
1

Query Rewriting with Symmetric

Constraints ∗

Christoph Koch

Database and Artificial Intelligence Group
Technische Universität Wien,
A-1040 Vienna, Austria
koch@dbai.tuwien.ac.at

We address the problem of answering queries using ex-
pressive symmetric inter-schema constraints which al-
low to establish mappings between several heteroge-
neous information systems. This problem is of high rel-
evance to data integration, as symmetric constraints
are essential for dealing with true concept mismatch
and are generalizations of the kinds of mappings sup-
ported by both local-as-view and global-as-view ap-
proaches that were previously studied in the literature.
Moreover, the flexibility gained by using such con-
straints for data integration is essential for virtual en-
terprise and e-commerce applications. We first discuss
resolution-based methods for computing maximally
contained rewritings and characterize computability
aspects. Then we propose an alternative but seman-
tically equivalent perspective based on a generaliza-
tion of results relating to the database-theoretic prob-
lem of answering queries using views. This leads to a
fast query rewriting algorithm based on AI techniques,
which has been implemented and experimentally eval-
uated.

1. Introduction

This article addresses the query rewriting prob-
lem in semantic data integration in a very gen-
eral form, as a proper generalization of the well-
known local-as-view (e.g., [20,12,3]) and global-as-
view approaches (e.g., [11,2,6]).

We focus on the relational case. Given a con-
junctive query Q, we attempt to find a maximally
contained rewriting in terms of a set of distin-
guished source predicates S only – under a given

*A short version of this article has appeared in Proc. 2nd
Int. Symp. on Foundations of Information and Knowledge
Systems, 2002 [16].

set of constraints, the positive relational queries as
the output query language (i.e., a rewriting is a
set of conjunctive queries), and the classical logical
semantics. Under the classical semantics, (1) for
each conjunctive query Q′ in the maximally con-
tained rewriting of Q, the constraints taken as a
logical theory imply Q ⊇ Q′ andQ′ uses predicates
of S only, and (2) for each conjunctive query Q′′

over predicates in S only for which the constraints
imply that Q ⊇ Q′′, there is a conjunctive query
Q′ in the rewriting such that the constraints imply
Q′ ⊇ Q′′.

We support inter-schema constraints in the form
of what we call Conjunctive Inclusion Dependen-
cies (cind’s), containment relationships between
conjunctive queries. We refer to cind’s as sym-
metric because they are syntactically symmetric
with respect to the inclusion resp. implication sym-
bol, while for instance materialized view defini-
tions used for local-as-view query rewriting are
not.

Example 1.1 Consider a conjunctive query

Q(x1)← parent(x1, x2) ∧ parent(x2, x3) ∧

parent(x3, x4).

asking for great-grandparents in terms of a schema
which contains a predicate “parent”. Now let “par-
ent” be a “logical” relation to which database re-
lations first need to be mapped before any queries
over it can be answered. Let “parent” be conceived
to represent parent-child relationships between liv-
ing persons only. We want to rewriteQ into a query
over source predicates in S = {grandparent, alive},
where “grandparent” contains grandparent rela-
tionships between persons of which the grandpar-
ents may possibly have deceased and the source
relation “alive” holds persons still alive. We may
assert the cind

{〈x, z〉 | ∃y : parent(x, y) ∧ parent(y, z)} ⊇
{〈x, z〉 | grandparent(x, z) ∧ alive(x)}

AI Communications

ISSN 0921-7126, IOS Press. All rights reserved

2 Query Rewriting with Symmetric Constraints

between the schema of “parent” and S, i.e., a map-
ping formulated as a containment relationship be-
tween conjunctive queries. Then,

Q′(x1)← grandparent(x1, x3) ∧ alive(x1)∧
grandparent(x3, z) ∧ alive(x3).

(i.e., a single conjunctive query) is the maximally
contained rewriting of Q, i.e. the largest query log-
ically contained in Q with respect to the constraint
given (and thus cannot return any wrong answers)
that can be computed by only considering query
and constraint, but not the data in the relations
of S, and which only uses relations from S. �

Note that the problem we attack in this arti-
cle is different from work on query answering us-
ing integrity constraints [9,10,13] or the problem of
optimizing queries in mediated systems. Our con-
straints are meant to encode mappings between
the schemata of several information systems as in
[5,4]; as such, they compare to materialized view
definitions in the local-as-view approach rather
than to classical integrity constraints .

cind’s may represent mappings between complex
networks of information systems in which each in-
formation system may have its own schema and
make use of integrated data. We are thus not re-
stricted to a single layer of constraints (which map
sources against a so-called “global” schema) as in
the local-as-view approach. Starting from a set of
actual source relations which contain data, views
or “logical relations” can be defined and used to
extend any of the schemata. To facilitate practi-
cal usability, a logical relation may map to sources
through several indirections. Such an architecture
is essential for large and open environments such
as experienced in the modern e-economy [5,15].

The relevance of query rewriting with symmet-
ric constraints stems from the observation that
both local-as-view and global-as-view approaches
to data integration are unable to deal with con-
cept mismatch requiring mappings between pairs
of complex query expressions. This problem is par-
ticularly common in complex technical domains
[15].

Example 1.2 Assume that we have a number of
sources holding information about computer mod-
els as-built (in fact, we only consider computer
mainboards in this short example), their con-
stituent parts, and technical specifications. We
want to integrate these sources against a reference

design view R with predicates “mb” (for main-
boards), “cpu”, “cache”, “conn” (for connections
or part-of relationships between component parts),
and possibly others. Let a source schema S repre-
sent mainboards using a CPU model called “p1”
which has an on-chip cache. We cannot directly
map cache components in this example, but we can
map characteristics represented by both schemata
(say, MHz rates r and cache sizes s) to mainboards
and CPUs and mediate useful queries over R. We
encode the desired mapping using the cind

{〈x, y, r, s〉 | ∃z :R.mb(x) ∧R.conn(x, y)∧
R.conn(x, z) ∧R.cpu(y, r)∧
R.cache(z, s)} ⊇

{〈x, y, r, s〉 | S.mb(x) ∧ S.conn(x, y)∧
S.p1(y, r, s)} �

Local-as-view and global-as-view approaches as-
sume that mediated schemata can be designed
beforehand using intuitions concerning the likely
sources to be added to an integration system later.
Both large data integration settings and changing
requirements render such an assumption unsus-
tainable (see [15]). Our approach allows to “patch”
local-as-view or global-as-view integration systems
when sources need to be integrated whose particu-
larities have not been foreseen when designing the
schemata against which data are to be integrated.

The only previous work dealing with symmet-
ric constraints is the description logics approach
to data integration (e.g., [4,5]), which, however,
requires high-complexity reasoning over the data
(thus, there is a scalability issue) and to import
all data to be integrated into the description logics
reasoner. This is usually not an option in open e-
economy or WWW data integration environments.
Solving the integration problem on the level of
queries and mappings only is essential for being
able to deal with large amounts of data and re-
stricted (e.g., screen-scraping) query interfaces.

Contributions and Structure. After some prelim-
inaries (Section 2), we discuss a simple resolution-
based method for generating rewritings and pro-
vide characterizations of the main theoretical
properties of our problem in Section 3. Unfor-
tunately, positive (and thus non-recursive) max-
imally contained rewritings may be infinite and
the major decision problems (such as the non-
emptiness or boundedness of the result) are unde-
cidable. However, given that the predicate depen-

Query Rewriting with Symmetric Constraints 3

dency graph (with respect to the inclusion direc-
tion) of a set of constraints is acyclic, we can guar-
antee to find the maximally contained rewritings,
which are finite. The acyclic case is a proper gener-
alization of both local-as-view and global-as-view
approaches.

In Section 4, we propose an alternative algo-
rithm for computing maximally contained rewrit-
ings which is based on a generalization of the Mini-
Con Algorithm [22] for the problem of answering
queries using views, and demonstrate its sound-
ness and completeness. When using this algo-
rithm, all intermediate rewritings are guaranteed
to be function-free and thus conjunctive queries.
Because of that, one can make use of classical
database techniques for optimizing the rewriting
process. Section 5 presents refinements of the al-
gorithm of Section 4, which we have implemented
in a practical system.

