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Abstract 
Interpreting measurement data to extract meaningful information for damage detection is a 

challenge for continuous monitoring of structures.  This paper presents an evaluation of two 

model-free data interpretation methods that have previously been identified to be attractive for 

applications in structural engineering: moving principal component analysis (MPCA) and 

robust regression analysis (RRA).  The effects of three factors are evaluated: (a) sensor-damage 

location, (b) traffic loading intensity and (c) damage level,  using two criteria: damage 

detectability and the time to damage detection.  In addition, the effects of these three factors 

are studied for the first time in situations with and without removing seasonal variations 

through use of a moving average filter and an ideal low-pass filter.  For this purpose, a 

parametric study is performed using a numerical model of a railway truss bridge.  Results show 

that MPCA has higher damage detectability than RRA.  On the other hand, RRA detects 

damages faster than MPCA.  Seasonal variation removal reduces the time to damage detection 

of MPCA in some cases while the benefits are consistently modest for RRA. 
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1 Introduction 

Recently, the collapse of civil structures such as the I-35W bridge (USA, 2007) [1-2] and the 

Paris Airport (France, 2004) [3] has decreased public confidence in the safety of structures.  

Thus, to ensure that structures behave according to design criteria, it is useful to monitor their 

performance.  Monitoring for possible damage is referred to as structural health monitoring 

(SHM).  Due to advances in sensor technology, data acquisition systems and computational 

power, the number of structures that are monitored is growing. Thus, large quantities of 

measurement data are retrieved every day and much more will be available in the future.  

Extracting useful information from this data to detect damage is a challenge for SHM.  This 

task is even more difficult when measurement data are influenced by environmental variations, 

such as temperature, wind and humidity. Brownjohn et al [4] studied the thermal effects on 

performance on Tamar Bridge and showed that thermal effects dominate the measured bridge 

behaviour. Catbas et al. [5] observed that the peak-to-peak strain differential due to temperature 

over a one-year period is more than ten times higher than the strain due to observed maximum 

daily traffic.  

Generally, there are two classes of data interpretation methods in SHM: model-based methods 

and model-free methods.  These two classes are complementary since they are appropriate in 

different contexts.  Strengths and weaknesses of both classes have been summarized in the 

ASCE state-of-the-art report on structural identification of constructed systems [6]. 

Model-based data interpretation methods typically utilize measurement data to identify models 

that are able to reflect the real behavior of structures.  This is done through comparing structural 

responses with predictions of behavior models [7-8].  Thus, such methods involve the 

development and use of detailed models to validate the results.  However, for civil 

infrastructures, creating such models is often difficult and expensive, and may not always 
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reflect real behavior due to the presence of uncertainties in complex civil-engineering 

structures [9].  Furthermore, model-based methods are not necessarily successful in identifying 

the right anomaly [10]. 

Alternatively, model-free data interpretation methods involve analyzing data without 

geometrical and material information.  They evaluate data statistically and thus, they do not 

require knowledge of structural behavior.  Since these methods involve only tracking changes 

in time-series signals, they are well-suited for analyzing measurements during continuous 

monitoring of structures.  Omenzetter et al. [11] used a discrete wavelet transform method 

(DWT) [12-13] to detect changes in strain.  Omenzetter and Brownjohn [14] proposed an 

autoregressive integrated moving average model method (ARIMA) to detect damage from 

measurements.  Lanata and Grosso [15] applied a proper orthogonal decomposition method for 

continuous static monitoring of structures.  Yan et al. [16-17] proposed local PCA-based 

damage detection for vibration-based SHM. The method involves a two-step procedure: a 

clustering of data space into several sub-regions and the application of PCA in each local 

region.  All these studies are limited to a single methodology without comparison to other 

methods. 

