
The Lixto Data Extraction Project – Back and Forth
between Theory and Practice

Georg Gottlob and Christoph Koch
{gottlob,koch}@dbai.tuwien.ac.at

DBAI, TU Wien
A-1040 Vienna, Austria

Robert Baumgartner and Marcus Herzog
{baumgartner, herzog}@lixto.com

Lixto Software GmbH
A-1220 Vienna, Austria

Sergio Flesca
flesca@si.deis.unical.it

D.E.I.S. – Università della Calabria
87036 - Rende (CS), Italy

ABSTRACT
We present the Lixto project, which is both a research project
in database theory and a commercial enterprise that de-
velops Web data extraction (wrapping) and Web service
definition software. We discuss the project’s main moti-
vations and ideas, in particular the use of a logic-based
framework for wrapping. Then we present theoretical re-
sults on monadic datalog over trees and on Elog, its close
relative which is used as the internal wrapper language in
the Lixto system. These results include both a characteri-
zation of the expressive power and the complexity of these
languages. We describe the visual wrapper specification pro-
cess in Lixto and various practical aspects of wrapping. We
discuss work on the complexity of query languages for trees
that was inseminated by our theoretical study of logic-based
languages for wrapping. Then we return to the practice of
wrapping and the Lixto Transformation Server, which allows
for streaming integration of data extracted from Web pages.
This is a natural requirement in complex services based on
Web wrapping. Finally, we discuss industrial applications
of Lixto and point to open problems for future study.

1. INTRODUCTION
Nowadays, Web content is mainly available in the form of

HTML documents. Such documents do not separate data
from presentation and are ill-suited for being the target of
database queries and most other forms of automatic pro-
cessing. This problem has been addressed by much work on
so-called Web wrappers, programs that extract the relevant
information from HTML documents and translate it into a
more machine-friendly format such as XML, which can be
easily queried and further processed. The wrapping prob-
lem has been addressed by a substantial amount of work (see
e.g. TSIMMIS [34], FLORID [27], DEByE [24], W4F [35],
XWrap [25], and Lixto [4, 3, 26] for some research systems).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2004 June 14-16, 2004, Paris, France.
Copyright 2004 ACM 1-58113-858-X/04/06 . . . $5.00.

Web service designers often face the task of wrapping a
large number of sites. In order to provide a useful Web ser-
vice, the information from a significant number of source
sites relevant to the domain of the service has to be inte-
grated and made accessible in a uniform manner. Other-
wise, a Web service may fail to attract the acceptance of the
users it is intended for.

Moreover, Web page layouts may be subject to frequent
change. This is often intentional – to discourage screen-
scraping wrapper access and to force humans to personally
visit the sites.

These are just two reasons for which wrapping tools need
to assist humans to render the creation of wrappers a more
manageable task. Two ways to approach this requirement
have been proposed: the use of machine learning techniques
to create wrappers automatically from annotated examples
(e.g. [23, 31]) and the visual specification of wrappers. The
first approach currently suffers from the need to provide ma-
chine learning algorithms with too many example instances
– which have to be wrapped manually – and from negative
theoretical results that put a bound on the expressive power
of learnable wrappers.1 Lixto takes the alternative route,
that of visual wrapper specification. By this we ideally mean
the process of interactively defining a wrapper from one (or
few) example document(s) using mainly “mouse clicks”, sup-
ported by a strong and intuitive design metaphor. During
this visual process, the wrapper program should be automat-
ically generated and should not actually require the human
designer to know the wrapper programming language. This
way, the wrapper creation process requires the user to work
with only very few example documents, and this work is
facilitated by a simple user interface.

Visual wrapping is now a reality supported by several im-
plemented systems [25, 35, 3], however with varying thor-
oughness.

In this paper, we discuss the Lixto visual data extrac-
tion project [26], started in 2000 and by now a commer-
cial enterprise with an established customer base, from two
perspectives, from the one of theory and from the one of
practice. This project has engendered several fundamental
questions that led to theoretical results which we report on
in this paper. Lixto has a number of unique characteris-

1For example, it is known that even regular string languages
cannot be learned from positive examples only [13].

tics by which it distinguishes itself from the state-of-the-art
in Web wrapping and which would not have been possible
without foundational research using results and techniques
from database theory that, however, remained focussed on
producing a working, and practical, industrial-strength soft-
ware system. Lixto’s distinctive features are summarized in
the following.

• Lixto employs a fully visual wrapper specification pro-
cess, which allows for a steep learning curve and high
productivity in the specification of wrappers. Neither
manual fine-tuning nor knowledge of HTML or the inter-
nal wrapping language is necessary.

• With Lixto, very expressive visual wrapper generation is
possible: It allows for the extraction of target patterns
based on surrounding landmarks, on the content itself,
on HTML attributes, on the order of appearance, and
on semantic and syntactic concepts. Lixto even allows
for more advanced features such as Web crawling and
recursive wrapping.

• The visual specification framework is based on an internal
logic-based language similar to datalog, Elog .

• Elog has been closely studied. In particular, it was shown
that its core fragment captures precisely the expressive-
ness of monadic second-order logic (MSO) over trees – it
is therefore quite expressive – and can still be evaluated
very efficiently [14].

We believe that this presents Web wrapping as a signif-
icant new application of logic (programming) to informa-
tion systems. The database programming language datalog ,
which has received considerable attention from the database
theory community over many years (see e.g. [1]) but has
ultimately failed to attract a large following in database
practice, would deserve to experience a “rebirth” in the
context of trees and the Web. Indeed, for datalog as a
framework for selecting nodes from trees, the situation is
substantially different from the general case of full data-
log on arbitrary databases. Monadic datalog over trees has
very low evaluation complexity, programs have a simple nor-
mal form, so rules never have to be long or intricate, and
various automata-theoretic, language-theoretic, and logical
techniques exist (cf. [38]) for evaluating programs or opti-
mizing them which are not available for full datalog.

Our work on Lixto has led us to move – as the title of
the present paper suggests – many times back and forth
between systems and theory research. We believe that this
journey – to both ends of this spectrum – has been vital to
the outcome; Lixto in the present form would not have been
possible without it. It has also motivated a range of work on
related research problems. Some of this work, particularly
on the expressiveness and the theory of query languages over
trees and XML, is summarized here.

This paper will have the character of a survey of research
related to Lixto, including a discussion of how we address
the integration of wrappers and the definition of complex
Web services using the Lixto Transformation Server . We
also present industrial application case studies of Lixto and
discuss open research problems.

The structure of the paper basically follows this outline.
We start with our logic-based framework of wrapping and
discuss monadic datalog over trees – basically a fragment
of Elog – as a wrapper programming language (Section 2).

