Abstract
This report describes an implementation of a non-blocking concurrent shared-memory hash trie based on single-word compare-and-swap instructions. Insert, lookup and remove operations modifying different parts of the hash trie can be run independent of each other and do not contend. Remove operations ensure that the unneeded memory is freed and that the trie is kept compact. A pseudocode for these operations is presented and a proof of correctness is given – we show that the implementation is linearizable and lock-free. Finally, benchmarks are presented which compare concurrent hash trie operations against the corresponding operations on other concurrent data structures, showing their performance and scalability.

1. Introduction
Many applications access data concurrently in the presence of multiple processors. Without proper synchronization concurrent access to data may result in errors in the user program. A traditional approach to synchronization is to use mutual exclusion locks. However, locks induce a performance degradation if a thread holding a lock gets delayed (e.g. by being preempted by the operating system). All other threads competing for the lock are prevented from making progress until the lock is released. More fundamentally, mutual exclusion locks are not fault tolerant – a failure may prevent progress indefinitely.

A lock-free concurrent object guarantees that if several threads attempt to perform an operation on the object, then at least some thread will complete the operation after a finite number of steps. Lock-free data structures are in general more robust than their lock-based counterparts [10], as they are immune to deadlocks, and unaffected by thread delays and failures. Universal methodologies for constructing lock-free data structures exist [9], but they serve as a theoretical foundation and are in general too inefficient to be practical – developing efficient lock-free data structures still seems to necessitate a manual approach.

Trie is a data structure with a wide range of applications first developed by Brandais [6] and Fredkin [7]. Hash array mapped tries described by Bagwell [1] are a specific type of tries used to store key-value pairs. The search for the key is guided by the bits in the hashcode value of the key. Each hash trie node stores references to subtrees inside an array which is indexed with a bitmap. This makes hash array mapped tries both space-efficient and cache-aware. A similar approach was taken in the dynamic array data structures [8]. In this paper we present and describe in detail a non-blocking implementation of the hash array mapped trie data structure.

Our contributions are the following:

1. We introduce a completely lock-free concurrent hash trie data structure for a shared-memory system based on single-word compare-and-swap instructions. A complete pseudocode is included in the paper.
2. Our implementation maintains the space-efficiency of sequential hash tries. Additionally, remove operations check to see if the concurrent hash trie can be contracted after a key has been removed, thus saving space and ensuring that the depth of the trie is optimal.
3. There is no stop-the-world dynamic resizing phase during which no operation can be completed – the data structure grows with each subsequent insertion and removal. This makes our data structure suitable for real-time applications.
4. We present a proof of correctness and show that all operations are linearizable and lock-free.
5. We present benchmarks that compare performance of concurrent hash tries against other concurrent data structures. We interpret and explain the results.

The rest of the paper is organized as follows. Section 2 describes sequential hash tries and several attempts to make their operations concurrent. It then presents case studies with concurrent hash trie operations. Section 3 presents the algorithm for concurrent hash trie operations and describes it in detail. Section 4 presents the outline of the correctness proof – a complete proof is given in the appendix. Section 5 contains experimental results and their interpretation. Section 6 presents related work and section 7 concludes.

2. Discussion
Hash array mapped tries (from now on hash tries) described previously by Bagwell [1] are trees which have 2 types of nodes – internal nodes and leaves. Leaves store key-value bindings. Internal nodes have a 2^k-way branching factor. In a straightforward implementation, each internal node is a 2^k-element array. Finding a key proceeds in the following manner. If the internal node is at the root, the initial k bits of the key hashcode are used as an index in the array. If the internal node is at the level l, then the bits k+l of the hashcode starting from the position k + l are used. This is repeated until a leaf or an empty entry is found. Insertion and removal are similar.

Such an implementation is space-inefficient – most entries in the internal nodes are never used. To ensure space efficiency, each internal node contains a bitmap of length 2^k. If a bit is set, then its corresponding array entry contains an element. The corresponding entry for a bit on position i in the bitmap bmp is calculated as
Fig. 1D. (Fig. 1C) with the expected value of C_1 first creates an updated version of C_1 should be next to C_2. Typically, k is 5 since that ensures that 32-bit integers can be used as bitmaps. An example hash trie is shown in Fig. 1A.

We want to preserve the nice properties of hash tries – space-efficiency, cache-awareness and the expected depth of $O(\log_2(n))$, where n is the number of elements stored in the trie and 2^k is the bitmap length. We also want to make hash tries a concurrent data structure which can be accessed by multiple threads. In doing so, we avoid locks and rely solely on CAS instructions. Furthermore, we ensure that the new data structure has the lock-freedom property. We call this new data structure a Ctrie. In the remainder of this chapter we give examples of Ctrie operations.

Assume that we have a hash trie from Fig. 1A and that a thread T_1 decides to insert a new key below the node C_1. One way to do this is to do a CAS on the bitmap in C_1 to set the bit which corresponds to the new entry in the array, and then CAS the entry in the array to point to the new key. However, this requires all the arrays to have additional empty entries, leading to inefficiencies. A possible solution is to keep a pointer to the array inside C_1 and do a CAS on that pointer with the updated copy of the array. The fundamental problem that still remains is that such an insertion does not happen atomically. It is possible that some other thread T_2 also tries to insert below C_1 after its bitmap is updated, but before the array pointer is updated. Lock-freedom is not ensured if T_2 were to wait for T_1 to complete.

Another solution is for T_1 to create an updated version of C_1 called C_1' with the updated bitmap and the new key entry in the array, and then do a CAS in the entry within the C_2 array which points to C_1. The change is then done atomically. However, this approach does not work. Assume that another thread T_2 decides to insert a key below the node C_2 at the time when T_1 is creating C_1'. To do this, it has to read C_2 and create its updated copy C_2'. Assume that after that, T_1 does the CAS in C_2. The copy C_2' will not reflect the changes by T_1. Once T_2 does a CAS in the C_3 array, the key inserted by T_1 is lost.

To solve this problem we define a new type of a node which we call an indirection node. This node remains present within the Ctrie even if nodes above and below it change. We now show an example of a sequence of Ctrie operations.

Every Ctrie is defined by the root reference (Fig. 1B). Initially, the root is set to a special value called null. In this state the Ctrie corresponds to an empty set, so all lookups fail to find a value for any given key and all remove operations fail to remove a binding.

Assume that a key k_1 has to be inserted. First, a new node C_1 of type CNode is created, so that it contains a single key k_1 according to hash trie invariants. After that, a new node I_1 of type INode is created. The node I_1 has a single field main (Fig. 2) which is initialized to C_1. A CAS instruction is then performed at the root reference (Fig. 1B), with the expected value null and the new value I_1. If a CAS is successful, the insertion is completed and the Ctrie is in a state shown in Fig. 1C. Otherwise, the insertion must be repeated.

Assume next that a key k_2 is inserted such that its hashcode prefix is different from that of k_1. By the hash trie invariants, k_2 should be next to k_1 in C_1. The thread that does the insertion first creates an updated version of C_1 and then does a CAS at the I_1.main (Fig. 1C) with the expected value of C_1 and the updated node as the new value. Again, if the CAS is not successful, the insertion process is repeated. The Ctrie is now in the state shown in Fig. 1D.

If some thread inserts a key k_3 with the same initial bits as k_2, the hash trie has to be extended with an additional level. The thread starts by creating a new node C_2 of type CNode containing both k_2 and k_3. It then creates a new node I_2 and sets I_2.main to C_2. Finally, it creates a new updated version of C_1 such that it points to the node I_2 instead of the key k_2 and does a CAS at I_1.main (Fig. 1D). We obtain a Ctrie shown in Fig. 1E.

Assume now that a thread T_2 decides to remove k_3 from the Ctrie. It creates a new node C_2' from C_2 which omits the key k_3. It then does a CAS on I_2.main to set it to C_2' (Fig. 1E). As before, if the CAS is not successful, the operation is restarted. Otherwise, k_3 will no longer be in the trie – concurrent operations will only see k_1 and k_2 in the trie, as shown in Fig. 1F. However, the key k_3 could be moved further to the root - instead of being below the node C_2, it could be directly below the node C_1. In general, we want to ensure that the path from the root to a key is as short as possible. If we do not do this, we may end up with a lot of wasted space and an increased depth of the Ctrie.

