
Flexible beam in R3 under large overall motions 

and Asynchronous Variational Integrators  

 

Summary 

The goal of this note is to present some new results on the application of AVI algorithms to the 
Simo-Marsden-Krishnaprasad beam model based on a description using rotation matrices. This 
follows our earlier work on the Euler-Bernoulli beam and thin-shell models with Kirchhoff-Love 
constraints and various boundary conditions. We consider the effect of large deflections, when the 
beam is subject to constraints, with different boundary conditions, and show that we can use the 
properties of the AVI to adapt the time-step to the constraints.  

 

Keywords: discrete variational mechanics, AVI, beam, special Cosserat rod, frame-indifference, 
Lie group variational integrator. 

1. Introduction 

The AVI method is used to carry out dynamic and static two-dimensional simulations. To simulate 
the dynamics towards and equilibrium state, we employ the discrete version of the Lagrange-
d’Alembert principle to a non-conservative system with dissipation. This gives ultimately the 
equilibrium position of the system. 

Firstly, we consider a Bernoulli plane-beam model. Our goal is to study the influence of time steps 
on the dynamic behavior of stress areas, such as near boundaries or edges. It may be possible to 
improve the computing speed and performance by reducing the time interval in areas under stress 
and increasing it elsewhere. This adjustment of the time step according to the singularities may 
have an influence on the trajectories of nodes and on the instabilities. This is an important problem 
in the study of the dynamics of complex structures in civil engineering.  

Secondly, we review from Simo, Marsden, and Krishnaprasad [2], the kinematic description of a 
beam in ambient Euclidean space R3. We present the Lagrangian representation of the motion of a 
beam of length L by taking the configuration space to be C ∞ ([0,L], SE(3)). After space and time 
discretization, we get a variational integrator; the strain of the corresponding discrete model 
remains objective (frame-indifferent). This is a fundamental property of three-dimensional elasticity 
which can be violated by certain interpolations of rotations. We obtain an asynchronous variational 
integrator well adapted to the study of constrained beam dynamics subject to large deformations. 
The inherent property to preserve the symmetries allows us to properly define the equilibrium 
position. 
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2. Time intervals in areas under stress and AVI 

2.1 Variational integrator for the Bernoulli beam  

The bending energy function of the displacement field u for a Bernoulli beam element of length L is   

 

 

 

where E is Young’s modulus and I is the second moment of the cross section.  

We discretize the interval [0, L] by N one-dimensional subintervals K of [0, L]. To each element K 
corresponds a set of nodes a in K. Of course, one node can belong to two elements. We use three 
models of polynomial approximation and, therefore, three models of shape functions, for each beam 
element K. The first is associated to quadratic uniform B-splines, the second to cubic uniform B-
splines, and the third to Hermitian cubic shape functions.  

For a general Lagrangian which is the difference of the kinetic energy and potential energy VK(u) of 
the element K, we construct the following discrete Lagrangian:  

 

 

 

where ua

j  and ua

j +1 are two displacements at times ta

j  and ta

j +1( see Lew et al. [3]). In the particular 
case of the Bernoulli beam, the potential energy is the sum of the elastic potential energy W(u) and 
the potential energy of distributed loading.  For example, using quadratic B-splines, we obtain the 
following one-step integrator  

 

where                                            is the nodal vector displacement for each node a in K at time ta

j . 

 

2.2 Experimentation 

The beam starts in a horizontal straight position and oscillates, possibly reaching equilibrium due to 
damping. In all the experiments below, a 10 elements mesh with equal length is used with beam 
dimensions 1 x 0.01 x 0.02 in meters (L x h x w) consisting of a homogeneous isotropic material 
(E=109, ρ=400 kg/m3, υ= 0.3). To set the time stepping, we make use of the Courant limit 

 

 

 

 

where h is the radius of the largest ball contained in the element, ρ  is the density, and λ0, µ0 are the 
Lamé coefficients of the simulated material (see [3]). In setting f , it is possible to tune the accuracy 
of the trajectories in order to explore the limits of stability. Our goal is to adapt the time step to the 
size of the mesh, or near boundaries and contact points for a given regular mesh. We consider this 
experimental study as a complement to the work of Fong, Darve, and Lew [4]. 

The focus is on heterogeneous time rather than space subdivisions, hence the use of elements K 
with equal lengths. Additional manipulation would be needed to account for differing element sizes. 
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However, in order to avoid integration artifacts, possibly arising with unwanted synchronization, we 
introduce a 1% randomness on the time steps computed according to the Courant fraction to ensure 
different time steps between elements. 