We evaluate our implementation, which is pub-
licly available, experimentally in Section 6. It turns
out that it scales to thousands of constraints and
realistic applications. Section 7 concludes with a
discussion of our new algorithm.

2. Preliminaries

We define a conjunctive inclusion dependency
(cind) as a constraint of the form Q1 ⊆ Q2 where
Q1 and Q2 are conjunctive queries of the form

{〈x1, . . . , xn〉 | ∃xn+1 . . . xm :
(p1(X̄1) ∧ . . . ∧ pk(X̄k))}

with distinct1 unbound variables x1, . . . , xn, with-
out arithmetic comparisons, but possibly with con-
stants. We may write {Q1 ≡ Q2} as a short form
of {Q1 ⊆ Q2, Q1 ⊇ Q2}.

The semantics of cind’s is the classical logical
one and will be formally introduced in the frame-
work of query rewriting in the next section. For
some background in logic-based data integration
and on GAV and LAV, we refer to the survey [18].

The normal form NF (Σ) of a set Σ of cind’s
– i.e., Σ taken as a logical formula transformed
into (implication) normal form – is a set of Horn
clauses of a simple pattern. Every cind σ of the
form Q1 ⊆ Q2 with

1Note that if we would not require unbound variables in
constituent queries to be distinct, the transformation into
normal form would result in Horn clauses with equality
atoms as heads.

Q1 = {〈x1, . . . , xn〉 | ∃xn+1 . . . xm :
v1(X̄1) ∧ . . . ∧ vk(X̄k)}

Q2 = {〈y1, . . . , yn〉 | ∃yn+1 . . . ym′ :
p1(Ȳ1) ∧ . . . ∧ pk′(Ȳk′)}

translates to k′ Horn clauses pi(Z̄i)← v1(X̄1)∧
. . .∧vk(X̄k)). where each zi,j of Z̄i is determined
as follows: If zi,j is a variable yh with 1 ≤ h ≤ n,
replace it with xh. If zi,j is a variable yh with
n < h ≤ m′, replace it with Skolem function
fσ,yh

(x1, . . . , xn) (the subscript assures that the
Skolem functions are unique for a given constraint
and variable).

Example 2.1 Let σ be the cind

{〈y1, y2〉 | ∃y3 : p1(y1, y3) ∧ p2(y3, y2)} ⊇
{〈x1, x2〉 | ∃x3 : v1(x1, x2) ∧ v2(x1, x3)}.

Then, NF ({σ}) is

p1(x1, fσ,y3
(x1, x2))← v1(x1, x2) ∧ v2(x1, x3).

p2(fσ,y3
(x1, x2), x2)← v1(x1, x2) ∧ v2(x1, x3). �

Whenever a cind translates into a function-free
clause in normal form, we write it in datalog nota-
tion. This is the case for cind’s {〈X̄〉 | p(X̄)} ⊇ Q,
i.e., where the subsumer queries are ∃-free single-
literal queries.

The dependency graph of a set C of Horn clauses
is the directed graph constructed by taking the
predicates of C as nodes and adding, for each
clause in C, an edge from each of the body predi-
cates to the head predicate. The diameter of a di-
rected acyclic graph is the longest directed path
occurring in it. The dependency graph of a set of
cind’s Σ is the dependency graph of the logic pro-
gram NF (Σ). A set of cind’s is cyclic if its depen-
dency graph is cyclic. An acyclic set Σ of cind’s is
called layered if the predicates appearing in Σ can
be partitioned into n disjoint sets P1, . . . , Pn such
that there is an index i for each cind σ : Q1 ⊆
Q2 ∈ Σ such that Preds(Body(Q1)) ⊆ Pi and
Preds(Body(Q2)) ⊆ Pi+1 and S = P1.

3. Query Containment and Rewriting

Let us begin with a straightforward remark on
the containment problem for conjunctive queries
under a set of cind’s Σ, which, since they are them-
selves containment relationships between conjunc-
tive queries, is the implication problem for this
type of constraint. To check a containment

4 Query Rewriting with Symmetric Constraints

{〈X̄〉 | ∃Ȳ : φ(X̄, Ȳ)} ⊇ {〈X̄〉 | ∃Z̄ : ψ(X̄, Z̄)}

of two conjunctive queries under Σ by refutation
(without loss of generality, we assume Ȳ and Z̄ to
be disjoint and the unbound variables in the two
queries above to be the same, X̄), we have to show

Σ,¬(∀X̄ : (∃Ȳ : φ(X̄, Ȳ))← (∃Z̄ : ψ(X̄, Z̄))) � ⊥

i.e. the inconsistency of the constraints and the
negation of the containment taken together. In
normal form, ψ becomes a set of ground facts
where all variables have been replaced one-to-one
by new constants and φ becomes a clause with an
empty head, where all distinguished variables xi

have been replaced by constants also used in ψ.

Example 3.1 For proving

Σ � {〈x1, x2〉 | ∃x3 : p1(x1, x3) ∧ p2(x3, x2)} ⊇
{〈y1, y2〉 | ∃y3 : r1(y1, y3) ∧ r2(y3, y2)}

for a set of cind’s Σ, we create the logic program

P := NF (Σ) ∪ { ← p1(α1, x3) ∧ p2(x3, α2).
r1(α1, α3)← .
r2(α3, α2)← . }

where α1, α2, α3 are constants not appearing else-
where. By the correctness of resolution for logic
programs, the containment above holds iff there is
a refutation of the goal ← p1(α1, x3)∧p2(x3, α2).
with the remaining clauses in P . �

Definition 3.2 A set of conjunctive queries Q is a
maximally contained positive rewriting of a con-
junctive query Q with respect to a set of cind’s Σ
and a set of source predicates S iff

1. for each Q′ ∈ Q, Σ � Q ⊇ Q′ and
Preds(Q′) ⊆ S and

2. for each conjunctive query Q′′ with Σ � Q ⊇
Q′′ and Preds(Q′′) ⊆ S, there is a Q′ ∈ Q
such that Σ � Q ⊇ Q′ ⊇ Q′′. �

In the finite case, a minimal2 such set Q is of
course unique up to reordering and variable renam-
ing.

For simplicity, we assume that no source pred-
icates appear in any heads of Horn clauses in
NF (Σ) throughout this article. This does not

2A set of conjunctive queries is minimal if and only if the
constituent queries are individually minimal and pairwise
non-redundant.

cause any loss of generality, since we can always re-
place a source predicate that violates this assump-
tion by a new virtual predicate in all cind’s and
then add a cind that maps the source predicate to
that new virtual predicate.

Informally, we can obtain such a maximally con-
tained rewriting by a method based on SLD res-
olution in the following way. Given a conjunctive
query Q, a set of cind’s Σ, and a set of source pred-
icates S, we first create a logic program NF (Σ)
and add a unit clause s(X̄)← . (with a tuple X̄ of
distinct variables) for each predicate s ∈ S. Then
we try to refute the body of Q. (Differently from
what we do for containment, we do not freeze any
variables.) If we have found a refutation with a
most general unifier θ, we collect the unit clauses
used and create a Horn clause with θ(Head(Q))
as head and the application of θ to the copies of
unit clauses involved in the proof as body. If this
clause is function-free, we output it. After that we
go on as if we had not found a “proof” to com-
pute more rewritings. Given an appropriate selec-
tion rule or a breath-first strategy for computing
derivations, it is easy to see that this method will
compute a maximally contained rewriting of Q in
terms of multi-sets of conjunctive queries in the
sense that for each conjunctive queryQ′′ contained
in Q, a subsumer Q′ will eventually be produced
s.t. Σ � Q ⊇ Q′ ⊇ Q′′. See Example 4.9 for query
rewriting by an altered refutation proof.

Computability and Complexity.

