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Low-rank Joint Sparse Data Model

e Given a data matrix X ¢ R"**"2 which is,
- Joint sparse: only k£ < nj rows with nonzero elements
- Low rank: Rank(X) = r < min(k, ns)

N EEEEN

- EETE e Card(supp(X)) <k

* |If one knows position of the nonzero rows, the corresponding
sub-matrix contains only r(k + ny — ) degrees of freedom.
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Compressed Sampling Mechanism

e Collecting m < nins linear measurements y € R™:

y=A(X)+z
- z € R™ noise vector
- A R™*"2 - R™ sampling operator (linear mapping)

e Explicit matrix formulation: A4 — A ¢ R™*™"™2
Yy = AXyec + 2
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Compressed Sampling Mechanism

e Collecting m < nins linear measurements y € R™:

y=AX)+2
- z € R™ noise vector
- A R"*™ — R™ sampling operator (linear mapping)

e Explicit matrix formulation: A4 — A ¢ R™*™"™2
Yy = AXyec + 2

- “Gaussian operator ” A(.) — Ais i.i.d. Gaussian ~ N (0,1/m)

- “i.i.d. Block-Diagonal” A: Random block-diagonal A [,
with i.i.d blocks (for Distributed CS) A,
A; c R™™ e {1, .., no} '

AN

m = m/n2: measurements per channel

A
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Multi-Array Signal Applications

Sensor networks
Monitoring a region which is affected by common phenomena

e Limited sources/causes & many correlated observations
- Observations has joint-sparse representation in a basis.
. . [Baron et al., 2005]
- Nonzero coefficients are linearly dependent.

= omim a smimm oms I/’, Sensors O \\‘ m measurements
SR —— “ : O O O Base
| I/ i Station
\ N 4 /’
e
Phenomenon
observation matrix X x

CS idea: S
e Distributed/Collaborative compressed sampling & Joint recovery

e Tradeoffs: Number of sensors v.s. complexity of each sensor
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Structure-Aware Recovery (Prior Arts)

e [5 /11 norm minimization for joint-sparse data:
argmin || X|l21 st fly = AX)[l2 < e
- Stable recovery guaranty by “Block-RIP”, for Gaussian A :
[Eldar Mishali, 2009]
m 2 O(k log(k/ny) + kn2>

 Nuclear norm minimization for low-rank data:
argmin [ X[ sty — AX)]2 < e

- Stable recovery guaranty by “Rank-RIP”, for Gaussian A :
[Candes Plan, 2009]
m 2 C’)(r(nl + n2)>
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* [5/l1norm minimization for joint-sparse data:
argmin || X|l21 st fly = AX)[l2 < e

- Stable recovery guaranty by “Block-RIP”, for Gaussian A :
[Eldar Mishali, 2009]
m 2 O(k log(k/ny) + kn2>

Increasing # channels ( n2 > klog(k/n1)) support recovery improves,
however, for decoding the sparse coefficients, it requires m = O(k) (log
factor improvement w.r.t. /7). Inter channels corrections neglected!
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Structure-Aware Recovery (Prior Arts)

* [5/l1norm minimization for joint-sparse data:
argmin || X|l21 st fly = AX)[l2 < e

- Stable recovery guaranty by “Block-RIP”, for Gaussian A :
[Eldar Mishali, 2009]
m 2 O(k log(k/ny) + kn2>

Increasing # channels ( n2 > klog(k/n1)) support recovery improves,
however, for decoding the sparse coefficients, it requires m = O(k) (log
factor improvement w.r.t. /7). Inter channels corrections neglected!

