
Processing Queries on Tree-Structured Data

Efficiently

Christoph Koch
Lehrstuhl für Informationssysteme

Saarland University, Saarbrücken, Germany
koch@infosys.uni-sb.de

Abstract

This is a survey of algorithms, complexity results, and general solution
techniques for efficiently processing queries on tree-structured data. I focus
on query languages that compute nodes or tuples of nodes – conjunctive
queries, first-order queries, datalog, and XPath. I also point out a number
of connections among previous results that have not been observed before.
The techniques belong to five groups:

1. employing orders on the nodes of the tree for efficient labeling schemes
and structural joins,

2. linear-time algorithms for evaluating Horn-SAT (the datalog tech-
nique),

3. structural decomposition techniques for queries,

4. query rewriting, and

5. holistic query processing techniques that can be explained using ideas
from constraint satisfaction.

1 Introduction

There is now a fair body of research on queries on tree-structured data such as
HTML, XML, and LDAP. On the theoretical side, many results on the expressive
power and complexity of, as well as algorithms for, query processing on trees have
been obtained. There are many applications of this work, for instance in Web
data management [26], information extraction [68, 6, 31], data integration and
exchange [64, 22, 4], stream processing and selective data dissemination [3, 16, 62,
38, 44, 5, 53, 40, 52], telecommunications [7], digital libraries [56], computational
linguistics [11, 35], and data management in science [72, 15, 14].

1

In this paper, I survey earlier work on the processing of queries on trees, with
the goal of isolating the essential ideas and techniques that yield efficient query
evaluation. I focus on query languages that compute nodes or tuples of nodes
– conjunctive queries, first-order queries, datalog, and XPath. Both complexity-
theoretic and algorithmic results are presented, and techniques and results are
grouped by the general idea that leads to efficient query processing. I also point
out a number of new connections among previous results.

The paper is structured as follows. I start by introducing and discussing
tree structures and give a motivation for node labeling schemes – the efficient
processing of queries on the navigational structure of trees using structural joins
(Section 2). Next I introduce the query languages studied in this paper and
provide some background on their relative expressiveness (Section 3). I also show
how monadic datalog can be used to process queries on trees efficiently.

In the main body of the paper, I distinguish between techniques that aim
at efficiency by exploiting structural properties of query and data (Section 4),
techniques based on query rewriting (Section 5), and results that employ proper-
ties that lie buried somewhat deeper in the data and that yield “holistic” query
processing techniques (Section 6).

• Section 4 revolves mostly around acyclicity or more generally bounded tree-
or hypertree-width of either data or queries.

• The query rewriting techniques of Section 5 exploit the treeness of the
data – only because of the particularities of tree data are these rewriting
techniques possible – to obtain acyclic queries. The acyclicity of the query
is then used to achieve efficient evaluation. In conjunction with rewriting,
I address streaming algorithms, many of which employ so-called forward
queries which can be obtained by query rewriting.

• In Section 6, I discuss the so-called X-underbar property [45], which yields
efficient query evaluation for conjunctive queries on certain tree structures
by guaranteeing that globally consistent solutions of queries can be found
by the (local) enforcement of arc-consistency. This approach can be traced
back to work on the Constraint Satisfaction problem (CSP) in Artificial
Intelligence (cf. [21]). Holistic twig join techniques [13, 48] have also been
introduced as a technique specifically for processing tree data, and actually,
their underlying idea can be taken as a special case of such arc-consistency-
based constraint processing techniques.

This is the focus of the three main technical sections of this paper. In Sec-
tion 7, I give a summary of the complexity results known for query languages on
trees.

Note: This is not a survey of XPath complexity. The main results
are stated here, but for a detailed survey of this topic see [9].

2

I refer to [49, 39] for surveys of the complexity theoretic background used in
this paper. Three kinds of complexity of query evaluation will be considered,
data complexity (where queries are assumed to be fixed and data variable), query
complexity (where the query is variable and the data is assumed to be fixed), and
combined complexity (where both data and query are considered variable) [73].
In a few upper bound results I will assume a uniform machine model in which
pointers can be kept in fixed-size registers.

2 Tree Structures

A relational signature (or schema) is a set of relation names. A σ-structure is a
structure (or database) of signature σ. As a convention, given a structure A, we
use A = |A| (the name of the structure in roman font) to denote its domain and
||A|| to denote the size of the structure in a reasonable machine representation
(cf. e.g. [47, 25, 55]).

An unranked tree is a tree in which each node may have an unbounded number
of children. We consider unranked ordered finite trees, which correspond to the
bare tree structures of the parse trees of XML documents. Such trees can be
represented by two relations Child and NextSibling over the tree domain. Let
Child(u, v) be true iff v is a child of u in the tree and let NextSibling(u, v) be true
iff, for some i, u and v are the i-th and (i + 1)-th children of a common parent
node, respectively, counting from the left (see also Figure 1).

We also consider the transitive (R+, for relation R) as well as the reflexive
and transitive closures (R∗ for relation R) of the relations Child and NextSibling .
The relations Child+, Child∗, and NextSibling+ are also known as Descendant,
Descendant-or-self, and Following-Sibling, respectively, in the W3C XML stan-
dards [76]. Moreover, let

Following(x, y) :⇔ ∃x0∃y0 NextSibling+(x0, y0) ∧

Child∗(x0, x) ∧ Child∗(y0, y).

These binary tree navigation relations are commonly called axes [76], a con-
vention that we follow.

Let Σ be a node labeling alphabet. Throughout the paper, if not explicitly
stated otherwise, we do not assume Σ to be fixed. We allow for tree nodes to
be labeled with multiple labels. The tractability results discussed in this paper
support multiple labels while the NP-hardness and expressiveness results do not
make use of them. We use relations (Laba)a∈Σ to represent node labels: Laba(v)
is true iff node v has label a.

3

n1

n5n4

n3
n2 n6

(a) (b)

FirstChild

FirstChild

n1

n2

n3

n5

n6

NextSibling

NextSibling

NextSibling

n4

Figure 1: (a) An unranked tree and (b) its representation using the binary rela-
tions FirstChild (ւ) and NextSibling (ց).

Orders and Labeling Schemes

We consider three well-known total orders on finite ordered trees. The pre-order
<pre and the post-order <post can be defined by

x <pre y :⇔ Child+(x, y) ∨ Following(x, y)

x <post y :⇔ Child+(y, x) ∨ Following(x, y).

Intuitively, the pre- and postorder correspond to the order in which the opening
resp. closing tag of each node of a tree is seen when reading the corresponding
XML document from left to right. In XML jargon, <pre is also known as document
order [76]. We also consider the ordering <bflr which is given by the sequence by
which the nodes are visited if we traverse the tree breadth-first left-to-right.

As shown above, <pre and <post can be defined from Child+ and Following.
The converse is also possible:

Child+(x, y) :⇔ x<pre y ∧ y <post x

Following(x, y) :⇔ x<pre y ∧ x<post y

From these axes, all others can be defined in first-order logic. Thus, a node-
labeled tree can be completely represented by one triple (i, j, a) consisting of a
<pre -index i, a <post -index j, and a label a for each node of the tree. (These
indexes are chosen in a way that if two nodes u and v have, say, <pre -indexes i
and i′, then i < i′ iff u<pre v.)

Structural Joins

This is the starting point from which several relational storage schemes for XML
data have been developed [27, 43, 42]. For instance, the extended access support
relations (XASR) of [27] store a tuple consisting of the <pre -index, the <post -
index, the <pre -index of the parent node (NULL for the root node), and a data

4

1:7:a

2:3:b

3:1:a 4:2:c

5:6:a

6:4:b 7:5:d

(a)

R pre post parent pre lab
1 7 ⊥ a
2 3 1 b
3 1 2 a
4 2 2 c
5 6 1 a
6 4 5 b
7 5 5 d

(b)
Figure 2: Tree (a) and XASR (b).

value or a label for each node of the data tree. Note that the <pre -index of the
parent node is redundant but allows to efficiently join a node with its parent.

Example 2.1 The tree shown in Figure 2 (a) can be represented by the XASR
of Figure 2 (b). We can define the descendant axis as an SQL view

CREATE VIEW descendant AS
SELECT r1.pre, r2.pre FROM R r1, R r2
WHERE r1.pre < r2.pre AND r2.post < r1.post;

and the child axis as

CREATE VIEW child AS
SELECT parent pre, pre FROM R
WHERE parent pre is not NULL;

2

The advantage of such a representation is that its size is not greater than
O(||A|| · log |A|) if A is the domain of tree A while computing pairs of nodes
between which a descendant-relationship holds can be done by a single theta-join
on the representation relation. Such joins are called structural joins [2]. This is
clearly better than computing the transitive closure of the Child relation whenever
such a join is to be performed (which means performing an arbitrary number of
joins in a relational database management system), or storing a quadratically-
sized Child+ relation in the database to avoid the need to compute transitive
closures.

