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Abstract

We introduce an approach to learning convolution filters whose joint output can be fed to a clas-
sifier that labels them as belonging to linear structures or not. The filters are learned using sparse
synthesis techniques but we show that enforcing constraints is not required at run-time to achieve
good classification performance. In practice, this is important as it drastically reduces the compu-
tational cost.

We show that our approach outperforms the state-of-the-art on difficult, and very different,
images of roads, retinal scans, and dendritic networks.
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Chapter 1

Introduction

Linear structures appear at many different scales and in many different contexts. They can be mi-
crometer scale dendrites in light microscopy image-stacks, centimeter-scale blood vessels in reti-
nal scans, or meter-scale road networks in aerial images. Extracting them automatically and ro-
bustly is therefore of fundamental relevance to many scientific disciplines. However, even though
the topic has received sustained attention ever since the inception of the field of Computer Vision,
both robustness and automation remain elusive.

An important first step is to detect pixels that appear to be the most filament-like so that
they can then be linked into complete line-like structures. Many techniques have been proposed
over the years and some of the most successful ones involve computing the Hessian matrix at
individual pixels by convolving with Gaussian derivatives and relying on the matrix eigenvalues
to classify pixels as filament-like or not [28, 10, 32]. This kind of approach, however, works best
when the linear structures appear as regularly-shaped ribbons, which is not the case in images
such as those of Fig. 3.1 (left). Furthermore, they tend to fail around junctions. Recently, it was
shown that it was possible to improve upon this situation by convolving the image with steerable
filters of various scales and orientations and training an SVM to classify the pixels as belonging to
filaments or not on the basis of their output [11]. The improvement comes from the fact that the
SVM can learn to recognize more complex appearances than that of a simple ribbon. However, in
that approach, the filters themselves are ad hoc.

In this paper, we go one step further and show that the filters themselves can be learned using
techniques from the dictionary learning literature. This yields better results than the methods
that rely either on the Hessian [10] or the steerable filters [11] for many different kinds of linear
structures.

More specifically, we exploit the fact that natural images can be represented as linear combi-
nations of a relatively small number of dictionary elements, which can be learned in an unsuper-
vised way from training images. This has been extensively used for image denoising and object
recognition purposes [25, 30, 19, 13, 4], but only rarely for segmentation purposes. Furthermore
most existing approaches rely on a matrix formulation that is computationally intensive both for
training and at run-time. Here we learn convolutional filters instead [17, 35, 26]. They are still ex-
pensive to train. However, they aremore versatile because they can be used for images of any size
and yield much faster run-times than those of algorithms that use dictionary items of the same
size as the input images. They also do not produce the stitching artifacts inherent to approaches
that represent images as arrays of patches stitched together. As in [26], we do not need to explic-
itly compute the weights required to reconstruct the images. Instead, we can directly convolve
the input image with the learned filters and feed their responses to a classifier. This is important
in practice because it removes the requirement for time-consuming coefficients estimation.

In the remainder of the paper, we first discuss related work on linear structure detection and
dictionary learning. We then present our method and our results.
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Chapter 2

Relevant work

One simple approach to filament detection is to assume that the filament profile has a ridge
shape [5]. This was used in [21] to derive efficient steerable filters for neurite tracing. The Hessian
matrix of the image signal and its eigenvalues have also been intensively used to detect tubu-
lar structures [28, 10, 14, 32]. To detect filaments of various widths, a range of variances for the
Gaussian derivative filters must be used and compared. Other models have used differential ker-
nels [2], looked for parallel edges [8], or fitting superellipsoids to the image [29, 34]. However real
linear structures do not necessarily conform to these ad hoc models, which can drastically impact
performance.

As a result, machine-learning based approaches that can learn more convoluted appearances
have become increasingly attractive. In [1], the distribution of the eigenvalues of the structure
tensor are estimated via Expectation Maximization. Probabilistic Boosting Trees with sparse ro-
tational features have also been demonstrated for vessel segmentation purposes [31]. Support
Vector Machines operating on the Hessian’s eigenvalues have been used to discriminate between
filament and non-filament pixels [27]. In [11] rotational features were computed at each pixel us-
ing steerable filters and fed to an SVM to classify pixels as filament-like or not. It is closely related
to our approach but still relies on ad hoc filters whereas we learn them. As it outperforms the
previous methods, we will compare our approach to it as well as to a Hessian based method [10],
which probably is one of the most popular methods.