Next we move to visual wrapper specification and the Lixto
framework (Section 3). We also discuss the Elog language
in some detail (Section 3.3). Then we present our results on
the complexity of queries on trees (Section 4). Finally, we
come back to the practice of wrapping and give an overview
of the Lixto Transformation Server (Section 5) and present
some real-world applications of Lixto. We conclude with
Section 7.

2. A LOGICAL VIEW OF WRAPPING

2.1 Desiderata for Wrapping Languages
To allow for a foundational study of wrapping languages,

we first need to establish criteria by which to compare such
languages. In [14], four desiderata were proposed that a
good wrapping language should satisfy.

Such a language should

(i) have a solid and well-understood theoretical foundation,

(ii) provide a good trade-off between complexity and the num-
ber of practical wrappers that can be expressed,

(iii) be easy to use as a wrapper programming language, and

(iv) be suitable for incorporation into visual tools.

Clearly, languages which do not have the right expres-
sive power and computational properties cannot be consid-
ered satisfactory, even if wrappers are easy to define. A few
words on the “right expressiveness” of a wrapper program-
ming language are in order here.

It is understood in the literature that the scope of wrap-
ping is a conceptually limited one. Information systems ar-
chitectures that employ wrapping usually consist of at least
two layers, a lower one that is restricted to extracting rele-
vant data from data sources and making them available in
a coherent representation using the data model supported
by the higher layer, and a higher layer in which data trans-
formation and integration tasks are performed which are
necessary to fuse syntactically coherent data from distinct
sources in a semantically coherent manner. With the term
wrapping we refer to the lower, syntactic integration layer.2

Therefore, a wrapper is assumed to extract relevant data
from a possibly poorly structured source and to put it into
the desired representation formalism by applying a number
of transformational changes close to the minimum possible.
A wrapping language that permits arbitrary data transfor-
mations may be considered overkill.

The core notion that we base our wrapping approach on
is that of an information extraction function, which takes a
labeled unranked tree (representing a Web document) and
returns a subset of its nodes. A wrapper is a program which
implements one or several such functions, and thereby as-
signs unary predicates to document tree nodes.

Based on these predicate assignments and the structure
of the input tree, a new data tree can be computed as the
result of the information extraction process in a natural way,
along the lines of the input tree but using the new labels and
omitting nodes that have not been relabeled (by some form
of tree minor computation):

2In our framework, the higher, semantic integration layer is
addressed by the Lixto Transformation Server.

Given a set of information extraction functions, one nat-
ural way to wrap an input tree t is to compute a new label
for each node n (or filter out n) as a function of the pred-
icates assigned using the information extraction functions.
The output tree is computed by connecting the resulting
labeled nodes using the (transitive closure of) the edge rela-
tion of t, preserving the document order of t. In other words,
the output tree contains a node if a predicate corresponding
to an information extraction function was computed for it,
and contains an edge from node v to node w if there is a
directed path from v to w in the input tree, both v and w
were assigned information extraction predicates, and there
is no node on the path from v to w (other than v and w)
that was assigned information extraction predicates. We do
not formalize this operation here; the natural way of doing
this is obvious.

That way, we can take a tree, re-label its nodes, and de-
clare some of them as irrelevant, but we cannot significantly
transform its original structure. This coincides with the in-
tuition that a wrapper may change the presentation of rel-
evant information, its packaging or data model (which does
not apply in the case of Web wrapping), but does not handle
substantial data transformation tasks. We believe that this
captures the essence of wrapping.

We assume unary queries in monadic second-order logic
(MSO) over trees as the expressiveness yardstick for in-
formation extraction functions. MSO over trees is well-
understood theory-wise [37, 10, 8, 11] (see also [38]) and
quite expressive. In fact, it is considered by many as the lan-
guage of choice for defining expressive node-selecting queries
on trees (see e.g. [33, 32, 14, 21]; [36] acknowledges the role
of MSO but argues for even stronger languages). In our
experience, when considering a wrapping system that lacks
this expressive power, it is usually quite easy to find real-life
wrapping problems that cannot be handled (see also the re-
lated discussion on MSO expressiveness and node-selecting
queries in [21]).

In this section, we discuss monadic datalog over trees,
a simple form of the logic-based language datalog, as a
wrapper programming language. Monadic datalog satisfies
desiderata (i) to (iv) raised above, and as we will argue, the
core of the Elog language inherits this property.3

A monadic datalog program can compute a set of unary
queries (“information extraction functions”) at once. Each
intensional predicate of a program selects a subset of dom
and can be considered to define one information extraction
function. However, in general, not all intensional predicates
define information extraction functions. Some have to be
declared as auxiliary.

2.2 Tree Structures
Trees are defined in the normal way and have at least

one node. We assume that the children of each node are in
some fixed order. Each node has a label taken from a finite
nonempty set of symbols Σ, the alphabet4. We consider only

3Elog, on the other hand supports visual features that allow
to handle the most common tasks very quickly and easily.
Moreover, it contains features that render it strictly more
expressive than MSO.
4In this simple model, unrestricted sets of tags as well as
string and attribute values are assumed to be encoded as
lists of character symbols modeled as subtrees in our docu-
ment tree.

n4

n1

n5n4

n3
n2 n6

(a) (b)

firstchild

firstchild

n1

n2

n3

n5

n6

nextsibling

nextsibling

nextsibling

Figure 1: (a) An unranked tree and (b) its repre-
sentation using the binary relations “firstchild” (↙)
and “nextsibling” (↘).

unranked finite trees, which correspond closely to parsed
HTML or XML documents. In an unranked tree, each node
may have an arbitrary number of children. An unranked
ordered tree can be considered as a structure

tur = 〈dom, root, leaf, (labela)a∈Σ,

firstchild, nextsibling, lastsibling〉

where “dom” is the set of nodes in the tree, “root”, “leaf”,
“lastsibling”, and the “labela” relations are unary, while
“firstchild” and “nextsibling” are binary. All relations are
defined according to their intuitive meanings. “root” con-
tains exactly one node, the root node. “leaf” consists of the
set of all leaves. “firstchild(n1, n2)” is true iff n2 is the left-
most child of n1; “nextsibling(n1, n2)” is true iff, for some i,
n1 and n2 are the i-th and (i + 1)-th children of a common
parent node, respectively, counting from the left (see also
Figure 1). labela(n) is true iff n is labeled a in the tree.
Finally, “lastsibling” contains the set of rightmost children
of nodes. (The root node is not a last sibling, as it has no
parent.) Whenever the structure t may not be clear from
the context, we state it as a subscript of the relation names
(as e.g. in domt, roott, . . .).

By default, we will always assume trees to be represented
using the schema (signature) outlined above, and will refer
to them as τur.