A great number of labeling and indexing schemes for XML tree nodes have
been developed, e.g. [74, 66, 63, 75], which have improved the efficiency of queries
and updates of XML data. The observation that <pre - and <post -indexes are
sufficient to express structural joins for all XPath axes is from [43]; however tree
representations based <pre - and <post -indexes have been known before [23].

5

3 Query Languages

FO, MSO, and Conjunctive Queries

We assume familiarity with first-order logic (FO) and k-variable first-order logic
FOk (cf. [25, 55]). Monadic second-order logic (MSO) extends first-order logic
by quantification over set variables, i.e., by variables ranging over sets of nodes,
which coexist with first-order variables that range over single nodes. A k-ary
MSO (FO) query is an MSO (FO) formula with k free first-order variables. We
call the 0-ary queries Boolean. We use lower case node and first-order variable
names and upper case names for labels, relation names, and set variables.

By a positive FO query, we refer to an FO query that does not employ univer-
sal quantification or negation. A conjunctive query is a positive FO query which
in addition does not use disjunction. We will usually use the standard (datalog)
rule notation for conjunctive queries (cf. [1]).

The containment of queries Q and Q′ is defined in the normal way: Query Q
is said to be contained in Q′ (denoted Q ⊆ Q′) iff, for all tree structures A, Q′

returns at least all tuples on A that Q returns on A. (To cover Boolean queries,
tuples here may be nullary.) Two queries Q,Q′ are called equivalent (denoted
Q ≡ Q′) iff Q ⊆ Q′ and Q′ ⊆ Q.

Core XPath

Many results on XPath apply to the fragment that deals only with the navi-
gational structure of an XML document. This fragment, denoted Core XPath,
consists of expressions whose input is a node and whose output is either a set
of nodes or a Boolean. The latter are also referred to as qualifiers. We will use
p, p′, . . . to vary over general XPath expressions, while q, q′, . . . will be used to
denote qualifiers. Expressions are built up from the grammar

p ::= step | p/p | p ∪ p

step ::= axis | step[q]

axis ::= arel | arel−1 | Self

arel ::= Child | Descendant | Descendant-or-self

| Following-Sibling | Following

q ::= p | lab() = L | q ∧ q | q ∨ q | ¬q,

where axis stands for the names of the axis relations, L denotes the labels in
Σ, and ∧,∨,¬ stand for and (conjunction), or (disjunction) and not (negation),
respectively.

An expression p in Core XPath over a tree structure D is interpreted as a
function [[p]]NodeSet from a node to a set of nodes, while a qualifier q is interpreted
as a unary predicate [[q]]Boolean : Nodes → NodeSet . A unary Core XPath query

6

is of the form [[p]]NodeSet(root) and thus defines a set of nodes. The semantic
functions are defined inductively on the structure of p, q. For NodeSet expressions
p we have

(P1) [[Self]]NodeSet(n) := {n}.
[[R]]NodeSet(n) := {n′ : R(n, n′)}.
[[R−1]]NodeSet(n) := {n′ : R(n′, n)}.

(P2) [[step[q]]]NodeSet(n) := {n′ : n′ ∈ [[step]]NodeSet(n) ∧ [[q]]Boolean(n
′) =true}.

(P3) [[p1/p2]]NodeSet(n) := {v : ∃w ∈ [[p1]]NodeSet(n) ∧ v ∈ [[p2]]NodeSet(w)}.

(P4) [[p1 ∪ p2]]NodeSet(n) := [[p1]]NodeSet(n) ∪ [[p2]]NodeSet(n).

For qualifiers q we have

(Q1) [[lab() = L]]Boolean(n) :⇔ LabL(n)

(Q2) [[p]]Boolean(n) :⇔ [[p]]NodeSet(n) 6= ∅

(Q3) [[q1 ∧ q2]]Boolean(n) :⇔ [[q1]]Boolean(n) ∧ [[q2]]Boolean(n)

(Q4) [[q1 ∨ q2]]Boolean(n) :⇔ [[q1]]Boolean(n) ∨ [[q2]]Boolean(n)

(Q5) [[¬q]]Boolean(n) :⇔ ¬[[q]]Boolean(n)

By positive Core XPath, we will refer to Core XPath without negation. We
say that a Core XPath query is conjunctive if it does not use disjunction, union,
or negation.

Monadic Datalog

We assume the function-free logic programming syntax and semantics of the
datalog language known and refer to [1] for a detailed survey of datalog. Mo-
nadic datalog [18, 31] is obtained from full datalog by requiring all intensional
predicates to be unary. For monadic datalog, one obtains a unary query by
distinguishing one intensional predicate as the query predicate.

We use tree structures of signature

τ+ = 〈Dom, Root , Leaf , (Laba)a∈Σ,FirstChild , NextSibling , LastSibling〉

where Dom is the set of nodes in the tree and the remaining predicates can be
defined from Child and NextSibling in FO as follows:

Root(x) :⇔ ¬∃x0 Child(x0, x)

Leaf (x) :⇔ ¬∃y Child(x, y)

FirstSibling(x) :⇔ ¬∃x0 NextSibling(x0, x)

LastSibling(x) :⇔ ¬∃y NextSibling(x, y)

FirstChild(x, y) :⇔ Child(x, y) ∧ FirstSibling(y)

Of course these definitions are to be considered relativized to the tree domain.
(We make Root , Leaf , and LastSibling part of the input because datalog cannot
express negation, which we used to define these relations above.)

7

algorithm Minoux(propositional Horn formula Φ)
// let Φ = (p1,1 ∨ ¬p1,2 ∨ · · · ∨ ¬p1,k1) ∧ . . . ∧
// (pl,1 ∨ ¬pl,2 ∨ · · · ∨ ¬pl,kl

).
begin

list<rule id> rules[pred id];
int size[rule id];
pred id head[rule id];
queue<pred id> q;

// initialization of data structures
for 1 ≤ i ≤ l do begin

head[i] := pi,1;
size[i] := ki − 1;
for 2 ≤ j ≤ ki do append i to rules[pi,j];
if ki = 1 then append i to q;

end;

// main loop
while queue is not empty do begin
p := pop first element off q;
output “p is true”;
for each i in rules[p] do begin

size[i] := size[i] - 1;
if size[i] = 0 then append head[i] to q;

end;
end;

end.

Figure 3: Linear-time algorithm for solving propositional Horn-SAT (Minoux’
Algorithm).

Example 3.1 The monadic datalog program over τ+

P0(x) ← LabelL(x). (1)

P0(x0) ← NextSibling(x0, x), P0(x). (2)

P (x0) ← FirstChild(x0, x), P0(x). (3)

P0(x) ← P (x). (4)

with query predicate P computes those nodes that have an ancestor labeled L.
2

While monadic datalog over arbitrary finite structures is NP-complete w.r.t.
combined complexity (see e.g. [31]),

8

Theorem 3.2 ([31]) Monadic datalog over τ+ has time O(|P|∗|Dom|) combined
complexity (where |P| is the size of the program and |Dom| the size of the tree).

This follows from the fact that all binary relations in τ+ have bidirectional
functional dependencies; for instance, each node has at most one first child and
is the first child of at most one other node. Given a program P, an equivalent
ground (i.e., propositional) program can be computed in time O(|P| ∗ |Dom|).
Ground programs can be evaluated in linear time using Minoux’ Algorithm [59],
shown in Figure 3.