Our approach to filter learning is inspired by the recent literature on image modeling [25, 30,
19, 13, 4]. The assumption is that a natural image can be modeled as a sum of a few elements
among a large dictionary that can be learned. The optimization problem is large, but solving it
has become a very active area of research, and it usually converges nicely. This is in contrast with
neural networks, which are also related to our approach but aremore prone to local minimums [3,
12, 22]. The model is usually formulated in matrix form, which would be inefficient for our
purposes and we adopt a convolutional approach [17, 35, 26]. Dictionary learning have been
applied mostly to image restoration [20] and object recognition [24], but not, to the best of our
knowledge, to image segmentation in the literature. It was suggested very recently in [18] but
no experiment was presented. By contrast, here we demonstrate the validity of our approach on
challenging data.
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Chapter 3

Approach

During a training phase, we first learn a filter bank from a set of training images that are represen-
tative of the data we want to segment. We tried both an unsupervised approach and a supervised
one that relies on segmentation ground truth for training purposes.

Given the filter banks, a feature vector can be computed for each pixel of a given image, and a
binary classifier trained to decide if the pixel lies or not on a filament based on its feature vector.

3.1 Learning the Filters

The unsupervised approach we use to learn a bank of linear filters {f j} does so by solving
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where the xi are the training images, ∗ denotes the convolution operator, and the t
j

i s are images
of the same size as the xi images, whose cardinality is that of the filter bank. Similar intermediate
representations have been called “feature maps” in the Convolutional Neural Networks litera-
ture [15]. In practice, we take the f js to be a bank of 121 21× 21 filters.

Eq. (3.1) is the convolutional version of the equation considered in compressive sensing [9] or
LASSO regularization [33]. It seeks a set of filters f j so that the images xi can be reconstructed by

convolving the feature maps tji that are forced to be sparse by the second term. λlearn is a regu-
larization parameter that establishes the relative importance of the two terms. We use stochastic
gradient descent with clipping [7] to find the coefficients for the f j filters, alternatively optimiz-

ing the f js and the t
j

i s in Eq. (3.1). An example of a filter bank together with one of the training
images is depicted by Fig. 3.1.

One key weakness of this formulation is that nothing prevents two filters from independently
converging to an identical solution. This usually happens when strong gradients, which domi-
nate the reconstruction error term, are present in the images. It therefore tends to happen with
images containing neat, curvilinear profiles. The regularization term pushes for an economy in
the representation. However, the regularization parameter λlearn cannot make the sparsity penalty
prevail over the reconstruction error without trivial filters appearing. Furthermore, the ℓ1 regular-
izer penalizes similarly all cases where a certain amount of energy is split equally among similar
filters. In fact, this is the main difficulty in using the ℓ1 norm in place of the ℓ0 norm for sparsity
promotion. Surprisingly enough, and to the best of our knowledge, there is no approach that
aims specifically at solving this issue.

In order to encourage filters to assume different shapes, we have altered the optimization
problem in Eq. (3.1) by adding a penalty term that accounts for the squared dot product between
the filters:
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CHAPTER 3. APPROACH 4

Figure 3.1: Left: One of the retinal scans we used in our experiments. Right: Learned filters for
the retinal scans using the unsupervised approach of Eq.(3.2).
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where the third term penalizes filters that are too close from each other and whose dot product
is therefore large. This is also solved by stochastic gradient descent with clipping, and tends to
converge nicely.

3.2 Computing the Feature Vectors

The f j filters can then be used to compute a feature vector for each pixel of an image x. One way
to do this is to perform an optimization similar to Eq. (3.1) on the feature maps tj only:
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As noted by previous works [24, 26], the regularization parameter λsegm should be much smaller
than λlearn to reach good performances. The feature vector v(z) for a pixel z is then made of
corresponding values in the tj :

v(z) = [t1(z), . . . , tn(z)]⊤ , (3.4)

where n is the number of filters.
The optimization of Eq. (3.3) is, however, computationally expensive. We therefore tried an-

other approach, where we simply take the feature vectors as the results of the convolution be-
tween the learned filters and the image:

v(z) = [(f1 ∗ x)(z), . . . , (fn ∗ x)(z)]⊤ . (3.5)

This is much faster to compute, and as our experiments show, performs as good as the previous
approach.