While much research has been performed, in general, no methodology for detection of 

anomalous behavior from measurement data can be reliably applied to complex structures in 

practical situations [9].  Most recently, a comparative study of many data interpretation 

methods for continuous monitoring has been performed [18].  Posenato et al. [9, 18] proposed 

two model-free data interpretation methods, MPCA and RRA, to detect and localize anomalous 

behavior for the particular context of civil-engineering structures, and compared their 

performance with many other methods: DWT [12-13], ARIMA [14], auto regressive with 

moving average [19-21], Box-Jenkins method [13], wavelet packet transform [22-23], instance 
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based method [24] and correlation anomaly scores analysis [25].  These comparative studies 

demonstrated that the performances of (MPCA) [9] and (RRA) [26-28] for anomaly detection 

were superior to other methods when dealing with civil-engineering challenges such as high 

noise levels, missing data and outliers.  Both methods were also observed to require low 

computational resources to detect anomalies, even when there were large quantities of data.  

However, these methods were not evaluated in terms of detectability and time to detection.  For 

example, in some cases, damage is not detectable for several weeks after it occurs. 

This paper includes a study of strategies to reduce time to detection.  It is carried out through 

investigating the influence of data processing for removing seasonal temperature-variations on 

these two model-free data-interpretation methods.  Also, two criteria, damage detectability and 

time to detection, are evaluated with respect to changes in sensor-damage location, traffic 

loading, and damage level in a truss bridge.  The paper is organized as follows: Section 2 

describes moving principal component analysis and robust regression analysis.  Section 3 

introduces two data processing techniques for removing seasonal variations.  Section 4 presents 

the results of the study.  Section 5 discusses the effects of sensor-damage location, traffic 

loading and damage level in a case study of a railway bridge in Zangenberg, Germany.  This 

section also compares MPCA and RRA in situations where seasonal variations are removed or 

not. 

2 Model-free data interpretation methods for continuous monitoring of structures 

Model-free data interpretation methods involve analysing measurement data and tracking 

changes in a structure without use of geometrical and material information.  This section 

describes two model-free data interpretation methods, MPCA and RRA. 
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2.1 MPCA for continuous monitoring of structures 

MPCA is a modified version of principal component analysis (PCA) [29].  PCA is a 

mathematical process of transforming a number of possibly correlated variables into a smaller 

number of uncorrelated variables, called principal components; the first few retain most of the 

variation present in the original variables.  In the context of structural health monitoring, it is 

used to enhance the discrimination between features of undamaged and damaged structures and 

to limit calculation time.  Nevertheless, for continuous monitoring when the number of 

measurements increases, an anomaly may be detected late due to the measurements that define 

the undamaged state.  At the time when damage occurs, the influence of old measurements 

(undamaged state) is much higher than that of new measurements (damaged state). Additional 

time is required to have the eigenvector values dominated by new measurements so that they 

change values enough to indicate damage. Also, the computational time to compute principal 

components increases with the number of measurements.  To address this, Posenato et al. [9] 

proposed “moving” PCA (MPCA) that computes the principal components inside a moving 

window of constant size.  MPCA is applied to anomaly detection for continuous monitoring of 

structures as shown in Figure 1.  

MPCA is carried out by observing the evolution of principal components.  Damage is identified 

when there is a change in the values of principal components.  Principal components are not 

employed to reconstruct data sets.  MPCA starts with the construction of a matrix U  that 

contains all time histories measured at all sensors as follows 
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mN  is the total number of observations of a time history, and sN  is the total number of sensors 

on the structure. Thus, each column of the matrix U  is the time history of each sensor. 

A fixed-size window moves along the columns of U  to extract datasets at each time step k  as 
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wN  is the total number of observations within the moving window. To apply PCA to this 

dataset kU , each time series inside the active window is first normalized by subtracting its 

mean value.  At time jt , the vector of the normalized measurements is: 

 1 1 2 2( ) ( ) ( ) ... ( )
s sj j j N j Nt u t u u t u u t u = − − − u  (3)

u( )jt  is the vector of normalized measurements at time jt  and iu  is the mean values for sensor 

i .  Then, the s sN N×  covariance matrix kC  for all measurement locations, summed over all 

time samples from time step k  to wk N+  , is given by 

 ( ) ( ) 
wk N T

k j j
j k

t t
+

=

= ∑C u u  (4) 

The eigenvalues iλ  and eigenvectors iψ  of the covariance matrix satisfy 

 ( ) 0k i iλ− =C I ψ   for i  = 1, …, sN  (5) 