Example 3.3 The following Horn-SAT program is a ground version of the pro-
gram of Example 3.1.

r1 : LabelL(3)←; r2 : FirstChild(1, 2)←; r3 : NextSibling(2, 3)←;

d1 : P0(1)← LabelL(1); d2 : P0(2)← LabelL(2); r4 : P0(3)← LabelL(3);

d3 : P0(1)← P (1); d4 : P0(2)← P (2); d5 : P0(3)← P (3);

r5 : P0(2)← NextSibling(2, 3), P0(3); r6 : P (1)← FirstChild(1, 2), P0(2)

For simplicity, let us drop the rules d1, . . . , d5 and relabel the ground atoms using
integers.

r1 : 1← r2 : 2← r3 : 3←
r4 : 4← 1 r5 : 5← 3, 4 r6 : 6← 2, 5

The initialization phase of Minoux’ algorithm produces the data structures

size
r1 0
r2 0
r3 0
r4 1
r5 2
r6 2

head
r1 1
r2 2
r3 3
r4 4
r5 5
r6 6

rules
1 [r4]
2 [r6]
3 [r5]
4 [r5]
5 [r6]
6 []

q = [1, 2, 3]

The main loop of Minoux’ algorithm in the first iteration takes 1 off the queue,
outputs it, for each rule r in rules[1] (that is, only r4) decrements size[r] by one,
and, since size[r4] becomes 0, appends head[r4] = 4 to the queue. Next, it pops
2 off the queue and proceeds analogously. 2

It is folklore that each monadic datalog query over arbitrary finite structures
can be defined by an equivalent unary MSO query. For trees, but not for general
structures, the reverse holds as well: A unary query is definable in monadic
datalog over τ+ iff it is definable in MSO over τ+ [31].

9

It is known from [41] that unless the parametric-complexity equivalent of
P = NP holds, MSO is nonelementarily more succinct than monadic datalog
on trees.1 This is not surprising because MSO (even FO) on trees is known
to be PSpace-complete and thus considerably harder than monadic datalog on
τ+-structures.

Each monadic datalog program over trees can be efficiently rewritten into an
equivalent program using only very restricted syntax.

Definition 3.4 A monadic datalog program P over τ+ is in Tree-Marking Nor-
mal Form (TMNF) if each rule of P is of one of the following three forms:

(1) p(x)← p0(x). (2) p(x)← p0(x0), B(x0, x).

(3) p(x)← p0(x), p1(x).

where the unary predicates p0 and p1 are either intensional or of τ+ and B is
either R or R−1, where R is a binary predicate from τ+. 2

In [31], it was shown that for each monadic datalog program P over τ+ ∪
{Child}, there is an equivalent TMNF program over τ+ which can be computed
in time O(|P|). In [29, 51] an automata-based technique was developed for eval-
uating TMNF programs in time O(f(|Q|) + ||A||).

Each Core XPath query can be translated into an equivalent TMNF query
in linear time [29]. The slightly curious fact here is that this remains true in
the presence of negation in Core XPath, for which no analogous language feature
exists in datalog.

4 Exploiting Bounded Tree-Width

We recall the well-studied graph-theoretical notion of tree-width. LetG = (V G, EG)
be an undirected graph (edge relation EG is symmetric). A tree decomposition
of G is a pair (T, χ) such that T is a rooted tree with nodes V T , χ is a function
χ : V T → 2V

G

that maps each node of tree T to a subset of V G, for each edge
(u, v) ∈ EG there exists a node w ∈ V T such that u, v ∈ χ(w), and for each node
u ∈ V G, the set {v ∈ V T | u ∈ χ(v)} induces a connected subtree of T . The
width of tree decomposition (T, χ) is defined as

(

max{|χ(v)| | v ∈ V T}
)

− 1.
The tree-width of a graph G is the smallest width over all tree decompositions
of G. Intuitively, graphs of low tree-width are very tree-like. As a special case,
the connected graphs of tree-width one are precisely the trees. An example of a
graph and a tree decomposition (of width 2) for it is given in Figures 4 (a) and
(b), respectively.

1That is, there are MSO queries Q on trees for which the sizes of the smallest equivalent

monadic datalog queries cannot be bounded by any fixed tower of exponentials 22
2
··
·|Q|

.

10

v1

v2

v3 v4

v5

v6

v7 v8

v9 v10

v11

v12

v13

v14 v15

(a)

v1, v2, v5

v2, v3, v4 v1, v5, v11

v5, v6, v9

v6, v7, v8 v5, v9, v10

v1, v11, v13

v11, v12 v13, v14, v15

(b)

Figure 4: A (Child ,NextSibling)-tree is a graph of tree-width two.

Queries

The tree-width of a conjunctive query Q over a vocabulary of at most binary
relation symbols is defined as the tree-width of the graph G = (V,E) where V
consists of the variables of Q and (x, y), (y, x) ∈ E if there is an atom R(x, y) in
Q. The conjunctive queries of bounded tree-width can be evaluated in polynomial
time.

Theorem 4.1 ([17]) A Boolean conjunctive query Q of tree-width k can be eval-
uated on a database A with domain A in time O((|A|k+1 + ||A||) ∗ |Q|).

It is known [54] that conjunctive FOk+1 queries have tree-width ≤ k. Both
this result and Theorem 4.1 generalize from conjunctive to FO queries [28]. Thus,
while FO over trees is known to be PSpace-complete with respect to combined
complexity, FOk (even over arbitrary relational structures) is known to be in
time O(||A||k ∗ |Q|). Since Core XPath queries can be translated efficiently, in
linear time, into equivalent FO2 queries [57, 9], Boolean Core XPath is in time
O(||A||2 · |Q|).

These combined complexity bounds can be improved upon by moving from the
notion of tree-width to that of hypertree-width [37]. The conjunctive queries of
hypertree-width 1 coincide with the so-called acyclic conjunctive queries (cf. e.g.

11

[1]). As shown by Yannakakis in [77], the acyclic (Boolean or unary) conjunctive
queries can be evaluated in time O(||A|| · |Q|). The idea of this algorithm is to
process the join tree of the query bottom-up and project, as soon as possible,
after each join, all the columns of the intermediate result which are not needed in
subsequent joins away. The acyclicity of the query ensures that the intermediate
results are always (projected) subsets of a single input relation and therefore
not larger than the input. For unary queries, the join tree of the query has to
be oriented in such a way that the output is a subset of a column of the input
relation at the root of the join tree.

Conjunctive Core XPath queries are acyclic (see [32]) and can be evaluated
using Yannakakis’ algorithm both in linear time in the data and efficiently in the
size of the query.

Proposition 4.2 ([33]) The unary conjunctive Core XPath queries Q (with all
axes) can be evaluated in time O(||A|| · |Q|) on structures A.

Full XPath 1.0 was shown to be in polynomial time for combined complexity
[33], and while XPath queries in general do not strictly fit into the framework of
first-order queries of bounded hypertree-width, it is argued in [10, 9] that there
is no second main idea for their tractability.

One may ask whether XPath is also PTime-hard, or alternatively, whether
it is in the complexity class NC and thus effectively parallelizable. Apart from
theoretical interest, a precise characterization of the XPath evaluation problem
in terms of parallel complexity classes may hint at what computational resources
are necessarily required for query evaluation. For example, it is strongly con-
jectured that all algorithms for solving PTime-hard problems actually require
a polynomial amount of working memory. However, performing XPath query
evaluation with limited memory resources is important in practice, e.g. in the
context of data stream processing.

It was shown in [34] that Core XPath is PTime-hard (and the proof of [34]
can be easily adapted to show the PTime-hardness of FO2 on trees), but that
already positive Core XPath is in LogCFL w.r.t. combined complexity. For
conjunctive Core XPath, this actually already follows from acyclicity and the
following result:

Theorem 4.3 ([36]) The conjunctive queries of bounded hypertree-width over
arbitrary relational structures are in LogCFL w.r.t. combined complexity.

Tree Data

We say that a structure which consists only of unary and binary relations has
tree-width k if the union of (the symmetric closure of) its binary relations has
tree-width k.

12

It is well known that Boolean MSO queries on trees correspond to tree au-
tomata and have linear-time data complexity [71, 24]. A more general version of
this fact for bounded tree-width structures is known as Courcelle’s Theorem [19],
which can be further generalized to

Theorem 4.4 ([28]) Let C be a class of structures of bounded tree-width. For
a fixed MSO formula φ, there is an algorithm that evaluates φ on each structure
A ∈ C in time O(||A||+ ||φ(A)||).

That is, this algorithm runs in time linear in the size of the input and the
output, and in particular in linear time in the size of the input on MSO formulas
with at most one free variable.

One can verify that unranked ordered trees represented by (Child ,NextSibling)-
structures have tree-width two because the union of their binary relations Child
and NextSibling has tree-width two (see Figure 4, where each node v is labeled
with χ(v)). Transitive axis relations such as Child+ or NextSibling (cf. Section 2)
do not have bounded tree-width in general, but it is not difficult to map Core
XPath queries with transitive axes to MSO over a signature with Child and
NextSibling [30]. For instance, R∗(x, y), where R∗ is the reflexive and transitive
closure of relation R, can be defined in MSO as ∀S

(

S(x)∧∀u∀v S(u)∧R(u, v)→
S(v)

)

→ S(y). From this we can conclude that unary Core XPath, just like FO
and MSO, is in linear time w.r.t. data complexity.