Finally, we train a classifier to label pixels as filament or background based on their feature
vectors, using a training set made of the training images and their ground truth segmentations.
We do not use any post-processing.
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3.3 Potential Improvements

Because the segmentation ground truth is also available, we also tried to exploit it by introducing
a supervised version of Eq. (3.1):
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where the yis are images that contain the ground truth segmentations for the xis, properlymapped
in [−1, 1], and γ weights the importance of the supervised term. The hyperbolic tangent is used
to push the reconstruction obtained by convolution towards one of the two extrema represented
by the ground truth. We are able to frame the problem in this manner because the areas we are
interested in segmenting in retinal scans are typically darker than the rest of the image, therefore
we can directly map the intensities to the ground truth data. In this way, a single dictionary can
be used to filter the image and directly extract the segmentation.

This optimization problem is, however, more difficult than the one of Eq. (3.1), and conver-
gence is difficult to achieve. In particular, when both the filter dot product and the supervised
terms are included, the coefficients λlearn, the stochastic gradient descent step η, ξ, and γ must
be accurately orchestrated to thwart divergence. This turned out to be a very ticklish matter,
increasing the attractiveness of unsupervised solutions.

To improve the convergence of the optimization scheme, one effective approach is to whiten
the data [16]. This transforms a first order method, like our stochastic gradient descent, into a
second order one, with a substantial acceleration in the convergence. Moreover, whitening has
been recently observed to represent a key component in the classification pipeline for certain
datasets [26, 6]. We have therefore extracted a whitening filter using the same technique pre-
sented in [26], and used it to whiten the dataset both at training and testing time for some of the
experiments.
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Results

We evaluated our method on three very different datasets.
The first one is the publicly available DRIVE dataset of retinal images,with the aim of auto-

matically segmenting blood vessels. It is composed of 40 RGB-formatted retinal scans, which
are originally obtained for diagnosis of diabetic retinopathy. In our experiments, we used only
the green channel since it has been shown to give the highest contrast between background and
vessels [23]. Fig. 3.1 shows an example retinal scan from this dataset. The images typically have
a uniform background with the vessels appearing as dark linear structures. We used segmen-
tations of the underlying vasculatures provided by expert ophthalmologists as ground truth for
performing Receiver Operating Characteristic (ROC) analysis.

The second dataset is made of brightfield micrographs such as that of Fig.4.1. The brightfield
micrographs are obtained from biocityne-dyed rat brains. Due to irregularities of the staining
process, they contain both structured and unstructured noise that is difficult to distinguish from
the dendrites.

Our third dataset is made of satellite images such as that of Fig. 4.2. They contain road net-
works of a residential area in the United States. Segmenting streets from these images is a chal-
lenging task since they are often occluded by trees along roadsides and medians. Furthermore,
the image intensities of the streets vary according to the quality of the concrete, and the back-
ground is cluttered with many complex structures that can be mistaken for roads, such as houses,
swimming pools, and parking lots.

For ROC analysis of the two last datasets we manually annotated the dendrites and the streets
and use these annotations as ground truth for training and testing.

In the following section, we first describe the experimental setup and provide comparative
results for the three datasets. We then discuss the effect of enforcing sparsity instead of using
plain filter convolutions during classification and that of incorporating supervision in learning
the filter banks.

Figure 4.1: Left: One of the brightfield microscopy images used in our experiments. Right:
Learned filters for the such dataset using the unsupervised approach.
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Figure 4.2: Left: One image of the roads dataset used in our experiments. Right: Learned filters
for the such dataset using the unsupervised approach.

4.1 Experimental Setup

We divide the manually annotated ground truth for each dataset into disjoint training and test
sets, leaving at least one whole image for testing. For supervised classification, positive examples
are randomly selected from the centerlines of the linear structures and negative ones from the
background. We collect hard negative instances by randomly sampling points within a certain
distance from the linear structures. These examples constitute half of the negative samples. The
other half are again randomly selected from the rest of the background. In our experiments, unless
otherwise stated, we used 10000 positive and 10000 negative examples for training and validation
for each dataset.

To account for contrast and brightness variations across different images, we rescale pixel in-
tensity values using a zero-mean unit-variance normalization. For each sample zn in the training
set we then compute a feature vector vn by convolving the learned filters with the normalized im-
ages. These feature vectors are used to train classifiers at training time and to obtain classification
scores at test time. In this paper we used both AdaBoost and Support Vector Machines (SVMs) as
baseline classifiers.

