
XPath Processing in a Nutshell∗

Georg Gottlob, Christoph Koch, and Reinhard Pichler

Database and Artificial Intelligence Group
Technische Universität Wien, A-1040 Vienna, Austria

{gottlob, koch}@dbai.tuwien.ac.at, reini@logic.at

Abstract

We provide a concise yet complete formal
definition of the semantics of XPath 1 and
summarize efficient algorithms for processing
queries in this language. Our presentation is
intended both for the reader who is looking
for a short but comprehensive formal account
of XPath as well as the software developer in
need of material that facilitates the rapid im-
plementation of XPath engines.

1 Introduction

XPath [10] is a practical language for selecting nodes
from XML document trees. Its importance stems from
its suitability as an XML query language per se and it
being at the core of several other XML-related tech-
nologies, such as XSLT, XPointer, and XQuery.

Previous semantics definitions of XPath have either
been overly lengthy [10, 12], or were restricted to frag-
ments of the language (e.g. [6, 7]). In this paper, we
provide a formal semantics definition of full XPath, in-
tended for the implementor or the reader who values
a concise, formal, and functional description. As an
extension to [3], we also provide a brief but complete
definition of the XPath data model.

Given a query language, the prototypical algorith-
mic problem is query evaluation, and its hardness
needs to be formally studied. The query evaluation
problem was not addressed for full XPath in any depth
until recently [3, 2, 4]1. We summarize the main ideas
of that work in this paper, with an emphasis on use-
fulness to a wide audience.

Since XPath and related technologies will be tested
in ever-growing deployment scenarios, implementa-
tions of XPath engines need to scale well both with
respect to the size of the XML data and the growing

∗ This work was supported by the Austrian Science Fund
(FWF) under project No. Z29-INF. All methods and algorithms
presented in this paper are covered by a pending patent. Fur-
ther resources, updates, and possible corrections are available
at http://www.xmltaskforce.com.

1The novelty of our results is a bit surprising, as considerable
effort has been made in the past to understand the XPath query
containment problem (e.g. [1, 5, 8]), which – with its relevance
to query optimization – is only a means to the end of efficient
query evaluation.

size and intricacy of the queries. (Database theoreti-
cians refer to this as combined complexity .)

We present main-memory XPath processing algo-
rithms that run in time guaranteed to be polynomial
in the size of the complete input, i.e. query and data.
As experimentally verified in [3], where these and other
results where first presented, contemporary XPath en-
gines do not have this property, and require time ex-
ponential in the size of queries at worst.

We present polynomial-time XPath evaluation algo-
rithms in two flavors, bottom-up and top-down2. Both
algorithms have the same worst-case polynomial-time
bounds. The former approach comes with a clear and
simple intuition why our algorithms are polynomial,
while the latter requires to compute considerably fewer
useless intermediate results and consequently performs
much better in practice.

The structure of this paper is as follows. Sec-
tion 2 introduces XPath axes. Section 3 presents the
data model of XPath and auxiliary functions used
throughout the paper. Section 4 defines the seman-
tics of XPath in a concise way. Section 5 houses the
bottom-up semantics definition and algorithm. Sec-
tion 6 comes up with the modifications to obtain a
top-down algorithm. We conclude with Section 7.

2 XPath Axes

In XPath, an XML document is viewed as an unranked
(i.e., nodes may have a variable number of children),
ordered, and labeled tree. Before we make the data
model used by XPath precise (which distinguishes be-
tween several types of tree nodes) in Section 3, we
introduce the main mode of navigation in document
trees employed by XPath – axes – in the abstract, ig-
noring node types. We will point out how to deal with
different node types in Section 3.

All of the artifacts of this and the next section
are defined in the context of a given XML document.
Given a document tree, let dom be the set of its nodes,
and let us use the two functions

firstchild, nextsibling : dom → dom,

2By this we refer to the mode of traversal of the expression
tree of the query while computing the query result.

child := firstchild.nextsibling∗

parent := (nextsibling−1)∗.firstchild−1

descendant := firstchild.(firstchild ∪ nextsibling)∗

ancestor := (firstchild−1 ∪ nextsibling−1)∗.firstchild−1

descendant-or-self := descendant ∪ self
ancestor-or-self := ancestor ∪ self
following := ancestor-or-self.nextsibling.

nextsibling∗.descendant-or-self
preceding := ancestor-or-self.nextsibling−1.