Theorem 3.3 Let Σ be a set of cind’s, S a set of
predicates, and Q and Q′ be conjunctive queries.
Then the following problems are undecidable:

1. Σ � Q ⊆ Q′, the containment problem.
2. ∃Q′ : Σ � Q ⊇ Q′ s.t. Preds(Q′) ⊆ S,

i.e. it is undecidable whether the maximally
contained rewriting of a conjunctive query Q
w.r.t. Σ and S is nonempty (that is, it con-
tains at least one conjunctive query).

Moreover, the boundedness problem (cf. [1]) for
maximally contained positive rewritings is unde-
cidable, as any datalog program can be written as
a set of cind’s.

Post’s Correspondence Problem (PCP, see e.g.
[24]), a simple and well-known undecidable prob-
lem, is defined as follows. Given nonempty words
x1, . . . , xn and y1, . . . , yn over the alphabet {0, 1},

Query Rewriting with Symmetric Constraints 5

the problem is to decide whether there are in-
dexes i1, . . . , ik (with k > 0) s.t. xi1xi2 . . . xik

=
yi1yi2 . . . yik

. Pairs of words 〈xi, yi〉 are also called
dominos .

In the following example, we provide a reduction
of PCP to our query rewriting problem that proves
the undecidability results of Theorem 3.3.

Example 3.4 Let s be a source, q ← inc!(0, 0).
a boolean query, and

inc!(x, y)←one(x, x1) ∧ zero(x1, x2) ∧
one(x2, x3) ∧ one(y, y1) ∧
inc(x3, y1). (1)

inc!(x, y)← one(x, x1) ∧ zero(y, y1) ∧
one(y1, y2) ∧ one(y2, y3) ∧
one(y3, y4) ∧ zero(y4, y5) ∧
inc(x1, y5). (2)

inc(x, y)← inc!(x, y). (3)
inc(x, y)← dec(x, y). (4)

{〈x, y〉 | dec(x, y)} ⊆
{〈x, y〉 | ∃x1, y1 : zero(x, x1) ∧ zero(y, y1)∧

dec(x1, y1)} (5)
{〈x, y〉 | dec(x, y)} ⊆
{〈x, y〉 | ∃x1, y1 : one(x, x1) ∧ one(y, y1)∧

dec(x1, y1)} (6)

dec(0, 0)← s. (7)

seven cind’s of which the leading two stand for the
instance

I = {〈x1 = 101, y1 = 1〉, 〈x2 = 1, y2 = 01110〉}

and the remaining four constitute the core PCP
encoding. The constraints (1) and (2) “guess” two
words represented as chains of “one” and “zero”
atoms by the nondeterminism by which resolution
(or MCD rewriting using Algorithm 4.3, for that
matter) chooses a clause to resolve an “inc” atom,
(3) and (4) allow for a choice whether further
dominos are to be appended or not, constraints (5)
and (6) “check” whether the two words are equal
(which indicates the existence of a solution to the
PCP problem) by proceeding from the right to the
left, and constraint (7) “terminates” if the search
was successful.

For showing the PCP instance I satisfiable, one
can compute a contained rewriting by applying the
constraints in the following order (we only describe
the proof but no dead-end branches): (guess phase)

(1), (3), (2), (3), (1), (4), (check phase) (6), (5),
(6), (6), (6), (5), (6), (termination) (7). 3

We find a solution x1x2x1 = y1y2y1 = 1011101
to I. Generally, a PCP instance is satisfiable iff
the maximally contained rewriting is {q ← s.}.
(Furthermore, a PCP instance is satisfiable iff Σ �

{〈〉 | inc(0, 0)} ⊇ {〈〉 | s}.) �

For the important case that Σ is acyclic, the
above problems are decidable (and those of The-
orem 3.3 are NEXPTIME -complete). We first es-
tablish the following auxiliary result.

Lemma 3.5 Let Σ be an acyclic set of cind’s and Q
and Q′ be conjunctive queries. Then the contain-
ment problem Σ � Q ⊆ Q′ and the problem of de-
ciding whether the maximally contained rewriting
of Q (as a set of conjunctive queries) is nonempty
are NEXPTIME-hard. �

Proof. NEXPTIME-hardness follows from a
slightly altered form of the encoding of the NEXP-
TIME-complete Tiling problem (see e.g. [21]) used
in [7] to show NEXPTIME-hardness of the SUC-
CESS problem for nonrecursive logic program-
ming, i.e., the problem of deciding whether a
nonrecursive logic program treated as a database
query will return a nonempty result.

TILING is the problem of tiling the square of
size 2n × 2n by tiles (squares of size 1 × 1) of k
types. There are two binary relations on and to

defined on the tiles. Tiles ti and tj are said to be
horizontally compatible if 〈ti, tj〉 ∈ to holds and
are called vertically compatible if 〈ti, tj〉 ∈ on. A
tiling of the square of size 2n × 2n is a function
f : {1, . . . , 2n} × {1, . . . , 2n} → {t1, . . . , tk} such
that vertically and horizontally neighboring tiles
are compatible, i.e. 〈f(i, j), f(i+ 1, j)〉 ∈ to for all
1 ≤ i < 2n, 1 ≤ j ≤ 2n and 〈f(i, j), f(i, j + 1)〉 ∈
on for all 1 ≤ i ≤ 2n, 1 ≤ j < 2n.

The TILING problem is defined as follows. Sup-
pose that we are given a set {t1, . . . , tk} of tiles,
compatibility relations on and to, and a number n
written in unary notation, the problem is to decide
whether there exists a tiling f of the square of size
2n × 2n with a distinguished tile type, say t1, at
the top left corner (i.e., f(1, 1) = t1).

3One can easily verify this using the intuition of fully
replacing parts of (intermediate) goals by subsumed queries
of cind’s whose subsumer queries fully match those parts.
Due to the special structure of the cind’s in this reduction,
at any point, all MCDs – to be introduced in Definition 4.1
– are “isomorphic” to some subsumer query of a cind.

6 Query Rewriting with Symmetric Constraints

x1

x3

x2

x4

z1
z3

z2
z4

y1
y3

y2
y4

u1

u3

u2

u4

x1

x3

x2

x4

x3

z1

x4

z2
z1
z3

z2
z4

x2

x4

y1
y3

x4

z2

y3
u1

z2
x4

u1

u3

y1
y3

y2
y4

y3
u1

y4
u2

u1

u3

u2

u4

Fig. 1. Hypertile of size i ≥ 2 (left) and all nine possible
overlapping hypertiles of size i − 1 that can be inscribed
into it (right).

We describe a reduction that transforms any in-
stance of the tiling problem to an instance of the
containment problem of conjunctive queries under
an acyclic set of cind’s and which requires only
polynomial time relative to the size of the problem
instance.

We define hypertiles as follows. Each composi-
tion of 2 × 2 tiles or hypertiles is a hypertile if
the component tiles satisfy the compatibility con-
straints. Obviously, all hypertiles are of size 2i×2i

for some i ≥ 1 [7].
In our encoding, we use atoms of the form

tili(f, x, y, z, u, t)

to assert that hypertile f of level i is composed of
the four hypertiles x, y, z, and u of level i− 1 s.t.
x is the left-top, y the right-top, z the left-bottom,
and u the right-bottom constituent hypertile, and
that t is the left- and topmost tile in f . (Of course
t must be equal to or form part of x.)