The document order relation ≺ is a natural total order-
ing of dom used in several XML-related standards (see e.g.
[39]). It is defined as the order in which the opening tags
of document tree nodes are first reached when reading an
HTML or XML document (as a flat text file) from left to
right.

2.3 Monadic Datalog
We assume the function-free logic programming syntax

and semantics of the datalog language known and refer to
[1] for a detailed survey of datalog. Monadic datalog [7,
14] is obtained from full datalog by requiring all intensional
predicates to be unary. By unary query, we denote a func-
tion that assigns a predicate to some elements of dom (or, in
other words, selects a subset of dom). For monadic datalog,
one obtains a unary query by distinguishing one intensional
predicate as the query predicate. By signature, we denote
the (finite) set of all extensional predicates (with fixed ari-
ties) available to a datalog program. By default, we use the

signature τur for unranked trees.5

Example 2.1. The monadic datalog program over τur

Italic(x) ← labeli(x). (1)

Italic(x) ← Italic(x0), firstchild(x0, x). (2)

Italic(x) ← Italic(x0), nextsibling(x0, x). (3)

computes, given an unranked tree (representing an HTML
parse tree), all those nodes whose contents are displayed in
italic font (i.e., for which an ancestor node in the parse tree
corresponds to a well-formed piece of HTML of the form
〈i〉 . . . 〈/i〉 and is thus labeled “i”). The program uses the
intentional predicate, Italic, as the query predicate. 2

Monadic second-order logic (MSO) extends first-order logic
by quantification over set variables, i.e., variables ranging
over sets of nodes, which coexist with first-order quantifica-
tion of variables ranging over single nodes. A unary MSO
query is defined by an MSO formula ϕ with one free first-
order variable. Given a tree t, it evaluates to the set of nodes
{x ∈ dom | t � ϕ(x)}.

The following holds for arbitrary finite structures:

Proposition 2.2 (Folklore). Each monadic datalog
query is MSO-definable.

Throughout the paper, our main measure of query evalua-
tion cost is combined complexity , i.e. where both the database
and the query (or program) are considered variable.

Proposition 2.3. (see e.g. [14]) Monadic datalog (over
arbitrary finite structures) is NP-complete w.r.t. combined
complexity.

2.4 Properties of Monadic Datalog over Trees
By restricting our structures to trees, monadic datalog

acquires a number of additional nice properties. First,

Theorem 2.4 ([14]). Over τur, monadic datalog has
O(|P| ∗ |dom|) combined complexity (where |P| is the size
of the program and |dom| the size of the tree).

This follows from the fact that all binary relations in
τur have bidirectional functional dependencies; for instance,
each node has at most one first child and is the first child
of at most one other node. Thus, given a program P,
an equivalent ground program can be computed in time
O(|P| ∗ |dom|). Ground programs can be evaluated in linear
time [29].

A unary query over trees is MSO-definable exactly if it is
definable in monadic datalog.

Theorem 2.5 ([14]). Each unary MSO-definable query
over τur is definable in monadic datalog over τur.

(The other direction follows from Proposition 2.2.) Judg-
ing from our experience with the Lixto system, real-world
wrappers written in monadic datalog are small. Thus, in
practice, we do not trade the complexity compared to MSO

5Note that our tree structures contain some redundancy
(e.g., a leaf is a node x such that ¬(∃y)firstchild(x, y)), by
which (monadic) datalog becomes as expressive as its semi-
positive generalization. Semipositive datalog allows to use
the complements of extensional relations in rule bodies.

(for which the query evaluation problem is known to be
PSPACE-complete) for considerably expanded program sizes.

Each monadic datalog program over trees can be effi-
ciently rewritten into an equivalent program using only very
restricted syntax. This motivates a normal form for monadic
datalog over trees.

Definition 2.6. A monadic datalog program P over τur
is in Tree-Marking Normal Form (TMNF) if each rule of P
is of one of the following three forms:

(1) p(x)← p0(x). (2) p(x)← p0(x0), B(x0, x).

(3) p(x)← p0(x), p1(x).

where the unary predicates p0 and p1 are either intensional
or of τur and B is either R or R−1, where R is a binary
predicate from τur. 2

In the next result, the signature for unranked trees may
extend τur to include the “child” relation – likely to be the
most common form of navigation in trees.

Theorem 2.7 ([14]). For each monadic datalog program
P over τur ∪ {child}, there is an equivalent TMNF program
over τur which can be computed in time O(|P|).

2.5 Discussion
In the previous section, we have shown that monadic dat-

alog has the expressive power of our yardstick MSO (on
trees), can be evaluated efficiently, and is a good (easy to
use) wrapper programming language. Indeed,

• The existence of the normal form TMNF demonstrates
that rules in monadic datalog never have to be long or
intricate.

• The monotone semantics makes the wrapper program-
ming task quite modular and intuitive. Differently from
an automaton definition that usually has to be under-
stood entirely to be certain of its correctness, adding
a rule to a monadic datalog program usually does not
change its meaning completely, but adds to the function-
ality.

• Wrappers defined in monadic datalog only need to spec-
ify queries, rather than the full source trees on which
they run. This is very important to practical wrapping,
because this way changes in parts of documents not im-
mediately relevant to the objects to be extracted do not
break the wrapper. (That is, such wrappers are schema-
less.)

Thus, monadic datalog over trees as a framework for Web
information extraction satisfies the first three of our desider-
ata stated at the begin of this section (efficient evaluation,
appropriate expressiveness, and suitability as a practical
wrapper programming language). Only the fourth desider-
atum – the visual specification of wrappers – remains to be
discussed. We address this issue next.

3. VISUAL WRAPPING WITH LIXTO
In this section, we discuss the Lixto Visual wrapper sys-

tem. We first present its system architecture. Then we
introduce the core visual specification procedure used in the
Lixto wrapper generator [3, 4]. Finally, the Elog wrapping
language is presented.

Figure 2: The Lixto Visual Wrapper System.

Elog programs can be completely visually specified and
are actually very similar to monadic datalog; the core of the
language (called Elog− in [14] and studied there in detail)
is monadic datalog as discussed before with a few minor
syntactic restrictions which do not lower its expressiveness.
Thus, the property that unary queries can be entirely visu-
ally specified is also inherited by MSO.

To provide a useful metaphor for the building blocks of
wrappers, Lixto calls the visual counterparts of monadic in-
tensional predicates patterns and those of rules filters.

3.1 Architecture
The Lixto Visual Wrapper Toolkit consists of the following

modules (see Figure 2):

• The Interactive Pattern Builder provides the user inter-
face that allows a user to visually specify the desired ex-
traction patterns and the basic algorithm for creating a
corresponding Elog wrapper as output.