(nextsibling−1)∗.descendant-or-self
following-sibling := nextsibling.nextsibling∗

preceding-sibling := (nextsibling−1)∗.nextsibling−1

Table 1: Axis definitions in terms of “primitive” tree
relations “firstchild”, “nextsibling”, and their inverses.

to represent its structure3. “firstchild” returns the
first child of a node (if there are any children, i.e.,
the node is not a leaf), and otherwise “null”. Let
n1, . . . , nk be the children of some node in document
order. Then, nextsibling(ni) = ni+1, i.e., “nextsib-
ling” returns the neighboring node to the right, if it
exists, and “null” otherwise (if i = k). We define the
functions firstchild−1 and nextsibling−1 as the inverses
of the former two functions, where “null” is returned if
no inverse exists for a given node. Where appropriate,
we will use binary relations of the same name instead
of the functions. ({〈x, f(x)〉 | x ∈ dom, f(x) 6= null}
is the binary relation for function f .)

The axes self , child , parent , descendant , ancestor ,
descendant-or-self , ancestor-or-self , following , preced-
ing , following-sibling , and preceding-sibling are binary
relations χ ⊆ dom × dom. Let self := {〈x, x〉 | x ∈
dom}. The other axes are defined in terms of our
“primitive” relations “firstchild” and “nextsibling” as
shown in Table 1 (cf. [10]). R1.R2, R1∪R2, and R∗

1 de-
note the concatenation, union, and reflexive and tran-
sitive closure, respectively, of binary relations R1 and
R2. Let E(χ) denote the regular expression defining
χ in Table 1. It is important to observe that some
axes are defined in terms of other axes, but that these
definitions are acyclic.

Definition 2.1 (Axis Function) Let χ denote an
XPath axis relation. We define the function χ :

2dom → 2dom as χ(X0) = {x | ∃x0 ∈ X0 : x0χx}
(and thus overload the relation name χ), where X0 ⊆
dom is a set of nodes.

�

Algorithm 2.2 (Axis Evaluation)
Input: A set of nodes S and an axis χ
Output: χ(S)
Method: evalχ(S)

function evalself(S) := S.
function evalχ(S) := evalE(χ)(S).
function evale1.e2

(S) := evale2
(evale1

(S)).
function evalR(S) := {R(x) | x ∈ S}.

3Actually, “firstchild” and “nextsibling” are part of the XML
Document Object Model (DOM).

function evalχ1∪χ2
(S) := evalχ1

(S) ∪ evalχ2
(S).

function eval(R1∪...∪Rn)∗(S) begin
S′ := S; /* S′ is represented as a list */
while there is a next element x in S ′ do

append {Ri(x) | 1 ≤ i ≤ n, Ri(x) 6= null,
Ri(x) 6∈ S′} to S′;

return S′;
end;

where S ⊆ dom is a set of nodes of an XML document,
e1 and e2 are regular expressions, R, R1, . . ., Rn are
primitive relations, χ1 and χ2 are axes, and χ is an
axis other than “self”.

�

Clearly, some axes could have been defined in
a simpler way in Table 1 (e.g., ancestor equals
parent.parent∗). However, the definitions, which use
a limited form of regular expressions only, allow to
compute χ(S) in a very simple way, as evidenced by
Algorithm 2.2.

The function eval(R1∪...∪Rn)∗ essentially computes
graph reachability (not transitive closure). It can be
implemented to run in linear time in terms of the data
in a straightforward manner; (non)membership in S ′ is
checked in constant time using a direct-access version
of S′ maintained in parallel to its list representation
(naively, this could be an array of bits, one for each
member of dom, telling which nodes are in S ′).

Lemma 2.3 Let S ⊆ dom be a set of nodes of an
XML document and χ be an axis. Then, (1) χ(S) =
evalχ(S) and (2) Algorithm 2.2 runs in time O(|dom|).

3 Data Model

Let dom be the set of nodes in the document tree as
introduced in the previous section. Each node is of one
of seven types, namely root, element, text, comment,
attribute, namespace, and processing instruction. As
in DOM [9], the root node of the document is the only
one of type “root”, and is the parent of the document
element node of the XML document. The main type of
non-terminal node is “element”, the other node types
are self-explaining (cf. [10]). Nodes of all types besides
“text” and “comment” have a name associated with it.

A node test is an expression of the form τ() (where
τ is a node type or the wildcard “node”, matching any
type) or τ(n) (where n is a node name and τ is a type
whose nodes have a name). τ(∗) is equivalent to τ().
We define a function T which maps each node test
to the subset of dom that satisfies it. For instance,
T (node()) = dom and T (attribute(href)) returns all
attribute nodes labeled “href”.

