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Low-rank Joint Sparse Data Model
 Given a data matrix                     which is,
- Joint sparse: only             rows with nonzero elements
- Low rank: 

 If one knows position of the nonzero rows, the corresponding 
sub-matrix contains only                      degrees of freedom. 

X ∈ Rn1×n2

k ! n1

r(k + n2 − r)

Card(supp(X)) ≤ k
X :

Rank(X) = r ! min(k, n2)



Compressed Sampling Mechanism
 Collecting                    linear measurements             : 

-             noise vector 
-                              sampling operator (linear mapping)

 Explicit matrix formulation:

y = A(X) + z

A : Rn1×n2 → Rm

y ∈ Rm

z ∈ Rm

A→ A ∈ Rm×n1n2

y = AXvec + z

m! n1n2
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Compressed Sampling Mechanism
 Collecting                    linear measurements             : 

-             noise vector 
-                              sampling operator (linear mapping)

 Explicit matrix formulation:

y = A(X) + z

A : Rn1×n2 → Rm

y ∈ Rm

z ∈ Rm

A→ A ∈ Rm×n1n2

y = AXvec + z

A ∼ N (0, 1/m)A(.)→
A A1

A2

An2

A

Aj ∈ R bm×n1 ∀j ∈ {1, ..., n2}
m̂ = m/n2

- “i.i.d. Block-Diagonal”    : Random block-diagonal  
     with i.i.d blocks (for Distributed CS)

                      : measurements per channel

- “Gaussian operator ”                  is i.i.d. Gaussian

m! n1n2



Multi-Array Signal Applications

Sensor networks
Monitoring a region which is affected by common phenomena

• Limited sources/causes & many correlated observations
- Observations has joint-sparse representation in a basis.
- Nonzero coefficients are linearly dependent.

 Distributed/Collaborative compressed sampling & Joint recovery 
 Tradeoffs: Number of sensors v.s. complexity of each sensor

[Baron et al., 2005]

!"#$%

&'"()*%

+,%-$"#./$-$*'#%

01$*)-$*)*%

&$*#)/#%

2)3*'%#4"/#$%)5#$/6"()*%-"'/37%8%

,%

9%

J

m

CS idea:

n2

n1



Structure-Aware Recovery (Prior Arts)
         norm minimization for joint-sparse data:

- Stable recovery guaranty by “Block-RIP”, for Gaussian    : 

  Nuclear norm minimization for low-rank data:

- Stable recovery guaranty by “Rank-RIP”, for Gaussian    :

l2/l1

m ! O
(
k log(k/n1) + kn2

)

arg min
X
‖X‖∗ s.t. ‖y −A(X)‖2 ≤ ε

arg min
X
‖X‖2,1 s.t. ‖y −A(X)‖2 ≤ ε

m ! O
(
r(n1 + n2)

)

A

A

[Eldar Mishali, 2009]

[Candes Plan, 2009]
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n2 ! k log(k/n1)
m̂ ! O(k)

- Increasing # channels (                           ) support recovery improves, 
however, for decoding the sparse coefficients, it requires                    (log 
factor improvement w.r.t. l1). Inter channels corrections neglected!
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n1 ! n2

n2 ! k log(k/n1)
m̂ ! O(k)

- Increasing # channels (                           ) support recovery improves, 
however, for decoding the sparse coefficients, it requires                    (log 
factor improvement w.r.t. l1). Inter channels corrections neglected!

- Sparsity of data is neglected (performance degrades as                ) !



Our Approach



Convex Optimizations for LR-JS Recovery 

arg min
X

‖X‖2,1 + λ‖X‖∗

subject to ‖y −A(X)‖2 ≤ ε.

arg min
X

‖X‖∗

subject to ‖y −A(X)‖2 ≤ ε,

‖X‖2,1 ≤ γ.

arg min
X

‖X‖2,1

subject to ‖y −A(X)‖2 ≤ ε,

‖X‖∗ ≤ τ.

P1:

P2:

P3:

 “Low-rank and joint-sparse” matrix recovery by one of the 
following three convex minimizations:

 Solutions of P1-3 coincides for proper regularizations.
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Theoretical Bounds



LR-JS Restricted Isometry Property
 Definition: For integers k=1, 2, ... and r = 1, 2, ...,      satisfies 

the “restricted isometry property”, if for all k-joint sparse and 
rank r matrices X we have,

The RIP constant       is the smallest constant for which the 
property above holds.

A

(1− δr,k)‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δr,k)‖X‖2F .

δr,k



RIP Random Sampling Operators
 Theorem: Let    be a random mapping obeying the following 

concentration bound for any                    and 0< t <1,

where C and c are fixed constants given t. Then,    satisfies 
RIP with constant      , with probability greater than                  , 
if number of measurements are greater than 

    and     are fixed constant for a given      .