We define hypertiles of level 1 by the cind

{〈x1, x2, x3, x4〉 | ∃xf : til1(xf , x1, x2, x3, x4, x1)} ⊇
{〈x1, x2, x3, x4〉 | to(x1, x2) ∧ to(x3, x4) ∧

on(x1, x3) ∧ on(x2, x4)}

Fortunately, for hypertiles of level i ≥ 2, it is not
necessary to enforce that all the compatibility con-
straints are satisfied on the level of tiles. Instead,
it is sufficient to verify that all of the nine possible
(overlapping) constituent hypertiles of the next-
smaller level i − 1 (see Figure 1) satisfy the com-
patibility constraints. We define hypertiles of level
greater than one by

{〈xf , yf , zf , uf , t〉 | ∃f : tili+1(f, xf , yf , zf , uf , t)} ⊇
{〈xf , yf , zf , uf , t〉 | ∃ x1, . . . , x4, y1, . . . , y4,

z1, . . . , z4, u1, . . . , u4,
d1, . . . , d13 :

tili(xf , x1, x2, x3, x4, t) ∧
tili(yf , y1, y2, y3, y4, d1) ∧

tili(zf , z1, z2, z3, z4, d2) ∧
tili(uf , u1, u2, u3, u4, d3) ∧
tili(d4, x2, y1, x4, y3, d5) ∧
tili(d6, x4, y3, z2, u1, d7) ∧
tili(d8, z2, u1, z4, u3, d9) ∧
tili(d10, x3, x4, z1, z2, d11) ∧
tili(d12, y3, y4, u1, u2, d13)}

Let bot be a nullary predicate. To complete our
encoding, we add cind’s on(ti, tj) ← bot. for each
〈ti, tj〉 ∈ on and to(ti, tj)← bot. for each 〈ti, tj〉 ∈
to. where ti and tj are constants identifying pairs
out of the k given tile types.

Let us consider the encoding shown above as a
logic program (that we obtain by normalizing the
cind’s). The existential variables in the subsumer
queries of the tili cind’s will be transformed into
function terms aggregating the 4 hypertiles of the
next smaller size. (In fact, also the variables for
the top left corner tiles t will be aggregated in the
function terms, but this does not alter the correct-
ness of the encoding.) The cind for til1 is trans-
formed into the Horn clause

til1(f1(x1, x2, x3, x4), x1, x2, x3, x4, x1)←
to(x1, x2), to(x3, x4), on(x1, x3), on(x2, x4).

and the cind’s for tili≥2 are normalized as Horn
clauses with heads

tili(fi(x1, x2, x3, x4, t), x1, x2, x3, x4, t)

During bottom-up evaluation of such a logic pro-
gram, the function terms constructed using fi

correspond exactly with the valid hypertiles con-
structible from the given k tile types, if the fifth
arguments of function terms of symbols fi≥2 are
ignored.

It is easy to see that there is a solution for the
TILING problem iff the constraints in our encod-
ing entail {〈〉 | bot} ⊆ {〈〉 | tilm(f, x, y, z, u, 1)}.
Equally, there is a solution to the TILING prob-
lem exactly if the maximally contained rewriting
of {〈〉 | tilm(f, x, y, z, u, 1)} in terms of the “source
predicate” bot is nonempty. Thus, these two prob-
lems are NEXPTIME-hard. �

Theorem 3.6 Let Σ be an acyclic set of cind’s and
Q and Q′ be conjunctive queries. Then the contain-
ment problem Σ � Q ⊆ Q′ and the query rewriting
problem for conjunctive queries (under acyclic sets
of cind’s) are NEXPTIME-complete.

Query Rewriting with Symmetric Constraints 7

Proof. As pointed out in Section 3, the query
containment problem under an acyclic set of cind’s
can be solved by proving the unsatisfiability of the
negation of the containment, which decomposes
into a set of ground facts and a goal. This is a spe-
cial case of the SUCCESS problem for nonrecur-
sive logic programs [7,25].

The problem of deciding whether query rewrit-
ing produces a nonempty set of conjunctive queries
can be reduced to the SUCCESS problem by in-
troducing unit clauses si(x1, . . . , xni

) ←. (where
x1, . . . , xni

are distinct variables) for each “source”
predicate si of arity ni.

As both problems are known NEXPTIME-hard
from Lemma 3.5, completeness in NEXPTIME has
been shown. �

4. Generalizing Local-as-view Rewriting

The results of this section generalize from work
on algorithms for the problem of answering queries
using views [19], for instance the Bucket Algo-
rithm [20], the Inverse Rules Algorithm [9], OC-
CAM [17], the Unification-join Algorithm [23], and
particularly the MiniCon Algorithm [22]. For space
reasons, we introduce necessary notions as needed
and refer to [22] for a discussion and comparison
of such algorithms.

We adapt the notion of MiniCon descriptions
[22] to our framework based on query rewriting
with cind’s decomposed into Horn clauses.

Definition 4.1 (Inverse MiniCon Description). Let
Q be a conjunctive query with n = |Body(Q)|
and Σ be a set of cind’s. An (inverse) MiniCon
description (MCD) for Q is a pair of a tuple
〈c1, . . . , cn〉 ∈ (NF (Σ) ∪ {ε})n with at least one
ci 6= ε and a substitution θ that satisfies the fol-
lowing two conditions.

1. For the most general unifier θ 6= fail arrived
at by unifying the heads of all the ci 6= ε with
Bodyi(Q), the unfolding of Q and 〈c1, . . . , cn〉
under θ is function-free and

2. there is no tuple

〈c′1, . . . , c
′
n〉 ∈ {c1, ε} × . . .× {cn, ε}

with fewer entries different from ε than in
〈c1, . . . , cn〉, such that the unfolding ofQ with
〈c′1, . . . , c

′
n〉 is function free. �

Example 4.2 Consider again the query Q and the
constraint (which we now call σ) of Example 1.1.
NF ({σ}) is

c1 : parent(x, fσ,y(x, z))←grandparent(x, z)∧
alive(x).

c2 : parent(fσ,y(x, z), z)←grandparent(x, z)∧
alive(x).

We have two MCDs, 〈〈c1, c2, ε〉, θ〉 with the unifier

θ = {[x1/x
(1)], [x2/fσ,y(x

(1), z(1))],

[x2/fσ,y(x
(2), z(2))], [x3/z

(2)]}

and 〈〈ε, ε, c1〉, θ′〉 with

θ′ = {[x3/x
(3)], [x4/fσ,y(x

(3), z(3))]}.

Note that 〈c1, c2, c1〉 violates condition 2 of Defi-
nition 4.1, while all other MCD candidates violate
condition 1. �

Note that the inverse MiniCon descriptions of
Definition 4.1 exactly coincide with the MCDs of
[22] in the local-as-view case. Algorithm 4.3 shown
below can easily be reformulated so as to use a
slight generalization of the notation of [22] to cover
clause bodies consisting of several atoms. That
way, one can even escape the need to transform
cind’s into Horn clauses and can reason completely
without the introduction of function terms. How-
ever, to support the presentation of our results
(particularly the equivalence proof of the following
section), we do not follow this path in this article.

Algorithm 4.3 (Query rewriting with MCDs).
Input. A conjunctive query Q, a set of cind’s Σ,
and a set S of source predicates
Output. A maximally contained rewriting of Q
w.r.t. Σ and S

Qs := [Q];
while Qs is not empty do

{
[Q,Qs] := Qs;
if Preds(Q) ⊆ S then output Q;
else

{
M := compute the set of all inverse MCDs

for Q and Σ;
for each 〈〈c1, . . . , cn〉, θ〉 ∈M do

{
Q′ := unfold(Q, θ, 〈c1, . . . , cn〉);
Qs := [Qs,Q′];

}
}

} �

8 Query Rewriting with Symmetric Constraints

In Algorithm 4.3, maximally contained rewrit-
ings of a conjunctive query Q are computed by
iteratively unfolding queries with single MiniCon
descriptions4 until a rewriting contains only source
predicates in its body. In order to handle cyclic sets
of cind’s (and attain completeness), we manage in-
termediate rewritings using a queue and, conse-
quently, follow a breath-first strategy.