Example 3.1 Consider a document consisting of six
nodes – the root node r, which is the parent of
the document element node a (labeled “a”), and
its four children b1, . . . , b4 (labeled “b”). We have
dom = {r, a, b1, . . . , b4}, firstchild = {〈r, a〉, 〈a, b1〉},
nextsibling = {〈b1, b2〉, 〈b2, b3〉, 〈b3, b4〉}, T (root()) =
{r}, T (element()) = {a, b1, . . . , b4}, T (element(a)) =
{a}, and T (element(b)) = {b1, . . . , b4}.

�

Now, XPath axes differ from the abstract, untyped
axes of Section 2 in that there are special child axes
“attribute” and “namespace” which filter out all re-
sulting nodes that are not of type attribute or names-
pace, respectively. In turn, all other XPath axis func-
tions remove nodes of these two types from their re-
sults. We can express this formally as

attribute(S) := child(S) ∩ T (attribute())

namespace(S) := child(S) ∩ T (namespace())

and for all other XPath axes χ (let χ0 be the abstract
axis of the same name),

χ(S):=χ0(S) − (T (attribute()) ∪ T (namespace())).

Node tests that occur explicitly in XPath queries must
not use the types “root”, “attribute”, or “names-
pace”4. In XPath, axis applications χ and node tests
t always come in location step expressions of the form
χ::t. The node test n (where n is a node name or the
wildcard *) is a shortcut for τ(n), where τ is the prin-
cipal node type of χ. For the axis attribute, the princi-
pal node type is attribute, for namespace it is names-
pace, and for all other axes, it is element. For exam-
ple, child::a is short for child::element(a) and child::*
is short for child::element(*).

Note that for a set of nodes S and a typed axis χ,
χ(S) can be computed in linear time – just as for the
untyped axes of Section 2.

Let <doc be the binary document order relation,
such that x <doc y (for two nodes x, y ∈ dom) iff
the opening tag of x precedes the opening tag of y
in the (well-formed) document. The function first<doc

returns the first node in a set w.r.t. document order.
We define the relation <doc,χ relative to the axis χ as
follows. For χ ∈ {self, child, descendant, descendant-
or-self, following-sibling, following}, <doc,χ is the stan-
dard document order relation <doc. For the remaining
axes, it is the reverse document order >doc. Moreover,
given a node x and a set of nodes S with x ∈ S, let
idxχ(x, S) be the index of x in S w.r.t. <doc,χ (where
1 is the smallest index).

Given an XML Document Type Definition (DTD)
[11] that uses the ID/IDREF feature, each element
node of the document may be identified by a unique

id. The function deref ids : string → 2dom interprets
its input string as a whitespace-separated list of keys
and returns the set of nodes whose ids are contained
in that list.

The function strval : dom → string returns
the string value of a node, for the precise defini-
tion of which we refer to [10]. Notably, the string
value of an element or root node x is the concate-
nation of the string values of descendant text nodes
{y | descendant({x})∩ T (text())} visited in document
order. The functions to string and to number convert

4These node tests are also redundant with ‘/’ and the “at-
tribute” and “namespace” axes.

P [[χ::t[e1] · · · [em]]](x) :=
begin

S := {y | xχy, y ∈ T (t)};
for 1 ≤ i ≤ m (in ascending order) do

S := {y ∈ S | [[ei]](y, idxχ(y, S), |S|) = true};
return S;

end;
P [[π1|π2]](x) := P [[π1]](x) ∪ P [[π2]](x)
P [[/π]](x) := P [[π]](root)
P [[π1/π2]](x) :=

⋃

y∈P [[π1]](x) P [[π2]](y)

Figure 1: Standard semantics of location paths.

a number to a string resp. a string to a number ac-
cording to the rules specified in [10].

This concludes our discussion of the XPath data
model, which is complete except for some details re-
lated to namespaces. This topic is mostly orthogonal
to our discussion, and extending our framework to also
handle namespaces (without a penalty with respect to
efficiency bounds) is an easy exercise. 5

4 Semantics of XPath

In this section, we present a concise definition of the
semantics of XPath 1 [10]. We assume the syntax of
this language known, and cohere with its unabbreviated
form [10]. We use a normal form syntax of XPath,
which is obtained by the following rewrite rules, ap-
plied initially:

1. Location steps χ::t[e], where e is an expression that
produces a number (see below), are replaced by the
equivalent expression χ::t[e = position()].

2. All type conversions are made explicit (using the
conversion functions string, number, and boolean,
which we will define below).