For this reason, after having removed a key, a thread will attempt to contract the trie as much as possible. The thread T_2 that removed the key has to check whether or not there are less than 2 keys remaining within C_2. There is only a single key, so it can create a copy of C_1 such that the key k_3 appears in place of the node I_2 and then do a CAS at I_1.main (Fig. 1F). However, this approach does not work. Assume there was another thread T_3 which decides to insert a new key below the node I_2 just before T_1 does the CAS at I_1.main. The key inserted by T_3 is lost as soon as the CAS at I_1.main occurs.

To solve this, we relax the invariants of the data structure. We introduce a new type of a node - a tomb node. A tomb node is simply a node which holds a single key. No thread may modify a node of type INode if it contains a tomb node. In our example, instead of directly modifying I_1, thread T_1 must first create a tomb node which contains the key k_3. It then does a CAS at I_2.main to set it to the tomb node. After having done this (Fig. 1G), T_1 may create a contracted version of C_1 and do a CAS at I_1.main, at which point we end up with a trie of an optimal size (Fig. 1H). If some other thread T_2 attempts to modify I_2 after it has been tombed, then it must first do the same thing T_1 is attempting to do - move the key k_3 back below C_2, and only then proceed with its original operation. We call an INode which points to a tomb node a tomb-node. We say that a tomb-node in the example above is resurrected.

If some thread decides to remove k_3, it proceeds as before. However, even though k_3 now remains the only key in C_1 (Fig. 1I), it does not get tombed. The reason for this is that we treat nodes directly below the root differently. If k_3 were next removed, the trie would end up in a state shown in Fig. 1J, with the I_1.main set to null. We call this type of an INode a null-node.

3. Algorithm

We present the pseudocode of the algorithm in figures 3, 4 and 5. The pseudocode assumes C-like semantics of conditions in if statements – if the first condition in a conjunction fails, the second one is never evaluated. We use logical symbols for boolean expressions. The pseudocode also contains pattern matching constructs which are used to match a node against its type. All occurrences of pattern matching can be trivially replaced with a sequence of if-then-else statements – we use pattern matching for conciseness.

The colon (:) in the pattern matching cases should be understood as has type. The keyword def denotes a procedure definition. Reads and compare-and-set instructions written in capitals are atomic – they occur at one point in time. This is a high level pseudocode and might not be optimal in all cases – the source code contains a more efficient implementation.

Operations start by reading the root (lines 2, 11 and 23). If the root is null then the trie is empty, so neither removal nor lookup
finds a key. If the root points to an INode which is set to null (as in Fig. 1J), then the root is set back to just null before repeating. In both the previous cases, an insertion will replace the root reference with a new CNode with the appropriate key.

If the root is neither null nor a null_inode then the node below the root inode is read (lines 35, 51 and 80), and we proceed case-wise. If the node pointed at by the inode is a CNode, an appropriate entry in its array must be found. The method flagpos computes the values of flag and pos from the hashcode hc of the key, bitmap bmp of the cnode and the current level lev. The relevant flag in the bitmap is defined as \((hc >> (k \cdot lev)) \odot ((1 << k) - 1)\), where \(2^k\) is the length of the bitmap. The position pos within the array is given by the expression \(\#((flag - 1) \odot bmp)\), where \# is the bitcount. The flag is used to check if the appropriate branch is in the CNode (lines 38, 54, 83). If it is not, lookups and removes end, since the desired key is not in the Ctrie. An insert creates an updated copy of the current CNode with the new key. If the branch is in the trie, pos is used as an index into the array. If an inode is found, we repeat the operation recursively. If a key-value binding (an SNode) is found, then a lookup compares the keys and returns the binding if they are the same. An insert operation will either replace the old binding if the keys are the same, or otherwise extend the trie below the CNode. A remove operation compares the keys – if they are the same it replaces the CNode with its updated version without the key.

After a key was removed, the trie has to be contracted. A remove operation first attempts to create a tomb from the current CNode. It first reads the node below the current inode to check if it is still a CNode. It then calls tombCompress which creates a tomb from the given CNode. A weak tomb is defined as follows. If the number of nodes below the CNode that are not null-inodes is greater than 1, then it is the CNode itself – in this case we say that there is nothing to entomb. If the number of such nodes is 0, then the weak tomb is null. Otherwise, if the single branch below the CNode is a key-value binding or a tomb_inode (alternatively, a singleton), the weak tomb is the tomb_node with that binding. If the single branch below is another CNode, a weak tomb is a copy of the current CNode with the null_inodes removed.

The procedure tombCompress continually tries to entomb the current CNode until it finds out that there is nothing to entomb or it succeeds. The CAS in line 133 corresponds to the one in Fig. 1F. If it succeeds and the weak tomb was either a null or a tomb_node, it will return true, meaning that the parent node should be contracted. The contraction is done in contractParent, which checks if the node is still reachable from its parent and then contracts the CNode below the parent – it removes the null_inode (line 149) or resurrects a tomb_inode into an SNode (line 153). The latter corresponds to the CAS in Fig. 1G.

If any operation encounters a null or a tomb_node, it attempts to fix the Ctrie before proceeding, since the Ctrie is in a relaxed state. A tomb_node may have originated from a remove operation which will attempt to contract the tomb_node at some time in the future. Rather than waiting for that remove operation to do its work, the current operation should do the work of contracting the tomb itself, so it will invoke the clean operation on the parent inode. The clean operation will attempt to exchange the CNode below the parent inode with its compression. A CNode compression is defined as follows – if the CNode has a single tomb_node directly beneath, then it is that tomb_node. Otherwise, the compression is the copy of the CNode without the null-inodes (this is what the filtered call in the toCompressed procedure does) and with all the tomb-inodes resurrected to regular key nodes (this is what the map and resurrect calls do). Going back to our previous example, if in Fig. 1G some other thread were to attempt to write to I2, it would first do a clean operation on the parent I1 of I2 – it would contract the trie in the same way as the removal would have. After having fixed the Ctrie, the operation is repeated from the start.
4. Correctness

As illustrated by the examples in the previous section, designing a correct lock-free algorithm is not straightforward. One of the reasons for this is that all possible interleavings of steps of different threads executing the operations have to be considered. For brevity, this section gives only the outline of the correctness proof—the complete proof is given in the appendix. There are three main criteria for correctness. Safety means that the Ctrie corresponds to some abstract set of keys consistently. An operation is linearizable if any external observer can only observe the operation as if it took place instantaneously at some point between its invocation and completion [9] [11]. Lock-freedom means that if some number of threads execute operations concurrently, then after a finite number of steps some operation must complete [9].

We assume that the Ctrie has a branching factor 2^W. Each node in the Ctrie is identified by its type, level in the Ctrie l and the hashcode prefix p. The hashcode prefix is the sequence of branch indices that have to be followed from the root in order to reach the node. For a cnode $cn_{l,p}$ and a key k with the hashcode $h = r_0 \cdot r_1 \cdots r_a$, we denote $cn_{l,p}(k)$ as the branch with the index r_i or null if such a branch does not exist. We define the following invariants:

INV1 For every inode $in_{l,p}, in_{l,p}(main)$ is a cnode $cn_{l,p}$, a tombed node $sn_{l,p}$ or null.

INV2 For every cnode the length of the array is equal to the bitcount in the bitmap.

INV3 If a flag i in the bitmap of $cn_{l,p}$ is set, then corresponding array entry contains an inode $in_{l+1,W+p}$ or an snode.

INV4 If an entry in the array $in_{l,p}$ contains an snode sn, then p is the prefix of the hashcode $sn.k$.

INV5 If an inode $in_{l,p}$ contains an snode sn, then p is the prefix of the hashcode $sn.k$.