The function “unfold” accepts a conjunctive
query Q with |Body(Q)| = n, a unifier θ and
a tuple of n Horn clauses or ε s.t. if ci 6= ε,
θ unifies Bodyi(Q) with Head(ci). It produces a
new clause from Q (which in fact is again guar-
anteed to be function-free and thus a conjunc-
tive query) by replacing Head(Q) by θ(Head(Q))
and each of the non-source body atoms Bodyi(Q),
with ci 6= ε, by θ(Body(ci)). (i.e. after apply-
ing substitutions from the unifier). If ci = ε,
Bodyi(Q) is replaced by θ(Bodyi(Q)). Of course,
for each MCD 〈〈. . . , ci, . . . , cj , . . .〉, θ〉 we have
θ(Body(ci)) = θ(Body(cj)), and thus only one rule
body needs to be added for each MCD during un-
folding.

Theorem 4.4 Let Q be a conjunctive query, Σ be
a set of cind’s, and S be a set of “source” pred-
icates. Then, for each conjunctive query Q′ with
Preds(Q′) ⊆ S we have Σ � Q ⊇ Q′ iff Algo-
rithm 4.3 eventually computes a conjunctive query
Q′′ with Preds(Q′′) ⊆ S and Σ � Q ⊇ Q′′ ⊇ Q′.

In other words, Algorithm 4.3 enumerates the
maximally contained positive rewriting of Q under
Σ in terms of S.

The notion of a rewrite system provides a strong
intuition for the technique proposed by Algo-
rithm 4.3 and Theorem 4.4:

Example 4.5 (“Coffee Can Problem” [8]) Con-
sider the rewrite system

black white→ black

white black→ black

black black→ white

with symbols “white” and “black” and the input
word w = (white white black black white white
black black) where the goal is to replace sequences

4In this respect, Algorithm 4.3 differs from the MiniCon
algorithm for the problem of answering queries using views,
where MCDs are packed so as to rewrite all body atom at
once.

of symbols of that word that match the left hand
side of one of the three productions listed above
repeatedly to produce a rewriting that is as small
as possible. One such sequence of replacements is

(0) white white black black white white black black
(1) white white black black white black black
(2) white white white white black black
(3) white white white black black
(4) white white black black
(5) white black black
(6) black black
(7) white

Pairs of occurrences of the symbols “black” or
“white” have been underlined immediately be-
fore their replacement. Thus, the input string can
be rewritten into a word with a single symbol,
“white”.

We can simulate such behavior using query
rewriting under the rewrite systems semantics. Let
us search for one-symbol rewritings. We model an
n-symbol word w ∈ {black,white}n as a query of
the form

q(x1)←start end(x1, xn+1), p1(x1, x2), . . . ,
pi(xi, xi+1), . . . , pn(xn, xn+1).

where pi is either “black” or “white”, equal to the
i-th symbol of w, and x1 . . . xn1

are variables. The
above input word is thus represented as

q(x1)← start end(x1, x9),
white(x1, x2),white(x2, x3), black(x3, x4),
black(x4, x5),white(x5, x6),white(x6, x7),
black(x7, x8), black(x8, x9).

The rewrite system can be encoded as a set of
cind’s

{〈x, y〉 | ∃z : black(x, z) ∧ white(z, y)} ⊇
{〈x, y〉 | black(x, y)}
{〈x, y〉 | ∃z : white(x, z) ∧ black(z, y)} ⊇
{〈x, y〉 | black(x, y)} (?)
{〈x, y〉 | ∃z : black(x, z) ∧ black(z, y)} ⊇
{〈x, y〉 | white(x, y)}

Furthermore, we define two source predicates
w src and b src and define cind’s responsible for
making the rewrite process terminate with “suc-
cess” (i.e., a contained rewriting in terms of the
source predicates is found).

{〈x〉 | ∃y : start end(x, y) ∧ white(x, y)} ⊇
{〈x〉 | w src(x)}
{〈x〉 | ∃y : start end(x, y) ∧ black(x, y)} ⊇
{〈x〉 | b src(x)}

Query Rewriting with Symmetric Constraints 9

It can be verified by applying Algorithm 4.3 (al-
though this is a quite work-intensive task to do
by hand) that the maximally contained rewrit-
ing under the rewrite systems semantics is
q′(x1)← w src(x1).

In fact, the seven-step sequence of replace-
ments shown above can be easily used to cre-
ate a proof in our rewrite systems semantics that
q′ is in the maximally contained rewriting. For
the first replacement of that sequence, the tu-
ple 〈c1, . . . , cn〉 ∈ (C ∪ {ε})n of Algorithm 4.3
would equal 〈ε, ε, ε, cσ2,1, cσ2,2, ε, ε, ε〉 where cσ2,1

and cσ2,2 are the first and second Horn clause cre-
ated by normalizing our second cind (?). We can
conclude that the above rewrite system cannot re-
sult in a one-symbol rewriting “black” for the given
input word. �

Correctness of Theorem 4.4.

It is easy to see that the rewriting process of
Algorithm 4.3 simply is equivalent to resolution
where only some of the subgoals of a goal may be
rewritten in a single step and each intermediate
rewriting has to be function-free. Every proof gen-
erated by Algorithm 4.3 is thus a correct resolution
proof. Thus,

Lemma 4.6 (Soundness of Algorithm 4.3) Let Q be
a conjunctive query, Σ a set of cind’s, and S a
set of source predicates. Then, for each conjunctive
query Q′ generated by Algorithm 4.3 for Q, Σ, and
S, we have Σ � Q ⊇ Q′ and Preds(Q′) ⊆ S.

Completeness is a consequence of the following
result.

Lemma 4.7 Let P be a resolution proof establish-
ing a logically contained rewriting of a conjunctive
query Q under a set of cind’s Σ. Then, there is
always a proof P ′ establishing the same contained
rewriting such that each intermediate rewriting is
function-free.

Proof. Let us assume that each new subgoal a
derived using resolution receives an identifying in-
dex idx(a). Then, given the proof P , there is a
unique next premise to be applied cidx(a) out of the
Horn clauses in NF (Σ) for each subgoal a. This
is the Horn clause from our constraints base that
will be unfolded with a to resolve it in P .

Note that the proof P is fully described by some
unique indexing idx(a) of all subgoals a appearing

in the proof (while we do not need to know or re-
member the atoms themselves), the clauses cidx(a),
and a specification of which indexes the subgoals
in the bodies of these clauses are attributed with
when they are unfolded with subgoals.

In our original proof P , each subgoal a of a goal
is rewritten with cidx(a) in each step, transforming
g0, the body of Q and at the same time the ini-
tial goal, via g1, . . . , gn−1 to gn, the body of the
resulting rewriting. We maintain the head of Q
separately across resolution steps and require that
variables in the head are not unified with function
terms, but apply other unifications effected on the
variables in the goals in parallel with the rewriting
process. Already P must assure at any step that
no variable from the head of Q is unified with a
function term, as otherwise no conjunctive query
can result.

We know that resolution remains correct no
matter in which order the next due resolution steps
cidx(a) are applied to the subgoals, and that we
even may unfold, given e.g. a goal with two atoms,
the first goal and then a subgoal from the unfold-
ing of that first goal (and may do that any finite
number of times) before we unfold our second orig-
inal subgoal.

Coming back to deriving a function-free proof
starting from P , all we now have to show is that
at any intermediate step of a resolution proof
with cind’s, a nonempty set of subgoals X =
{ai1 , . . . , aik

} ⊆ gi of the function-free intermedi-
ate goal gi exists such that, when only these sub-
goals are unfolded with their next due premises to
be applied cidx(ai1

), . . . , cidx(ai
k
), the overall new

goal gi+1 produced will be function-free5. The em-
phasis here lies on finding a nonempty such set X ,
as the empty set automatically satisfies this con-
dition. If we can guarantee that such a nonempty
set always exists until the function-free proof has
been completed, our lemma is shown.

Let there be a dependency graph Ggi
= 〈V,E〉

for each (intermediate) goal gi with the subgoals
as vertices and a directed edge 〈a, b〉 ∈ E iff a
contains a variable v that is unified with a func-
tion term f(X̄) in Head(cidx(a)) and v appears
in b and is unified with a variable (rather than
a function term with the same function symbol)
in Head(cidx(b)). (Intuitively, if there is an edge

5The correctness of the proof P alone assures that the
query head will be function-free as well.