Here, an eigenvector iψ  is also called a principal component.  Sorting the eigenvectors by 

eigenvalue in decreasing order, the components are arranged in order of significance.  The first 

few principal components contain most of the variance of time series while the remaining 

components are defined by measurement noise.  Thus, MPCA is used for anomaly detection 

by analyzing only the eigenvectors that are related to the first few eigenvalues. 
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Application of MPCA for anomaly detection during continuous monitoring includes two 

phases: training and monitoring.  In the training phase, the structure is assumed to behave 

normally (no damage).  The aim of this initialization phase is to estimate the variability of the 

time series and to define the thresholds of normal measurements in order to detect anomalous 

behavior in the monitoring phase.  To do this, each eigenvector iψ  during the reference period 

with time step 1k =  to ref wk N N= − , is stored and values for mean iµ  and standard deviation 

iσ  are determined.  The thresholds of normal measurements are defined to be 6± σ .  If there is 

no anomaly (damage), the eigenvectors remain within these thresholds. 

In the monitoring phase, the window continues moving along time series to compute new 

eigenvalues and eigenvectors at each time step.  When damage occurs, the mean values of time 

series and the components of covariance matrix change and as consequence, so do values of 

eigenvalues and eigenvectors.  If the value jiψ  of vector iψ  exceeds the threshold bounds 

( )jiσ±6 , an anomaly is flagged by sensor j  at time step wk N+ . 

An advantage of the use of a moving window rather than all measurements is speed of 

calculation of process parameters, thereby detecting the presence of anomalies in structures 

more rapidly since very old measurements do not bias results.  However, there is always some 

delay in detection; this paper examines this aspect.   

Another advantage is adaptability.  Once new behavior is identified, adaptation allows 

detection of further anomalies.  This is done by defining a new training phase corresponding 

to the new state of structure after each anomaly [9].  Note that the new training phase starts 

immediately after anomaly detection. 

A key parameter of MPCA is the size of the moving window wN .  This parameter should be 

sufficiently large so that it is not influenced by variations in measurements due to 
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environmental effects and small enough to provide rapid anomaly detection. As stated earlier, 

if the time series has periodic variability, the window size should be at least as long as the 

longest period.  This choice ensures that mean values of the time series within a window are 

stationary and that eigenvalues of the covariance matrix do not have periodic behavior. 

2.2 RRA for continuous monitoring of structures 

Similar to MPCA, application of RRA for anomaly detection for continuous monitoring also 

includes two phases: training and monitoring, as shown in Figure 2.  However, RRA does not 

use a window moving along time series, but rather the whole time series in the training phase 

from first time step 1k =  to refk N=  to define the thresholds of confidence intervals for 

detecting anomalous behaviors in the monitoring phase.  The idea behind RRA for continuous 

monitoring of structures is to find all sensor pairs that have a high correlation in the training 

phase, and then to focus on the correlation of these couples to detect anomalies in the 

monitoring phase. 

To find sensor pairs with a high correlation, the correlation coefficient ,si sjr  between two 

sensors is  and js  [ ]( ), 1 si j N= −  are computed and compared with the correlation coefficient 

threshold ( )tr .  All sensor pairs having a correlation coefficient greater than the threshold are 

contained in matrix S  in order to compute the robust regression line regression.  The linear 

relation between is  and js  is written as 

 ' j is as b= +  (6) 

where ' js  represents the value of js  calculated according to the linear relation.  a  and b  are 

the coefficients of the robust regression line estimated from measurements in the training 

phase.  These coefficients are estimated using iteratively reweighted least squares.  Then, the 
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standard deviation ijσ  of the difference 'j js s−  in the training phase is computed to define the 

threshold of confidence intervals for each sensor pair is  and js .  The threshold bounds of 

normal measurements (no anomaly) is defined to be 6 ijσ . 

In the monitoring phase, ' js  is computed for each time step based on the linear relation above.  

If the differences 'j js s−  in outN  consecutive measurements from time step k  to outk N+  are 

out of the threshold bounds ( )6 'ij j js sσ < −  , the anomaly is detected by the sensor pair is  and 

js  at time step k .  Aside from the advantage of being insensitive to outliers and missing data, 

RRA is capable of adapting to the new state of a structure for identifying further anomalies by 

redefining a new training phase after an anomaly is identified. 