Reductions from MSO to automata do not yield good upper bounds on the
combined complexity of queries, however. Indeed, they are necessarily nonele-
mentary [58, 67]. For Core XPath, a doubly exponential translation to automata
is implicit in [29, 51].

5 Query Rewriting

Each positive query on trees can also be formulated as an acyclic positive query.
This is in contrast to full FO (i.e., with negation) on trees, which is known to be
stronger than acyclic FO on trees resp. Core XPath [57].

Theorem 5.1 ([62, 8, 35]) For every conjunctive query over trees there is an
equivalent acyclic positive query. This query can be computed in exponential time.

Proof. For notational simplicity, we will assume that the input query ∃x1 · · ·xk Q
(k ≥ 0), with Q a conjunction of atomic formulas that uses variables x1, . . . , xk, is
Boolean. The proof, however, immediately generalizes to conjunctive queries of
arbitrary arity. W.l.o.g., we assume that Q contains no Following-atoms. (These
can be rewritten using Child∗ and NextSibling+ atoms as described in Section 2.)

13

R \ S Child Child+ NextSibling NextSibling+

Child unsat unsat sat sat
Child+ sat sat sat sat

NextSibling unsat unsat unsat unsat
NextSibling+ unsat unsat sat sat

Table 1: Satisfiability of R(x, z) ∧ S(y, z) ∧ x <pre y for pairs of axes R, S.

Consider the conjunctive normal form formula

φ :⇔
∧

1≤i<j≤k

(xi = xj ∨ xi <pre xj ∨ xj <pre xi).

Let Ψ be the set consisting of the 3(k

2
) disjuncts of the disjunctive normal form of

φ. For ψ ∈ Ψ let Qψ be the conjunction of atomic formulas obtained from Q∧ψ
by the following steps, in the indicated order.

1. We remove all occurrences of equality atoms x = y in arbitrary order and
replace, for each such atom, all occurrences of y by x.

2. For R ∈ {Child ,NextSibling}, we remove all atoms R∗(x, x) from Qψ and
replace all occurrences of R∗(x, y) (where x and y are different variables)
by R+(x, y). The latter is an equivalent rewriting since Qψ contains either
atom x <pre y or y <pre x, thus x and y must map to different nodes.

3. For R ∈ {Child ,NextSibling}, if Qψ contains atoms R(x, y), R+(x, y) then
R+(x, y) is removed from Qψ.

Observe that the binary atoms or Qψ use only Child , Child+, NextSibling ,
NextSibling+, and <pre as predicates. We can verify that ∃~x Qψ is true if and
only if ∃~x Q ∧ ψ.

Let Q = {∃~x Qψ | ψ ∈ Ψ}. Then

Q ≡ ∃~x Q ∧ φ ≡
∨

{∃~x Q ∧ ψ | ψ ∈ Ψ} ≡
∨

Q.

In the following, we will call the binary relation E with

xEy :⇔ there is an atomic formula R(x, y) in Qψ

(with R a binary predicate – either an axis or <pre) the graph of Qψ. Note that
E is either cyclic or defines a total order on the variables in Qψ because there is
an edge between any two variables of Qψ.

Now, for each Qψ of Q, we repeat the following steps until we terminate:

14

• If the graph of Qψ is cyclic, Qψ is unsatisfiable and is removed from Q.
Termination. Otherwise, the graph of Qψ is acyclic and thus constitutes a
total order of the variables in Qψ.

• If Qψ contains atoms R(x, y), S(x, y) where R ∈ {Child , Child+} and S ∈
{NextSibling ,NextSibling+}, Qψ is unsatisfiable and is removed from Q.
Termination.

• If there are no two atoms R(x, z), S(y, z) in Qψ with x and y distinct vari-
ables and R, S different from <pre then Qψ is acyclic. Termination.

• We choose the pairs of atoms R(x, z), S(y, z) (x and y distinct variables
and R, S different from <pre) such that z is maximal w.r.t. the total order
given by the graph of Qψ. From among these, we choose a pair such that
x is minimal w.r.t. the total order. By our choice, x<pre y is in Qψ. If
R(x, z) ∧ S(y, z) ∧ x<pre y is unsatisfiable (the unsatisfiable cases can be
found in Table 1), remove Qψ from Q and terminate. Otherwise, replace
atom R(x, z) by R(x, y).

The above algorithm terminates because there are no more than
(

k

2

)

non-<pre-
atoms and whenever we replace an atom R(x, z) by an atom R(x, y), y is smaller
than z w.r.t. the total order. Once we have processed a pair of atoms R(x, z),
S(y, z), we never have to process pairs of atoms R′(x, z), S ′(y′, z) for the same x
and z again. Thus processing a single Qψ takes polynomial time and the complete
rewriting of Q takes exponential time.

It can be verified that replacing R(x, z) in the satisfiable cases of R(x, z) ∧
S(y, z) ∧ x<pre y by R(x, y) is an equivalent rewriting:

• R = Child+, S ∈ {Child ,Child+}: if x and y are ancestors of z, then
x<pre y implies that x is an ancestor of y.

• R = NextSibling+, S ∈ {NextSibling, NextSibling+}: analogous.

• R ∈ {Child ,Child+}, S ∈ {NextSibling , NextSibling+}: Since x is a par-
ent/ancestor of z and y is a left sibling of z, x is also a parent/ancestor of
y.

Each conjunctive query Qψ in the set Q obtained as described above is acyclic
if all the <pre -atoms are removed. Doing just that is an equivalent rewriting: Let
Q′
ψ be the conjunction of atoms of Qψ excluding the <pre -atoms of Qψ. Then
∃~x Qψ ⊆ ∃~x Q

′
ψ ⊆ ∃~x Q; thus, ∃~x Q ≡

∨

Q ⊆
∨

{∃~x Q′
ψ | Qψ ∈ Q} ⊆ ∃~x Q. 2

It follows that if we take the size of the query as fixed, the positive Boolean
queries can be evaluated in linear time using Yannakakis’ algorithm.

Corollary 5.2 A fixed positive Boolean FO query can be evaluated on trees A in
time O(||A||).

15

Note that this also follows from known results on the translation of FO – or
more generally, MSO – queries on trees into tree automata and the evaluation of
such automata on trees. These translations work for related reasons.

Discussion and Related Work

The rewrite algorithm of the proof of Theorem 5.1 can be easily improved in two
ways.

• First, in the proof above, Q was rewritten using formulas ψ that amount to
all embeddings of the variables of Q into total orders of no more than k ele-
ments, plus many inconsistent formulas φ. Instead, [35] only makes choices
of order among two variables x, y if there is a pair of atoms R(x, z), S(y, z)
that has to be rewritten.

• Second, using more fine-grained rewrite rules one can further reduce the
number of copies of Q that have to be rewritten. The rewrite rules of
[35] do not require us for each atom Child∗(x, y) or NextSibling∗(x, y) to
first choose whether x<pre y to either eliminate the atom or replace it by
Child+(x, y) or NextSibling+(x, y).

The special case of the above theorem that conjunctive queries using the Child
and Child+ axes can be rewritten into APQs is stated in [8]. Similar techniques
to those of the previous proof were used in [62] to eliminate backward axes from
XPath expressions and in [69] to rewrite first-order queries over trees given by
certain regular path relations.

There are signatures with axes for which all conjunctive queries can be rewrit-
ten into APQs in polynomial time. It is implicit in [31] that any query in
CQ[{Child ,NextSibling}] can be rewritten into an equivalent acyclic query in
CQ[{Child ,NextSibling}] query in linear time. The proof of linear-time trans-
latability of monadic datalog into TMNF uses this result: acyclic monadic datalog
rules can be easily split up into rules with no more than two body atoms.

However, the translation from conjunctive queries into APQs in general is
necessarily exponential: As shown in [35], there are conjunctive queries over trees,
using just the Child+ (or Child∗) axis, that cannot be polynomially translated
into equivalent APQs.

Evaluating Positive Queries using XPath

By a forward XPath query we refer to an XPath query which uses only the
forward axes Child , Child+, NextSibling , and NextSibling+, but none of their
inverses such as Parent or Ancestor . Since the rewrite technique of the proof of
Theorem 5.1 produces sets of acyclic conjunctive queries that are forest-shaped in
a strong sense – there are no pairs of atoms R(x, z), S(y, z) – each acyclic positive
query can be rewritten into an equivalent forward Core XPath query [62].