10 Query Rewriting with Symmetric Constraints

〈a, b〉 ∈ E, then b must be resolved before a if
a proof shall be obtained in which all intermedi-
ate goals are function-free.) As mentioned, query
heads are guaranteed to remain function-free by
the correctness of P . For instance, the dependency
graph of the goal

← a(x)(0) ∧ b(x, y)(1) ∧ c(y, z)(2) ∧ d(z, w)(3).

with

c0 : a(x)← a′(x). c1 : b(f(x), x)← b′(x).
c2 : c(x, x) ← c′(x). c3 : d(g(x), x)← d′(x).

would be G = 〈{0, 1, 2, 3}, {〈1, 0〉, 〈3, 2〉}〉, i.e. the
first subgoal must be resolved before the second
and the third subgoal must be resolved before the
fourth.

We can now show that such a dependency graph
G is always acyclic. In fact, if it were not, P could
not be a valid proof, because unification would fail
when trying to unify a variable in such a cycle with
a function term that contains that variable. This
is easy to see because each function term given
our construction used for obtaining Horn clauses
from cind’s contains all variables appearing in that
same (head) atom. Consider for instance

q(x) ← a(x, y), a(y, z), b(w, z), b(z, y).

{〈x, y〉 | ∃z : a(x, z) ∧ a(z, y)} ⊇ {〈x, y〉 | s(x, y)}
{〈x, y〉 | ∃z : b(x, z) ∧ b(z, y)} ⊇ {〈x, y〉 | s(x, y)}

where s is a source. There is no rewriting under
our two semantics, because the dependency graph
of our above construction is cyclic already for our
initial goal, the body of q.

However, since G is acyclic given a proof P , we
can unfold a nonempty set of atoms (those un-
reachable from other subgoals in graph G) with
our intermediate goals until the proof has been
completed. �

As an immediate consequence of Lemma 4.7
(which assures that for each resolution proof P
showing Σ � Q ⊇ Q′ we can produce an equiva-
lent function-free proof P ′ that will be covered by
Algorithm 4.3), we have

Lemma 4.8 (Completeness of Algorithm 4.3) If
Σ � Q ⊇ Q′ and Preds(Q′) ⊆ S, then Algo-
rithm 4.3 computes a conjunctive query Q′′ s.t.
Σ � Q ⊇ Q′′ ⊇ Q′.

Lemma 4.6 and Lemma 4.8 taken together imply
Theorem 4.4. Let us visualize the implications of
Lemma 4.7 with an example.

Example 4.9 Given a boolean conjunctive query
q ← b(x, x, 0). and the following set of Horn clauses
which, as is easy to see, are the normal form of
a set of cind’s, which we do not show in order to
reduce redundancy.

b(x′, y′, 0)← a(x, y, 2) ∧ eε(x, x′) ∧ e1(y, y′). c0

b(x′, y′, 2)← a(x, y, 0)∧ e1(x, x′)∧ e0(y, y′). c4, c10, c11

b(x′, y′, 0)← a(x, y, 1)∧e0(x, x′)∧eε(y, y′). c12, c18, c19

b(x′, y′, 1)← a(x, y, 0) ∧ e1(x, x′) ∧ e1(y, y′). c20, c25

eε(x, x)← v(x). c2, c17

e1(x, f1(x))← v(x). c3, c8, c23, c24

e0(x, f0(x))← v(x). c2, c17

v(x)← b(x, y, s). c5, c13, c21

v(y)← b(x, y, s). c6, c14

a(x, y, s)← b(x, y, s). c1, c7, c15

where x, y, x′, y′, s are variables. Let P be the
resolution proof in Figure 2 (a) which rewrites
our query into q ← a(x, x, 0), v(x). and in which
we have superscribed each subgoal with its as-
signed index. In each resolution step, a goal ←
A(i1), . . . , A(in). is unfolded with the clauses
ci1 , . . . , cin

, as annotated above. To keep things
short, we have eliminated subgoals (marked with
a dagger † and their index) that are redundant
with a different branch of the proof. As claimed in
our theorem, P can be transformed into the proof
in Figure 2 (b) in which each intermediate step is
function-free. The subgoals that we have marked
with brackets [] had been blocked at a certain
step to keep the proof function-free. �

Note that Example 4.9 constitutes another en-
coding of PCP that shows the undecidability of
query rewriting with cind’s. The PCP instance

I = {〈x1 = 10, y1 = 1〉, 〈x2 = 1, y2 = 01〉}

is encoded in the first four Horn clauses, which
can be viewed as realizing a nondeterministic au-
tomaton that accepts two words xi1 . . . xik

and
yi1 . . . yik

if they can be constructed using the
dominos of I. In the start state s0, a domino
〈xi, yi〉 out of I is chosen. The symbols in xi and
yi are then accepted one by one. If one of the
two words xi, yi is longer than the other one, the
shorter one is appended ε symbols. We return to

Query Rewriting with Symmetric Constraints 11

(0) ← b(x, x, 0)(0).

(1) ← a(x, y, 2)(1) ∧ eε(x, z)
(2) ∧ e1(y, z)(3).

(2) ← b(f1(y), y, 2)(4) ∧ v(f1(y))(5) ∧ v(y)(6).
(3) ← a(x1, y1, 0)(7) ∧ e1(x1, f1(y))

(8) ∧ e0(y1, y)(9) ∧
b(f1(y), v1, 2)(10) ∧ b(v2, y, 2)(11). †10, †11

(4) ← b(f0(y1), y1, 0)(12) ∧ v(f0(y1))(13) ∧ v(y1)(14).
(5) ← a(x2, y2, 1)(15) ∧ e0(x2, f0(y1))

(16) ∧ eε(y2, y1)
(17) ∧ b(f0(y1), v1, 0)(18) ∧

b(v2, y1, 0)(19). †18, †19
(6) ← b(y1, y1, 1)(20) ∧ v(y1)(21).
(7) ← a(x, x, 0)(22) ∧ e1(x, f1(x))

(23) ∧ e1(x, f1(x))
(24) ∧ b(y1, v1, 1)(25). †25

(8) ← a(x, x, 0)(22) ∧ v(x)(26).

(a)

(0) ← b(x, x, 0)(0).

(1) ← a(x, y, 2)(1) ∧ eε(x, z)
(2) ∧ [e1(y, z)

(3)].
(2) ← b(x, y, 2)(4) ∧ v(x)(5) ∧ [e1(y, x)

(3)].

(3) ← a(x1, y1, 0)(7) ∧ e1(x1, x)
(8) ∧ e0(y1, y)(9) ∧ b(x, v1, 2)(10) ∧ [e1(y, x)

(3)]. †10
(4) ← a(x1, y1, 0)(7) ∧ e1(x1, x)

(8) ∧ [e0(y1, y)
(9)]∧ 6 [e1(y, x)(3) 6].

(5) ← b(y, y1, 0)(12) ∧ v(y)(14) ∧ [e0(y1, y)
(9)].

(6) ← a(x2, y2, 1)(15) ∧ e0(x2, y)
(16) ∧ eε(y2, y1)

(17) ∧ b(y, v1, 0)(18)∧ 6 [e0(y1, y)(9) 6]. †18
(7) ← b(y1, y1, 1)(20) ∧ v(y1)(21).
(8) ← a(x3, y3, 0)(22) ∧ e1(x3, y1)

(23) ∧ e1(y3, y1)(24) ∧ b(y1, v1, 1)(25). †25
(9) ← a(x3, x3, 0)(22) ∧ v(x3)

(26).

(b)

Fig. 2. Resolution Proof for Example 4.9.

the state s0 no sooner than all symbols of a domino
have been accepted. For the instance of Exam-
ple 4.9, we thus have an automaton with three
states.

fh hj -

�-

�

〈1, 1〉

〈0, ε〉〈ε, 1〉

〈1, 0〉

s0 s1s2

The encoding again allows to show the unde-
cidability of our query rewriting problem (A PCP
instance is satisfiable iff the maximally contained
rewriting of q ← b(x, x, 0). under Σ is nonempty.)
as well as the undecidability of query containment
under a set of cind’s. (A PCP instance is satisfiable
if and only if Σ � {〈〉 | ∃x : v(x) ∧ a(x, x, 0)} ⊆
{〈〉 | ∃x : b(x, x, 0)}.)