As a main topic of interest, we explore the potential of AVI to allow higher integration speed in 
regions displaying less constraints, by gradually increasing f  for elements located in the middle of 
the beam. Our results are compared against standard Courant fraction time stepping (f = 1) and 
double integration speed (f = 2). These different sets of time steps are depicted in Figure (1). 

 

 

 

 

 

 

 

 

 

 

 

Lew et al. [3] studied the computational cost and established AVI as substantially cheaper than the 
Newmark algorithm. We show that the heterogeneous time-stepping strategy can further lower this 
computational cost while achieving acceptable results.  

2.2.1 Statics results 

We firstly observe that with Hermitian cubic shape functions the AVI is able to reach very 
acceptable precision for all boundary conditions considered, when using standard time-stepping 
with Courant fraction (f = 1). Secondly, we note that the heterogeneous time-stepping performs 
rather poorly in comparison to standard time-stepping. 

With quadratic B-splines, in the case of standard time-stepping, the correspondence with analytical 
results is again quite remarkable. Looking at the influence of the time-stepping scheme, we note 
that non-standard time steps perform slightly better than in the Hermitian case. 

Finally with cubic B-splines, in the case of standard time-stepping, the correspondence with 
analytical results is again quite remarkable. Looking at the influence of the time-stepping scheme, 
we note that non-standard time steps perform much better than with previous shape functions. 

2.2.2 Dynamics results 

Considering cubic Hermitian shape functions, they tend to desynchronize over time, revealing 
differing periods. The difference is more important in the case of the heterogeneous time steps. 

For quadratic B-splines, the desynchronization seems to show a lower magnitude. 

The case of cubic B-splines is more interesting in the sense that the desynchronization is much 
lower than for the previously considered shape functions. The heterogeneous time-stepping is stable 
for all boundary conditions, whereas the accelerated time-stepping (f = 2) displays instabilities for 
the fixed-end case. This shows that it is possible to profit from the AVI potential for local 
integration acceleration without loss of stability. However the influence on the dynamics of such an 
approach still needs to be better understood. 

 

 

 

     
Fig. 1: Variation on time-stepping along the beam  



 

 

 
 
Fig. 2: From top to bottom: Hermitian cubic, quadratic B-spline and cubic B-spline shape functions. Static 
difference to analytical result (left) for fixed-end and close-up of dynamic trajectories (right) for a node on 
the edge of the beam (x=0.1) for cantilever.   (  o) time stepping computed with f=1, in ( ∆ ) time stepping 
computed with f=2, (+) heterogeneous time-stepping. 



3. Flexible beam in R
3
 under large overall motions and AVI. 

3.1 Lagrangian dynamics of the beam in R
3
 

3.1.1 Deformation expressed relative to the inertial frame  

We first review from [2] the kinematic description of a beam in the ambient space R3. The 
configuration of a beam is defined by specifying the position of its line of centroids by means of a 
mapφ :  [0,L] → R3 , and the orientation of cross-sections at points φ(S) by means of a moving basis 
{d1(S), d2(S), d3(S)} attached to the cross section. The orientation of the moving basis is described 
with the help of an orthogonal transformation Λ :  [0,L] →  SO(3) such that 

 
 

 
where {E1, E2, E3} is a fixed basis referred to as the material frame. The configuration of the beam 
is thus completely determined by the maps φ  and Λ in the configuration space 

  

 

which is a Lie group; SE(3) denotes the Euclidean group. If boundary conditions are imposed, then 
they need to be included in this configuration space. Suppose that the cross section is given by a 
compact subset   A  of R2 with smooth boundary. Then the set occupied by the beam is 

 

 

 

For simplicity, we assume that φ S( ) is passing through the center of mass of the cross section   A . 
The material velocity Vφ ∈  Tφ G  is defined by 

                                      

 

The convected velocity field is  

 

 

which is an element of the Lie algebra se (3). It is important to note that Ý Λ = Λ ˆ K is the attitude 
kinematics equation of a rigid body, where Λ is the rotation matrix from the body-fixed frame to 
the reference frame and K  is the angular velocity of the rigid body represented in the body fixed 
frame. 

Throughout this work, we will use the standard Lie algebra isomorphism ^ between (R3, x) and 
(so(3), [ , ]), called the hat map (see Marsden and Ratiu [5]). 