16

A streaming algorithm scans its input data only once from left to right. The
first work to present a streaming algorithm for evaluating (forward) XPath that
takes only memory linear in the depth of the tree and runs in time polynomial
in the size of (the data and) the query was [61]. There, the exponential size of
automata is avoided by not compiling automata for managing and recognizing
the subexpressions of an XPath query into a single automaton but keeping them
apart, as a transducer network . A similar transducer-network based approach
to streaming XPath processing was developed in [65]. A different algorithm for
polynomial-time streaming XPath processing was presented in [50].

6 Global vs. Arc-Consistency

Let Q be a conjunctive query and let A denote the finite domain, i.e. in case of a
tree the set of nodes. A pre-valuation for Q is a total function Θ : Var(Q)→ 2A

that assigns to each variable of Q a nonempty subset of A. A valuation for Q is
a total function θ : Var(Q)→ A.

Let A be a relational structure of unary and binary relations. A pre-valuation
Θ is called arc-consistent2 iff

• for each unary atom P (x) in Q and each v ∈ Θ(x), P (v) is true (in A) and

• for each binary atom R(x, y) in Q, for each v ∈ Θ(x) there exists w ∈ Θ(y)
such that R(v, w) is true and for each w ∈ Θ(y) there exists v ∈ Θ(x) such
that R(v, w) is true.

A valuation θ is called consistent if it satisfies the query. In this case, for a
Boolean query, we also say that the structure is a model of the query and the
valuation a satisfaction. Obviously, a valuation is consistent if and only if the
pre-valuation Θ defined by Θ(x) 7→ {θ(x)} is arc-consistent.

Example 6.1 Consider the Boolean conjunctive query q ← R(x, y), S(x, y) and
the database

R
1 2
3 4

S
3 2
1 4

Then Θ : x 7→ {1, 3}, y 7→ {2, 4} is an arc-consistent prevaluation of q. How-
ever, q is not consistent. 2

Proposition 6.2 (Folklore) There is an algorithm which checks in time O(||A||·
|Q|) whether an arc-consistent pre-valuation of Q on A exists, and if it does, re-
turns one.

2This notion is well-known in constraint satisfaction, cf. [21].

17

Proof. We phrase the problem of computing Θ by deciding, for each x, v, whether
v 6∈ Θ(x) as an instance P of propositional Horn-SAT. The propositional predi-
cates are the atoms Θ(x, v) (where x ∈ Vars(Q), v ∈ A are constants), and the
Horn clauses are

{Θ(x, v)← . | P (x) ∈ Q, v ∈ A, ¬PA(v)} ∪
{Θ(x, v)←

∧

{Θ(y, w) | RA(v, w)}. | R(x, y) ∈ Q, v ∈ A} ∪
{Θ(y, w)←

∧

{Θ(x, v) | RA(v, w)}. | R(x, y) ∈ Q, w ∈ A}

Let Θ be the binary relation defined by P and let

Θ(x) 7→ {v ∈ A | (x, v) 6∈ Θ}.

If Θ(x) = ∅ for some variable x, no arc-consistent pre-valuation of Q on A
exists and Q is not satisfied. Otherwise, Θ is an arc-consistent pre-valuation and
contains all arc-consistent pre-valuations of Q and A.

We can compute program P, evaluate it using Minoux’ algorithm ([59], see
Figure 3), and compute Θ in total time linear in the size of P, which is O(||A|| ·
|Q|). 2

Actually, this algorithm computes the unique subset-maximal arc-consistent
pre-valuation of Q on A.

Let < be a total order on A = |A| and Θ be a pre-valuation. Then the
valuation θ with θ(x) 7→ v iff v is the smallest node in Θ(x) w.r.t. < is called the
minimum valuation w.r.t. < in Θ.

Definition 6.3 Let A be a relational structure, R a binary relation in A, and
< a total order on A = |A|. Then, R is said to have the X-property w.r.t. < iff
for all n0, n1, n2, n3 ∈ A such that n0 < n1 and n2 < n3,

R(n1, n2) ∧R(n0, n3)⇒ R(n0, n2).

Figure 5 illustrates why the property is called X (read as “X-underbar”). Let
us consider two vertical bars both representing the order < bottom-up (i.e., with
the smallest value at the bottom). Let each edge (u, v) in R be represented by
an arc from node u on the left bar to node v on the right bar. Then, whenever
there are two crossing arcs (u, v) and (u′, v′) in this diagram, then there must be
an arc (min(u, u′),min(v, v′)), the “underbar”, in the diagram as well.

The X-property was introduced in [45]. It was shown there that theH-coloring
problem (or equivalently the conjunctive query evaluation problem) on graphs H
with the X-property is polynomial-time solvable (see also [46]). We rephrase this
result as a tool for efficiently evaluating conjunctive queries.

Let A be a structure of unary and binary relations and let < be a total order
on |A|. Structure A is said to have the X-property w.r.t. < if all binary relations
R in A have the X-property w.r.t. <.

18

1

2

3

4

5

6

1

2

3

5

6

4

1

2

4 5

6
3

(b)(a)

Figure 5: The X-property. Graph (a) and its illustration by arcs between two
bars (b). For crossing arcs R(u, v) and R(u′, v′), say u < u′ and v′ < v, there
must be an arc R(u, v′).

Lemma 6.4 Let A be a structure with the X-property w.r.t. < and let Θ be an
arc-consistent pre-valuation on A for a given conjunctive query over the relations
of A. Then, the minimum valuation in Θ w.r.t. < is consistent.

Proof. Let θ denote the minimum valuation in Θ w.r.t. <. To prove θ consistent,
we only need to show the following: If R(x, y) is any binary atom of Q with
variables x, y then R(θ(x), θ(y)) is true in A. Let θ(x) = n0 and θ(y) = n2.
Since Θ is arc-consistent there exists a node n1 ∈ Θ(x) such that R(n1, n2) and a
node n3 ∈ Θ(y) such that R(n0, n3). If n0 = n1 or n2 = n3 then R(θ(x), θ(y)) =
R(n0, n2) is true and we are done. Otherwise, since θ is a minimum valuation
we have n0 < n1 (because n0 = θ(x) = min Θ(x), n1 ∈ Θ(x), and n0 6= n1) and
n2 < n3 (because n2 = θ(y) = min Θ(y), n3 ∈ Θ(y), and n2 6= n3). Then it
follows from Definition 6.3 that R(n0, n2). 2

Clearly, if no arc-consistent pre-valuation of Q on A exists, there is no con-
sistent valuation for Q on A.

Theorem 6.5 (GWW1992) Given a structure A with the X-property w.r.t. <
and a Boolean conjunctive query Q over A, Q can be evaluated on A in time
O(||A|| · |Q|).

Proof. By Lemma 6.4, all we need to do to check whether a Boolean query Q is
satisfied is to try to compute the subset-maximal arc-consistent pre-valuation Θ
with respect to Q. By Proposition 6.2, this can be done in time O(||A|| · |Q|). If
it exists, Q returns true; otherwise, Q returns false. 2

If follows that checking whether a given tuple 〈a1, . . . , ak〉 is in the result of
a k-ary conjunctive query on structures with the X-property w.r.t. some order
can be decided in time O(||A|| · |Q|) as well. All we need to do is to add (new)
singleton unary relations X1 = {a1}, . . . , Xk = {ak} to A and to rewrite the
query Q(x1, . . . , xk)← Φ(x1, . . . , xk) into the Boolean query Q← Φ(x1, . . . , xk)∧

19

X1(x1) ∧ · · · ∧ Xk(xk). A k-ary conjunctive query Q over A with A = |A| can
thus be evaluated on A in time O(|A|k · ||A|| · |Q|).

It is straightforward to show that

Proposition 6.6 ([30]) The axes

1. Child+ and Child∗ have the X-property w.r.t. <pre ,

2. Following has the X-property w.r.t. <post , and

3. Child, NextSibling, NextSibling∗, and NextSibling+ have the X-property
w.r.t. <bflr .

It follows immediately from Theorem 6.5 that

Corollary 6.7 Conjunctive queries over each of the following signatures are in
polynomial time w.r.t. combined complexity:

τ1 := 〈(Laba)a∈Σ,Child+,Child∗〉

τ2 := 〈(Laba)a∈Σ,Following〉

τ3 := 〈(Laba)a∈Σ,Child ,NextSibling,

NextSibling∗,NextSibling+〉

One can verify that Proposition 6.6 lists all the cases where the X-property
holds for any of the axis relations and the orders <pre , <post , or <bflr . And
indeed, the conjunctive queries over any signature of unary and axis relations
not contained in either τ1, τ2, or τ3 are NP-complete: The X-property yields a
complete characterization of the tractability frontier for classes of conjunctive
queries over trees given by unary and axis relations.