We say that the Ctrie is valid if and only if the invariants hold. The relation $hasKey(node, x)$ holds if and only if the key x is within a snode reachable from node. A valid Ctrie is consistent with an abstract set A if and only if $\forall k \in A$ the relation $hasKey(root, k)$ holds and $\forall k \notin A$ it does not. A Ctrie lookup...
Lemma 1. If an inode \(\textit{in} \) is either a null-inode or a tomb-inode at some time \(t_0 \) then \(\forall t > t_0 \textit{in.main} \) is not written. We refer to such inodes as nonlive.

Lemma 2. Cnodes and snodes are immutable – once created, they do not change the value of their fields.

Lemma 3. Invariants INV1-3 always hold.

Lemma 4. If a CAS instruction makes an inode in unreachable from its parent at some time \(t_0 \), then \(\textit{in} \) is nonlive at \(t_0 \).

Lemma 5. Reading a cn such that \(\textit{cn}.\text{sub}(k) = \textit{sn} \) and \(k = \textit{sn}.k \) at some time \(t_0 \) means that \(\text{hasKey}(\text{root}, k) \) holds at \(t_0 \).

For a given Ctrie, we say that the longest path for a hashcode \(h = r_0 \cdot r_1 \cdots r_n \), length\((r_i) = W \), is the path from the root to a leaf such that at each cnode \(\text{cn}_{i,p} \) the branch with the index \(r_i \) is taken.

Lemma 6. Assume that the Ctrie is an invalid state. Then every longest path ends with an snode, cnode or null.

Lemma 7. Assume that a cnode \(\textit{cn} \) is read from \(\textit{in}_{i,p}.\text{main} \) at some time \(t_0 \), while searching for a key \(k \). If \(\textit{cn}.\text{sub}(k) = \textit{null} \) then \(\text{hasKey}(\text{root}, k) \) is not in the Ctrie at \(t_0 \).

Lemma 8. Assume that the algorithm is searching for a key \(k \) and that an snode \(\textit{sn} \) is read from \(\textit{cn}.\text{array}(i) \) at some time \(t_0 \) such that \(\textit{sn}.k \neq k \). Then the relation \(\text{hasKey}(\text{root}, k) \) does not hold at \(t_0 \).

Lemma 9. 1. Assume that one of the CAS in lines 58 and 71 succeeds at time \(t_1 \) after \(\textit{in}.\text{main} \) was read in line 51 at time \(t_0 \). Then \(\forall t, t_0 \leq t < t_1 \), relation \(\text{hasKey}(\text{root}, k) \) does not hold.

2. Assume that the CAS in lines 67 succeeds at time \(t_1 \) after \(\textit{in}.\text{main} \) was read in line 51 at time \(t_0 \). Then \(\forall t, t_0 \leq t < t_1 \), relation \(\text{hasKey}(\text{root}, k) \) holds.

3. Assume that the CAS in line 92 succeeds at time \(t_1 \) after \(\textit{in}.\text{main} \) was read in line 80 at time \(t_0 \). Then \(\forall t, t_0 \leq t < t_1 \), relation \(\text{hasKey}(\text{root}, k) \) holds.

Lemma 10. Assume that the Ctrie is valid and consistent with some abstract set \(\forall t, t_0 \leq t < t_1 \), \(\text{CAS} \) instructions from lemma 9 induce a change into a valid state which is consistent with the abstract set semantics.

Lemma 11. Assume that the Ctrie is valid and consistent with some abstract set \(\forall t, t_0 \leq t < t_1 \), if one of the operations \(\text{clean}, \text{tombCompress} \) or \(\text{contractParent} \) succeeds with a CAS at \(t_1 \), the Ctrie will remain valid and consistent with the abstract set at \(t_1 \).

Corollary 1. Invariants INV4,5 always hold due to lemmas 10 and 11.

Theorem 1 (Safety). At all times \(t \), a Ctrie is in a valid state \(S \), consistent with some abstract set \(\mathcal{A} \). All Ctrie operations are consistent with the semantics of the abstract set \(\mathcal{A} \).

Theorem 2 (Linearizability). Ctrie operations are linearizable.

Lemma 12. If a CAS that does not cause a consistency change in one of the lines 58, 67, 71, 126, 133, 149 or 153 fails at some time \(t_1 \), then there has been a state (configuration) change since the time \(t_0 \) when a respective read in one of the lines 51, 51, 124, 129, 140 or 140 occurred.

Lemma 13. In each operation there is a finite number of execution steps between consecutive CAS instructions.

Corollary 2. There is a finite number of execution steps between two state changes. This does not imply that there is a finite number of execution steps between two operations. A state change is not necessarily a consistency change.

We define the total path length \(d \) as the sum of the lengths of all the paths from the root to some leaf. Assume the Ctrie is in a valid state. Let \(n \) be the number of reachable null-inodes in this state, \(l \) the number of reachable tomb-inodes, \(l \) the number of live inodes, \(r \) the number of single tips of any length and \(d \) the total path length. We denote the state of the Ctrie as \(S_{n,t,l,r,d} \). We call the state \(S_0 \) the clean state.

Lemma 14. Observe all CAS instructions which never cause a consistency change and assume they are successful.
was no state change since reading in prior to calling clean, the CAS in line 126 changes the state of the Ctrie from the state $S_{n, t, l, r, d}$ to either $S_{n+1, t, l, r−1, d−1}$ where $r > 0$, $j \in \{0, 1\}$ and $d \geq 1$, or to $S_{n−k, t, l, r, d} \geq d$ where $k > 0$, $j > 0$, $k + j > 0$, $n \geq k$ and $t \geq j$. Furthermore, the CAS in line 14 changes the state of the Ctrie from $S_{0,0,0,0,1}$ to $S_{0,0,0,0,0}$. The CAS in line 26 changes the state from $S_{0,0,0,0,1}$ to $S_{0,0,0,0,0}$. The CAS in line 133 changes the state from $S_{n, t, l, r, d}$ to either $S_{n+1, t, l, r−1, d−1}$ where $r > 0$, $j \in \{0, 1\}$ and $d \geq 1$, or to $S_{n−k, t, l, r, d} \geq d$ where $k > 0$, $j > 0$, $k + j > 0$, $n \geq k$ and $t \geq j$. Furthermore, the CAS in line 14 changes the state of the Ctrie from $S_{0,0,0,0,1}$ to $S_{0,0,0,0,0}$. The CAS in line 149 changes the state from $S_{n, t, l, r, d}$ to $S_{n−1, t, l, r+j, d−1}$ where $n > 0$, $j > 0$ and $n \geq k$. The CAS in line 153 changes the state from $S_{0,0,0,0,1}$ to $S_{0,0,0,0,0}$ where $j \geq 0$.

Lemma 15. If the Ctrie is in a clean state and n threads are executing operations on it, then some thread will execute a successful CAS resulting in a consistency change after a finite number of execution steps.

Theorem 3 (Lock-freedom). Ctrie operations are lock-free.

5. Experiments

We show benchmark results in Fig. 6. All the measurements were performed on a quad-core 2.67 GHz i7 processor with hyperthreading. We followed established performance measurement methodologies [2]. We compare the performance of Cri tes against that of ConcurrentHashMap and ConcurrentSkipListMap [3] [4] data structures from the Java standard library.

In the first experiment, we insert a total of N elements into the data structures. The insertion is divided equally among P threads, where P ranges from 1 to 8. The results are shown in Fig. 6A-D. Ctries outperform concurrent skip lists for $P = 1$ (Fig. 6A). We argue that this is due to a fewer number of instructions in the Ctrie data structure. A concurrent skip list roughly corresponds to a balanced binary tree which has a branching factor 2. Ctries normally have a branching factor 32, thus having a much lower depth. A lower depth means less indirections and consequently fewer cache misses when searching the Ctrie.

We can also see that the Ctrie sometimes outperforms a concurrent hash table for $P = 1$. The reason is that the hash table has a fixed size and is resized once the load factor is reached – a new table is allocated and all the elements from the previous hash table have to be copied into the new hash table. More importantly, this implementation uses a global write lock during the resize phase – other threads adding new elements into the table have to wait until the resize completes. This problem is much more apparent in Fig. 6B where $P = 8$. Fig. 6C,D show how the insertion scales for the number of elements $N = 200k$ and $N = 1M$, respectively. Due to the use of hyperthreading on the i7, we do not get significant speedups when $P > 4$ for these data structures.

