. Pixels that appear bright in more than one fraction plane indicate a mixture of several materials.
For example, the region in the lower right quadrant appears to be a mixture of dirt, grass, and trees.

4.2 Image Enhancement Results
Using the unmixing results obtained in Section 4.1, we can enhance the hyperspectral image using the Endmember-
Based and Quantum TV models. To illustrate the difference between these models, we first prepared the 177-band
synthetic 2x2 hyperspectral image shown in Figure 3. Each pixel in the image is a linear combination of 4 distinct
spectral signatures taken from a spectral library. The pixels in the lower left and upper right corners are mostly
the light blue material mixed with a smaller portion of the green material. The pixel in the upper left corner
is an equal mixture of the dark blue and green materials. Finally, the pixel in the lower right is primarily the
light blue material mixed with a small portion representing the purple material. This fourth pixel represents a
subpixel anomaly in the image. The 2x2 image was zoomed by a factor of 4 using both models to obtain 8x8
images. The Endmember-Based TV result is a smooth image with blurry material boundaries. In a larger image,
this may correspond to a visually pleasing result. The Quantum TV result is a classification map, with each
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Recovery Method II
1. Source images here are no more disjoint, but 

                                   (another sort of sparsity)

2. Sources have sparse gradient variation (TV norm)
 Recovery by the following convex-minimization: 
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arg min
S

∑

i

‖Si‖TV

subject to
∥∥∥Ỹ − SΦT

∥∥∥
F
≤ ε,

S ≥ 0,
∑

i

Si(n) = 1, 1 ≤ n ≤ N,

∑
i Si(n) = 1, 1 ≤ n ≤ N



Simulation Results III
 CS acquisition with M=N/8, transmitting 0.21% of the whole cube!!
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Ground truth

Source reconstruction by our method



Simulation Results IV
 HSI reconstruction from CS measurements M=N/8 

(demonstrated for spectral band j=230)

Source-separation based vs. Classical TVDN
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Questions?!
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