• The Extractor is the Elog program interpreter that per-
forms the actual extraction based on a given Elog pro-
gram. The Extractor, provided with an HTML docu-
ment and a previously constructed program, generates as
its output a pattern instance base, a data structure en-
coding the extracted instances as hierarchically ordered
trees and strings. A single Elog program can be used for
continuous wrapping of changing pages or to wrap several
HTML pages of similar structure.

• With the XML Designer, the user chooses how to map ex-
tracted information – stored in the pattern instance base –
to XML. This process includes the tasks of declaring some
intensional predicates as auxiliary – tree nodes matching
these do not necessarily propagate to the output XML
tree – and of specifying which labels nodes receive based
on the patterns matched. (The pattern name can act

Figure 3: Creation of a New Pattern

as a default node label in case a node matches only one
pattern.)

• The XML Transformer module performs the actual trans-
lation from the extracted pattern instance base to XML.

3.2 Interactive Wrapper Generation
As discussed above, by visual wrapper specification, we

refer to the process of interactively defining a wrapper from
few example documents using, ideally, mainly “mouse clicks”.

The visual wrapping process in systems such as Lixto
heavily relies on one main operation performed by users: By
marking a region of an example Web document displayed on
screen using an input device such as a mouse, the node in the
document tree best matching the selected region can be ro-
bustly determined. By selecting a reference region followed
by a second region inside the former, it is possible to define
a fixed path π in an example document.

Let subelema1...an
(x, y), where a1 . . . an ∈ Σ∗ is a word

from the labeling alphabet interpreted as a directed path in
the tree, be true if, for each 1 ≤ i ≤ n, the i-th node in
the path from node x to y excluding x is labeled ai. Note
that “subelem” can be expressed by a fixed conjunction of
child and label atoms, so we will consider it as a shortcut
rather than a new built-in predicate. (Theorem 2.7 pro-
vides a method to eliminate child atoms to obtain programs
strictly over τur.) For example, subelema.b(x, y) is a short-
cut for child(x, z), labela(z), child(z, y), labelb(y), where z
is a new variable.

Given an example document representative for a family
of documents to be wrapped, a user may be guided in the
graphical specification of a rule as follows.

• First, a destination pattern p is selected from those exist-
ing or newly created and a parent pattern p0 is selected
from among the patterns defined so far. Initially, the only
pattern available is the “root” pattern.

The “root” pattern corresponds to the extensional pred-
icate root of τur and is the only exception to the corre-
spondence of patterns and intensional predicates.

Figure 4: Program Tree View of Books Example

• The system can then display the document and highlight
those regions in it which correspond to nodes in its parse
tree that are classified p0 using the wrapper program
specified so far.

• A new rule is defined by selecting – by a few mouse clicks
over the example document – a subregion of one of those
highlighted. The system can automatically decide which
path π relative to the highlighted region best describes
the region selected by the user.

This way, the rule p(x) ← p0(x0), subelemπ(x0, x). is
obtained, which the system adds to the wrapper program.

• If a filter definition is too general, the user can refine the
filter rule by generalizing the path π or adding restricting
conditions (e.g. a unary atom p1(x)). For each such
restriction, the system adds the corresponding condition
atom to the filter rule. These tasks can be carried out
visually as well (see [3]).

This procedure is also depicted in Figure 3.
To obtain the expressiveness of MSO, little power has to

be added via conditions; one only has to be able to refer
to root, leaf, and leftmost sibling nodes of the tree and to
patterns via unary atoms; moreover, one has to be able
to specify “nextsibling” atoms [14]. TMNF rules such as
p(x) ← p0(x0), firstchild(x0, x) can then be specified by se-
lecting a child node (say) labeled a of an instance of pattern

p0 in an example document, selecting p as destination pat-
tern (this produces the rule p(x)← p0(x0), subelema(x0, x)),
generalizing from the specified path a (the result is p(x)←
p0(x0), subelem (x0, x)), and adding the condition that x has
no left sibling (= is a first sibling). The Elog− fragment of
Elog, discussed in detail in [14], has precisely the expressive
power of MSO.

Very few example documents are needed for defining a
wrapper program: It is only required that for each rule to
be specified, there exists a document in which an instance
of the parent pattern can be recognized and an instance of
the destination pattern relates to it in the desired manner.

Figure 4 shows a screenshot for the Lixto Interactive Pat-
tern Builder, showing a tree view of the patterns and filters
already defined (top left), user interface elements to add,
change, delete, or test patterns and filters (top right), and
the Lixto Browser (bottom), which displays an example doc-
ument by means of which patterns and filters can be visually
defined. The example wrapper created here is meant to ex-
tract bestsellers from the Amazon.com site.

3.3 The Elog Language
The full Elog language extends monadic datalog as a wrap-

per language by a number of features. In particular, there
are various forms of conditions to properly restrict filters
so as to exclude “false positives” while wrapping; Elog sup-

ports string-based as well as tree-based wrapping, stratified
(datalog) negation, navigation via certain forms of regular
paths (optionally with so-called distance tolerances), and
Web crawling. Many features only serve as shortcuts to sim-
plify the wrapper specification process and to improve pro-
ductivity, but some actually render the full Elog language
of [3] strictly more expressive than MSO [14]. Presenting all
these features in detail is beyond the scope of this paper,
but a detailed overview of the full Elog language is given in
[4, 3]. Some points will be discussed next.

The maybe most striking change from monadic datalog
to Elog is that in the internal syntax of Elog, pattern predi-
cates are binary. While it may seem that this invalidates our
theoretical considerations regarding expressive power (and
complexity) made earlier, this is in fact not true. Elog sat-
isfies syntactic restrictions that make it in a sense monadic
datalog with a dyadic syntax but basically with the favor-
able properties of the former (for details see [14]).

A standard Elog rule6 is of the form

New(S, X)← Par(, S), Ex(S, X), Φ(S, X)

where S is the parent instance variable (in terms of which
the filter is defined in the visual specification process), X
is the pattern instance variable, Ex (S, X) is an extraction
definition atom, and Φ(S, X) is a (possibly empty) set of
condition atoms. New and Par are pattern predicates.

In a sense, the second argument position of each pattern
atom corresponds to the argument of our previously monadic
pattern atoms, while the first represents its parent pattern
(or the root node). The purpose of this is very practical:
The binary pattern relations define a multigraph that is the
basis of the transformation of the wrapped data into XML.

The Lixto Visual Wrapper – and thus Elog – offers two
basic mechanisms of data extraction – tree and string extrac-
tion. For tree extraction, we employ the “subelem” predi-
cate, which however allows for a richer way of specifying
paths than discussed above; paths may consist of certain
regular expressions over tag names and may also put condi-
tions on the values of HTML node attributes.