We next measure the performance for the remove operation (Fig. 6E-H). Each data structure starts with N elements and then emptied concurrently by P threads. The keys being removed are divided equally among the threads. For $P = 1$ Ctries are clearly outperformed by both other data structures. However, it should be noted that concurrent hash table does not shrink once the number of keys becomes much lower than the table size. This is space-inefficient – a hash table contains many elements at some point during the runtime of the application will continue to use the memory it does not need until the application ends. The slower Ctrie performance seen in Fig. 6E for $P = 1$ is attributed to the additional work the remove operation does to keep the Ctrie compact. However, Fig. 6F shows that the Ctrie remove operation scales well for $P = 8$, as it outperforms both skip list and hash table removals. This is also apparent in Fig. 6G,H.

In the next experiment, we populate all the data structures with N elements and then do a lookup for every element once. The set of elements to be looked up is divided equally among P threads. From Fig. 6F-L it is apparent that concurrent hash tables have a much more efficient lookups than other data structures. This is not surprising since they are a flat data structure – a lookup typically consists of a single read in the table, possibly followed by traversing the collision chain within the bucket. Although a Ctrie lookup outperforms a concurrent skip list when $P = 8$, it still has to traverse more indirections than a hash table.

Finally, we do a series of benchmarks with both lookups and insertions to determine the percentage of lookups for which the concurrent hash table performance equals that of concurrent tries. Our test inserts new elements into the data structures using P threads. A total of N elements are inserted. After each insert, a lookup for a random element is performed r times, where r is the ratio of lookups per insertion. Concurrent skip lists scaled well in these tests but had low absolute performance, so they are excluded from the graphs for clarity. When using $P = 2$ threads, the ratio where the running time is equal for both concurrent hash tables and concurrent tries is $r = 2$. When using $P = 4$ threads this ratio is $r = 5$ and for $P = 8$ the ratio is $r = 9$. As the number of threads increases, more opportunity for parallelism is lost during the resizing phase in concurrent hash tables, hence the ratio increases. This is shown in Fig. 7A-C. In the last benchmark (Fig. 7D) we preallocate the array for the concurrent hash table to avoid resizing phases – in this case the hash table outperforms the concurrent trie. The performance gap decreases as the number of threads approaches $P = 8$. The downside is that a large amount of memory has to be used for the hash table and the size needs to be known in advance.
locks at a time which exclude other insertion and removal operations, while lookups can proceed concurrently. Bronson et al. presented a scalable concurrent implementation of an AVL tree based on transactional memory mechanisms which require a fixed number of locks to perform deletions [20]. Recently, the first non-blocking implementation of a binary search tree was proposed [21].

Tries were originally proposed by Brandais [6] and Fredkin [7]. Trie hashing was applied to accessing files stored on the disk by Litwin [12]. Litwin, Sagiv and Vidyasankar implemented trie hashing in a concurrent setting [13], however, they did so by using mutual exclusion locks. Hash array mapped trees, or hash tries, are tries for shared-memory proposed by Bagwell [1]. To our knowledge, there is no nonblocking concurrent implementation of hash tries prior our work.

7. Conclusion

We described a lock-free concurrent implementation of the hash trie data structure. Our implementation supports insertion, remove and lookup operations. It is space-efficient in the sense that it keeps a minimal amount of information in the internal nodes. It is compact in the sense that after all removal operations complete, all paths from the root to a leaf containing a key are as short as possible. Operations are worst-case logarithmic with a low constant factor ($O(\log_2 n)$). Its performance is comparable to that of the similar concurrent data structures. The data structure grows dynamically – it uses no locks and there is no resizing phase. We proved that it is linearizable and lock-free.

In the future we plan to extend the algorithm with operations like move key, which reassigns a value from one key to another atomically. One research direction is supporting efficient aggregation operations on the keys and/or stored in the Ctrie. One such specific aggregation is the size of the Ctrie – an operation which might be useful indeed. The notion of having a size kept in one place in the Ctrie might, however, prove detrimental to the idea of distributing Ctrie operations throughout different parts of it in order to avoid contention.

Finally, we plan to develop an efficient lock-free snapshot operation for the concurrent trie which allows traversal of all the keys present in the data structure at the time at which the snapshot was created. One possible approach to doing so is to, roughly speaking, keep a partial history in the indirection nodes. A snapshot would allow traversing (in parallel) the elements of the Ctrie present at one point in time and modifying it during traversal in a way that the changes are visible only once the traversal ends. This might prove an efficient abstraction to express many iterative-style algorithms.

References

Figure 6. Quad-core i7 microbenchmarks – ConcurrentHashMap (−), ConcurrentSkipList (○), Ctrie (×): A) insert, P=1; B) insert, P=8; C) insert, N=200k; D) insert, N=1M; E) remove, P=1; F) remove, P=8; G) remove, N=200k; H) remove, N=1M; I) lookup, P=1; J) lookup, P=8; K) lookup, N=200k; L) lookup, N=1M

Figure 7. Quad-core i7 microbenchmarks – A) insert/lookup, ratio=1/2, N=1M; B) insert/lookup, ratio=1/5, N=1M; C) insert/lookup, ratio=1/9, N=1M; D) insert/lookup with preallocated tables, ratio=1/2, N=1M
A. Proof of correctness

Definition 1 (Basics). Value \(W \) is called the branching width. An inode \(in \) is a node holding a reference \(main \) to other nodes. A cnode \(cn \) is a node holding a bitmap \(bmp \) and an array of references to other nodes called \(array \). A cnode is \(k \)-way if \(\text{length}(cn.array) = k \). An snode is a node holding a key \(k \) and a value \(v \). An snode can be tombed, denoted by \(sn \), meaning its tomb flag is set. A reference \(cn.arr(r) \) in the array defined as \(\text{array}(\#((1 << r) - 1) \land cn.bmp) \), where \(\# \) is the bitcount and \(\land \) is the bitwise-and operation. Any node \(n_{i,p} \) is at level \(l \) if there are \(l/W \) cnodes on the simple path between itself and the root inode. Hashcode chunk of a key \(k \) at level \(l \) is defined as \(m(l,k) = (\text{hashcode}(k) >> l) \mod 2^W \). A node at level 0 has a hashcode prefix \(p = \epsilon \), where \(\epsilon \) is an empty string. A node \(n \) at level \(l + W \) has a hashcode prefix \(p = q \cdot r \) if and only if it can be reached from the closest parent cnode \(cn_{i,q} \) following the reference \(cn_{i,q}.arr(r) \). A reference \(cn_{i,p}.sub(k) \) is defined as:

\[
\begin{align*}
\text{cn}_{i,p}.sub(k) = \begin{cases}
\text{cn}_{i,p}.arr(m(l,k)) & \text{if } \text{cn}_{i,p}.flg(m(l,k)) \\
\text{null} & \text{otherwise}
\end{cases}
\]

Definition 2 (Ctrie). A Ctrie is defined as the reference root to the root of the trie. A Ctrie state \(S \) is defined as the configuration of nodes reachable from the root by following references in the nodes. A key is within the configuration if it is in a node reachable from the root. More formally, the relation hasKey(\(cn_{i,p}, k \)) on an inode \(in \) at the level \(l \) with a prefix \(p \) and a key \(k \) holds if and only if (several relations for readability):

\[
\begin{align*}
&\text{holds}(in_{i,p}, k) \iff in_{i,p}.main = sn : SNode \land sn.k = k \\
&\text{holds}(cn_{i,p}, k) \iff cn_{i,p}.sub(k) = sn : SNode \land sn.k = k \\
&\text{hasKey}(cn_{i,p}, k) \iff \exists \text{cn}_{i,p}.sub(k) \\
&(cn_{i,p}.sub(k) = in_{i+w,p}.m(i,k) \land \text{hasKey}(in_{i+w,p}.m(i,k))) \\
&\text{hasKey}(in_{i,p}, k) \iff \exists \text{cn}_{i,p}.sub(k) \\
&(in_{i,p}.main = cn_{i,p} : CNode \land \text{hasKey}(cn_{i,p}, k))
\end{align*}
\]

Definition 3. We define the following invariants for the Ctrie.