Theorem 6.8 (Dichotomy Theorem, [35]) Unless P = NP , the conjunctive
queries over structures of binary axis relations F and unary relations are in P if
and only if there is a total order < such that all binary relations in F have the
X-property w.r.t. <. For each such class of queries, the query evaluation problem
is either in P or NP -complete.

A precise complexity characterization within PTime of the polynomial classes
of queries remains open.

Holistic Processing of Acyclic Queries

The maximal arc-consistent pre-valuation Θ of a query as computed by the al-
gorithm of Proposition 6.2 subsumes all consistent valuations of θ. If θ(x) = v,
then v ∈ Θ(x). For acyclic conjunctive queries, the converse holds as well.

20

algorithm enumerate satisfactions(int i)
// Let the variables of query Q be numbered x1, . . . , xn
// by a pre-order depth-first left-to-right traversal of the
// query tree. Let parent(xi) denote the parent variable
// of xi in the query tree. Partial function θ is a global
// variable.
begin

for each v ∈ Θ(xi) do
if i = 1 or tuple (θ(parent(xi)), v) satisfies the atom

of Q connecting parent(xi) with xi then
begin
θ(xi) := v;
if i = n then output θ;
else enumerate satisfactions(i+1);

end
end.

Figure 6: Algorithm for enumerating solutions of an acyclic conjunctive query Q
represented by an arc-consistent pre-valuation Θ.

Proposition 6.9 Let Q be an acyclic conjunctive query over unary and binary
relations and let Θ be an arc-consistent pre-valuation of Q. Then for any variable
x of Q and each v ∈ Θ(x), there is a consistent valuation θ of Q such that
θ(x) = v.

Proof. We may assume that Q is connected (if this is not the case, we can
connect the query by adding atoms of the complete binary relation A× A, with
A the domain of the structure). By Qy, we denote the subset of atoms of Q in
which y either appears or which are below y in the query tree. Without loss of
generality, Q is oriented in such a way that variable x is the root and Qx is Q.

We prove by induction that for any variable y and any arc-consistent pre-
valuation Θ of Qy with u ∈ Θ(y), there is a consistent valuation θ of Qy such
that θ(y) = u.

Induction start: If y is a leaf of the query tree, Qy consists only of unary
atoms over y. Clearly, u ∈ Θ(y) implies that θ : y 7→ u is consistent.

Induction step: Let the variables y1, . . . , yn be the children of y in the query
tree. Let there be an arc-consistent pre-valuation Θ of Qy with u ∈ Θ(y). Then
there must be data tree nodes u1, . . . , un such that for each i the binary atom
R(y, yi) (or R(yi, y)) that connects y and yi holds on (u, ui) resp. (ui, u). But
then the restriction Θ|Qyi

of Θ to the variables of Qyi
is an arc-consistent pre-

valuation of Qyi
with ui ∈ Θ|Qyi

(yi). By the induction hypothesis, there is a
consistent valuation θyi

of Qyi
with θyi

(yi) = ui. But then the valuation θ with
y 7→ u and z 7→ θyi

(z) for each variable z of Qyi
and each 1 ≤ i ≤ n is consistent

21

for Qy. 2

But then the maximum arc-consistent pre-valuation for a query and a struc-
ture computed by the algorithm of Proposition 6.2 is also a compact representa-
tion of precisely all the solutions of Q. These solutions can be read out from the
pre-valuation by the recursive algorithm shown in Figure 6, invoked as enumer-
ate satisfactions(1).

Note that Proposition 6.9 is a rephrasing of a known result about acyclic
queries: each tuple in the result of a full reducer contributes to a valuation [77]
(cf. [1]). Computing the maximal arc-consistent prevaluation for an acyclic query
is nothing other than applying a full reducer.

Proposition 6.9 guarantees that the algorithm of Figure 6 does not need
to perform any backtracking to enumerate all solutions. Given Θ, enumer-
ate satisfactions(1) runs in time O(|A| · ||Q(A)||), where A is the domain of the
structure and ||Q(A)|| is the size of the output of the query.

This approach has been taken in work on so-called holistic twig joins [13, 48].
Indeed, this approach to evaluating a tree-shaped query does not proceed step
by step but evaluates all structural joins at once. In [13], it is shown how path-
shaped queries that only involve Child and Child+ as binary relations can be
processed efficiently. As we have seen, this approach can be generalized much
beyond path queries and these two axes.

The algorithms of [13] also suggest further structure within the sets Θ(x) and
the use of pointers between the elements of Θ(y) and Θ(yi) if yi is a child of y in
the query tree. This allows to iterate only over elements of the Θ that are relevant
to solutions and to reduce the running time of enumerate satisfactions(1) to time
O(||Q(A)||). For simplicity, let us assume a uniform machine model in which
pointers have constant size. Then,

Proposition 6.10 The k-ary acyclic conjunctive queries Q on trees A can be
evaluated in time O(|Q| · ||A||+ ||Q(A)||).

7 Complexity Summary

In this section I provide a summary of previous results on the complexity of
queries on trees. In order not to be overly repetitive, I refer to Section 4 for
results on MSO, FO, and FOk and Section 6 for results on conjunctive queries.

An overview of the complexity results discussed in this section can be found in
Figure 7. These are put into context with a display of the relative expressiveness
of the query languages. The Venn diagram notation refers to complexity classes
(we make the usual complexity-theoretic assumptions that LOGCFL ⊂ P ⊂
NP ⊂ PSPACE) and the arrows refer to expressive power; L1 → L2 means that
each query in language L1 can be translated into an equivalent query in L2. The

22

mon.datalog

NP-complete

mon.datalog[X]

P-complete

MSO

PSPACE-complete

FO

FO3

Core XPath

FO2

pos. FO

TMNFXPath

CQ[X]pos. Core XPath

LOGCFL-complete

Conjunctive Queries

NP

PSPACE

P

Figure 7: Complexity and expressive power of query languages over trees.

notation L[X] refers to the queries of language L using only binary relations from
an axis set for which conjunctive queries are tractable by the X-property (see
Section 6).

Monadic Datalog

As observed in Section 3, while full datalog is EXPTIME-complete (c.f. e.g. to
[20]), monadic datalog over arbitrary finite structures is in NP. The complexity of
monadic datalog over a given set of axes is always the same as that of conjunctive
queries over the same axes (see Section 6). Monadic datalog over trees defined by
unary relations and the binary relations FirstChild and NextSibling is P-complete
[31] and can be solved in time linear in the size of the database and linear in the
size of the tree. In the case that all individual rules are acyclic (conjunctive
queries), it is known from [31] that monadic datalog over arbitrary axes can be
evaluated in linear time.

23

XPath

In [33], it is shown that XPath 1 is in PTIME w.r.t. combined complexity. This re-
sult is originally obtained through a dynamic programming algorithm [33]. How-
ever, the dynamic programming algorithm computes many useless intermediate
results and consumes much memory. To fix this, a more efficient top-down al-
gorithm is given in [33] as well. This algorithm still runs in polynomial time,
with better worst-case upper bounds on running time and memory consumption
(namely time O(|A|3 · ||A|| · |Q|2) and space O(|A| · ||A|| · |Q|2)). Further work
on polynomial-time algorithms for full XPath 1 which elaborates on the results
of [33] and integrates them into a native XML database management system can
be found in [12]. This work also shows how to integrate XQuery and efficient
XPath processing using a single native algebra.

Positive Core XPath is complete for LOGCFL, a parallel complexity class in
NC2 (combined complexity). In [34], LogCFL membership is proven for a much
larger fragment of XPath than Core XPath which excludes only a very small num-
ber of features apart from negation from full XPath – it even supports arithmetics
and aggregations. Unfortunately, the positive result on the parallel complexity
of positive XPath does not even extend to Core XPath (with negation): Core
XPath is PTime-hard (combined complexity) [34].

This PTime-hardness result essentially depends on the presence of transitive
axes: Core XPath using only the Child , Child−1, NextSibling , and NextSibling−1

axes is in LogSpace w.r.t. combined complexity [34].
The precise complexity of Core XPath with only forward or only downward

axes (Child and Child+) remains open, even though these are fragments that
have important applications in the context of tree pattern matching and stream
processing.

The data complexity of XPath depends on encodings. XPath 1.0 on DOM
trees (pointer structures) is LogSpace-complete if the concatenation operation
on strings and multiplication are excluded from the language.