2.3 Comparison of methods 

MPCA and RRA are essentially based on correlation between measurements. However, the 

derivation of the correlation for each method is different.  The correlation for MPCA is 

determined using a covariance matrix within a moving window.  On the other hand, the 

correlation for RRA is determined through the use of robust regression lines.  Another 

difference is that MPCA performs analysis of the correlation for all measurement data, while 

RRA does the analysis for all measurement pairs that have high correlations, i.e. the coefficient 

of correlation beyond a defined threshold.  Also, MPCA performs PCA within a moving 

window in order to reduce the size of the buffer in the training phase.  For RRA, on the other 

hand, the identification is performed for every measurement. Therefore, a new data point is not 

buffered by previous measurements.  Three principal differences between MPCA and RRA are 

summarized in Table 1.  
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3 Data processing for removing seasonal temperature variations 

Temperature variations have a dominant effect on the response and performance of a structure 

when compared with the influence of factors such as wind and traffic.  Temperature variation 

generally includes seasonal and daily variations as shown in Figure 3.  Daily variation is the 

periodic change in temperature over 24 hours while seasonal variation is the periodic change 

from spring to winter every year.  The frequency of daily variation is thus much higher than 

that of seasonal variation.  The seasonal temperature variation can be simply filtered from 

measured temperature data by using low-pass filter methods. 

The aim of using low-pass filter methods is to remove seasonal temperature effects from 

measurement data before implementing MPCA and RRA.  To do this, it is assumed that the 

relation between seasonal temperature variation and its effect on structural responses is linearly 

expressed as 

 s stε α= ×∆  (7) 

where sε  is the structural response due to  the seasonal temperature variation st∆ . 

In order to calculate the coefficient α , the extraction of seasonal variations from measurements 

in the first year (training phase) is studied for two filters: moving average [30] and ideal low-

pass [31].  The moving average filter used in this study is a center moving average with a flat 

weighting.  It smoothes measured signals through replacing each data point with the average 

of neighboring data points inside a moving window.  Alternatively, an ideal low-pass filter 

allows for passing low frequency components in a signal, while attenuating frequency 

components which are higher than a specified cutoff frequency.  This study utilizes an ideal 

low-pass filter of the signal processing toolbox in MATLAB. 
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Given the calculated coefficient α , the structural response due to seasonal temperature 

variation in subsequent years is predicted as   

 ' 's stε α= ×∆  (8) 

where 'sε  is the predicted structural response due to the seasonal temperature variation 'st∆ .  

The structural response dε  due to daily temperature variation in subsequent years is achieved 

by decomposing structural response due to seasonal temperature variation from response 

measurement ε  as 

 'd sε ε ε= −  (9) 

 

4 Parametric study 

As discussed in the introduction, the aim of this paper is to evaluate two model-free data 

interpretation methods: MPCA and RRA.  The evaluation is carried out through a parametric 

study based on a framework as shown in Figure 4.  MPCA and RRA are evaluated in term of 

two features, damage detectability and time to damage detection, with respect to the change in 

sensor-damage locations (distances from sensors to damage locations), traffic loading and 

damage levels. 

For the purposes of this paper, damage detectability is defined as follows:  

 Damage detectability (%) 100% - Minimum detectable damage level (%)=  (10) 

where the minimum detectable damage level is the smallest percentage loss of stiffness in a 

member that can be detected.  Damage detectability is the capability to interpret measurement 

data in order to identify damage.  For continuous monitoring of structures, damage detectability 

may be affected by sensor-damage locations and traffic loading levels. 
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Time to damage detection is the time interval from the moment when damage occurs to the one 

when damage is detected.  In addition to sensor-damage locations and traffic loading intensity, 

damage levels may also affect the time to damage detection of these methods.  Finally, the 

influence of data processing to remove seasonal variations on these two features is also 

investigated in the case study that is described next. 