 Nuclear norm minimization for low-rank data:
argmin || X[ st [y — AX)]2 < e
- Stable recovery guaranty by “Rank-RIP”, for Gaussian A :
[Candes Plan, 2009]
m 2 C’)(r(nl + n2)>

- Sparsity of data is neglected (performance degrades as n; > ns) !
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Our Approach
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Convex Optimizations for LR-JS Recovery

* “Low-rank and joint-sparse” matrix recovery by one of the
following three convex minimizations:

argmin || X«

X
P1: subject to [y — A(X)|ly <,
[ XTl2,0 <.
argmin || X[z,
P2: subject to  [ly — A(X)[|, <,
[ X < 7.

argmin || X + A X ||«
. gmin X2, + X

subject to  |ly — A(X)[[, <.

e Solutions of P1-3 coincides for proper regularizations.
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Convex Optimizations for LR-JS Recovery

* “Low-rank and joint-sparse” matrix recovery by one of the
following three convex minimizations:

1 X ;
P1: ': subject to [y — A(X)[, <€,
[ X |2, < 7. { Here, we focus on P1.
argmin || X[z,
P2 | subject to Iy — A, <.
X1l < 7.

argmin || X + A X ||«
. gmin X2, + X

subject to  |ly — A(X)[[, <.

e Solutions of P1-3 coincides for proper regularizations.
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Theoretical Bounds
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LR-JS Restricted Isometry Property

* Definition: Forintegers k=1, 2, ... andr=1, 2, ..., A satisfies
the ‘restricted isometry property”, if for all k-joint sparse and
rank r matrices X we have,

(1= o) I X7 < A2 < 1+ 60) 1X |-

The RIP constant §,. . is the smallest constant for which the
property above holds.
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RIP Random Sampling Operators

* Theorem: Let A be a random mapping obeying the following
concentration bound for any X € R™"**"2and 0<t <1,

P ([IAX))z = IXI7| > tX][F) < Cexp(—cm),

where C and c are fixed constants given t. Then, A satisfies

m

RIP with constant,. ;, with probability greater than1 — C'e™"°",
if number of measurements are greater than

m > Ky (k: log(ny/k) + kr + nzT),
ko and r, are fixed constant for a giveny,. ;.
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RIP Random Sampling Operators

* Theorem: Let A be a random mapping obeying the following
concentration bound for any X € R™"**"2and 0<t <1,

P ([IAX))z = IXI7| > tX][F) < Cexp(—cm),

where C and c are fixed constants given t. Then, A satisfies

m

RIP with constant,. ;, with probability greater than1 — C'e™"°",
if number of measurements are greater than

m > Ky (k: log(ny/k) + kr + nzT),
ko and r, are fixed constant for a giveny,. ;.

e Corollary: Gaussian, Bernoulli or sub-Gaussian random A,
satisfy RIP whenever the number of the measurements scales

as in above.
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Reconstruction Performance

* Theorem. For A satisfying RIP (46, 2, < §*) and ||z||2 <, the
solution X to P1 obeys the following bound:

\W—Xﬂhgﬂw—XﬂM»m%
Vk VT

X7 _is the best rank r and k-joint sparse matrix which
minimizes the error term. §*, ¢ and ¢ are fixed constants.

|X — X|r < e

Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

LTS | EPFL @




Reconstruction Performance

* Theorem. For A satisfying RIP (46, 2, < §*) and ||z||2 <, the
solution X to P1 obeys the following bound:

X = XFllen  I1X - kau*) e
Vk VT

X7 _is the best rank r and k-joint sparse matrix which

minimizes the error term. §*, ¢ and ¢ are fixed constants.

HX_)?HF < C(

For sub-Gaussian measurement ensembiles, if

m > O(klog(ni/k) + kr + nar)
- Exact recovery for noiseless and exact LR-JS matrices (X = X f’f L )-
- Stability against noise and “non-exact” LR-JS data.

* |t outperforms previous methods for setups with » < k < ny
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Implementation

argmin || X[,

P1: | subject to |ly — A(X)|l, <,
XTIz, < -
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Implementation

P, = arg m)}n f1(X) +ic(X) where, ic(X)

P1:

---
- = ~ s

arg min

X
subject to.’