A
X ∈ Rn1×n2

A
δr,k 1− Ce−κ0m

δr,kκ0 κ1

m ≥ κ1

(
k log(n1/k) + kr + n2r

)
,

P
( ∣∣‖A(X)‖22 − ‖X‖2F

∣∣ > t‖X‖2F
)
≤ C exp (−c m) ,
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RIP with constant      , with probability greater than                  , 
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    and     are fixed constant for a given      .

A
X ∈ Rn1×n2

A
δr,k 1− Ce−κ0m

δr,kκ0 κ1

m ≥ κ1

(
k log(n1/k) + kr + n2r

)
,

A• Corollary: Gaussian, Bernoulli or sub-Gaussian random    , 
satisfy RIP whenever the number of the measurements scales 
as in above.  

P
( ∣∣‖A(X)‖22 − ‖X‖2F

∣∣ > t‖X‖2F
)
≤ C exp (−c m) ,



Reconstruction Performance
 Theorem. For     satisfying RIP (                 ) and              , the 

solution     to P1 obeys the following bound:

        is the best rank r and k-joint sparse matrix which 
minimizes the error term.    , c and c‘ are fixed constants.

X̂
A ‖z‖2 ≤ εδ6r,2k ≤ δ∗

‖X − X̂‖F ≤ c
(‖X −X#

r,k‖2,1√
k

+
‖X −X#

r,k‖∗√
r

)
+ c′ε

δ∗
X#

r,k



Reconstruction Performance
 Theorem. For     satisfying RIP (                 ) and              , the 

solution     to P1 obeys the following bound:

        is the best rank r and k-joint sparse matrix which 
minimizes the error term.    , c and c‘ are fixed constants.

X̂
A ‖z‖2 ≤ εδ6r,2k ≤ δ∗

‖X − X̂‖F ≤ c
(‖X −X#

r,k‖2,1√
k

+
‖X −X#

r,k‖∗√
r

)
+ c′ε

δ∗
X#

r,k

m ≥ O
(
k log(n1/k) + kr + n2r

)

X = X#
r,k

r ! k ! n1

For sub-Gaussian measurement ensembles, if 

- Exact recovery for noiseless and exact LR-JS matrices (               ).
- Stability against noise and “non-exact” LR-JS data.

• It outperforms previous methods for setups with



Implementation 

arg min
X

‖X‖∗

subject to ‖y −A(X)‖2 ≤ ε,

‖X‖2,1 ≤ γ.

P1:



Implementation 

f1(X)

Cε,τ (y,A)

P1 = arg min
X

f1(X) + iC(X)

arg min
X

‖X‖∗

subject to ‖y −A(X)‖2 ≤ ε,

‖X‖2,1 ≤ γ.

iC(X) = 0 if X ∈ C
+∞ otherwise

where,

P1:



Implementation 

 Sum of two “lower semi-continuous” convex functions [Combettes,Pesquet’10]

⇒ Douglas-Rachford algorithm [Douglas, Rachford,1956]

1.                                        , soft thresholding of the singular values.
2. Dijkstra method for projection into intersection                . [Boyle Dijkstra,1986]

- Complexity dominated by (1), and (2) if A is not a tight frame.

f1(X)

Cε,τ (y,A)

P1 = arg min
X

f1(X) + iC(X)

arg min
X

‖X‖∗

subject to ‖y −A(X)‖2 ≤ ε,

‖X‖2,1 ≤ γ.

proxλf1
(X) = Sλ

(
Σ(X)

)

Cε,τ (y,A)

iC(X) = 0 if X ∈ C
+∞ otherwise

where,

P1:



Numerical Experiments



P1 v.s. L2/L1

- 40x40 random data matrix, Rank(X) = 2, and Gaussian

Reconstruction error
L2/L1 P1

A
- P1: recovery for compression rates below sparsity ratio!



P1 v.s. L2/L1

- 40x40 random data matrix, Rank(X) = 2, and Gaussian

Reconstruction error
L2/L1 P1

A

Limited degrees of freedom
- P1: recovery for compression rates below sparsity ratio!

r(n1 + n2 − r)
n1n2

∼ 0.1



P1 v.s. L2/L1 

- 30xn2 random data matrix, k=10, r = 3, and Gaussian

Reconstruction error

A

Better                 tradeoff

- For large n2 , (P1) requires less measurements per channel than 
L2/L1.

