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Abstract

It is generally assumed that databases have to reside in external, inexpensive storage
because of their sheer size. Current technology for external storage systems presents
us with a reality that performance-wise, a small number of sequential scans of the
data is strictly preferable over random data accesses. Database technology — in
particular query processing technology — has developed around a notion of mem-
ory hierarchies with layers of greatly varying sizes and access times. It seems that
the current technologies scale up to their tasks and are very successful, but on
closer investigation it may appear that our theoretical understanding of the prob-
lems involved — and of optimal algorithms for these problems — is not quite as
developed.

Recently, data stream processing has become an object of study by the database
management community, but from the viewpoint of database theory, this is really a
special case of the query processing problem on data in external storage where we
are limited to a single scan of the input data.

In the present paper we study a clean machine model for external memory and
stream processing. We establish tight bounds for the data complexity of Core XPath
evaluation and filtering. We show that the number of scans of the external data
induces a strict hierarchy (as long as internal memory space is sufficiently small,
e.g., polylogarithmic in the size of the input). We also show that neither joins nor
sorting are feasible if the product of the number r(n) of scans of the external memory
and the size s(n) of the internal memory buffers is sufficiently small, i.e., of size o(n).
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1 Introduction

It is generally assumed that databases have to reside in external, inexpensive
storage because of their sheer size. Current technology for external storage
systems (disks and tapes) presents us with a reality that a small number of
sequential scans of the data is strictly preferable over random data accesses.
Indeed, the combined latencies and access times of moving to a certain position
in external storage are by orders of magnitude greater than actually reading
a small amount of data once the read head has been placed on its starting
position.

Database engines rely on main memory buffers for assuring acceptable perfor-
mance. These are usually small compared to the size of the externally stored
data. Database technology — in particular query processing technology —
has developed around this notion of memory hierarchies with layers of greatly
varying sizes and access times. There has been a wealth of research on query
processing and optimization along these lines (cf. e.g. [37,16,44,28]). It seems
that the current technologies scale up to current user expectations, but on
closer investigation it may appear that our theoretical understanding of the
problems involved — and of optimal algorithms for these problems — is not
quite as developed.

Recently, data stream processing has become an object of study by the data
management community (e.g. [17]) but from the viewpoint of database theory,
this is, in fact, a special case of the query processing problem on data in
external storage where we are limited to a single scan of the input data.

In summary, it appears that there are a variety of data management and
query processing problems in which a comparably small but efficiently acces-
sible main memory buffer is available and where accessing external data is
costly and is best performed by sequential read/write scans. This calls for an
appropriate formal model that captures the essence of external memory and
stream processing. In this paper, we study such a model, which employs a
Turing machine with one external memory tape (external tape for short) and
an arbitrary number of internal memory tapes (internal tapes for short). The
external tape initially holds the input; the internal tapes correspond to the
main memory buffers of a database management system and are thus usually
small compared to the input.

As computational resources for inputs of size n, we study the space s(n) avail-
able on the internal tapes and the number r(n) of scans of (or, random accesses
to) the external tape, and we write ST(r, s) to denote the class of all prob-
lems solvable by (r, s)-bounded Turing machines, i.e., Turing machines which
comply to the resource bounds r(n) and s(n) on inputs of size n.
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Formally, we model the number of scans, respectively the number of random
accesses, by the number of reversals of the Turing machine’s read/write head
on the external tape. The number of reversals of the read/write head on the
internal tapes remains unbounded. The reversals done by a read/write head
are a clean and fundamental notion [9], but of course real external storage
technology based on disks does not allow to reverse their direction of rotation.
On the other hand, we can of course simulate k forward scans by 2k reversals
in our machine model — and allowing for forward as well as backward scans
makes our lower bound results even stronger.

As we allow the external tape to be both read and written to, this tape can be
viewed, for example, as modeling a hard disk. By closely watching reversals
of the external tape head, anything close to random I/O will result in a very
considerable number of reversals, while a full sequential scan of the external
data can be effected cheaply. We will obtain strong lower bounds in this paper
that show that even if the external tape (whose size we do not put a bound
on) may be written to and re-read, certain bounds cannot be improved upon.
For our matching upper bounds, we will usually not write to the external
tape. Whenever one of our results requires writing to the external tape, we
will explicitly indicate this.