 

5 Case study 

To study the performance of model-free data interpretation methods for continuous monitoring 

of structures, a railway truss bridge in Zangenberg, Germany has been selected. This 80-m steel 

bridge is composed of two parallel trusses each having 77 members. Their properties are 

summarized in Table 2.  The truss members are made of steel having an elastic modulus of 200 

GPa and a density of 7870 kg/m3.  A finite element analysis under traffic loading and 

temperature variation provides responses (strains) at 15 members (marked by black bars on the 

truss in Figure 5.  Figure 5 also shows damage locations marked as black dots. Only one truss 

of the bridge is modeled and the truss model is fixed at both ends. 

Traffic loading is simulated by applying a randomly generated vertical load (0-19 tonnes) at 

each node in the bottom chords. A load of 19 tonnes is equivalent to an axle load of a railway 

locomotive.  In this example, damage is assumed to result in a loss of axial stiffness.  Damage 

is introduced at three locations.  The first damage is at a sensor location while the other two 

occur away from sensors.  Damage scenarios are used to evaluate the effects of sensor-damage 

location on the damage detectability and time to anomaly detection of the two methods.  

Furthermore, varying damage levels and traffic loading are simulated to evaluate the effects of 
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traffic loading and damage levels on anomaly detection.  All effects are evaluated with and 

without data processing for seasonal temperature effects.   

Figure 6 shows a time history of strain measurement at the top chord of the truss.  

Measurements are taken four times a day. Due to seasonal temperature effects, periodic 

behavior in structural response is visible. It is seen that although 20% damage is introduced at 

2190 days at a sensor location (location 1), it is not recognizable from the plot due to 

temperature variations.  However, this damage is detectable using MPCA and RRA as shown 

in Figure 7.  The time of damage occurrence is identified by observing the variation of the 

eigenvector values.  Damage is detected when values of the eigenvector exceed the threshold 

bounds ( 6σ± ).  In a similar way, for RRA, the identification is performed by observing the 

evolution of the difference between measurements and the regression line. 

 

5.1 Damage detectability with and without seasonal variation removal 

5.1.1 Sensor-damage location 

This section evaluates the effect of sensor-damage location on damage detectability of MPCA 

and RRA with and without data processing.  Detection studies for three damage scenarios with 

one scenario at a sensor (location 1) and two scenarios away from sensors (location 2 and 3) 

are carried out.  Damage levels from 3% to 100% (complete damage) with traffic loading of 

100% (percentage of 19 tons) are applied at each node in the bottom chords) are investigated.  

Figure 8 shows the damage detectability of MPCA and RRA for all damage scenarios.  As 

expected, for both methods, when damage occurs close to sensors, damage detectability is 

highest.  In addition, by comparing minimum detectable damage levels without seasonal 

variation removal, Figure 8 demonstrates the damage detectability of MPCA is higher than that 
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of RRA, particularly for damage far away from sensors.  For damage at location 3, the damage 

detectability decreases from 90% for MPCA to 68% for RRA.  

It is also observed in Figure 8 that the seasonal variation removal has a significant influence on 

the damage detectability of MPCA when compared with RRA.  Indeed, at damage location 3 

after removing seasonal variations, the damage detectability when using MPCA decreases 30% 

(from 90% to 60%) while that using RRA is unchanged (about 1%).  The discussion at the end 

of this paper provides an explanation.  

5.1.2 Traffic loading 

The effect of traffic loading with respect to position, magnitude and speed on the damage 

detectability of MPCA and RRA is studied.  Traffic loading contributes to signal noise.  Five 

traffic loading levels presented in terms of the percentage of 19 tons (from 20% to 100%) are 

analyzed for damage at location 2.  Figure 9 shows the effect of traffic loading on the damage 

detectability of both methods with and without seasonal variation removal. 