The kinetic energy of the beam is found by integrating the kinetic energy of the material points over 
the whole body. Given 

  
D = 0, L[ ]× A , we have 
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Given a configuration Λ,  φ( )∈  G , the convected strains are 

 

 

The bending energy is assumed to depend on the deformation gradient only through the quantity 
W and Γ, that is, we have 

 

 

 

where Ψ W ,  Γ( ) is the stored energy function. We assume that the unstressed state is not stretched 
and not sheared. Also, by taking into account that the thickness of the rod is small compared to its 
length and that the material is homogenous and isotropic, we can consider, as in Dichmann, Li, and 
Maddocks [6], the stored energy to be given by the following quadratic model 

 

 

where 

 

 

 

 

GA1,  GA2,  EA,  EI1,  EI2,  GJ,  are the elasticity coefficients, A1 = A2 = A , J = I1 + I2, A  is the 
cross-sectional area of the rod, E  is Young’s modulus, G=E /{2(1+υ)} is the shear modulus, and υ  
is Poisson’s ratio. 

Let L : TG →R  be a Lagrangian (kinetic minus potential energy) defined on the tangent bundle TG 
of a Lie group G. Using the left trivialization   TG ≅ G × g  of the tangent bundle, where g is the Lie 
algebra of the Lie group G, we get a function     L  : G × g →R defined by 

 

 

Therefore, in the case of the beam, the trivialized Lagrangian L (g,ξ)  on 

  

 

 

has the expression 

 

 

 

3.1.2 Spatial discretization and objectivity  

We discretize the interval [0, L] by N elements, such that for one element K of unit length with two 
nodes we have 

 

ˆ W ,  Γ( ):= Λ−1 ′ Λ , Λ−1 ′ φ ( ).          (10)

Πint Λ,  φ( ) =  
0

L

∫ Ψ W ,  Γ( ) dS,           (11)

Ψ(W ,  Γ) =
1

2
Γ − E 3( )T

C1 Γ − E 3( ) + W T C2W[ ],           (12)

C1 :=

GA1 0 0

0 GA2 0

0 0 EA

 

 

 
  

 

 

 
  

   and    C2 :=

EI1 0 0

0 EI2 0

0 0 GJ

 

 

 
  

 

 

 
  
,           (13)

  L(g,ξ) := L(g, Ý g ),      Ý g := gξ.          (14)
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where Λa +1 := Λh 1( ) = Λa exp ˆ ψ a( ) , and xa +1 := φh (1) = xa + ∆xa . So the variables in the spatially  

discretized Lagrangian are the rotation matrices ΛK = Λa ,Λa +1( )T

 and the position of the nodes  xK 
= (xa, xa+1),  at a and a +1.  

We know from Crisfield and Jelenic [7] that this spatial discretization provides an objective strain 
measure, whereas with a linear interpolation of the rotational vector we lose the objectivity. 

The trivialized form of the spatially discretized Lagrangian is obtained by inserting these variables 
in the continuous trivialized Lagrangian and by considering the approximation. We find 
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3.1.3 Temporal discretization  

The configuration of the discretized element K at time tK

j  is described by gK
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j ,  xK

j( )∈ SE (3)NK , 
where NK is the number of nodes a in the element K. We define fK
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The discrete Lagrangian LK

j  defined at time tK

j associated to the trivialized Lagrangian (17) can be 
defined by considering the contribution of the K-th element to the discrete reduced Lagrangian over 
the time interval [ tK

j , tK

j +1]. The discrete Lagrangian LK

j is therefore 

 

 

 

 

 

3.2 Integrator 

Our mechanical system evolves on a Lie group.  As a consequence, we use the discrete Lagrangian 
LK

j : G × G × R →R  given in (19) and discrete Euler-Lagrange equations or the Lie group 
variational integrator developed by Lee [8]. 

For the calculation of these equations, we will consider that ta

i = tK

j  for a ∈ K  (this assumption will 
imply special handling when implementing to get an asynchronous variational integrator as 
described in [3]).   

3.3 Implementation 

The implementation of this integrator is in progress and the results we will obtain will be compared 
with those of other integrators for flexible beams in R3 under large overall motions we have already 
started to develop. 

4. Conclusion 

The focus of this note was to present recent achievements in our endeavor to develop a 
dimensioning tool for dynamic as well static analysis of complex civil engineering structures under 
constraints. An example in the form of assemblies of pre-stressed bent elements, forming complex 
textile-like structures, is currently under study at the IBois Laboratory of the EPFL.  
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We want to take advantage of the excellent accuracy, conservation of geometric properties, and 
convergence characteristics of AVIs, together with their specific property of heterogeneous time-
steps, allowing to shorten them on the boundaries submitted to constraints, as seen in the first part 
of this paper. 

The goal is to use the newly developed geometric integrators presented in the second part of the 
paper, which preserve the Lie group structure, to study geometrically exact rod mechanics where 
objectivity is automatically conserved after discretization.  
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