Of course this correspondence between function-
free and general resolution proofs does not hold for
Horn clauses in general.

Example 4.10 The boolean query q ← a1(u, v) ∧
b1(u, v). and the clauses

a1(f(x), y) ← a2(x, y). a2(x, g(y)) ← a3(x, y).
b1(x, g(y)) ← b2(x, y). b2(f(x), y) ← b3(x, y).

taken together entail q ← a3(x, y) ∧ b3(x, y).
even though one cannot arrive at a function-free
intermediate rewriting by either unfolding the left
subgoal (resulting in q ← a2(x, y)∧ b1(f(x), y).)
or the right subgoal (which would result in q ←
a1(x, g(y)) ∧ b2(x, y).) of our query first, neither
by unfolding both at once (resulting in q ←
a2(x, g(y)) ∧ b2(f(x), y).). �

5. Implementation

Our implementation is based on Algorithm 4.3,
but makes use of several optimizations. Directly
after parsing, Horn clauses whose head predicates
are unreachable from the predicates of the query
are filtered out. The same is done with clauses not
in the set X computed by

12 Query Rewriting with Symmetric Constraints

X := ∅;
do X := X ∪

{c ∈ C |Preds(Body(c)) ⊆
(Sources ∪
{Pred(Head(c′)) | c′ ∈ X})};

while X changed;

We have implemented the simple optimizations
known from the Bucket Algorithm [20] and the In-
verse Rules Algorithm [12] for answering queries
using views which are used to reduce the branching
factor in the search process. Beyond that, Mini-
Con descriptions are computed with an intelligent
backtracking method that always chooses to cover
subgoals first for which this can be done deter-
ministically (i.e., the number of Horn clauses that
are candidates for unfolding with a particular sub-
goal can be reduced to one), thereby reducing the
amount of branching.

In the implementation of the deterministic com-
ponent of our algorithm for generating MiniCon
descriptions, we first check whether the corre-
sponding pairs of terms of two atoms to match
unify independently before doing full unification.
This allows to detect most violations with very low
overhead. Given an appropriate implementation,
it is possible to check this property in logarithmic
or even constant time.

Our unification algorithm allows to pre-specify
variables that may in no case be unified with a
function term (e.g., for head variables of queries or
atoms already over source predicates). This allows
to detect the impossibility to create a function-free
rewriting as early as possible.

Every time an MCD m is unfolded with a query
to produce an intermediate rewriting Q, we com-
pute a query Q′ (a partial rewriting) as

Body(Q′) := {Bodyi(Q) | mi 6= ε}
Head(Q′) := 〈x1, . . . , xn〉

s.t. xi ∈ V ars(Head(Q)) ∩ V ars(Body(Q′)) for
1 ≤ i ≤ n.Q′ is thus created from the new subgoals
of the query that have been introduced using the
MCD. If Q′ contains non-source predicates, the fol-
lowing check is performed. We check if our rewrit-
ing algorithm produces a nonempty rewriting on
Q′. This is carried out in depth-first fashion. If the
set of cind’s is cyclic, we use a maximum looka-
head distance to assure that the search terminates.
If Q′ is not further rewritable, Q does not need
to be further processed but can be dropped. Sub-

sequently, (intermediate) rewritings produced by
unfolding queries with MiniCon descriptions are
simplified using tableau minimization.

In Algorithm 4.3, the fact that MCDs are only
applied one at a time causes a performance issue.
It leads to redundant rewritings as e.g. the same
MCDs may be applicable in different orders (as is
true for the classical problem of answering queries
using views, a special case) and thus a search space
that may be larger than necessary. We use de-
pendency graph-based optimizations to check if a
denser packing of MCDs is possible. For the ex-
periments with layered sets of cind’s reported on
in Section 6 (Figures 4 and 5), MCDs are packed
exactly as densely as in the MiniCon algorithm of
[22].

Distribution.
The implementation of our query rewriter con-

sists of about 9000 lines of C++ code. Binaries for
several platforms as well as examples and a Web
demonstrator that allows to run limited-size prob-
lems online are available on the Web at [14].

6. Experiments

A number of experiments have been carried out
to evaluate the scalability of our implementation.
These were executed on a 600 MHz dual Pentium
III machine running Linux. A benchmark gener-
ator was implemented that randomly generated
example chain queries and sets of chain cind’s6.
Chain queries are conjunctive queries of the form

q(x1, xn+1)←p1(x1, x2) ∧ p2(x2, x3) ∧ . . .∧
pn−1(xn−1, xn) ∧ pn(xn, xn+1).

Thus, chain queries are constructed by connect-
ing binary predicates via variables to form chains,
as shown above. In our experiments, the distin-
guished (head) variables were the first and the last.
The chain cind’s had between 3 and 6 subgoals in
both the subsuming and the subsumed queries.

In all experiments, the queries had 10 subgoals,
and we averaged timings over 50 runs. Sets of
cind’s were always acyclic. This was ascertained
by the use of predicate indexes such that the

6Experiments with various kinds of random queries and
constraints were carried out, too. In this article, we only
report on chain queries, but the experiments with random
queries were similarly favorable.

Query Rewriting with Symmetric Constraints 13

0 500 1000 1500 2000 2500 3000
 0.0001

 0.001

0.01

0.1

1

10

3−6 subgoals per query

classical, p=16

p=16

p=12

p=8

#cind’s

seconds

unlayered
chain queries

Fig. 3. Experiments with chain queries and nonlayered
chain cind’s.

predicates in a subsumer query of a cind only
used indexes greater than or equal to a random
number determined for each cind, and subsumed
queries only used indexes smaller than that num-
ber. Times for parsing the input were excluded
from the diagrams, and redundant rewritings were
not eliminated7. Diagrams relate reasoning times
on the (logarithmic-scale) vertical axis to the prob-
lem size expressed by the number of cind’s on the
horizontal axis.

We report on three experiments.
Figure 3 shows timings for non-layered sets of

constraints. By the steep line on the left we report
on an alternative query rewriting algorithm that
we have implemented and which follows a tradi-
tional resolution strategy. This algorithm (evalu-
ated using instances with 16 predicates) is com-
pared to and clearly outperformed by our new al-
gorithm (with three different numbers of predi-
cates; 8, 12, and 16). Clearly, the more predicates
are available, the sparser the constraints get. Thus,
more predicates render the query rewriting process
simpler.

In Figure 4, we report on the execution times
of our new algorithm with cind’s generated with
an implicit layering8 of predicates (with 2 lay-
ers). This experiment is in principle very similar

7Note that our implementation optionally can make finite
rewritings non-redundant and minimal. However, for our
experiments, these options were not active.

8See Section 2 for our definition of layered sets of cind’s.

0 500 1000 1500 2000 2500 3000
 0.001

0.01

0.1

1

10

p=8 p=16

seconds

#cind’s

chain queries
3−6 predicates per query
2 layers of predicates

p=12

Fig. 4. Experiments with chain queries and two layers of
chain cind’s.

0 1000 2000 3000 4000 5000 6000
10−5

10−4

10−3

10−2

10−1

100

101
seconds

p=20 p=40

5 layers of predicates
3−6 predicates per query
chain queries

#cind’s

Fig. 5. Experiments with chain queries and five layers of
chain cind’s.

to local-as-view rewriting with p/2 global predi-
cates and p/2 source predicates (where the sub-
sumer queries of cind’s correspond to logical views
in the problem of answering queries using views),
followed by view unfolding to account for the sub-
sumed sides of cind’s. We again report timings for
three different total numbers of predicates, 8, 12,
and 16.