Recall that the function optimized by AdaBoost is

ψ(vn) =
M
∑

i=1

αih(vn), (4.1)

where M stands for the number of the weak classifiers that form the strong classifier, and αi is
an scalar that multiplies the weak classifiers h(·). In this paper, we use two different functions
of the feature vector as weak classifiers. The first one is a simple threshold on one of the vector
coordinates. The second one is a threshold on the projection of vn on a random unit vector un.

Similarly, the function that is optimized by the Support Vector Machine is

φ(vn) =
M
∑

i=1

αik(vi,vn), (4.2)

where k(vi,vn) stands for the kernel evaluated between the vector under consideration and the
support vector vi. In this work we use Gaussian kernels. To optimize the kernel variance ν and
the regularization parameter C of the SVM, we perform 5-fold cross-validation while training. In
Fig. 4.3 we plot the typical landscape of the validation error with respect to ν and C.
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Figure 4.3: C − ν plot of the validation error for the DRIVE dataset. Left: Bird’s eye view of the
error function. Right: Close-up on the region that gives the best validation scores.

4.2 Comparative Results

We compared our results against the supervised learning approach of [11] that uses rotational fil-
ter banks and the well-known Hessian-based technique of Frangi et al. [10]. The former is similar
to ours in spirit except for the fact that filters are chosen a priori instead of learned. The latter is one
of the most widely used solutions for linear structure detection. For both methods we used multi-
scale implementations and compared them to our filter banks learned at a single scale. We have
chosen the steerable filter approach as one of the baselines since it also detects linear structures
using a machine learning technique.

Figures 4.4, 4.5, and 4.6 summarize the results on our three datasets. The ROC curves for our
method are consistently above the ones corresponding to our two baselines. Note that we also get
consistently get better results by using SVM than AdaBoost. This is mainly due to the fact that
the dimensionality of the feature spaces is relatively low—121 for our learned filters banks and
45 for the rotational filters—and hence the deterministic optimization of the SVM explores more
exhaustively the search space than the random Adaboost selections.

Themethod in [11] does better than the one in [10] because it uses a richer vocabulary of filters
that allows it to better account for irregularities in the data. However, these filters being weighted
sums of Gaussians and Gaussian derivatives, they only have limited expressive power. Ours are
learned on the data itself, and therefore are more expressive, at the cost of loosing the separability
of the Gaussian filters.

4.3 Optimizing the feature maps does not help

As suggested in Sec.3.2, the same principles that were used for learning the filters could be used
to optimize the feature maps using Eq. (3.3). This idea is at the underpinnings of many algo-
rithms, in particular multilayer networks. We have compared the segmentation scores for the
plain convolution case with those achieved by imposing several different levels of sparsity. The
most significant results are reported in Fig. 4.8 and show that feature vectors computed by convo-
lution performs better than the ones computed from optimized featuremaps. This is an important
result for practical applications as convolution is much faster than the feature map optimization.

4.4 Supervised filter learning does not help

Despite sparsity was initially conceived as a mechanism to drive learning in an unsupervised
fashion to obtain biologically-plausible filters, recent works focused on learning these filters with
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Figure 4.4: ROC curves for the DRIVE dataset. As shown in [11], for clean datasets and low false
positive rates the Hessian-based detector of [10] outperforms learning-based ones. However, for
true positive rates similar to the human performance, our method outperforms both [10] and [11].
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Figure 4.5: ROC curves for the neurons dataset. Our method clearly outperforms those of [10]
and [11] over the whole ROC range. Learning a classifier improves the results, but learning both
the filter bank and the classifier yields the best segmentation.
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Figure 4.6: ROC curves obtained for the roads dataset. This dataset is the most challenging one
and, as expected, yields the lowest True Positive Rates. Our method clearly outperforms [10]
and [11] over the whole range.
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Original image Frangi Rotational filters-SVM Learned filters-Adaboost Learned filters-SVM

Original image Frangi Rotational filters-SVM Learned filters-Adaboost Learned filters-SVM

Original image Frangi Rotational filters-SVM Learned filters-Adaboost Learned filters-SVM