3. Each variable is replaced by the (constant) value of
the input variable binding.

The main syntactic construct of XPath are expres-
sions , which are of one of four types, namely node set ,
number , string , or boolean. Each expression evaluates
relative to a context ~c = 〈x, k, n〉 consisting of a context
node x, a context position k, and a context size n [10].
C = dom × {〈k, n〉 | 1 ≤ k ≤ n ≤ |dom|} is the do-
main of contexts. Let ArithOp ∈ {+,−, ∗, div, mod},
RelOp ∈ {=, 6=, ≤, <,≥, >}, EqOp ∈ {=, 6=}, and
GtOp ∈ {≤, <, ≥, >}. By slight abuse of notation,
we identify these arithmetic and relational operations
with their symbols in the remainder of this paper.
However, it should be clear whether we refer to the
operation or its symbol at any point. By π, π1, π2, . . .
we denote location paths.

5To be consistent, we also will not discuss the “local-name”,
“namespace-uri”, and “name” core library functions [10].

Note that names used in node tests may be of the form
NCName:*, which matches all names from a given namespace
named NCNAME.

Definition 4.1 (Semantics of XPath) Each XPath
expression returns a value of one of the following four
types: number, node set, string, and boolean (abbre-
viated num, nset, str, and bool, respectively). Let T
be an expression type and the semantics [[e]] : C → T
of XPath expression e be defined as follows.

[[π]](〈x, k, n〉) := P [[π]](x)

[[position()]](〈x, k, n〉) := k

[[last()]](〈x, k, n〉) := n

For all other kinds of expressions e = Op(e1, . . . , em)
mapping a context ~c to a value of type T ,
[[Op(e1, . . . , em)]](~c) := F [[Op]]([[e1]](~c), . . . , [[em]](~c)),
where F [[Op]] : T1× . . .×Tm → T is called the effective
semantics function of Op. The function P is defined
in Figure 1 and the effective semantics function F is
defined in Table 2.

�

To save space, we at times re-use function defi-
nitions in Table 2 to define others. However, our
definitions are not circular and the indirections can
be eliminated by a constant number of unfolding
steps. Moreover, for lack of space, we define nei-
ther the number operations floor, ceiling, and round
nor the string operations concat, starts-with, contains,
substring-before, substring-after, substring (two ver-
sions), string-length, normalize-space, translate, and
lang in Table 2, but it is very easy to obtain these
definitions from the XPath 1 Recommendation [10].

The compatibility of our semantics definition (mod-
ulo the assumptions made in this paper to simplify the
data model) with [10] can easily be verified by inspec-
tion of the latter document.

It is instructive to look at the definition of P [[π1/π2]]
in Figure 1 in more detail. It is easy to see that, if this
semantics definition is followed rigorously to obtain
an analogous functional implementation, query eval-
uation using this implementation requires time expo-
nential in the size of the queries. All systems evaluated
in [3] went into this (or a very similar) trap.

5 Bottom-up Evaluation of XPath

In this section, we present a bottom-up semantics and
algorithm for evaluating XPath queries in polynomial
time. We discuss the intuitions which lead to poly-
nomial time evaluation (which we call the “context-
value table principle”), and establish the correctness
and complexity results.

Definition 5.1 (Semantics) We represent the four
XPath expression types nset, num, str, and bool using
relations as shown in Table 3. The bottom-up seman-
tics of expressions is defined via a semantics function

E↑ : Expression → nset ∪ num ∪ str ∪ bool,

given in Table 4 and as

E↑[[Op(e1, . . . , em)]] :=
{〈~c,F [[Op]](v1, . . . , vm)〉 | ~c ∈ C, 〈~c, v1〉 ∈ E↑[[e1]], . . . ,

〈~c, vm〉 ∈ E↑[[em]]}

Expr. E : Operator Signature
Semantics F [[E]]

F [[constant number v : → num]]()
v
F [[ArithOp : num × num → num]](v1, v2)
v1 ArithOp v2

F [[count : nset → num]](S)
|S|
F [[sum : nset → num]](S)
Σn∈S to number(strval(n))
F [[id : nset → nset]](S)�

n∈S
F [[id]](strval(n))

F [[id : str → nset]](s)
deref ids(s)
F [[constant string s : → str]]()
s

F [[and : bool × bool → bool]](b1, b2)
b1 ∧ b2

F [[or : bool × bool → bool]](b1, b2)
b1 ∨ b2

F [[not : bool → bool]](b)
¬b
F [[true() : → bool]]()
true
F [[false() : → bool]]()
false