INV1 inode\(_{i,p}.main = \text{null}(\text{inode}_{i,p}.\text{inode})\)
INV2 \#(cn.bmp) = \text{length}(cn.array)
INV3 cn_{i,p}.flg(r) \neq 0 \iff cn_{i,p}.arr(r) \in \{ sn, in_{i+w,p} \}
INV4 cn_{i,p}.arr(r) = sn \iff \text{hashcode}(sn.k) = p \cdot r \cdot s
INV5 in_{i,p}.main = sn \iff \text{hasKey}(sn.k)

Definition 4 (Validity). A state \(S \) is valid if and only if the invariants INV1-5 are true in the state \(S \).

Definition 5 (Abstract set). An abstract set \(\mathcal{A} \) is a mapping \(K \Rightarrow \{ \bot, \top \} \) which is true only for those keys which are a part of the abstract set, where \(K \) is the set of all keys. An empty abstract set \(\emptyset \) is a mapping such that \(\forall k, \emptyset(k) = \bot \). Abstract set operations are insert(\(k, \mathcal{A} \)) = \(\mathcal{A}_1 : \forall k', k' \in \mathcal{A}_1, k \land k' \notin \mathcal{A}_1 \) \iff \(\mathcal{A}_1 = \mathcal{A}_1 : k \notin \mathcal{A}_1 \) \land \(\forall k', k' \in \mathcal{A}_1 \) \iff \(\mathcal{A}_1 = \mathcal{A}_1 : k \notin \mathcal{A}_1 \) \land \(\forall k', k' \in \mathcal{A}_1 \) \iff \(\mathcal{A}_1 = \mathcal{A}_1 : k \notin \mathcal{A}_1 \) \land \(\forall k', k' \in \mathcal{A}_1 \). Operations insert and remove are destructive.

Definition 6 (Consistency). A Ctrie state \(S \) is consistent with an abstract set \(\mathcal{A} \) if and only if \(k \in \mathcal{A} \iff \text{hasKey}(\text{Ctrie}(k), \mathcal{A}) \). A destructive Ctrie operation \(op \) is consistent with the corresponding abstract set operation \(op' \) if and only if \(\text{op'(k, \mathcal{A})} \) changes the state into \(S' \) consistent with \(\mathcal{A} \) changes the state into \(S' \) consistent with an abstract set \(\mathcal{A}' = \text{op'(k, \mathcal{A})} \). A Ctrie lookup is consistent with the abstract set lookup if and only if it returns the same value as the abstract set lookup, given that the state \(S \) is consistent with \(\mathcal{A} \). A consistency change is a change from state \(S \) to state \(S' \) of the Ctrie such that \(S' \) is consistent with \(\mathcal{A}' \) and \(\mathcal{A}' \) is consistent with \(\mathcal{A} \).

We point out that there are multiple valid states corresponding to the same abstract set.

Theorem 1 (Safety). At all times \(t \), a Ctrie is in a valid state \(S \), consistent with some abstract set \(\mathcal{A} \). All Ctrie operations are consistent with the semantics of the abstract set \(\mathcal{A} \).

First, it is trivial to see that if the state \(S \) is valid, then the Ctrie is also consistent with some abstract set \(\mathcal{A} \). Second, we prove the theorem using structural induction. As induction base, we take the empty Ctrie which is valid and consistent by definition. The induction hypothesis is that the Ctrie is valid and consistent at some time \(t \). We use the hypothesis implicitly from this point on. Before proving the induction step, we introduce additional definitions and lemmas.

Definition 7. A node is live if and only if it is a cnode, a non-tombed snode or an inode whose main reference points to a cnode. A nonlive node is a node which is not live. A null-inode is an inode with a main set to null. A tomb-inode is an inode with a main set to a tombed snode \(sn_t \). A node is a singleton if it is an snode or an inode \(in_t \) such that \(in.main = sn_t \), where \(sn_t \) is tombed.

Lemma 1 (End of life). If an inode in is either a null-inode or a tomb-inode at some time \(t_0 \), then \(\forall t > t_0.in.main \) is not written.

Proof. For any inode \(in \) which becomes reachable in the Ctrie at some time \(t \), all assignments to \(in.main \) at any time \(t_0 > t \) occur in a CAS instruction – we only have to inspect these writes. Every CAS instruction on \(in.main \) is preceded by a check that the expected value of \(in.main \) is a cnode. From the properties of CAS, it follows that if the current value is either null or a tombed snode, the CAS will not succeed. Therefore, neither null-inodes nor tomb-inodes can be written to \(in.main \).

Lemma 2. Cnodes and snodes are immutable – once created, they no longer change the value of their fields.

Proof. Trivial inspection of the pseudocode reveals that \(k, v, tomb, bmp \) and \(array \) are never assigned a value after an snode or a cnode was created.

Definition 8. A compression \(ccn \) of a cnode \(cn \) seen at some time \(t_0 \) is a node such that:

- \(ccn = sn_t \) if \(\text{length}(cn.array) = 1 \) and \(cn.array(0).main = \text{sn_t} \) at \(t_0 \)
- \(ccn = null \) if \(\forall i, cn.array(i).main = null \) at \(t_0 \) (including the case where \(\text{length}(cn.array) = 0 \))
- otherwise, \(ccn \) is a snode obtained from \(cn \) so that at least those null-inodes existing at \(t_0 \) are removed and at least those tomb-inodes in existing at \(t_0 \) are resurrected - that is, replaced by untombed copies \(sn \) of \(sn_t = in.main \).

A weak tombing \(wtc \) of a cnode \(cn \) seen at some time \(t_0 \) is a node such that:

- \(ccn = sn_t \) if \(\text{length}(cn.array) = 1 \) and \(cn.array(0).main = \text{sn_t} \) at \(t_0 \)
- \(ccn = null \) if \(\forall i, cn.array(i).main = null \) at \(t_0 \)
- \(ccn = cn \) if there is more than a single non-null-inode below at \(t_0 \)
- otherwise, \(ccn \) is a one-way enode obtained from \(cn \) such that all null-inodes existing at \(t_0 \) are removed.
Lemma 3. Methods toCompressed and toWeakTombed return the compression and weak tombing of a cnode cn, respectively.

Proof. From lemma 2 we know that a cnode does not change values of bmap or array once created. From lemma 1 we know that all the nodes that are nonlive at time t_0 must be nonlive $\forall t > t_0$. Methods toCompressed or toWeakTombed scan the array of cn sequentially and make checks which are guaranteed to stay true if they pass – when these methods complete at some time $t > t_0$ they will have removed or resurrected at least those inodes that were nonlive at some point t_0 after the operation began. □

Lemma 4. Invariants INV1, INV2 and INV3 are always preserved.

Proof. INV1: Inode creation and every CAS instruction abides this invariant. There are no other writes to main.

INV2, INV3: Trivial inspection of the pseudocode shows that the creation of cnodes abides these invariants. From lemma 2 we know that cnodes are immutable. Therefore, these invariants are ensured during construction and do not change subsequently. □

Lemma 5. If any CAS instruction makes an inode in unreachable from its parent at some time t, then in is nonlive at time t.

Proof. We will show that all the inodes a CAS instruction could have made unreachable from their parents at some point t_1 were nonlive at some time $t_0 < t_1$. The proof then follows directly from lemma 1. We now analyze successful CAS instructions.

In lines 6, 14 and 26, if r is an inode and it is removed from the trie, then it must have been previously checked to be a null_inode in lines 3, 13 and 25, respectively.

In lines 58, 67 and 71, a cnode cn is replaced with a new cnode new which contains all the references to inodes as cn does, and possibly some more. These instructions do not make any inodes unreachable.

In line 92, a cnode cn is replaced with a new new which contains all the node references as cn but without one reference to an inode – all the inodes remain reachable.

In line 126, a cnode m is replaced with its compression me – from lemma 3, me may only be deprived of references to nonlive inodes.

In line 133, a cnode m is replaced with its weak tombing mut – from lemma 3, mut may only be deprived of references to nonlive inodes.