Figure 4.7: Segmentation results. True positive pixels are shown in red, false positives in green
and false negatives in blue. Top Row: DRIVE dataset thresholded at a 90.6% TPR. Middle Row:
Neurons on brightfield microscopy thresholded at 90% TPR. Bottom Row: Roads on satellite
images thresholded at 5% FPR. In the first and second datasets the noise detected by our method
is less than that of [10] and [11] when finding the same amount of true positives as a human
observer. For the roads dataset, for an acceptable FPR, the proposed algorithm finds many more
roads than [10] or [11].
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Figure 4.9: Top: Image patch from a test image from the DRIVE database along with its ground
truth. Bottom: Output of the AdaBoost classifier when plain convolution (left) and sparse feature
maps (with λsegm = 10−1, right) were used. In both cases, 2500 positive and 2500 negative samples
were used, with 500 weak learners.
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Figure 4.10: Comparison of the different supervised dictionary learning strategies with unsu-
pervised techniques. The segmentation was performed using SVM with 1000 positive and 1000
negative samples. Unsupervised corresponds to the filter bank learned by optimizing Eq. (3.1),
while Dot-penalty is learned by optimizing Eq. (3.2). Junction weighting weights more the recon-
struction error in the regions close to junction points. MC Sampling adopts a weighted sampling
scheme, preferring areas where junctions are present to those without junctions. Supervised is a
filter bank learned according to Eq. (3.6). Junctions points are also taken into account. Rotated
corresponds to a filter bank where supervision is paired up with a rotated version of the training
set. Lastly,Whitened-rotated is the same as Rotated but learning is performed on whitened images.

supervision [18]. We have therefore decided to take advantage of the availability of ground truth
data to evaluate how supervised strategies for dictionary learning perform in the segmentation
task. We have considered three different supervision schemes:

• The reconstructions provided by the filters were penalized according to their difference from
the ground truth image, as in Eq. (3.6).

• We have added a Gaussian weight at the position where junctions and bifurcations are lo-
cated. These two particular configurations play indeed a key role in the construction of the
tree that can be built from a given vessel image for subsequent processing. This weight had
the role of focusing the algorithm’s attention towards those areas, striving to obtain filters
more suited to the reconstruction of these structures.

• MonteCarlo sampling was performed when patches were randomly sampled from the im-
age during the training phase, in order to bias the type of structures shown to the learning
algorithm. A patch was accepted even if it didn’t contain a junction/intersection only in a
fixed fraction of all the cases.

Figure 4.10 shows the ROC curves for the segmentation task corresponding to different com-
binations of the above strategies. The supervision terms seem not to be helpful in terms of the
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final segmentation score. This can be explained by the fact that, in both the supervised and un-
supervised cases, the learned filter banks contain a rich description for the appearances of linear
structures of interest. In the unsupervised case, this description is also coupled with a set of fil-
ters accounting for the structures in the background. However, the final supervised classification
step suppresses these structures and selects the relevant features leaving the initial supervision
for learning the filters redundant.

In one case we have fed the supervised dictionary learning algorithm with a rotated version
of the dataset, where all the images and the ground truth were rotated at steps of 15◦ until the
whole range of angles was covered. The rationale behind this experiment was to asses the degree
of rotational invariance of the unsupervised filter bank by comparing it with a filter bank ex-
posed to several different orientations during the learning stage. As can be seen in Fig. 4.10, this
was unhelpful, and this could also have been deduced by observing how well the filter bank in
Fig. 3.1 spans the whole range of orientations. We also wanted to measure the effectiveness of the
whitening operation, and therefore we have learned a supervised filter bank on the rotated im-
ages pre-filtered with a whitening filter. Even though the performance were improved compared
to the previous experiment, the simplest, unsupervised filter bank proved to be more effective.
Further experiments with AdaBoost confirmed this trend.
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Conclusion

We showed we outperform the state-of-the-art in linear structure detection by learning a dictio-
nary of convolution filters and then training an SVM to classify their output for individual pixels
as filament-like or not. This is because the resulting filters are expressive enough to faithfully cap-
ture the various irregularities and deviations from strict tubularity one finds in noisy real-world
data.

The major drawback of our filters is that they are not separable and therefore slower to com-
pute than those that are. In future work, we will therefore focus on forcing them to either be
sparse—that is, with many zero values— or, even, to be separable so as to speed-up the compu-
tation.
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