F [[RelOp : nset × nset → bool]](S1, S2)
∃n1 ∈ S1, n2 ∈ S2 : strval(n1) RelOp strval(n2)
F [[RelOp : nset × num → bool]](S, v)
∃n ∈ S : to number(strval(n)) RelOp v
F [[RelOp : nset × str → bool]](S, s)
∃n ∈ S : strval(n) RelOp s
F [[RelOp : nset × bool → bool]](S, b)
F [[boolean]](S) RelOp b
F [[EqOp : bool × (str ∪ num ∪ bool) → bool]](b, x)
b EqOp F [[boolean]](x)
F [[EqOp : num × (str ∪ num) → bool]](v, x)
v EqOp F [[number]](x)
F [[EqOp : str × str → bool]](s1, s2)
s1 EqOp s2

F [[GtOp : (str ∪ num ∪ bool) ×
(str ∪ num ∪ bool) → bool]](x1, x2)

F [[number]](x1) GtOp F [[number]](x2)

F [[string : num → str]](v)
to string(v)
F [[string : nset → str]](S)
if S = ∅ then “” else strval(first<doc

(S))
F [[string : bool → str]](b)
if b=true then “true” else “false”

F [[boolean : str → bool]](s)
if s 6= “” then true else false
F [[boolean : num → bool]](v)
if v 6= ±0 and v 6= NaN then true else false
F [[boolean : nset → bool]](S)
if S 6= ∅ then true else false

F [[number : str → num]](s)
to number(s)
F [[number : bool → num]](b)
if b=true then 1 else 0
F [[number : nset → num]](S)
F [[number]](F [[string]](S))

Table 2: XPath effective semantics functions.

Expression Type Associated Relation R
num R ⊆ C× �
bool R ⊆ C× {true, false}

nset R ⊆ C× 2dom

str R ⊆ C× char∗

Table 3: Expression types and associated relations.

Expr. E : Operator Signature
Semantics E↑[[E]]

location step χ::t : → nset
{〈x0, k0, n0, {x | x0χx, x ∈ T (t)}〉 | 〈x0, k0, n0〉 ∈ C}
location step E[e] over axis χ: nset × bool → nset
{〈x0, k0, n0, {x ∈ S | 〈x, idxχ(x, S), |S|, true〉 ∈ E↑[[e]]}〉

| 〈x0, k0, n0, S〉 ∈ E↑[[E]]}
location path /π : nset → nset
C× {S | ∃k, n : 〈root, k, n, S〉 ∈ E↑[[π]]}
location path π1/π2 : nset × nset → nset
{〈x, k, n, z〉 | 1 ≤ k ≤ n ≤ |dom|,

〈x, k1, n1, Y 〉 ∈ E↑[[π1]],�
y∈Y 〈y, k2, n2, z〉 ∈ E↑[[π2]]}

location path π1 | π2 : nset × nset → nset
E↑[[π1]] ∪ E↑[[π2]]

position() : → num
{〈x, k, n, k〉 | 〈x, k, n〉 ∈ C}
last() : → num
{〈x, k, n, n〉 | 〈x, k, n〉 ∈ C}

Table 4: Expression relations for location paths, posi-
tion(), and last().

for the remaining kinds of XPath expressions.
�

Now, for each expression e and each 〈x, k, n〉 ∈ C,
there is exactly one v s.t. 〈x, k, n, v〉 ∈ E↑[[e]].

Theorem 5.2 Let e be an arbitrary XPath expres-
sion. Then, for context node x, position k, and size
n, the value of e is v, where v is the unique value such
that 〈x, k, n, v〉 ∈ E↑[[e]].

The main principle that we propose at this
point to obtain an XPath evaluation algorithm with
polynomial-time complexity is the notion of a context-
value table (i.e., a relation for each expression, as dis-
cussed above).

Context-value Table Principle. Given an ex-
pression e that occurs in the input query, the context-
value table of e specifies all valid combinations of con-
texts ~c and values v, such that e evaluates to v in
context ~c. Such a table for expression e is obtained by
first computing the context-value tables of the direct
subexpressions of e and subsequently combining them
into the context-value table for e. Given that the size
of each of the context-value tables has a polynomial
bound and each of the combination steps can be ef-
fected in polynomial time (all of which we can assure
in the following), query evaluation in total under our
principle also has a polynomial time bound6.

�

6The number of expressions to be considered is fixed with
the parse tree of a given query.

Query Evaluation. The idea of Algorithm 5.3
below is so closely based on our semantics definition
that its correctness follows directly from the correct-
ness result of Theorem 5.2.