The damage detectability of MPCA and RRA decreases as traffic loading increases.  It is also 

found that the effect of traffic loading on the damage detectability of MPCA is less than that 

of RRA.  In addition, Figure 9 indicates that removal of seasonal variations reduces the damage 

detectability of MPCA while it does not affect that of RRA.  For example, at traffic loading 

level of 40%, the damage detectability of MPCA without data processing is 95%, but decreases 

to 75% when removing seasonal variation.  At the same traffic loading, however, the damage 

detectability of RRA changes only 2% after removing seasonal variation.  
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5.2 Time to detection with and without seasonal variation removal 

5.2.1 Sensor-damage location  

The effect of sensor-damage location on time to detection for MPCA and RRA is also studied 

for two cases: with and without seasonal variation removal.  The same three damage scenarios, 

as introduced in the previous section, are examined.  This study is performed for a damage 

level of 60% and a traffic level of 50%. 

The time to damage detection of MPCA and RRA with and without seasonal variation removal 

is presented in Figure 10 .  It is seen that for MPCA, damage taking place close to sensors is 

detected faster than that away from sensors.  For example, the time to detect the damage at 

location 1 is 23 days, and this increases to 42 days for damage at location 2.  In contrast to 

MPCA, RRA can detect damage away from a sensor as fast as damage at the sensor.  This 

demonstrates that for these scenarios, time to damage detection is not affected by sensor-

damage location when using RRA. 

It is also observed in Figure 10 that for MPCA, removing seasonal variation reduces 

significantly the time to damage detection for damage at a sensor location.  Indeed, time to 

detect damage at location 1 decreases from 23 days to one day after removing seasonal 

variation. Eigenvector time histories computed from this damage scenario at location 1 before 

and after removing seasonal variation are presented in Figure 11 .  For RRA, nevertheless, the 

influence of seasonal variation removal on time to damage detection is negligible.  As shown 

in Figure 12 , the time to detect damage remains the same before and after removing seasonal 

variation. 
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5.2.2 Traffic loading  

Similarly to the study on traffic loading in Section 5.1, this section analyzes the effect of traffic 

loading on the time to damage detection.  All parameters used here are the same as those in the 

previous section, except that the analyses are performed for 60% damage at location 2.  The 

results of the time to detection for both methods with and without seasonal variation removal 

are presented in Figure 13.  It is seen that as the traffic loading level increases, time to damage 

detection of MPCA increases while that of RRA does not change.  The increase of time to 

detection of MPCA is 40 days without seasonal variation removal and is 160 days when 

removing seasonal variation.  On the other hand, the time to detection of RRA remains at one 

day for traffic loading from 20% to 80%.  Therefore, it can be concluded that RRA is unaffected 

by traffic loading.  It is also noted in Figure 13 that the influence of removing seasonal variation 

on time to damage detection of MPCA is not stable. This removal only reduces time to 

detection for low traffic loading level (less than 40%). 

Figure 14 presents eigenvector time histories when using MPCA with and without data 

processing at a traffic loading of 10%. It shows that seasonal variation removal is able to reduce 

time to detection from 23 days to 9 days. 

5.2.3 Damage level 

In order to evaluate the effect of damage level on the time to damage detection of both methods, 

a range of damage severity from 20% to 100% (complete damage) are considered at a traffic 

loading level of 50%.  Figure 15 presents the time to damage detection using both methods 

before and after removing seasonal variation.  As anticipated, high damage level results in short 

times to detection.  For MPCA, without use of seasonal variation removal, the time to detection 

reduces from 131 days to only one day for damage level changes from 20% to 100%.  Figure 
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15 also indicates that although seasonal variation removal results in increasing the minimum 

detectable damage level of MPCA to 40%, it can improve times to detection when damage 

level is greater 60%.  Figure 16 shows the eigenvector time histories related to the main 

eigenvalue at damage level 80% before and after the data processing.   The time to damage 

detection improves by 18 days. 

For RRA, with the same sensor-damage location and traffic loading, changes in damage levels 

do not affect time to damage detection, even when removing seasonal variations.  For damage 

levels larger than 50%, RRA can detect damage immediately. 

5.3 Summary of observations 

Results of the parametric study are summarized in Table 3.  The following observations are 

made within the context of the definitions of damage detectability and time to detection 

described in this paper: 

• The time to detection of RRA is shorter than that of MPCA. 

• MPCA provides greater damage detectability than RRA. 

• Removing seasonal variations decreases the damage detectability of MPCA. 

• Removing seasonal variations has a small influence on damage detectability of RRA. 