- .
~~~~~~~

Hy AX)|, <€

X 2 <

0 if Xel

+o00 otherwise
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Implementation

-
- ~ s

arglg}n HXH* ﬁ """""""""""""""" > f1(X)
P1: | subject to, iy — A(X)[, <&
| 1>
Xz <9 Ce,r(y, A)

0 if Xel

+o00 otherwise

P, = arg m)}n f1(X) +ic(X) where, ic(X)

e Sum of two “lower semi-continuous” convex functions jcomoettes,Pesquet'10]
= Douglas-Rachford algorithm jpougias, Rachford, 1956]

1. prox,,, (X) = SA(Z(X)), soft thresholding of the singular values.
2. Dijkstra method for projection into intersection C. ,(y,.A). Boyle Diistra, 1986]
- Complexity dominated by (1), and (2) if A is not a tight frame.
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Numerical Experiments
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P1 v.s. L2/L1

Reconstruction error
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40x40 random data matrix, Rank(X) = 2, and Gaussian A

P1: recovery for compression rates below sparsity ratio!
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P1 v.s. L2/L1

Reconstruction error
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P1: recovery for compression rates below sparsity ratio!
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Limited degrees of freedom
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P1 v.s. L2/L1

Reconstruction error
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30xn2 random data matrix, k=10, r = 3, and Gaussian A

For large n2, (P1) requires less measurements per channel than

L2/L1. Better n, v.s. m tradeoff
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Distributed v.s. Collaborative CS

Reconstruction error
i.i.d. Block diagonal A

Gaussian A
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30xn2 random data matrix, k=10, r = 3 and P1 recovery

Distributed sensing performs similar to dense/collaborative CS!!
(e.g. good for sensor networks)
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DCS v.s. MMV

i.i.d. Block diagonal A
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30xn2 random data matrix, k=10, r = 3 and P1 recovery

For low-rank data , MMV doesn’t improve by increasing the

block diagonal A

08 1

channels, as uniform sampling doesn’t give many “independent

measurements”.
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Hyperspectral Images

A collection of hundreds of
Images acquired simultaneously
In narrow and adjacent
spectral bands/channels.

no: # spectral bands/channels
n+. image resolution per channel

e HSI is generated from few
“source images” based on a
“linear mixture” model.

e Region is composed of few materials + Source images are sparse
in Wavelet basis = HSI is “approximately” low-rank and joint-sparse.

o Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




Hyperspectral Images

A collection of hundreds of
Images acquired simultaneously
In narrow and adjacent
spectral bands/channels.

no: # spectral bands/channels
n+. image resolution per channel

e HSI is generated from few Y o niXne

As it is costly to acquire each pixel of HSI,
it becomes very interesting to use CS approach!

e Region is composed of few materials + Source images are sparse
in Wavelet basis = HSI is “approximately” low-rank and joint-sparse.
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Real data with noisy measurements

e Hyperspectral Imaging (URBAN data set)
n1 = 256 X 256, no =171, r >~ 6

ST ig » s IR T

Source Images

Feflectance

Few source images, all piecewise smooth
= HSI cube is “approximately” LR-JS
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Real data with noisy measurements (Cont.)

= s e e = " 1] 5 P i+ il >t 1]
50 100 150 200 250 50 100 150 200 250

Original Image Recovery for 40dB SNR Recovery for 20dB SNR

HSI recovery from noisy CS samples using P1
A: “random convolution” sampling op. [romberg 2009]
Compression rate m/(nin2) = 1/16

SamplingSNR| oo | 40 | 20 | 10 0
Reconstruction SNR 1492 7(134.5(|21.1]|14.1| 6.6
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Real data with noisy measurements (Cont.)

B 2% e e =
50 100 150 200 250

Original Image Recovery for 40dB SNR Recovery for 20dB SNR

HSI recovery from noisy CS samples using P1
A: “random convolution” sampling op. [romberg 2009]

Compression rate m/(nin2) = 1/16
m/(n1n2)=1/32

Sampling SNR [ 00 40 | 20 | 10 0 o0
Reconstruction SNR 1492 7(134.5(|21.1]|14.1| 6.6 18.7
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Summary

* Joint sparse multichannel data are often forming a low-rank
matrix (the nonzero coefficients are correlated).

* This model efficiently reduce degrees of freedom of data.

* A more advanced “joint-recovery” approach: The proposed
convex minimizations are capturing both priors simultaneously.

* Theoretical guarantees for “stable” recovery indicate
significant reduction in required number of CS measurements.

* This approach is applicable to distributed CS scenarios (no
theoretical bounds yet)
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* This model efficiently reduce degrees of freedom of data.
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