Algorithm 5.3 (Bottom-up algorithm for XPath)
Input: An XPath query Q;
Output: E↑[[Q]].
Method:

let Tree(Q) be the parse tree of query Q;
R := ∅;
for each atomic expression l ∈ leaves(Tree(Q)) do

compute table E↑[[l]] and add it to R;
while E↑[[root(Tree(Q))]] 6∈ R do
begin

take an Op(l1, . . . , ln) ∈ nodes(Tree(Q))
s.t. E↑[[l1]], . . . , E↑[[ln]] ∈ R;

compute E↑[[Op(l1, . . . , ln)]] using E↑[[l1]], . . . , E↑[[ln]];
add E↑[[Op(l1, . . . , ln)]] to R;

end;
return E↑[[root(Tree(Q))]]. �

Example 5.4 Consider the document of Exam-
ple 3.1. We want to evaluate the XPath query Q,
which reads as

descendant::b/following-sibling::*[position() != last()]

over the input context 〈a, 1, 1〉. We illustrate how this
evaluation can be done using Algorithm 5.3: First of
all, we have to set up the parse tree

�� � �

�� � �

� ���

E2: E3[E4]

E3: following-sibling::* E4: E5 != E6

E6: last()E5: position()

Q: E1/E2

E1: descendant::b

of Q with its 6 proper subexpressions E1, . . . , E6.
Then we compute the context-value tables of the leaf
nodes E1, E3, E5 and E6 in the parse tree, and from
the latter two the table for E4. By combining E3 and
E4, we obtain E2, which is in turn needed for comput-
ing Q. The tables7 for E1, E2, E3 and Q are shown in
Figure 2. Moreover,

E↑[[E5]] = {〈x, k, n, k〉 | 〈x, k, n〉 ∈ C}

E↑[[E6]] = {〈x, k, n, n〉 | 〈x, k, n〉 ∈ C}

E↑[[E4]] = {〈x, k, n, k 6= n〉 | 〈x, k, n〉 ∈ C}

The most interesting step is the computation of E↑[[E2]]
from the tables for E3 and E4. For instance, consider
〈b1, k, n, {b2, b3, b4}〉 ∈ E↑[[E3]]. b2 is the first, b3 the
second, and b4 the third of the three siblings following

7The k and n columns have been omitted. Full tables are
obtained by computing the cartesian product of each table with
{〈k, n〉 | 1 ≤ k ≤ n ≤ |dom|}.

E↑[[E2]]

x val

b1 {b2, b3}
b2 {b3}

E↑[[E3]]

x val

b1 {b2, b3, b4}
b2 {b3, b4}
b3 {b4}

E↑[[E1]]

x val

r {b1, b2, b3, b4}
a {b1, b2, b3, b4}

E↑[[Q]]

x val

r {b2, b3}
a {b2, b3}

Figure 2: Context-value tables of Example 5.4.

b1. Thus, only for b2 and b3 is the condition E2 (requir-
ing that the position in set {b2, b3, b4} is different from
the size of the set, three) satisfied. Thus, we obtain
the tuple 〈b1, k, n, {b2, b3}〉 which we add to E↑[[E2]].

We can read out the final result {b2, b3} from the
context-value table of Q.

�

Theorem 5.5 XPath can be evaluated bottom-up in
polynomial time (combined complexity).

(For a proof sketch of this result see [3].)

6 Top-down Evaluation of XPath

In the previous section, we obtained a bottom-up
semantics definition which led to a polynomial-time
query evaluation algorithm for XPath. Despite this
favorable complexity bound, this algorithm is still not
practical, as usually many irrelevant intermediate re-
sults are computed to fill the context-value tables
which are not used later on. Next, building on the
context-value table principle of Section 5, we develop
a top-down algorithm based on vector computation
for which the favorable (worst-case) complexity bound
carries over but in which the computation of a large
number of irrelevant results is avoided.

Given an m-ary operation Op : Dm → D, its vec-
torized version Op〈〉 : (Dk)m → Dk is defined as

Op〈〉(〈x1,1, . . . , x1,k〉, . . . , 〈xm,1, . . . , xm,k〉) :=
〈Op(x1,1, . . . , xm,1), . . . , Op(x1,k, . . . , xm,k)〉

For instance, 〈X1, . . . , Xk〉 ∪〈〉 〈Y1, . . . , Yk〉 :=
〈X1 ∪ Y1, . . . , Xk ∪ Yk〉. Let

S↓ : LocationPath → List(2dom) → List(2dom)

be the auxiliary semantics function for location paths
defined in Figure 3. We basically distinguish the same
cases (related to location paths) as for the bottom-
up semantics E↑[[π]]. Given a location path π and a
list 〈X1, . . . , Xk〉 of node sets, S↓ determines a list
〈Y1, . . . , Yk〉 of node sets, s.t. for every i ∈ {1, . . . , k},
the nodes reachable from the context nodes in Xi via
the location path π are precisely the nodes in Yi. S↓[[π]]
can be obtained from the relations E↑[[π]] as follows. A
node y is in Yi iff there is an x ∈ Xi and some p, s such
that 〈x, p, s, y〉 ∈ E↑[[π]].