In Figure 5, the new algorithm computes max-
imally contained rewritings for 20 and 40 predi-
cates, which are grouped into stacks of five layers

14 Query Rewriting with Symmetric Constraints

of 4 and 8 predicates each, respectively. Of the five
sets of predicates, one constitutes the sources and
one the “integration schema” over which queries
are asked, and four equally sized sets of cind’s
bridge between these layers.

As can be seen by comparing the second and
third diagrams with the first, the hardness of the
layered problems is more homogeneous. Particu-
larly in Figure 3 and Figure 4, one can also observe
subexponential performance. Note that in the ex-
periment of Figure 5, timings were taken in steps
of 20 cind’s, while in the other experiments, this
step length was 100.

7. Discussion and Conclusions

This article has addressed the query rewriting
problem in data integration from a fresh perspec-
tive. We compute maximally contained rewritings
with expressive symmetric constraints, which we
call Conjunctive Inclusion Dependencies. We have
proposed a new query rewriting algorithm based
on techniques developed for the problem of an-
swering queries using views (i.e., the MiniCon al-
gorithm), which allows to apply time-tested (e.g.,
tableau minimization) techniques and algorithms
from the database field to the query rewriting
problem.

The main advantage of the new algorithm is that
intermediate results are (function-free) queries and
can be immediately made subject to query op-
timization techniques. As a consequence, further
query rewriting may start from simpler queries,
leading to an increase in performance and fewer
redundant results that have to be found and later
be eliminated. Thus, it is often possible to detect
dead ends early. As a trade-off (as can be seen
in Algorithm 4.3), an additional degree of nonde-
terminism is introduced compared to resolution-
based algorithms that may temporarily introduce
function terms.

In the context of data integration, there are usu-
ally a number of regularities in the way constraints
are implemented and queries are posed. We expect
to have a number of schemata, each one contain-
ing a number of predicates. Between the predicates
of one schema, no constraints for data integration
uses are defined. Moreover, we expect inter-schema
constraints to be of the form Q1 ⊆ Q2 where most
(or all) predicates in Q1 belong to one and the

same schema, while the predicates of Q2 belong to
another one. Queries issued against the system are
usually formulated in terms of a single schema, and
such a layering often propagates along intermedi-
ate rewritings. Given these assumptions, we sus-
pect our approach – when optimization techniques
from the database area are applied to intermedi-
ate results – to have a performance advantage over
classical resolution-based algorithms, which do not
exploit such techniques.

Our experiments show that our approach scales
to very large and complex data integration settings
with many schemata.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] S. Adali, K. S. Candan, Y. Papakonstantinou, and
V. S. Subrahmanian. “Query Caching and Optimiza-
tion in Distributed Mediator Systems”. In Proceed-
ings of the 1996 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD’96), pages
137–146, Montreal, Canada, June 1996.

[3] Y. Arens and C. A. Knoblock. “Planning and Re-
formulating Queries for Semantically-Modeled Multi-
database Systems”. In Proceedings of the First Inter-
national Conference on Information and Knowledge
Management (CIKM’92), Baltimore, MD USA, 1992.

[4] D. Calvanese, G. De Giacomo, and M. Lenzerini.
“On the Decidability of Query Containment un-
der Constraints”. In Proceedings of the 17th ACM
SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems (PODS) 1998, pages 149–
158, 1998.

[5] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi,
and R. Rosati. “Information Integration: Conceptual
Modeling and Reasoning Support”. In Proceedings of
the 3rd IFCIS International Conference on Coopera-
tive Information Systems (CoopIS’98), pages 280–291,
New York City, New York, USA, 1998.

[6] M. Carey, L. Haas, P. Schwarz, M. Arya, W. Cody,
R. Fagin, M. Flickner, A. Luniewski, W. Niblack,
D. Petkovic, J. Thomas, J. Williams, and E. Wimmers.
“Towards Heterogeneous Multimedia Information Sys-
tems: The Garlic Approach”. In Proceedings of the 5th
International Workshop on Research Issues in Data
Engineering: Distributed Object Management (RIDE-
DOM’95), 1995.

[7] E. Dantsin and A. Voronkov. “Complexity of Query
Answering in Logic Databases with Complex Values”.
In LFCS’97, LNCS 1234, pages 56–66, 1997.

[8] N. Dershowitz and J.-P. Jouannaud. “Rewrite Sys-
tems”. In J. van Leeuwen, editor, Handbook of Theo-
retical Computer Science, volume 2, chapter 6, pages
243–320. Elsevier Science Publishers B.V., 1990.

Query Rewriting with Symmetric Constraints 15

[9] O. M. Duschka and M. R. Genesereth. “Answering
Recursive Queries using Views”. In Proceedings of
the 16th ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, May 11–15,
1997, Tucson, AZ USA, Tucson, AZ USA, 1997.

[10] O. M. Duschka, M. R. Genesereth, and A. Y. Levy.
“Recursive Query Plans for Data Integration”. Journal
of Logic Programming, 43(1):49–73, 2000.

[11] H. Garcia-Molina, Y. Papakonstantinou, D. Quass,
A. Rajaraman, Y. Sagiv, J. D. Ullman, V. Vassalos,
and J. Widom. “The TSIMMIS Approach to Media-
tion: Data Models and Languages”. Journal of Intel-
ligent Information Systems, 8(2):117–132, 1997.

[12] M. R. Genesereth, A. M. Keller, and O. M. Duschka.
“Infomaster: An Information Integration System”. In
Proceedings of the 1997 ACM SIGMOD International
Conference on Management of Data (SIGMOD’97),
pages 539–542, 1997.

[13] J. Gryz. “Query Rewriting Using Views in the Pres-
ence of Functional and Inclusion Dependencies”. In-
formation Systems, 24(7):597–612, 1999.

[14] C. Koch. “Cindrew Home Page”, 2001.
http://cern.ch/chkoch/cindrew/.

[15] C. Koch. “Data Integration against Multiple Evolv-
ing Autonomous Schemata”. PhD thesis, TU Wien,
Vienna, Austria, 2001.

[16] C. Koch. “Query Rewriting with Symmetric Con-
straints”. In Proc. 2nd International Symposium on
Foundations of Information and Knowledge Systems
(FoIKS), pages 130–147, Salzau Castle, Germany, Feb.
2002. Springer LNCS 2284.

[17] C. T. Kwok and D. S. Weld. “Planning to Gather In-
formation”. In Proceedings of the 13th National Con-
ference on Artificial Intelligence, AAAI’96, pages 32–
39, Portland, OR USA, Aug. 1996.

[18] M. Lenzerini. “Data Integration: A Theoretical
Perspective”. In Proceedings of the 21st ACM
SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems (PODS) 2002, 233–246.

[19] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Sri-
vastava. “Answering Queries Using Views”. In
Proceedings of the 14th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Sys-
tems (PODS) 1995, pages 95–104, San Jose, CA USA,
1995.

[20] A. Y. Levy, A. Rajaraman, and J. J. Ordille. “Query-
ing Heterogeneous Information Sources Using Source
Descriptions”. In Proceedings of the 1996 In-
ternational Conference on Very Large Data Bases
(VLDB’96), pages 251–262, 1996.

[21] C. H. Papadimitriou. Computational Complexity.
Addison-Wesley, 1994.

[22] R. Pottinger and A. Y. Levy. “A Scalable Algorithm
for Answering Queries Using Views”. In Proceedings of
the 26th International Conference on Very Large Data
Bases (VLDB’2000), pages 484–495, 2000.

[23] X. Qian. “Query Folding”. In Proceedings of the 12th
IEEE International Conference on Data Engineering
(ICDE’96), pages 48–55, New Orleans, LA USA, 1996.

[24] M. F. Sipser. Introduction to the Theory of Computa-
tion. PWS Publishing, 1997.

[25] S. Vorobyov and A. Voronkov. “Complexity of Non-
recursive Logic Programs with Complex Values”. In
Proceedings of the 17th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Sys-
tems (PODS) 1998, 1998.