The model is similar in spirit to the frameworks used in [22,24], but differs
from the previously considered reversal complexity framework [9]. Reversal
complexity is based on Turing machines with a single read/write tape, where
the overall number of reversals of the read/write head is the main computa-
tional resource. In our notion, only the number of reversals on the external
tape is bounded, while reversals on the internal tapes are free; however, the
space on the internal tapes is considered to be a limited resource. 1

Apart from formalizing the ST(r, s) model, we study its properties and locate
a number of data management problems in the hierarchy of ST(·, ·) classes.
Our technical contributions are as follows:

• We prove a reduction lemma (Lemma 4.1) which allows easy lower bound
proofs for certain problems.

• We prove a hierarchy (Theorem 4.11), stating for each fixed number k that
k+1 scans of the external memory tape are strictly more powerful than k

1 The justification for this assumption is simply that accessing data on disks is
currently about five to six orders of magnitude slower than accessing main memory.
For that reason, processor cycles and main memory access times are often neglected
when estimating query cost in relational query optimizers, where cost measures are
often exclusively based on the amount of expected page I/O as well as disk latency
and access times. Moreover, by taking buffer space rather than running time as a
parameter, we obtain more robust complexity classes that rely less on details of the
machine model (see also [43]).
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scans of the external memory tape.
• We consider machines where the product of the number of scans of the

external memory tape, r(n), and internal memory tape size, s(n), is of size
o(n), where n is the input size, and show that joins cannot be computed by
(r, s)-bounded Turing machines (cf., Theorem 4.10). This also shows that
for some XQuery queries, filtering is impossible for (r, s)-bounded machines
with r(T ) · s(T ) ∈ o(n), where n is the size of the input XML document T .

• We show that the sorting problem cannot be solved by (r, s)-bounded Turing
machines where r(n) · s(n) ∈ o(n) (cf., Theorem 4.7).

• We show (cf., Corollary 5.5) that for some Core XPath [14] queries, filtering
is impossible for (r, s)-bounded machines with r(T ) · s(T ) ∈ o(d), where d
denotes the depth of the input XML document T . This lower bound on
Core XPath is tight in the following sense: there is an algorithm that solves
the Core XPath filtering problem with a single scan of the external data
(zero reversals) and O(d) buffer space.

The primary technical machinery that we use for obtaining lower bounds
is that of communication complexity (cf. [26]). Techniques from communi-
cation complexity have been used previously to study queries on streams
[4,6,7,2,3,5,29,30,22]. The work reported on in [4] addresses the problem of
determining whether a given relational query can be evaluated scalably on a
data stream or not at all. In comparison, we ask for tight bounds on query
evaluation problems, i.e. we give algorithms for query evaluation that are
in a sense worst-case optimal. As we do, the authors of [6,7] study XPath
evaluation; however, they focus on instance data complexity while we study
worst-case bounds. Many of our results apply beyond stream processing in a
narrow sense to a more general framework of queries on data in external stor-
age. Also, our worst-case bounds apply for any evaluation algorithm possible,
that is, our bounds are not in terms of complexity classes closed under reduc-
tions that allow for nonlinear expansions of the input (such as LOGSPACE)
as is the case for the work on the complexity of XPath in [14,15,39].

Lower bound results for a machine model with multiple external memory tapes
(or hard disks) are presented in [21,18]. In the present paper, we only consider
a single external memory tape, and are consequently able to show (sometimes
exponentially) stronger lower bounds.

The present paper is the full version of the conference contribution [19]. An
informal overview of the methods used and results obtained in [19,21] can be
found in [20].
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2 Preliminaries

In this section we fix some basic notation concerning trees, streams, and query
languages. We write N for the set of non-negative integers. If M is a set, then
2M denotes the set of all subsets of M . Throughout this paper we make the
following convention: Whenever the letters r and s denote functions from N to
N, then these functions are monotone, i.e., we have r(x) 6 r(y) and s(x) 6 s(y)
for all x, y ∈ N with x 6 y.

2.1 Trees and Streams

We use standard notation for trees and streamed trees (i.e. documents). In
particular, we write Doc(T ) to denote the XML document associated with an
XML document tree T . An example is given in Figure 1.