So far, we have always assumed that the input is basically given as a pointer
structure. But XML documents can also be considered in their natural textual
(string) representation. The distinction is only relevant for the very small com-
plexity classes inside LogSpace, for which completeness is usually defined in
terms of reductions not strong enough to map between DOM trees and strings.
On string representations, Core XPath was shown to be in TC0 [34], a complexity
class inside LogSpace.

The query complexity of XPath 1.0 is in LogSpace [33]. This is a slightly
curious fact. While for virtually all known traditional query languages, the query
complexity is greater than the data complexity by at least an exponential factor
(cf. e.g. [1]), this is not the case of XPath.

The PTime-hardness of Core XPath suggests (but does not prove) [39] that
any query evaluation algorithm has to consume at least linear amounts of memory.

24

For the more restrictive stream processing scenario, this can be proven: It has
been shown in [40] that any streaming algorithm for the Boolean Core XPath
queries must consume memory at least linear in the depth of the data tree. Of
course, there are trees whose depth is linear in their size, so one can interpret this
result in the sense that there can be no streaming algorithm for Core XPath that
takes space less than linear in the size of the XML stream. Memory-efficient – and
thus scalable – stream processing for XPath is, from a certain point of view, in the
worst case impossible. Fortunately, XML trees tend to be shallow in practice, so
showing this lower bound tight can be considered a positive result. And indeed,
the following is implicit in [60, 70]: Let T be a tree-language. If T is definable
by an MSO-sentence, then T can be recognized by a streaming algorithm using
memory O(depth(·)). It follows that there is a streaming algorithm for Boolean
Core XPath with memory consumption O(depth(·)).

Acknowledgments

I am grateful to my coauthors from [29, 33, 34, 35, 10], Michael Benedikt, Markus
Frick, Georg Gottlob, Martin Grohe, Reinhard Pichler, Klaus Schulz, and Luc
Segoufin.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[2] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, and D. Sri-
vastava. “Structural Joins: A Primitive for Efficient XML Query Pat-
tern Matching”. In 18th International Conference on Data Engineering
(ICDE’02), 2002.

[3] M. Altinel and M. Franklin. “Efficient Filtering of XML Documents for
Selective Dissemination of Information”. In Proceedings of the 26th Inter-
national Conference on Very Large Data Bases (VLDB’2000), pages 53–64,
Cairo, Egypt, 2000.

[4] M. Arenas and L. Libkin. “XML data exchange: consistency and query
answering”. In Proc. PODS 2005, pages 13–24, 20005.

[5] Z. Bar-Yossef, M. Fontoura, and V. Josifovski. “On the Memory Require-
ments of XPath Evaluation over XML Streams”. In Proceedings of the 23rd
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS’04), pages 177–188, 2004.

25

[6] R. Baumgartner, S. Flesca, and G. Gottlob. “Visual Web Information Ex-
traction with Lixto”. In Proceedings of the 27th International Conference on
Very Large Data Bases (VLDB), pages 119–128, Rome, Italy, 2001.

[7] M. Benedikt. “An Insider’s Guide to Logic in Telecommunications Data”.
In Proc. LICS 2005, pages 104–105, 2005.

[8] M. Benedikt, W. Fan, and G. Kuper. “Structural Properties of XPath Frag-
ments”. In Proc. of the 9th International Conference on Database Theory
(ICDT), pages 79–95, Siena, Italy, 2003.

[9] M. Benedikt and C. Koch. “XPath Leashed”, 2006. Submitted for publica-
tion.

[10] M. Benedikt and C. Koch. “XPath with Data Values Revisited”, 2006.
Unpublished manuscript.

[11] S. Bird, Y. Chen, S. Davidson, H. Lee, and Y. Zheng. “Extending XPath to
Support Linguistic Queries”. In PLAN-X, 2005.

[12] M. Brantner, S. Helmer, C.-C. Kanne, and G. Moerkotte. “Full-fledged
Algebraic XPath Processing in Natix”. In Proceedings of the 21st IEEE
International Conference on Data Engineering (ICDE), 2005.

[13] N. Bruno, D. Srivastava, and N. Koudas. “Holistic Twig Joins: Optimal
XML Pattern Matching”. In Proceedings of the 2002 ACM SIGMOD In-
ternational Conference on Management of Data (SIGMOD’02), Madison,
Wisconsin, June 2002.

[14] P. Buneman, B. Choi, W. Fan, R. Hutchison, R. Mann, and S. Viglas. “Vec-
torizing and Querying Large XML Repositories”. In Proc. ICDE 2005, pages
261–272, 2005.

[15] P. Buneman, S. Khanna, K. Tajima, and W. C. Tan. “Archiving Scientific
Data”. ACM Transactions on Database Systems, 29:2–42, 2004.

[16] C. Y. Chan, P. Felber, M. N. Garofalakis, and R. Rastogi. Efficient Fil-
tering of XML Documents with XPath Expressions. In Proceedings of the
18th IEEE International Conference on Data Engineering (ICDE), San Jose,
California, USA, February 26-March 1, 2002, 2000.

[17] C. Chekuri and A. Rajaraman. Conjunctive Query Containment Revisited”.
In Proc. of the 6th International Conference on Database Theory (ICDT),
pages 56–70, Delphi, Greece, 1997.

26

[18] S. Cosmadakis, H. Gaifman, P. Kanellakis, and M. Vardi. “Decidable Opti-
mization Problems for Database Logic Programs”. In Proceedings of the 20th
Annual ACM Symposium on Theory of Computing, pages 477–490, Chicago,
Illinois, USA, 1988. ACM Press, New York, NY, USA.

[19] B. Courcelle. “Graph Rewriting: An Algebraic and Logic Approach”. In
J. van Leeuwen, editor, Handbook of Theoretical Computer Science, vol-
ume 2, chapter 5, pages 193–242. Elsevier Science Publishers B.V., 1990.

[20] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. “Complexity and Expres-
sive Power of Logic Programming”. ACM Computing Surveys, 33(3):374–
425, Sept. 2001.

[21] R. Dechter. “Constraint Processing”. Morgan Kaufmann, May 2003.

[22] A. Deutsch and V. Tannen. “MARS: A System for Publishing XML from
Mixed and Redundant Storage”. In Proceedings of the 29th International
Conference on Very Large Data Bases (VLDB), pages 201–212, Berlin, Ger-
many, 2003.

[23] P. Dietz and D. Sleator. “Two algorithms for maintaining order in a list”.
In Proc. 19th Annual ACM Symp. Theory of Computing (STOC), pages
365–372, 1987.

[24] J. Doner. “Tree Acceptors and some of their Applications”. Journal of
Computer and System Sciences, 4:406–451, 1970.

[25] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1999.
Second edition.

[26] M. Fernandez, D. Florescu, J. Kang, and A. Levy. “Catching the Boat with
Strudel: Experiences with a Web-Site Management System”. In Proceedings
of the 1998 ACM SIGMOD International Conference on Management of
Data (SIGMOD’98), pages 414–425, Seattle, WA USA, June 1998.

[27] T. Fiebig and G. Moerkotte. “Evaluating Queries on Structure with eX-
tended Access Support Relations”. In Proc. WebDB, 2000.

[28] J. Flum, M. Frick, and M. Grohe. “Query Evaluation via Tree-
Decompositions”. Journal of the ACM, 49(6):716–752, 2002.

[29] M. Frick, M. Grohe, and C. Koch. “Query Evaluation on Compressed Trees”.
In Proceedings of the 18th Annual IEEE Symposium on Logic in Computer
Science (LICS), Ottawa, Canada, June 2003.

27

[30] G. Gottlob and C. Koch. “Monadic Queries over Tree-Structured Data”.
In Proceedings of the 17th Annual IEEE Symposium on Logic in Computer
Science (LICS), pages 189–202, Copenhagen, Denmark, July 2002.

[31] G. Gottlob and C. Koch. “Monadic Datalog and the Expressive Power of
Web Information Extraction Languages”. Journal of the ACM, 51(1):74–
113, 2004.

[32] G. Gottlob, C. Koch, and R. Pichler. “Efficient Algorithms for Processing
XPath Queries”. In Proceedings of the 28th International Conference on
Very Large Data Bases (VLDB), pages 95–106, Hong Kong, China, 2002.

[33] G. Gottlob, C. Koch, and R. Pichler. “Efficient Algorithms for Processing
XPath Queries”. ACM Transactions on Database Systems, 30(2):444–491,
June 2005.