The second extraction method is string-based, and allows
to wrap strings at the leaves of the HTML parse tree, which
do not have any further tag structure. This feature is used
via a “subtext” predicate, which is analogous to “subelem”
but takes a string path definition – a regular expression spec-
ifying which substrings of the element texts to be extracted
– as a predicate instead of a path expression matching a
path in the document tree.7

The Lixto visual wrapper supports a wide range of con-
ditions, which allow to define many wrappers by very few
and simple steps. The main types of conditions are (a) con-
text conditions that express that e.g. the target pattern
instance must appear before or after some specific element.
(b) so-called internal conditions that express that some

6We moreover permit so-called specialization rules such as

greentable(S,X)← table(S,X),

contains(X, (.td, [color, green, exact]),).

which lack the extraction atom and – rather than making a
step (down) in the HTML tree, match a subset of the nodes
matched by the parent pattern.
7There are two further analogous extraction predicates,
“subsq” and “subatt”, for which we refer to [4].

specific element must (not) appear inside the target pat-
tern, (c) concept conditions, and (d) pattern reference
conditions.

All of these can be added to a wrapper program fully
visually in Lixto, without having to deal with Elog.

Context condition predicates specify that some other
subtree or text must (or must not) appear before or after
the desired extraction target. Compared to “nextsibling”,
“before” and “after” predicates are much more flexible in
that they allow for nodes before or after the target pattern
instance node to be arbitrarily distant, even though it is of
course possible to require the paths to such nodes to match
a regular expression, conditions on attributes, etc., and even
the distance to be within a certain tolerance interval.

Internal condition predicates impose conditions on
the internal structure of subtrees matching patterns. These
include predicates for checking whether a tree contains a
certain subtree or whether a node is the first among those
matching a path.

Concept condition predicates subsume semantic con-
cepts like isCountry(X) or isCurrency(X) (see Figure 5)
and syntactic ones like isDate(X), which is true if string X
represents a country, currency, or date, respectively. Some
predicates are built-in to enrich the system, while more can
be interactively added. Syntactic predicates are created as
regular expressions, whereas semantic ones refer to an on-
tological database. Moreover, Comparison Conditions
such as < (X, Y) allow for the comparison of data values
(e.g. dates).

Finally, pattern reference conditions allow to add fur-
ther pattern atoms to a rule, besides the “parent” pattern
with respect to which each filter rule is defined in the ba-
sic visual specification procedure discussed in the previous
section.

Figure 5 shows an example Elog program, which defines
a wrapper for eBay pages. The wrapper applies to pages
that contain lists of items offered for auction. Each entry
in such a list contains an item description, a price with an
associated currency name, and the number of bids made so
far. The details of the Elog program are technical and aim
to exploit HTML formatting to robustly spot the data to
be extracted. At the time of writing this, on eBay pages,
every offered item is stored in its own table. This sequence
of tables is extracted with the pattern <tableseq>, which
asks for the (largest) sequence of nodes that are children of
the “body” node of the document starting with a “table”
node and ending with a table node, such that the first node
immediately follows the list header (which on such pages is
a “table” itself, containing the text “item”) and the final
node is immediately followed by an “hr” HTML node. By
<record>, we extract the individual records. The remain-
ing patterns are all defined relative to such a record. For
example, the <itemdes> pattern extracts item descriptions,
which are nodes within the record labeled “a” – the item
description field is the only one hyperlinked within a record.
The pattern <price> uses a concept attribute, namely is-
Currency – which matches strings like $, DM, Euro, etc.
The <bids> pattern uses a reference to the <price> pat-
tern. The final filter rule employs string extraction.

After this discussion of the practical aspects of Web wrap-
ping and the Lixto Visual Wrapper system, another look on
the theoretical side of wrapping is in place. Theorems 2.4
and 2.7 show that monadic datalog with the “child” and

tablesq(S, X) ← document(“www.ebay.com/”, S), subsq(S, (.body, []), (.table, []), (.table, []), X),
before(S, X, (.table, [(elementtext, item, substr)]), 0, 0, ,), after(S, X, .hr, 0, 0, ,)

record(S, X) ← tableseq(, S), subelem(S, .table, X)
itemdes(S, X) ← record(, S), subelem(S, (?.td. ? .content, [(a, , substr)]), X)
price(S, X) ← record(, S), subelem(S, (?.td, [(elementtext, \var[Y].∗, regvar)]), X), isCurrency(Y)
bids(S, X) ← record(, S), subelem(S, ?.td, X), before(S, X, .td, 0, 30, Y,), price(, Y)

currency(S, X) ← price(, S), subtext(S, \var[Y], X), isCurrency(Y)

Figure 5: Elog Extraction Program for Information on eBay

“nextsibling” (und unary) relations can be evaluated in poly-
nomial time. Full Elog introduces a number of powerful
built-in predicates for navigating between two nodes in a
tree, and such rules can be used to build cyclic rules of
arbitrary size. This raises the question for the complex-
ity of cyclic rules (conjunctive queries) and programs over
tree relations beyond “child” and “nextsibling” (such as
“before”/”following” and “descendant”), which we consider
next.

4. COMPLEXITY ISSUES
We have seen in Theorem 2.4 that monadic datalog over

trees defined by unary relations and the binary relations
“firstchild”, “child”, and “nextsibling” are P-complete and
can be solved in time linear in the size of the database and
linear in the size of the tree.

Relations such as “child” and others such as “descendant”
play an important role in various query languages on trees,
such as XPath (and thus XQuery and XSLT); there, they
are called axes. There are two main modes of navigation
in trees, horizontal and vertical. For horizontal navigation,
one can distinguish between navigating among sibling nodes
and among nodes – intuitively – further left or right in the
tree (the “following” axis in XPath). The most natural
axis relations are thus Child, Child∗, Child+, Nextsibling,
Nextsibling∗, Nextsibling+, and Following, where

Following(x, y) := ∃z1, z2 Child∗(z1, x)∧

Nextsibling+(z1, z2) ∧ Child∗(z2, y).

Note that if we consider complexity rather than expres-
siveness, we do not need to deal with relations such as
Firstchild in addition; we may assume a unary predicate
Firstsibling such that

Firstchild(x, y)⇔ Child(x, y),∧Firstsibling(y).

A natural question is to ask for the complexity of monadic
datalog programs over these axes, or, to start with a more
basic problem, conjunctive queries (which can be seen as
datalog programs containing only a single nonrecursive rule).
Note that conjunctive queries over trees also have natu-
ral applications in computational linguistics, term rewriting,
and data integration [18].