• Decreases in traffic loading increase damage detectability of both MPCA and RRA.  

• When damage detectability is high (in case of high damage levels and low traffic loading), 

Removing seasonal variations may shorten the time to damage detection of MPCA. 

• The negative effect of traffic loading and damage level on time to detection using RRA is 

less than that using MPCA. 
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5.4 Discussion 

MPCA provides greater damage detectability than RRA.  A possible reason for this observation 

is that MPCA performs the analysis of correlation of all measurements while RRA does so only 

for highly correlated measurement pairs (as mentioned in Section 2.3).   Therefore, MPCA is 

more sensitive to change (or damage) of structures than RRA. 

RRA detects damage faster than MPCA.  This can be attributed to another difference between 

RRA and MPCA.  MPCA evaluates eigenvectors within a moving window, resulting in a buffer 

from old measurements, whereas RRA evaluates directly the difference between a measured 

value and a robust regression line for each of the measurement points. 

Another observation is that removing seasonal variation has a negative influence on damage 

detectability of MPCA while it has a very small influence on that of RRA.  Seasonal 

temperature variations can be considered as a load case which has a different period from other 

load cases such as daily temperature variation and traffic loading.  Such load cases establish a 

correlation of measurements.  For MPCA, removing seasonal variation causes the loss of major 

correlation within data sets, resulting in fluctuation in eigenvector time histories.  As a result, 

the threshold bounds also increase.  This is seen in Figure 17 with eigenvector time histories 

using MPCA with and without removing seasonal variations for a damage scenario (20% 

damage at location 1).  Consequently, seasonal variation removal reduces damage detectability 

of MPCA.  

Unlike MPCA, which is based on correlations of all measurements, RRA performs the analysis 

only for measurement pairs which have strong correlations within the training phase.  

Therefore, the absolute difference between measurement data and the regression line will 

always be relatively small before and after removing seasonal variations; and the threshold 

bounds will be similar with and without seasonal variation removal.  Figure 18 shows the plots 



 
 
   

 

  19 
 

of the absolute value of the difference between strain measurement and robust regression line 

before and after data processing. The sizes of threshold bounds are similar. 

6 Conclusions 

From the observations made in the previous section and considering the scope of this study, 

the following conclusions are drawn: 

• Moving principal component analysis (MPCA) is generally better than robust regression 

analysis (RRA) in terms of damage detectability.  On the other hand, RRA is better than 

MPCA in terms of time to damage detection. 

• RRA is not sensitive to seasonal variations. 

• For MPCA, there is a trade-off between damage detectability and time to damage detection 

when removing seasonal variations. 

From evaluating the performance of MPCA and RRA, it is recommended that these two 

methods should be considered complementary since they are most appropriate in different 

contexts.  Therefore, synergies between MPCA and RRA could result in better damage 

detection strategies for structural health monitoring. 
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Figure 1. MPCA is applied to anomaly detection for continuous monitoring of structures according to 
this flowchart. 
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Figure 2. RRA is applied to anomaly detection for continuous monitoring of structures 

Start 

Anomaly detected by a sensor 
pair  and  at time step  

Input 

A dataset  composed of all measurements  from sensors 

, Eq. (1) 

Number of points in training phase  

Correlation coefficient threshold  

Anomaly criteria: number of points out of the confidence interval  

Compute correlation coefficient  for all sensors   and  

 using measurements until time step   

No 

 

If , store sensor pairs  and  in matrix  

Compute robust regression line for sensor pairs in  

Compute standard deviation  of the difference  

 

Yes 

 

Yes 

Update the new state of structure 

Redefine a new training phase, 
starting from time step  

Improve structural 
management 

No 

Tr
ai

ni
ng

 p
ha

se
 

M
on

ito
rin

g 
ph

as
e 

Compute  at time step  to  for all sensor 
pairs in  



 
 
   

 

  26 
 

 

 

  

 
Figure 3. Temperature variation (seasonal and daily variation) 

           
 

Figure 5. A truss structure of a 80-m railway bridge with sensor locations marked as black bars and 
damage locations marked as black dots. 
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Figure 6. Strain time history measured by a sensor at damage location 1. 