[34] G. Gottlob, C. Koch, R. Pichler, and L. Segoufin. “The Complexity of XPath
Query Evaluation and XML Typing”. Journal of the ACM, 52(2):284–335,
Mar. 2005.

[35] G. Gottlob, C. Koch, and K. U. Schulz. “Conjunctive Queries over Trees”.
Journal of the ACM, 53(2), Mar. 2006.

[36] G. Gottlob, N. Leone, and F. Scarcello. “The Complexity of Acyclic Con-
junctive Queries”. Journal of the ACM, 48(1):431–498, 2001.

[37] G. Gottlob, N. Leone, and F. Scarcello. “Hypertree Decompositions and
Tractable Queries”. Journal of Computer and System Sciences, 64(3):579–
627, 2002.

[38] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. “Processing XML
Streams with Deterministic Automata”. In Proc. of the 9th International
Conference on Database Theory (ICDT), 2003.

[39] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computa-
tion: P-Completeness Theory. Oxford University Press, 1995.

[40] M. Grohe, C. Koch, and N. Schweikardt. “Tight Lower Bounds for Query
Processing on Streaming and External Memory Data”. In Proc. ICALP,
2005.

[41] M. Grohe and N. Schweikardt. “Comparing the Succinctness of Monadic
Query Languages over Finite Trees”. In Proc. CSL, pages 226–240, 2003.

[42] T. Grust, S. Sakr, and J. Teubner. “XQuery on SQL Hosts”. In Proc. VLDB
2004, pages 252–263, 2004.

28

[43] T. Grust, M. van Keulen, and J. Teubner. “Accelerating XPath Evaluation
in any RDBMS”. ACM Transactions on Database Systems, 29:91–131, 2004.

[44] A. K. Gupta and D. Suciu. “Stream Processing of XPath Queries with Pred-
icates”. In Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data (SIGMOD’03), pages 419–430, 2003.

[45] W. Gutjahr, E. Welzl, and G. Woeginger. “Polynomial Graph Colourings”.
Discrete Applied Math., 35:29–46, 1992.

[46] P. Hell and J. Nesetril. Graphs and Homomorphisms. Oxford University
Press, 2004.

[47] N. Immerman. “Descriptive Complexity”. Springer Graduate Texts in Com-
puter Science, 1999.

[48] H. Jiang, W. Wang, and H. Lu. “Holistic Twig Joins on Indexed XML
Documents”. In Proceedings of the 29th International Conference on Very
Large Data Bases (VLDB), 2003.

[49] D. S. Johnson. “A Catalog of Complexity Classes”. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume 1, chapter 2, pages 67–
161. Elsevier Science Publishers B.V., 1990.

[50] V. Josifovski and M. F. Fontoura. “Querying XML Streams”. VLDB Jour-
nal, 14(2):197–210, April 2005.

[51] C. Koch. “Efficient Processing of Expressive Node-Selecting Queries on XML
Data in Secondary Storage: A Tree Automata-based Approach”. In Pro-
ceedings of the 29th International Conference on Very Large Data Bases
(VLDB), pages 249–260, 2003.

[52] C. Koch and S. Scherzinger. “Attribute Grammars for Scalable Query Pro-
cessing on XML Streams”. VLDB Journal, 2006. to appear.

[53] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier. “Schema-based
Scheduling of Event Processors and Buffer Minimization for Queries on
Structured Data Streams”. In Proceedings of the 30th International Con-
ference on Very Large Data Bases (VLDB), Toronto, Canada, 2004.

[54] P. Kolaitis and M. Vardi. “Conjunctive Query Containment and Constraint
Satisfaction”. Journal of Computer and System Sciences, 61(2):302–332,
2000.

[55] L. Libkin. Elements of Finite Model Theory. Springer, 2004.

29

[56] Library of Congress. “MARCXML – MARC 21 XML Schema”, 2005.
http://www.loc.gov/standards/marcxml/.

[57] M. Marx. “First Order Paths in Ordered Trees”. In Proc. of the 10th
International Conference on Database Theory (ICDT), pages 114–128, 2005.

[58] A. R. Meyer. “Weak Monadic Second Order Theory of Successor is not
Elementary-Recursive”. In Logic Colloquium, Lecture Notes in Mathematics
453, pages 132–154. Springer-Verlag, N.Y., 1975.

[59] M. Minoux. “LTUR: A Simplified Linear-Time Unit Resolution Algorithm
for Horn Formulae and Computer Implementation”. Information Processing
Letters, 29(1):1–12, 1988.

[60] A. Neumann and H. Seidl. “Locating Matches of Tree Patterns in Forests”.
In Proc. 18th FSTTCS, LNCS 1530, pages 134–145, 1998.

[61] D. Olteanu, T. Kiesling, and F. Bry. “An Evaluation of Regular Path Ex-
pressions with Qualifiers against XML Streams”. In Proceedings of 19th
International Conference on Data Engineering (ICDE), Bangalore, India,
5th - 8th March 2003. Full version in Technical Report PMS-FB-2002-12,
Ludwig-Maximilians-Uniiversität München, Munich, Germany, 2002.

[62] D. Olteanu, H. Meuss, T. Furche, and F. Bry. “XPath: Looking Forward”.
In Proc. EDBT Workshop on XML Data Management, volume LNCS 2490,
pages 109–127, Prague, Czech Republic, 2002. Springer-Verlag.

[63] P. E. O’Neil, E. J. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. West-
bury. “ORDPATHs: Insert-Friendly XML Node Labels”. In Proceedings
of the 2004 ACM SIGMOD International Conference on Management of
Data (SIGMOD’04), pages 903–908, 2004.

[64] Y. Papakonstantinou, V. R. Borkar, M. Orgiyan, K. Stathatos, L. Suta,
V. Vassalos, and P. Velikhov. “XML queries and algebra in the Enosys
integration platform”. Data Knowl. Eng., 44(3):299–322, 2003.

[65] F. Peng and S. Chawathe. “XPath Queries on Streaming Data”. In Proceed-
ings of the 2003 ACM SIGMOD International Conference on Management
of Data (SIGMOD’03), 2003.

[66] P. Rao and B. Moon. “PRIX: Indexing And Querying XML Using Prüfer
Sequences”. In Proceedings of the 20th IEEE International Conference on
Data Engineering (ICDE), pages 288–300, 2004.

[67] K. Reinhardt. “The Complexity of Translating Logic to Finite Automata”.
In E. Grädel, W. Thomas, and T. Wilke, editors, Automata, Logics, and

30

Infinite Games – A Guide to Current Research. Springer-Verlag, LNCS 2500,
2002.

[68] A. Sahuguet and F. Azavant. “Building Intelligent Web Applications Using
Lightweight Wrappers”. Data and Knowledge Engineering, 36(3):283–316,
2001.

[69] T. Schwentick. “On Diving in Trees”. In Proc. International Symposium on
Mathematical Foundations of Computer Science (MFCS), pages 660–669,
2000.

[70] L. Segoufin and V. Vianu. “Validating Streaming XML Documents”. In
Proceedings of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS’02), 2002.

[71] J. Thatcher and J. Wright. “Generalized Finite Automata Theory with an
Application to a Decision Problem of Second-order Logic”. Mathematical
Systems Theory, 2(1):57–81, 1968.

[72] J. Thierry-Mieg and R. Durbin. “Syntactic Definitions for the ACeDB Data
Base Manager”. Technical Report MRC-LMB xx.92, MRC Laboratory for
Molecular Biology, Cambridge, UK, 1992.

[73] M. Y. Vardi. “The Complexity of Relational Query Languages”. In Proc.
14th Annual ACM Symposium on Theory of Computing (STOC’82), pages
137–146, San Francisco, CA USA, May 1982.

[74] H. Wang, S. Park, W. Fan, and P. S. Yu. “ViST: A Dynamic Index Method
for Querying XML Data by Tree Structures”. In Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data (SIG-
MOD’03), pages 110–121, 2003.

[75] F. Weigel, K. U. Schulz, and H. Meuss. “The BIRD Numbering Scheme
for XML and Tree Databases - Deciding and Reconstructing Tree Relations
Using Efficient Arithmetic Operations”. In Proc. XSym 2005, pages 49–67,
2005.

[76] World Wide Web Consortium. XML Path Language (XPath) Recommen-
dation. http://www.w3c.org/TR/xpath/, Nov. 1999.

[77] M. Yannakakis. “Algorithms for Acyclic Database Schemes”. In Proceedings
of the 7th International Conference on Very Large Data Bases (VLDB’81),
pages 82–94, Cannes, France, 1981.

31