In the case that all individual rules are acyclic (conjunc-
tive queries), it is known from [14] that monadic datalog over
arbitrary axes can be evaluated in linear time. However, not
all Elog programs have only acyclic rules.

As already observed in Proposition 2.3, while full data-
log is EXPTIME-complete (c.f. e.g. to [9]), monadic data-
log over arbitrary finite structures is in NP (actually, NP-

complete). For a lower bound on trees, it is known [28]
that already Boolean conjunctive queries over structures of
the form 〈(Pi)i, child, child∗〉 are NP-hard w.r.t. combined
complexity.

A detailed study of the tractability frontier of conjunctive
queries over trees is presented in full in the paper [18] in this
proceedings volume. As observed there, the subset-maximal
polynomial cases of axis sets are

• {child+, child∗},

• {child, nextsibling, nextsibling+, nextsibling∗}, and

• {following}.

That is, for each class of conjunctive queries over a subset of
one of these three sets and over unary relations, the query
evaluation problem is polynomial (with respect to combined
complexity). We have the dichotomy that for all other cases
of conjunctive queries using our axis relations (e.g. Child and
Child+), the problem is NP-complete.

Obviously, the complexity of monadic datalog over a given
set of axes is always the same as that of conjunctive queries
over the same axes.

The special case that queries are acyclic is also worth
studying, since the probably most important node-selecting
query language on trees, XPath, is naturally tree-shaped.

All XPath engines available in 2002 took exponential time
in the worst case to process XPath [15]. However,

Theorem 4.1 ([15]). XPath 1 is in PTIME w.r.t. com-
bined complexity.

This result is based on a dynamic programming algorithm
which, in an improved form [15, 17] yielded the first XPath
engine guaranteed to run in polynomial time.

Most people use only the most common features of XPath,
so it is worthwhile to study restrictive fragments of this lan-
guage. In [15], we introduced Core XPath, the navigational
fragment of XPath, which includes both horizontal and ver-
tical tree navigation with axes, node tests, and boolean com-
binations of condition predicates. As shown there, Core
XPath can be evaluated in time linear in the size of the
database and linear in the size of the query. However,

Theorem 4.2 ([16]). Core XPath is P-hard w.r.t. com-
bined complexity.

This property – shared by XPath, of which Core XPath
is strictly a fragment – renders it highly unlikely that query
evaluation is massively parallelizable (= in the complexity
class NC, c.f. [19]) or that algorithms exist that take less
than a polynomial amount of space for query processing.

Core XPath

CQs

CQ[Child∗,Child+]

CQ[Following]

XPath

pXPath

pos. Core XPath

mon. datalog

NP

LOGCFL-complete

NP-complete

TMNF

mon. datalog[Child,Nextsibling]

P-complete

CQ[Child,Nextsibling,
Nextsibling∗,Nextsibling+]

P

MSO

MSO over trees

PSPACE

PSPACE-complete

CQs over trees

Figure 6: Complexity and expressive power of query languages over trees.

Interestingly, if we remove negation in condition predi-
cates, the complexity of Core XPath is reduced to LOGCFL,
a parallel complexity class in NC2 [16].

Theorem 4.3 ([16]). Positive Core XPath is LOGCFL-
complete w.r.t. combined complexity.

This generalizes to a very large fragment of full XPath
(called pXPath), from which besides negation only few very
minor features have to be removed to obtain

Theorem 4.4 ([16]). pXPath is LOGCFL-complete
w.r.t. combined complexity.

Further results on the complexity of various fragments of
XPath 1 can be found in [16].

Positive Core XPath queries correspond to acyclic posi-
tive queries over axis relations. Interestingly, each conjunc-
tive query over axis relations can be mapped to an equiva-
lent acyclic positive query, however there are no polynomial
translations for doing this [18]. Thus,

Corollary 4.5. For ever conjunctive query over trees,
there is an equivalent positive Core XPath query.

Of course, when talking about conjunctive queries over
trees, we assume that all binary relations in the signature
are relations from our set of axes.

Finally, Core XPath queries can be mapped to monadic
datalog in linear time. The slightly curious fact here is that
this remains true in the presence of negation in Core XPath
(for which no analogous language feature exists in datalog.)

Theorem 4.6 ([12]). Each Core XPath query can be
translated into an equivalent TMNF query in linear time.

An overview of the results discussed in this section can
be found in Figure 6. The Venn diagram notation refers to
complexity classes (we make the usual complexity-theoretic
assumptions that LOGCFL ⊂ P ⊂ NP ⊂ PSPACE) and the
arrows refer to expressive power; L1 → L2 means that each
query in language L1 can be translated into an equivalent
query in L2. The notation L[F] refers to the queries of
language L using only binary relations from axis set F and
unary relations.

5. LIXTO TRANSFORMATION SERVER
The usual setting for the creation of services based on

Web wrappers is that information is obtained from multi-
ple wrapped sources and has to be integrated; often source
sites have to be monitored for changes, and changed informa-
tion has to be automatically extracted and processed. Thus,
push-based information systems architectures in which wrap-
pers are connected to pipelines of postprocessors and inte-
gration engines which process streams of data are a natural

Figure 7: Small information pipeline integrating in-
formation about books.

scenario, which is supported in the Lixto suite by the Lixto
Transformation Server [20, 6].

The overall task of information processing is composed
into stages that can be used as building blocks for assembling
an information processing pipeline which we call information
pipe. The stages are to (1) acquire the required content from
the source locations; this component resembles the Lixto
Visual Wrapper, (2) integrate it, (3) transform it, and (4)
deliver results to the end users.

The actual data flow within the Transformation Server
is realized by handing over XML documents. Each stage
within the Transformation Server accepts XML documents
(except for the wrapper component, which accepts HTML
documents), performs its specific task, and produces an XML
document as result. This result is fed to the successor com-
ponents which in turn performs the next information pro-
cessing stages. Components which are not on the boundaries
of the network are only activated by their neighboring com-
ponents. Boundary components (i.e., wrapper and deliverer
components) have the ability to activate themselves accord-
ing to a user specified strategy and trigger the information
processing on behalf of the user.

From an architectural point of view, the Lixto Transfor-
mation Server may be conceived as a container-like environ-
ment of visually configured information agents. The “pipe
flow” can model very complex unidirectional information
flows (see Figure 7). The use of components also modular-
izes information processing, so the service can be maintained
and updated smoothly. Moreover, information services may
be controlled and customized from outside of the server envi-
ronment by various types of communication media (HTTP,
SMS, RMI etc.).

6. APPLICATIONS
In this section we report on several real world applications

of Lixto. In all these applications, the tasks of integrating,
transforming and delivering information extracted using the
Lixto Visual Wrapper are performed by the Lixto Transfor-
mation Server.

