Deliverable 3.1: Report on Learning Structured Sparse Models

The aim of this work package (WP) is to explore approaches to learn structured sparse models, that is sparse models where the sparsity assumption seems not to be sufficient, or when there is hope to exploit some additional knowledge together with the sparsity hypothesis. The concept of structured sparsity can denote in fact various types of structure, which are strongly different in nature, yet related and interacting.


Year:
2011
Keywords:
Note:
Deliverable 3.1 of the Sparse Models, Algorithms and Learning for Large-Scale Data (SMALL) project founded by the EU FP7 FET-Open program.
Laboratories:


Note: The status of this file is: Involved Laboratories Only


 Record created 2011-06-18, last modified 2018-01-28

External link:
Download fulltext
n/a
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)