S↓[[χ::t[e1] · · · [em]]](X1, . . . , Xk) :=
begin

S := {〈x, y〉 |x ∈
⋃k

i=1 Xi, x χ y, and y ∈ T (t)};
for each 1 ≤ i ≤ m (in ascending order) do
begin

fix some order ~S = 〈〈x1, y1〉, . . . , 〈xl, yl〉〉 for S;
〈r1, . . . , rl〉 := E↓[[ei]](t1, . . . , tl)

where tj = 〈yj , idxχ(yj , Sj), |Sj |〉
and Sj := {z | 〈xj , z〉 ∈ S};

S := {〈xi, yi〉 | ri is true};
end;
for each 1 ≤ i ≤ k do

Ri := {y | 〈x, y〉 ∈ S, x ∈ Xi};
return 〈R1, . . . , Rk〉;

end;

S↓[[/π]](X1, . . . , Xk) := S↓[[π]](

k times
︷ ︸︸ ︷

{root}, . . . , {root})

S↓[[π1/π2]](X1, . . . , Xk) := S↓[[π2]](S↓[[π1]](X1, . . . , Xk))

S↓[[π1 | π2]](X1, . . . , Xk) :=
S↓[[π1]](X1, . . . , Xk) ∪〈〉 S↓[[π2]](X1, . . . , Xk)

Figure 3: Top-down evaluation of location paths.

Definition 6.1 The semantics function E↓ for arbi-
trary XPath expressions is of the following type:

E↓ : XPathExpression → List(C)
→ List(XPathType)

Given an XPath expression e and a list (~c1, . . . ,~cl) of
contexts, E↓ determines a list 〈r1, . . . , rl〉 of results of
one of the XPath types number, string, boolean, or
node set. E↓ is defined as

E↓[[π]](〈x1, k1, n1〉, . . . , 〈xl, kl, nl〉) :=
S↓[[π]]({x1}, . . . , {xl})

E↓[[position()]](〈x1, k1, n1〉, . . . , 〈xl, kl, nl〉) :=
〈k1, . . . , kl〉

E↓[[last()]](〈x1, k1, n1〉, . . . , 〈xl, kl, nl〉) :=
〈n1, . . . , nl〉

and

E↓[[Op(e1, . . . , em)]](~c1, . . . ,~cl) :=
F [[Op]]〈〉(E↓[[e1]](~c1, . . . ,~cl), . . . , E↓[[em]](~c1, . . . ,~cl))

for the remaining kinds of expressions.
�

Example 6.2 Given the query Q, data, and con-
text 〈a, 1, 1〉 of Example 5.4, we evaluate Q
as E↓[[Q]](〈a, 1, 1〉) = S↓[[E2]](S↓[[descendant::b]]({a}))
where S↓[[descendant::b]]({a}) = 〈{b1, b2, b3, b4}〉.

To compute S↓[[E2]](〈{b1, b2, b3, b4}〉), we proceed as
described in the algorithm for location steps in Fig-
ure 3. We initially obtain the set

S = {〈b1, b2〉, 〈b1, b3〉, 〈b1, b4〉, 〈b2, b3〉, 〈b2, b4〉, 〈b3, b4〉}

and the list of contexts ~t = 〈〈b2, 1, 3〉, 〈b3, 2, 3〉,
〈b4, 3, 3〉, 〈b3, 1, 2〉, 〈b4, 2, 2〉, 〈b4, 1, 1〉〉.

The check of condition E4 returns the filter

~r = 〈true, true, false, true, false, false〉.

which is applied to S to obtain

S = {〈b1, b2〉, 〈b1, b3〉, 〈b2, b3〉}

Thus, the query returns 〈{b2, b3}〉.
�

The correctness of the top-down semantics fol-
lows immediately from the corresponding result in the
bottom-up case and from the definition of S↓ and E↓.