6.1 Mobile Applications: Now Playing!
“Now Playing” introduces a future UMTS-scenario for

mobile entertainment. It was developed for the T-Mobile
Future House (UMTS demonstration lab) in Vienna, Aus-
tria, using Lixto Technology. The application (Figure 8)
aims at (1) monitoring the playlists of individual radio sta-
tions on PDA, (2) displaying current songs, (3) integrating

current song with data from charts, and from a lyrics server.

Figure 8: Now Playing

The playlists of national (Austrian) and international ra-
dio stations are taken from their web sites in real time and
integrated into a portal of its own. It is possible to listen to
the live audiostream of the currently played songs on mo-
bile devices such as PDAs and view information on songs,
such as titles, artists, and lyrics. Moreover, images of the
CD covers are offered together with the current rankings of
selected songs in five major music charts.

Data is extracted from 14 different web sites using the
Lixto Visual Wrapper. These Web sites are split into three
groups: radio channels, charts and lyrics. Each of these
three information sources is upgraded at periodic intervals
ranging from a few seconds (radio channels) up to hours or
days (charts and lyrics). As soon as each module has trans-
lated its data into XML, the Lixto Transformation Server
integrates the incoming XML data.

At the very end of the information flow chain is the syn-
dication for mobile devices. The application layout is opti-
mized to suite the small display of PDAs and at the same
time offer good navigation capabilities. Starting from the
main page, the end user can choose whether to view inter-
national or national (Austrian) radio stations. Each of these
pages offers an index of four radio stations, and a link to a
live audiostream if offered by the respective radio station.
If the user asks detailed information about the currently
played songs, all additional information is presented in an
additional window, e.g., chart ranking in selected charts,
image of the CD and lyrics.

Ranking in the charts is also independently accessible by
simply clicking on one of the chart links, skimming through
the returned list and selecting one of the songs. Addition-
ally, if offered by the respective chart and supported by the
mobile end device, a short intro of the song is played as well.

6.2 Flight Schedules Information
Travel – in particular flight – information services are vital

to travelers around the globe. Although flight information
is usually available on the Web, it is often not available
at a central site for all service providers. In the case of
flight information, timetables of individual flights are either
scattered into different airport information systems or into
the portals of individual airlines.

As a traveler is out of home by definition, this kind of
information is best communicated over mobile devices.

A flight schedule information application of Lixto is pre-
sented in more detail in [6]. The user may subscribe to

specific flights either by providing the flight number or the
departure and destination location. The system will send
the actual flight status to the user by means of an SMS
message, but only if the status changed between consecu-
tive requests.

6.3 Press Clipping: Financial News
This Lixto application, discussed in detail in [2], extracts

news from various press Web sites, aggregates the extracted
information with the latest stock quotes and creates a new
Web site in both HTML and WML formats displaying this
integrated information.

A specific feature in this scenario is the chosen XML struc-
ture of the news items. As the XML structure of every
component is completely user-defined, we chose to use the
standard format NITF (News Industry Text Format), which
is a part of the NewsML (News Markup Language) speci-
fication. NITF and NewsML are generally used to save,
exchange, and display news information. If somebody (e.g.
a content provider) is running a system with NewsML, the
integration of the NITF data delivered by the Lixto Trans-
formation Server can be realised very easily using an addi-
tional XML deliverer.

6.4 Agrochemical Applications
A B2C application in the agrochemical domain is de-

scribed in detail in [5]. We created a Viticulture Information
Portal offering general vine news, vine crops growing news,
localized pesticide information, new pesticides, recommen-
dations on plant pest controls, and manufacturer news. The
portal integrates the above information with weather infor-
mation from various Web sources. Wine growers can per-
sonalize their information based on region and priority.

6.5 Applications in the Automotive Industry
Many business processes in the automotive industry are

carried out by means of Web portal interaction. Business
critical data of various divisions such as quality manage-
ment, marketing and sales, engineering, procurement, sup-
ply chain management, and competitive intelligence has to
be manually gathered from Web portals and Web sites. By
automating this process, automotive part suppliers can dra-
matically reduce the costs associated with these processes
while at the same time improving the speed and reliabil-
ity with which these are carried out. Instead of manually
browsing and searching for results on these sites, Lixto auto-
matically gathers the data and renders the results in XML.
Data in this format is then ideally suited to be processed by
enterprise applications or to be distributed through various
communication channels.

6.6 Business Intelligence
A further important application of Lixto is business intel-

ligence: A typical scenario is to monitor product prices and
company news offered by competitors through their Web
sites. Information obtained in this way may be used to
interpret changes in market share and to quickly react to
changes in sales strategies of competitors.

In one specific application developed for a financial ser-
vices company that provides information on ethical and re-
sponsible investment, Lixto integrates reports automatically
taken from the sites of a number of organizations such as the
UNO, Human Rights Watch, Greenpeace, etc., which ana-

lysts study to assess companies by their treatment of the
environment, employment of children, activities in countries
with high levels of corruption, and others.

6.7 Power Trading
In a further application of Lixto developed for a major

electric power trader, spot market prices for electric power
are integrated from major European power trading sites.
This information is automatically integrated with weather
and water level information and imported into the customer’s
information systems used for trading and risk management.

7. OPEN PROBLEMS
We conclude this paper with a list of open research prob-

lems that we have come across while working on Lixto and
which have a considerable theoretical component.

• Tree wrapper learning. While a substantial amount of
work has been done on automatic wrapper induction from
example documents (e.g. [23, 31, 22, 30]), this approach
suffers from the problem that a large number of examples
are required to learn from. Visual specification could al-
low to guide a supervised learning process to require very
few examples only. One goal is to render Lixto “more
intelligent” using machine learning techniques, in order
to reduce the work required from the human wrapper de-
signer using a visual wrapping system even further.

• Data extraction from PDF. There is a substantial interest
from industry in wrapping documents in formats such
as PDF and PostScript. In such documents, wrapping
must be mainly guided by a reasoning process over white
space and Gestalt theory (It is actually quite difficult for a
computer to e.g. separate the articles on the front page of
a daily newpaper, even if available in machine-readable
form.), which is very different from Web wrapping and
will require new techniques and wrapping algorithms.

Finally, one interesting problem in the context of the com-
plexity of queries over trees that has remained open is the
tractability frontier of the complexity of conjunctive queries
over trees accessible through regular expressions over basic
tree relations such as “firstchild” and “nextsibling”. (The
XPath axes are a special case of this setting, where e.g. child
= firstchild.nextsibling∗.)

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] R. Baumgartner, S. Eichholz, S. Flesca, G. Gottlob,
and M. Herzog. Semantic Markup of News Items with
Lixto. 2003.