Corollary 1. Lemma 5 has a consequence that any inode in can only be made unreachable in the Ctrie through modifications in their parent inode (or the root reference if in is referred by it). If there is a parent that refers to in, then that parent is live by definition. If the parent had been previously removed, lemma 5 tells us that the parent would have been nonlive at the time. From lemma 1 we know that the parent would remain nonlive afterwards. This is a contradiction.

Lemma 6. If at some time t_1 an inode in is read by some thread (lines 2, 11, 23, 39, 60, 84, 145), followed by a read of cnode $cn = \text{in.main}$ in the same thread at time $t_2 > t_1$ (lines 35, 51, 80, 124, 129, 140), then in is reachable from the root at time t_2. Trivially, so is in.main.

Proof. Assume, that inode in is not reachable from the root at t_2. That would mean that in was made unreachable at an earlier time $t_0 < t_2$. Corollary 1 says that in was then nonlive at t_0. However, from lemma 1 it follows that in must be nonlive for all times greater than t_0, including t_2. This is a contradiction – in is live at t_2, since it contains a cnode $cn = \text{in.main}$.

Lemma 7 (Presence). Reading a cnode cn at some time t_0 and then $\text{cn.sub}(k)$ such that $k = \text{sn.k}$ at some time $t_1 > t_0$ means that the relation hasKey(root, k) holds at time t_0. Trivially, k is then in the corresponding abstract set h.

Proof. We know from lemma 6 that the corresponding cnode cn was reachable at some time t_0. Lemma 2 tells us that cn and sn were the same $\forall t > t_0$. Therefore, sn was present in the array of cn at t_0, so it was reachable. Furthermore, sn.k is the same $\forall t > t_0$. It follows that hasKey(root, x) holds at time t_0. □

Definition 9. A longest path of nodes $\pi(h)$ for some hashcode h is the sequence of nodes from the root to a leaf of a valid Ctrie such that:

- if $\text{root} = \text{null}$ then $\pi(h) = \epsilon$
- if $\text{root} \neq \text{null}$ then the first node in $\pi(h)$ is root, which is an inode
- $\exists \text{in} \in \pi(h)$ if $\text{in.main} = \text{cn}$, then the next element in the path is cn
- $\exists \text{in} \in \pi(h)$ if $\text{in.main} = \text{sn}$, then the last element in the path is sn
- $\exists \text{in} \in \pi(h)$ if $\text{in.main} = \text{null}$, then the last element in the path is cn
- $\forall \text{in} \in \pi(h)$, $h = p \cdot r \cdot s$ if $\text{cn.flg}(r) = 1$, then the last element in the path is cn, otherwise the next element in the path is $\text{cn.arr}(r)$

Lemma 8 (Longest path). Assume that a non-empty Ctrie is in a valid state at some time t. The longest path of nodes $\pi(h)$ for some hashcode $h = r_0 \cdot r_1 \cdot \ldots \cdot r_n$ is a sequence $\text{in}_{0,c} \rightarrow \text{cn}_{0,c} \rightarrow \text{in}_{W,r_0} \rightarrow \ldots \rightarrow \text{in}_{W,m,r_0 \cdot \ldots \cdot r_m} \rightarrow x$, where $x \in \{cn_{W-m,r_0 \cdot \ldots \cdot r_m}, sn, cn_{W-m,r_0 \cdot \ldots \cdot r_m} \rightarrow sn, \text{null}\}$.

Proof. Trivially from the invariants and the definition of the longest path.

Lemma 9 (Absence I). Assume that at some time $t_0 \exists cn = \text{in.main}$ for some node $\text{in} \in \pi(h)$ and the algorithm is searching for a key k. Reading a cnode cn at some time t_0 such that $\text{cn.sub}(k) = \text{null}$ and $\text{hashcode}(k) = p \cdot r \cdot s$ implies that the relation hasKey(root, k) does not hold at time t_0. Trivially, k is not in the corresponding abstract set h.

Proof. Lemma 6 implies that in is in the configuration at time t_0, because $\text{cn} = \text{in}.\text{main}$ such that $\text{hashcode}(k) = p \cdot r \cdot s$ is live. The induction hypothesis states that the Ctrie was valid at t_0. We prove that hasKey(root, k) does not hold by contradiction. Assume there exists an snode sn such that $\text{sn}.k = k$. By lemma 8, sn can only be the last node of the longest path $\pi(h)$, and we know that cn is the last node in $\pi(h)$.

Lemma 10 (Absence II). Assume that the algorithm is searching for a key k. Reading a live snode sn at some time t_0 and then $x = sn.k \neq k$ at some time $t_1 > t_0$ means that the relation hasKey(root, x) does not hold at time t_0. Trivially, k is not in the corresponding abstract set h.

Proof. Contradiction similar to the one in the previous lemma.

Lemma 11 (Absence III). Assume that the root reference is read in r at t_0 and r is positively compared to null at $t_1 > t_0$. Then $\forall k, \text{hasKey(root, k)}$ does not hold at t_0. Trivially, the Ctrie is consistent with the empty abstract set \varnothing.

10

2011/6/14
Proof. Local variable \(r \) has the same value \(\forall t \geq t_0 \). Therefore, at \(t_0 \) \(\text{root} = \text{null} \). The rest is trivial.

Lemma 12 (Fastening). 1. Assume that one of the CAS instructions in lines 6, 14 and 26 succeeds at time \(t_1 \) after \(r \) was determined to be a nonlive inode in one of the lines 3, 13 or 25, respectively, at time \(t_0 \). Then \(\forall t_0 \leq t < t_1 \), relation \(\text{hasKey}(\text{root}, k) \) does not hold for any key. If \(r \) is null, then \(\exists \delta > 0 \forall t_0 \leq t_1 - \delta < t_1 \) \(\text{hasKey} \) does not hold for any key.

2. Assume that one of the CAS instructions in lines 58 and 71 succeeds at time \(t_1 \) after \(\text{in.main} \) was read in line 51 at time \(t_0 \). The \(\forall t_0 \leq t < t_1 \), relation \(\text{hasKey}(\text{root}, k) \) does not hold.

3. Assume that the CAS instruction in line 67 succeeds at time \(t_1 \) after in.main was read in line 51 at time \(t_0 \). The \(\forall t_0 \leq t < t_1 \), relation \(\text{hasKey}(\text{root}, k) \) holds.

4. Assume that the CAS instruction in line 92 succeeds at time \(t_1 \) after in.main was read in line 80 at time \(t_0 \). The \(\forall t_0 \leq t < t_1 \), relation \(\text{hasKey}(\text{root}, k) \) holds.

Proof. The algorithm never creates a reference to a newly allocated memory areas unless that memory area has been previously reclaimed. Although it is possible to extend the pseudocode with memory management directives, we omit memory-reclamation from the pseudocode and assume the presence of a garbage collector which does not reclaim memory areas as long as there are references to them reachable from the program. In the pseudocode, CAS instructions always work on memory locations holding references – CAS(\(x, r, r' \)) takes a reference \(r \) to a memory area allocated for nodes as its expected value, meaning that a reference \(r \) that is reachable in the program exists from the time \(t_0 \) when it was read until \(\text{CAS}(x, r, r') \) was invoked at \(t_1 \). On the other hand, the new value for the CAS is in all cases a newly allocated object. In the presence of a garbage collector with the specified properties, a new object cannot be allocated in any of the areas still being referred to. It follows that if a CAS succeeds at time \(t_1 \), then \(\forall t_0 \leq t < t_1 \), where \(t_0 \) is the time of reading a reference and \(t_1 \) is the time when CAS occurs, the corresponding memory location \(x \) had the same value \(r \).

We now analyze specific cases from the lemma statement:

1. We know that \(\forall t_0 \leq t < t_1 \), the root reference has a reference \(r \) to the same inode \(in \). We assumed that \(r \) is nonlive at \(t_0 \). From lemma 1 it follows that \(r \) remains nonlive until time \(t_1 \). By the definition of \(\text{hasKey} \), the relation does not hold for any key from \(\forall t_0 \leq t < t_1 \). Case where \(r \) is \(\text{null} \) is proved similarly.