Our precise notation concerning trees and streams is as follows:

Let τ be a finite set. We will use τ as a set of tag names. We associate with τ a
finite alphabet Στ as follows: For each symbol a ∈ τ , the alphabet Στ contains

(i) a symbol 〈a〉 (corresponding to the opening tag labeled a), and
(ii) a symbol 〈/a〉 (corresponding to the closing tag labeled a).

Binary τ -trees are finite labeled ordered trees where each node has at most 2
children and is labeled with a symbol (i.e., tag name) in τ .

Unranked τ -trees are finite labeled ordered trees where each node may have
an arbitrary number of children and is labeled with a symbol in τ . We use
Treesτ to denote the set of all unranked τ -trees. An unranked τ -tree T can
be represented by a binary tree BinTree(T ) in a straightforward way by using
the first-child /next-sibling notation (cf., e.g., the survey [33]).

The XML document Doc(T ) corresponding to an unranked τ -tree T can be
viewed as a string over the alphabet Στ , cf. Figure 1.

In particular, reading the string Doc(T ) from left to right corresponds to a
depth-first left-to-right traversal of the tree T . For a set T of τ -trees we write
Doc(T ) for the string language Doc(T ) := {Doc(T ) : T ∈ T } ⊆ Σ∗

τ .
We use size(T ) to denote the number of nodes in T , and we use depth(T ) to
denote the maximum number of edges on a path from the root to one of T ’s
leaves.
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<root>

<left>

<blank></blank>

</left>

<right>

<left></left>

<right>

<blank></blank>

</right>

</right>

</root>

Fig. 1. A τ -tree T1 and its XML document Doc(T1) ∈ Σ∗
τ with tag names

τ := {root, left, right,blank}.

2.2 Query Languages

By Eval(·, ·) we denote the evaluation function that maps each tuple (Q, T ),
consisting of a query Q and a tree T to the corresponding query result. Let Q
be a query language and let T1 ⊆ Treesτ and T2 ⊆ T1. We say that T2 can be
filtered from T1 by a Q-query if, and only if, there is a query Q ∈ Q such that
the following is true for all T ∈ T1: T ∈ T2 ⇐⇒ Eval(Q, T ) 6= ∅.

We assume that the reader is familiar with first-order logic (FO) and monadic
second-order logic (MSO). To precisely fix a notion of FO- or MSO-definable
queries over trees, one has to specify a way in which a tree T ∈ Treesτ is rep-
resented by a logical structure. In the literature, several such representations
have been considered (cf., e.g., [34,13,27]). With respect to MSO-definable
queries it does not really matter which particular representation is chosen
since they all lead to the same classes of MSO-definable queries. In the present
paper we adopt the first-child /next-sibling representation used in a number
of previous works (e.g. [33]), where a tree T is associated with a logical struc-
ture whose domain consists of the nodes of the tree, and which has two binary
predicates first-child and next-sibling for connecting a node with its first child,
respectively, with its next sibling, unary predicates root, leaf, last-sibling (with
the obvious meanings), and a unary predicate labela for each tag name a ∈ τ ,
for marking the nodes that are labeled with the symbol a.

An FO- or MSO-sentence (i.e., a formula without any free variable) specifies
a Boolean query, whereas a formula with exactly one free first-order variable
specifies a unary query, i.e., a query which selects a set of nodes from the
underlying input tree.

It is well-known [10,41,42] that the MSO-definable Boolean queries on binary
trees are exactly the (Boolean) queries that can be defined by finite (determin-
istic or nondeterministic) bottom-up tree automata. An analogous statement
is true about MSO on unranked trees and unranked tree automata [8].

Theorem 4.10 in Section 4.4 gives a lower bound on the worst case complexity
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of the language XQuery. As we prove a lower bound for one particular XQuery
query, we do not give a formal definition of the language but refer to [45].

Apart from FO, MSO, and XQuery, we also consider a fragment of the XPath
language, Core XPath. An example of a Core XPath query is

/descendant::∗[child::A and child::B]/child::∗,

which selects all children of descendants of the root node that (i.e., the de-
scendants) have a child node labeled A and a child node labeled B. A com-
plete formal definition of Core XPath can be found in [14]. Core XPath is
a strict fragment of XPath, both syntactically and semantically. It is known
that Core XPath is in LOGSPACE w.r.t. data complexity and P-complete
w.r.t. combined complexity [15]. In [14], it is shown that Core XPath can be
evaluated in time O(|Q| · |D|), where |Q| is the size of the query and |D| is
the size of the XML data. Furthermore, every Core XPath query is equivalent
to a unary MSO query on trees [13].