[3] R. Baumgartner, S. Flesca, and G. Gottlob.
“Declarative Information Extraction, Web Crawling,
and Recursive Wrapping with Lixto”. In Proc.
LPNMR’01, Vienna, Austria, 2001.

[4] R. Baumgartner, S. Flesca, and G. Gottlob. “Visual
Web Information Extraction with Lixto”. In
Proceedings of the 27th International Conference on
Very Large Data Bases (VLDB’01), 2001.

[5] R. Baumgartner, S. Flesca, G. Gottlob, and
M. Herzog. “Building Dynamic Information Portals -
A Case Study in the Agrarian Domain”. In Proc. IS,
2002.

[6] R. Baumgartner, M. Herzog, and G. Gottlob. “Visual
Programming of Web Data Aggregation
Applications”. In Proc. IIWeb-03, 2003.

[7] S. Cosmadakis, H. Gaifman, P. Kanellakis, and
M. Vardi. “Decidable Optimization Problems for
Database Logic Programs”. In Proceedings of the 20th
Annual ACM Symposium on Theory of Computing,
pages 477–490, Chicago, Illinois, USA, 1988.

[8] B. Courcelle. “Graph Rewriting: An Algebraic and
Logic Approach”. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume 2, chapter 5,
pages 193–242. Elsevier Science Publishers B.V., 1990.

[9] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov.
“Complexity and Expressive Power of Logic
Programming”. ACM Computing Surveys,
33(3):374–425, Sept. 2001.

[10] J. Doner. “Tree Acceptors and some of their
Applications”. Journal of Computer and System
Sciences, 4:406–451, 1970.

[11] J. Flum, M. Frick, and M. Grohe. “Query Evaluation
via Tree-Decompositions”. In Proc. ICDT’01, volume
1973 of LNCS, pages 22–38. Springer, Jan. 2001.

[12] M. Frick, M. Grohe, and C. Koch. “Query Evaluation
on Compressed Trees”. In Proc. LICS’03, Ottawa,
Canada, June 2003.

[13] E. Gold. “Language Identification in the Limit”.
Inform. Control, 10:447–474, 1967.

[14] G. Gottlob and C. Koch. “Monadic Datalog and the
Expressive Power of Web Information Extraction
Languages”. Journal of the ACM, 51(1):74–113, 2004.

[15] G. Gottlob, C. Koch, and R. Pichler. “Efficient
Algorithms for Processing XPath Queries”. In Proc.
VLDB 2002, Hong Kong, China, 2002.

[16] G. Gottlob, C. Koch, and R. Pichler. “The Complexity
of XPath Query Processing”. In Proc. PODS’03, 2003.

[17] G. Gottlob, C. Koch, and R. Pichler. “XPath Query
Evaluation: Improving Time and Space Efficiency”. In
ICDE’03, Bangalore, India, Mar. 2003.

[18] G. Gottlob, C. Koch, and K. U. Schulz. Conjunctive
Queries over Trees. In Proc. PODS’04, 2004.

[19] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits
to Parallel Computation: P-Completeness Theory.
Oxford University Press, 1995.

[20] M. Herzog and G. Gottlob. “InfoPipes: A Flexible
Framework for M-Commerce Applications”. In Proc.
TES, 2001.

[21] C. Koch. “Efficient Processing of Expressive
Node-Selecting Queries on XML Data in Secondary
Storage: A Tree Automata-based Approach”. In Proc.
VLDB 2003, pages 249–260, 2003.

[22] R. Kosala, H. Blockeel, M. Bruynooghe, and J. V. den
Bussche. “Information Extraction from Web
Documents based on Local Unranked Tree Automaton
Inference”. In Proc. IJCAI, 2003.

[23] N. Kushmerick, D. Weld, and R. Doorenbos.
“Wrapper Induction for Information Extraction”. In
Proc. IJCAI, 1997.

[24] A. H. F. Laender, B. Ribeiro-Neto, and A. S. da Silva.
“DEByE – Data Extraction By Example”. Data and
Knowledge Engineering, 40(2):121–154, Feb. 2002.

[25] L. Liu, C. Pu, and W. Han. “XWRAP: An

XML-Enabled Wrapper Construction System for Web
Information Sources”. In Proc. ICDE 2000, pages
611–621, San Diego, USA, 2000.

[26] http://www.lixto.com.

[27] B. Ludäscher, R. Himmeröder, G. Lausen, W. May,
and C. Schlepphorst. “Managing Semistructured Data
with Florid: A Deductive Object-oriented
Perspective”. Information Systems, 23(8):1–25, 1998.

[28] H. Meuss, K. U. Schulz, and F. Bry. “Towards
Aggregated Answers for Semistructured Data”. In
Proc. ICDT’01, pages 346–360, 2001.

[29] M. Minoux. “LTUR: A Simplified Linear-Time Unit
Resolution Algorithm for Horn Formulae and
Computer Implementation”. Information Processing
Letters, 29(1):1–12, 1988.

[30] Mostrare project.
www.grappa.univ-lille3.fr/mostrare/.

[31] I. Muslea, S. Minton, and C. Knoblock. “A
Hierarchical Approach to Wrapper Induction”. In
Proc. 3rd Intern. Conf. on Autonomous Agents, 1999.

[32] F. Neven and T. Schwentick. “Query Automata on
Finite Trees”. Theoretical Computer Science,
275:633–674, 2002.

[33] F. Neven and J. van den Bussche. “Expressiveness of
Structured Document Query Languages Based on
Attribute Grammars”. Journal of the ACM,
49(1):56–100, Jan. 2002.

[34] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina,
and J. Ullman. “A Query Translation Scheme for
Rapid Implementation of Wrappers”. In DOOD’95,
pages 161–186, Singapore, 1995. Springer.

[35] A. Sahuguet and F. Azavant. “Building Intelligent
Web Applications Using Lightweight Wrappers”. Data
and Knowledge Engineering, 36(3):283–316, 2001.

[36] H. Seidl, T. Schwentick, and A. Muscholl. “Numerical
Document Queries”. In Proc. PODS’03, pages
155–166, San Diego, California, 2003.

[37] J. Thatcher and J. Wright. “Generalized Finite
Automata Theory with an Application to a Decision
Problem of Second-order Logic”. Mathematical
Systems Theory, 2(1):57–81, 1968.

[38] W. Thomas. “Languages, Automata, and Logic”. In
G. Rozenberg and A. Salomaa, editors, Handbook of
Formal Languages, volume 3, chapter 7, pages
389–455. Springer Verlag, 1997.

[39] World Wide Web Consortium. XML Path Language
(XPath) Recommendation.
http://www.w3c.org/TR/xpath/, Nov. 1999.