Theorem 6.3 (Correctness of E↓) Let e be an
arbitrary XPath expression. Then, 〈v1, . . . , vl〉 =
E↓[[e]](~c1, . . . ,~cl) iff 〈~c1, v1〉, . . . , 〈~cl, vl〉 ∈ E↑[[e]].

S↓ and E↓ can be immediately transformed into
function definitions in a top-down algorithm. We thus
have to define one evaluation function for each case
of the definition of S↓ and E↓, respectively. The func-
tions corresponding to the various cases of S↓ have
a location path and a list of node sets of variable
length (X1, . . . , Xk) as input parameter and return a
list (R1, . . . , Rk) of node sets of the same length as
result. Likewise, the functions corresponding to E↓
take an arbitrary XPath expression and a list of con-
texts as input and return a list of XPath values (which
can be of type num, str, bool or nset). Moreover, the
recursions in the definition of S↓ and E↓ correspond
to recursive function calls of the respective evaluation
functions. Analogously to Theorem 5.5, we get

Theorem 6.4 The immediate functional implemen-
tation of E↓ evaluates XPath queries in polynomial
time (combined complexity).

Finally, note that using arguments relating the top-
down method of this section with (join) optimization
techniques in relational databases, one may argue that
the context-value table principle is also the basis of the
polynomial-time bound of Theorem 6.4.

7 Conclusions

The algorithms presented in this paper empower
XPath engines to deal efficiently with very sophisti-
cated queries while scaling up to large documents.

In [3, 4], in addition to an experimental verifica-
tion of our claim that current XPath engines evalu-
ate queries in exponential time only, we have also pre-
sented fragments of XPath which contain most of the
XPath queries likely to be used in practice and can be
evaluated particularly efficiently, using methods that
are beyond the scope of this paper.

We have made a main-memory implementation of
the top-down algorithm of Section 6. Resources such
as this implementation and publications will be made
accessible at http://www.xmltaskforce.com.

Acknowledgments

We thank J. Siméon for pointing out to us that the
mapping from XPath to the XML Query Algebra,
which will be the preferred semantics definition for
XPath 2, in an direct functional implementation also
leads to exponential-time query processing on XPath 1
(which is a fragment of XPath 2).

References

[1] A. Deutsch and V. Tannen. Containment and In-
tegrity Constraints for XPath. In Proc. KRDB 2001,
CEUR Workshop Proceedings 45, 2001.

[2] G. Gottlob and C. Koch. “Monadic Queries over Tree-
Structured Data”. In Proceedings of the 17th An-
nual IEEE Symposium on Logic in Computer Science
(LICS 2002), pages 189–202, Copenhagen, Denmark,
July 2002.

[3] G. Gottlob, C. Koch, and R. Pichler. “Efficient Algo-
rithms for Processing XPath Queries”. In Proceedings
of the 28th International Conference on Very Large
Data Bases (VLDB’02), Hong Kong, China, Aug.
2002.

[4] G. Gottlob, C. Koch, and R. Pichler. “XPath Query
Evaluation: Improving Time and Space Efficiency”.
In Proceedings of the 19th IEEE International Con-
ference on Data Engineering (ICDE’03), Bangalore,
India, Mar. 2003. to appear.

[5] G. Miklau and D. Suciu. “Containment and Equiv-
alence for an XPath Fragment”. In Proceedings of
the 21st ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems (PODS’02),
pages 65–76, Madison, Wisconsin, 2002.

[6] P. Wadler. “Two Semantics for XPath”, 2000. Draft
paper available at
http://www.research.avayalabs.com/user/wadler/.

[7] P. Wadler. “A Formal Semantics of Patterns in
XSLT”. In Markup Technologies, Philadelphia, De-
cember 1999. Revised version in Markup Languages,
MIT Press, June 2001.

[8] P. T. Wood. “On the Equivalence of XML Patterns”.
In Proc. 1st International Conference on Computa-
tional Logic (CL 2000), LNCS 1861, pages 1152–1166,
London, UK, July 2000. Springer-Verlag.

[9] World Wide Web Consortium. DOM Specification
http://www.w3c.org/DOM/.

[10] World Wide Web Consortium. XML
Path Language (XPath) Recommendation.
http://www.w3c.org/TR/xpath/, Nov. 1999.

[11] World Wide Web Consortium. “Extensible Markup
Language (XML) 1.0 (Second Edition)”, Oct. 2000.
http://www.w3.org/TR/REC-xml.

[12] World Wide Web Consortium. “XQuery
1.0 and XPath 2.0 Formal Semantics.
W3C Working Draft Aug. 16th 2002, 2002.
http://www.w3.org/TR/query-algebra/.