          
Figure 7.  Plots of eigenvectors related to the main eigenvalue computed using MPCA (left) and the 
absolute value of the difference between strain measurement and regression line computed using RRA 
(right) for the corresponding damage scenarios in Figure 6. 

          
Figure 8.  Damage detectability at three locations using MPCA (left) and RRA (right) with and without 
seasonal variation removal. 
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Figure 9.  Damage detectability at location 3 using MPCA (left) and RRA (right) for traffic loading 
levels. 

 

          
Figure 10.  Time to detection for the three damage locations using MPCA (left) and RRA (right).  This 
study is performed at a damage level of 60% and a traffic loading of 50%. 

 

 
Figure 11.  Eigenvector time histories related to the main eigenvalues computed using MPCA for a 
damage level of 60% at location 1 and a traffic loading of 50% without removing seasonal variation 
(left), and with removing seasonal variation using moving average filter (middle) and  ideal low-pass 
filter (right). 
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Figure 12.  The absolute value of the difference between strain measurements to robust regression line 
for a damage level of 60% at location 1 and a traffic loading of 50% without removing seasonal variation 
(left), and with removing seasonal variation using moving average filter (middle) and  ideal low-pass 
filter (right). 

          
Figure 13.  Time to damage detection at location 2 using MPCA (left) and RRA (right) for traffic loading 
levels. 

 
Figure 14.  Eigenvector time histories related to the main eigenvalues computed using MPCA for 
damage level of 60% at location 2 and traffic loading 20% % without removing seasonal variation 
(left), and with removing seasonal variation using moving average filter (middle) and  ideal low-pass 
filter (right). 
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Figure 15.  Time to damage detection using MPCA (left) and RRA (right) for damage scenarios with 
the range of damage level from 20% to 80% at location 2.  

 
Figure 16.  Eigenvector time histories related to the main eigenvalues computed using MPCA for 
damage level of 80% at location 2 and traffic loading 50% without removing seasonal variation (left), 
and with removing seasonal variation using moving average filter (middle) and ideal low pass filter 
(right). 

          
Figure 17.  Plots of eigenvector time histories related to the main eigenvalues computed using MPCA 
without (left) and with (right) data processing for removing seasonal temperature effects. 
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Table 1 Differences between MPCA and RRA in the context of continuous monitoring of structures 

MPCA RRA 

• Analyze all measurement data. 

 

• Analyze only measurement pairs 

which are strongly correlated in the 

training phase. 

• Observe changes in eigenvectors 

calculated from a covariance matrix. 

• Observe changes in distance 

between measurement points and 

regression line. 

• Performing PCA within a moving 

window. 

• No window is used.  

 

          
Figure 18.  Plots of absolute value of the difference between strain measurement and regression line 
computed using RRA without (left) and with (right) data processing for removing seasonal 
temperature effects. 
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Table 2. Properties of truss members of a railway bridge in Zangenberg, Germany 

Member type Area (m2) Ix (m4) Iy (m4) Length (m) 

Top chord 5.15 x 10-2 2.267 x 10-3 2.586 x 10-3 4.00   

Bottom chord 3.03 x 10-2 1.467 x 10-3 1.458 x 10-3 2.00 

Vertical 2.19 x 10-2 1.215 x 10-3 4.245 x 10-5 4.00  

Diagonal 3.69 x 10-2  9.704 x 10-4 4.164 x 10-3 5.66 

Small diagonal 2.19 x 10-2 1.215 x 10-3 4.245 x 10-5 5.66 
 

 
 

Table 3. Summary of the parametric study   

Parameter Damage detectability Time to damage detection 

MPCA RRA MPCA RRA 

Removal of seasonal variations ↓ * ↕ * 

Proximity of the sensor location 
to the damage location ↑ ↑ ↓ * 

Decreases in traffic loading ↑ ↑ ↓ * 

Decreases in damage level … … ↓ * 

↑    =   positive influence   
↓    =   negative influence 
↕    =   influence may be positive but only for specific situation 
*    =   influence is modest 
…  =   influence is not studied (damage detectability is defined by the minimum detectable damage level)    
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