2. From lemma 8 we know that for some hashcode \(h = \text{hascode}(k) \) there exists a longest path of nodes \(\pi(b) = \text{in}_0 \rightarrow \ldots \rightarrow \text{cn}_p \) such that \(h = p \cdot r \cdot s \) and \(s \text{sn}=k \) cannot be a part of this path – it could only be referenced by \(\text{cn}_p \cdot \text{sub}(k) \) of the last cnode in the path. We know that \(\forall t_0 \leq t < t_1 \), reference \(\text{cn} \) points to the same cnode. We know from 2 that cnodes are immutable. The check to \(\text{cn}.bmp \) preceding the CAS ensures that \(\forall t_0 \leq t < t_1 \), \(\text{cn}.\text{sub}(k) = \text{null} \). In the other case, we check that the key \(k \) is not contained in \(\text{sn} \). We know from 5 that \(\text{cn} \) is reachable during this time, because \(in \) is reachable. Therefore, \(\text{hasKey}(\text{root}, k) \) does not hold \(\forall t_0 \leq t < t_1 \).

3. Assume that the Crie is valid and consistent with some abstract set \(\text{has} \) \(\forall t_1 - \delta < t < t_1 \). CAS instructions from lemma 12 induce a change into a valid state which is consistent with the abstract set semantics.

Proof. From lemma 12, we know that a successful CAS in line 6 means that the Ctrie was consistent with an empty abstract set \(\emptyset \) up to some time \(t_1 \). After that time, the Crie is consistent with the abstract set \(\text{has} \). Successful CAS instructions in lines 14 and 26 mean that the Ctrie was consistent with an empty abstract set \(\emptyset \) up to some time \(t_1 \) and are also consistent with \(\text{has} \) at \(t_1 \).

Observe a successful CAS in line 58 at some time \(t_2 \) after \(cn \) was read in line 51 at time \(t_0 < t_1 \). From lemma 12 we know that \(\forall t_0 \leq t < t_1 \), relation \(\text{hasKey}(\text{root}, k) \) does not hold. If the last CAS instruction in the Ctrie occurring before the CAS in line 126 was at \(t_0 = t_1 - \delta \), then we know that \(\forall t_0 \leq t < t_1 \), the \(\text{hasKey} \) relation does not change. We know that at \(t_1 \) \(cn \) is replaced with a new cnnode with a reference to a new nodenode \(sn \) such that \(\text{sn}.k = k \), so at \(t_1 \) relation \(\text{hasKey}(\text{root}, k) \) holds. Consequently, up to \(\forall t_0 \leq t < t_1 \), the Ctrie is consistent with an abstract set \(\text{has} \) and at \(t_1 \) it is consistent with an abstract set \(\text{has} \cup \{k\} \). Validity is trivial.

Proofs for the CAS instructions in lines 67, 71 and 92 are similar.

Lemma 14. Assume that the Crie is valid and consistent with some abstract set \(\text{has} \), \(\forall t_3 - \delta < t < t_1 \). If one of the operations clean, tombCompress or contractParent succeeds with a CAS at \(t_1 \), the Ctrie will remain valid and consistent with the abstract set \(\text{has} \) at \(t_1 \).

Proof. Operations clean, tombCompress and contractParent are atomic – their linearization point is the first successful CAS instruction occurring at \(t_1 \). We know from lemma 3 that methods toCompressed and toWeakTombed produce a compression and a weak tombing of a cnode, respectively.

We first prove the property \(\exists k, \text{hasKey}(cn, k) \Rightarrow \text{hasKey}(f(cn), k) \), where \(f \) is either a compression or a weak tombing. We know from their respective definitions that the resulting cnode \(\text{cn} = f(cn) \) or the result \(\text{null} = f(cn) \) may only omit nonlive inodes from \(cn \). Omitting a null-inode omits no key. Omitting a tomb-inode may omit exactly one key, but that is compensated by adding new snodes – \(\text{sn} \) in the case of a one-way node or, with compression, resurrected copies \(\text{sn} \) of removed inodes \(sn \) such that \(\text{sn}.\text{main} = \text{sn} \). Therefore, the \(\text{hasKey} \) relation is exactly the same for both \(cn \) and \(f(cn) \).

We only have to look at cases where CAS instructions succeed. If CAS in line 126 at time \(t_1 \) succeeds, then \(\forall t_0 < t < t_1 \), \(\text{in.main} = cn \) and at \(t_1 \) \(\text{in.main} = \text{toCompressed}(cn) \). Assume there is some time \(t_0 = t_1 - \delta \) at which the last CAS instruction in the Ctrie occurring before the CAS in line 126 occurs. Then \(\forall t_0 \leq t < t_1 \) the \(\text{hasKey} \) relation does not change. Additionally, it does not change at \(t_1 \), as shown above. Therefore, the Ctrie remains consistent with the abstract set \(\text{has} \). Validity is trivial.

Proof for tombCompress and contractParent is similar.

Corollary 2. From lemmas 13 and 14 it follows that invariants INV4 and INV5 are always preserved.

Safety. We proved at this point that the algorithm is safe - Ctrie is always in a valid (lemma 4 and corollary 2) state consistent with some abstract set. All operations are consistent with the abstract set semantics (lemmas 7, 9, 10, 11, 13 and 14).

Theorem 2 (Linearizability). Operations insert, lookup and remove are linearizable.

Linearizability. An operation is linearizable if we can identify its linearization point. The linearization point is a single point in time
when the consistency of the Ctrie changes. The CAS instruction itself is linearizable, as well as atomic reads. It is known that a single invocation of a linearizable instruction has a linearization point.

1. We know from lemma 14 that operation clean does not change the state of the corresponding abstract set. Operation clean is followed by a restart of the operation it was called from and is not preceded by a consistency change – all successful writes in the insert and insert that change the consistency of the Ctrie result in termination.

CAS in line 6 that succeeds at t_1 immediately returns. By lemma 13, $\exists \delta > 0 \forall t, t_1 - \delta < t < t_1$ the Ctrie is consistent with an empty abstract set \emptyset, and at t_1 it is consistent with $k \in k$. If this is the first invocation of insert, then the CAS is the first and the last write with consistent semantics. If insert has been recursively called, then it has not been preceded by a consistency change – no successful CAS instruction in insert is followed by a recursive call to the method insert. Therefore, it is the linearization point.

CAS in line 58 that succeeds at t_1 immediately returns. By lemma 13, $\exists \delta > 0 \forall t, t_1 - \delta < t < t_1$ the Ctrie is consistent with an empty abstract set \emptyset, and at t_1 it is consistent with $k \in k$. If this is the first invocation of insert, then the CAS is the first and the last write with consistent semantics. If insert has been recursively called, then it was preceded by an insert or insert. We have shown that if its preceeded by a call to insert, then there have been no preceeding consistency changes. If it was preceeded by insert, then there has been no write in the previous insert invocation. Therefore, it is the linearization point.

Similar arguments hold for CAS instructions in lines 67 and 71. It follows that if some CAS instruction in the insert invocation is successful, then it is the only successful CAS instruction. Therefore, insert is linearizable.

2. Operation clean is not preceeded by a write that results in a consistency change and does not change the consistency of the Ctrie.

Assume that a check in line 25 succeeds. The state of the local variable r does not change $\forall t > t_0$ where t_0 is the atomic read in the preceeding line 23. The linearization point is then the read at t_0, by lemma 11.

Assume that a CAS in line 26 succeeds at t_1. By lemma 13, $\exists \delta > 0 \forall t, t_1 - \delta < t < t_1$ the Ctrie is consistent with an empty abstract set \emptyset, and at t_1 it is consistent with \emptyset. Therefore, this write does not result in consistency change and is not preceeded by consistency changes. This write is followed by the restart of the operation.

Assume that a node m is read in line 35 at t_0. By lemma 2, if $cn.sub(k) = null$ at t_1 then $\forall t, cn.sub(k) = null$. By corollary 1, cn is reachable at t_0, so at t_0 the relation $hasKey(root, k)$ does not hold. The read at t_0 is not preceeded by a consistency changing write and followed by a termination of the lookup so it is a linearization point if the method returns in line 38. By similar reasoning, if the operation returns in lines 43 or 44, the read in line 35 is the linearization point.