L2/L1 P1

n2 v.s. m̂



Distributed v.s. Collaborative CS

- 30xn2 random data matrix, k=10, r = 3 and P1 recovery

Reconstruction error

- Distributed sensing performs similar to dense/collaborative CS!! 
(e.g. good for sensor networks)

i.i.d. Block diagonalA Gaussian A



DCS v.s. MMV

- 30xn2 random data matrix, k=10, r = 3 and P1 recovery

Reconstruction error

- For low-rank data , MMV doesn’t improve by increasing the 
channels, as uniform sampling doesn’t give many “independent 
measurements”. 

i.i.d. Block diagonalA AUniform block diagonal 



Hyperspectral Images

• A collection of hundreds of 
images acquired simultaneously
 in narrow and adjacent 
spectral bands/channels.

n2: # spectral bands/channels
n1: image resolution per channel

• HSI is generated from few 
“source images” based on a 
“linear mixture” model. 

• Region is composed of few materials + Source images are sparse 
in Wavelet basis ⇒ HSI is “approximately” low-rank and joint-sparse.

X ∈ Rn1×n2
+
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 As it is costly to acquire each pixel of HSI, 
it becomes very interesting to use CS approach!



Real data with noisy measurements
 Hyperspectral Imaging (URBAN data set)

4. NUMERICAL RESULTS
In this section we present some numerical results for hyperspectral unmixing and image enhancement. The
data under consideration is a HYDICE hyperspectral image called Urban which is publicly avaiable.23 After
removing the water absorption bands, Urban is a 163-band image. We chose 6 endmembers from the image
using N-FINDR5 plus manual adjustment. The endmembers selected and their spectral signatures are shown in
Figure 1.

Figure 1. Endmember selection on the Urban image. Left: The pixels selected as endmembers. Right: The spectral
signatures of the endmembers.

4.1 Spectral Unmixing Results
We performed linear spectral unmixing using the LSL1 model described in Section 2.2. The minimization was
carried out by the Split Bregman method with a fixed number of iterations. We chose the parameters γ = 5×10−7

and µ = 0.1. The computation takes approximately 0.01 seconds to unmix each pixel in the image, running on
a dual core desktop with 2.99GHz processor and 1.96GB memory.

The six fraction planes indicating the abundance of each endmember are shown in Figure 2. Qualitatively,
the unmixing result appears to be correct. The fraction planes effectively segment the roads and buildings in the
original image. Pixels that appear bright in more than one fraction plane indicate a mixture of several materials.
For example, the region in the lower right quadrant appears to be a mixture of dirt, grass, and trees.

4.2 Image Enhancement Results
Using the unmixing results obtained in Section 4.1, we can enhance the hyperspectral image using the Endmember-
Based and Quantum TV models. To illustrate the difference between these models, we first prepared the 177-band
synthetic 2x2 hyperspectral image shown in Figure 3. Each pixel in the image is a linear combination of 4 distinct
spectral signatures taken from a spectral library. The pixels in the lower left and upper right corners are mostly
the light blue material mixed with a smaller portion of the green material. The pixel in the upper left corner
is an equal mixture of the dark blue and green materials. Finally, the pixel in the lower right is primarily the
light blue material mixed with a small portion representing the purple material. This fourth pixel represents a
subpixel anomaly in the image. The 2x2 image was zoomed by a factor of 4 using both models to obtain 8x8
images. The Endmember-Based TV result is a smooth image with blurry material boundaries. In a larger image,
this may correspond to a visually pleasing result. The Quantum TV result is a classification map, with each

n1 = 256× 256, n2 = 171, r " 6
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Few source images, all piecewise smooth
    ⇒ HSI cube is “approximately” LR-JS



Real data with noisy measurements (Cont.)

Original Image Recovery for 40dB SNR Recovery for 20dB SNR

HSI recovery from noisy CS samples using P1
   : “random convolution” sampling op. [Romberg 2009]

Compression rate 
A

m/(n1n2) = 1/16

40 20 10 0
42.7 34.5 21.1 14.1 6.6
∞Sampling SNR

Reconstruction SNR



Real data with noisy measurements (Cont.)

Original Image Recovery for 40dB SNR Recovery for 20dB SNR

HSI recovery from noisy CS samples using P1
   : “random convolution” sampling op. [Romberg 2009]

Compression rate 
A

m/(n1n2) = 1/16

40 20 10 0
42.7 34.5 21.1 14.1 6.6
∞Sampling SNR

Reconstruction SNR 18.7

m/(n1n2)=1/32

∞



Summary 
 Joint sparse multichannel data are often forming a low-rank 

matrix (the nonzero coefficients are correlated).

 This model efficiently reduce degrees of freedom of data.

 A more advanced “joint-recovery” approach: The proposed 
convex minimizations are capturing both priors simultaneously.

 Theoretical guarantees for “stable” recovery indicate 
significant reduction in required number of CS measurements.

 This approach is applicable to distributed CS scenarios (no 
theoretical bounds yet)
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Thnx!