We have identified linearization points for the lookup, therefore lookup is linearizable.

3. Operation clean is not preceeded by a write that results in a consistency change and does not change the consistency of the Ctrie.

By lemma 14 operations tombCompress and contractParent do not cause a consistency change. Furthermore, they are only followed by calls to tombCompress and contractParent and the termination of the operation.

Assume that the check in line 13 succeeds after the read in line 11 at time t_0. By applying the same reasoning as for lookup above, the read at time t_0 is the linearization point.

Assume CAS in line 14 succeeds at t_1. We apply the same reasoning as for lookup above – this instruction does not change the consistency of the Ctrie and is followed by a restart of the operation.

Assume that a node m is read in line 80 at t_0. By similar reasoning as with lookup above, the read in line 80 is a linearization point if the method returns in either of the lines 83 or 94.

Assume that the CAS in line 92 succeeds at time t_0. By lemma 13, $\exists \exists \delta > 0 \forall t, t_1 - \delta < t < t_1$ the Ctrie is consistent with an empty abstract set k and at t_1 it is consistent with $k \in k$. This write is not preceeded by consistency changing writes and followed only by tombCompress and contractParent which also do not change consistency. Therefore, it is a linearization point.

We have identified linearization points for the remove, therefore remove is linearizable.

Definition 10. Assume that a multiple number of threads are invoking a concurrent operation op. The concurrent operation op is lock-free if and only if after a finite number of thread execution steps some thread completes the operation.

Theorem 3 (Lock-freedom). Ctrie operations insert, lookup and remove are lock-free.

The rough idea of the proof is the following. To prove lock-freedom we will first show that there is a finite number of steps between state changes. Then we define a space of possible states and show that there can only be finitely many successful CAS instructions which do not result in a consistency change. We have shown in lemmas 13 and 14 that only CAS instructions in lines 14, 26, 133, 149 and 153 do not cause a consistency change. We proceed by introducing additional definitions and proving the necessary lemmas. In all cases, we assume there has been no state change which is a consistency change, otherwise that would mean that some operation was completed.

Lemma 15. The root is never a tomb-node.

Proof. A tomb-node can only be assigned to $in.main$ of some in clean and tombCompress. Neither clean nor tombCompress are ever called for the in in the root of the Ctrie, as they are preceeded by the check if parent is different than null.

Lemma 16. If a CAS that does not cause a consistency change in one of the lines 58, 67, 71, 126, 133, 149 or 153 fails at some time t_4 then there has been a state change since the time t_4 when a respective read in one of the lines 51, 51, 124, 129, 140 or 140 occurred. Trivially, the state change preceeded the CAS by a finite number of execution steps.

Proof. The configuration of nodes reachable from the root has changed, since the corresponding in.main has changed. Therefore, the state has changed by definition.

Lemma 17. In each operation there is a finite number of execution steps between consecutive CAS instructions.

Proof. The ilookup and insert operations have a finite number of executions steps. There are no loops in the pseudocode for ilookup in insert, the recursive calls to them occur on the lower level of the trie and the trie depth is bound – no non-consistency changing CAS increases the depth of the trie.

The lookup operation is restarted if and only if there has been a CAS in line 26 or if clean (which contains a CAS) is called in ilookup. If clean was not called in ilookup after the check that the parent is not null at t_0, then root was in such that in.main = null at t_0 (it is not tombed by lemma 15). Assuming there has
been a state change in this case. The insert operation is restarted if and only if there has been a CAS in line 6 or if clean (which contains a CAS) is called in insert. If clean was not called in insert after the check that the parent is not null at t_0, then root was in such that $m.inmain = null at t_0$. Assuming no state change, a CAS will occur in the next recursive call to insert.

The insert operation can also be restarted due to a preceeding failed CAS in lines 58, 67 or 71. By lemma 16, there must have been a recursive call to tombCompress and remove because there is a finite number of execution steps. By lemma 17, if the CAS in line 126 changes the state of the Ctrie, compression may omit up to k null-inodes and j tomb-inodes in the trie, compression may omit up to k null-inodes and up to j tomb-inodes. Value d may decrease in the new state. If both k and j are 0, then the state must have changed since a nonlive inode was detected prior to calling clean.

This proves the statement for CAS in line 126, the rest are either trivial or can be proved by applying a similar reasoning.

Lemma 19. If the Ctrie is in a clean state and n threads are executing operations on it, then some thread will execute a successful CAS resulting in a consistency change after a finite number of execution steps.

Proof. Assume that there are $m \leq n$ threads in the clean operation or in the cleanup phase of the remove. Since the state is clean, there are no nonlive inodes, so it is trivial to show that none of these m threads will invoke a CAS after their next CAS (which will be unsuccessful). This means that these m threads will either complete in a finite number of steps or restart the original operation after a finite number of steps. From this point on, as shown in lemma 17, the first CAS will be executed after a finite number of steps. Since the state is clean, there are no more nonlive inodes, so clean will not be invoked. Therefore, the first CAS will result in a consistency change. Since it is the first CAS, it will also be successful.

Lock-freedom. Assume we start in some state $S_{n,t,l,r,d}$. We prove there are a finite number of state changes before reaching a clean state by contradiction. Assume there is an infinite sequence of state changes. We now use results from lemma 18. In this infinite sequence, a state change which decreases d may occur only finitely many times, since no state change increases d. After this finitely many state changes $d = 0$ so the sequence can contain no more state changes which decrease d. We apply the same reasoning to r – no available state change can increase the value of r, so after finitely many steps $r = 0$. At this point, we can only apply state changes which decrease n. After finitely many state changes $n = 0$. Therefore, the assumption is wrong – such an infinite sequence of state changes does not exist.

From corollary 3 there are a finite number of execution steps between state changes, so there are a finite number of execution steps before reaching a clean state. By lemma 19, if the Ctrie is in a clean state, then there are an additional finite number of steps until a consistency change occurs.

This proves that some operation completes after a finite number of steps, so all Ctrie operations are lock-free.

Definition 14. A tip is a cnode cn such that it contains at most one reference to a tomb_inode or an snode. It may contain zero or more null-inodes, but no cnodes. If the first ancestor cnode is k-way, then the tip has length 1.

The compression operations are designed so that they collect as many null-inodes as possible, and to prevent that there are tips. We now prove that they ensure that there are no tips in the trie.
Theorem 4 (Compactness). Assume all remove operations have completed execution. Then there is at most 1 tip of length 1 in the trie.

Compactness. Assume that at some inode in in the trie some remove operation created a tip cn at time t_0 by invoking a CAS instruction in line 92. The remove operation then repeatedly tries to replace the cn with a new node mwt such that mwt is a weak tombing of cn. It stops in 2 cases.

If at some time $t_1 > t_0$ the operation detects that in is not a tip, it will stop. If in is not a tip, then it can safely abort the compression operation, since only some other remove operation performing a successful CAS in line 92 at some time $t_2 > t_1$ can create a tip, and that remove operation will invoke the compression again.

If at some time $t_1 > t_0$ the CAS in line 133 succeeds, then in will become nonlive – no longer a tip. Therefore, by lemma 1 in does not change the value of $in.main$ for $t > t_0$, and all modifications to the values in that branch must occur at the first inode ancestor of in – its parent. Method $contractParent$ is called next in this case. If it finds that $bmp\circ flag = 0$ or $sub \neq in$, then in is no longer reachable, so there are no more tips created by the current remove operation at in – some other remove operation may create a tip after t_1 at the same level and prefix as in, but in this case subsequent operations will be responsible for removing that tip. If in is reachable, a null_inode is removed from the cnode below the parent (line 149) or a tomb_inode is resurrected into an snode (line 153). Notice that this can create a tip one level higher, but the whole procedure is repeated one level above for this reason.

The only case where we do not invoke tombCompress is the root, where $parent = null$. The root can, therefore, contain at most 1 tip of length 1. \qed