2.3 Communication complexity

To prove basic properties and lower bounds for our machine model, we use
some notions and results from communication complexity, cf., e.g., [26].

Let A,B,C be sets and let F : A× B → C be a function. In Yao’s [46] basic
model of communication, two players, Alice and Bob, jointly want to evaluate
F (x, y) for input values x ∈ A and y ∈ B, where Alice only knows x and
Bob only knows y. The two players can exchange messages according to some
fixed protocol P that depends on F , but not on the particular input values
x, y. The exchange of messages starts with Alice sending a message to Bob
and ends as soon as one of the players has enough information on x and y to
compute F (x, y).

P is called a k-round protocol, for some k ∈ N, if the exchange of messages
consists, for each input (x, y) ∈ A × B, of at most k rounds. The cost of
P on input (x, y) is the number of bits communicated by P on input (x, y).
The cost of P is the maximal cost of P over all inputs (x, y) ∈ A × B. The
communication complexity of F , comm-compl(F ), is defined as the minimum
cost of P, over all protocols P that compute F . For k > 1, the k-round
communication complexity of F , comm-complk(F ), is defined as the minimum
cost of P, over all k-round protocols P that compute F .

Many powerful tools are known for proving lower bounds on communication
complexity, cf., e.g., [26]. In the present paper we will use the following basic
lower bounds for the problem of deciding whether two sets are disjoint.
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Definition 2.1 For n ∈ N let the function Disjn : 2{1,. . ,n} × 2{1,. . ,n} → {0, 1}
be given via

Disjn(X, Y ) :=







1 , if X ∩ Y = ∅

0 , otherwise.

For every m 6 n we write Disjn,m to denote the restriction of Disjn to pairs
of m-element subsets of {1, . . , n}.

Theorem 2.2 (cf., e.g., [26]) For all n ∈ N and m 6 n, we have

(a) comm-compl(Disjn) > n.

(b) comm-compl(Disjn,m) = Ω
(

log
(

n

m

))

.

(c) comm-compl(Disjm2,m) = Ω(m · logm).

Proof: The proof of (a) is straightforward (cf., e.g., [26, Example 1.23]).
(b) is a result of Razborov [38] (see also [26, Example 2.12]).

(c) is an immediate consequence of (b), since log
(

m2

m

)

> log
(

mm
)

= m · logm.
�

3 Machine Model

We consider Turing machines with

(1) an input tape, which is a read/write tape and will henceforth be called
“external memory tape” or “external tape”, for short,

(2) an arbitrary number u of work tapes, which will henceforth be called
“internal memory tapes” or “internal tapes”, for short, and, if needed,

(3) an additional write-only output tape.

Let M be such a Turing machine and let ρ be a run of M . By rev(ρ) we denote
the number of times the external memory tape’s head changes its direction in
the run ρ. For i ∈ {1, . . , u} we let space(ρ, i) be the number of cells of internal
memory tape i that are used by ρ.

3.1 The class ST(r, s) for strings

Definition 3.1 (ST(r, s) for strings) Let r : N → N and s : N → N.
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(a) A Turing machine M is (r, s)-bounded, if every run ρ of M on an input of
length n satisfies the following conditions:
(1) ρ is finite,
(2) 1 + rev(ρ) ≤ r(n), and 2

(3)
∑u

i=1 space(ρ, i) ≤ s(n), where u is the number of internal tapes of M .
(b) A string-language L ⊆ Σ∗ belongs to the class ST(r, s) (resp., NST(r, s)),

if there is a deterministic (respectively, nondeterministic) (r, s)-bounded
Turing machine which accepts exactly those w ∈ Σ∗ that belong to L.

(c) A function f : Σ∗ → Σ∗ belongs to the class ST(r, s), if there is a de-
terministic (r, s)-bounded Turing machine which produces, for each input
string w ∈ Σ∗, the string f(w) on its write-only output tape.

(d) We write ST−(r, s) to denote the class of all problems in ST(r, s) that can
be solved by an (r, s)-bounded Turing machine without ever writing to the
external memory tape.

For classes R and S of functions, we let

ST(R, S) :=
⋃

r∈R,s∈S

ST(r, s).

If k ∈ N is a constant, then we write ST(k, s) instead of ST(r, s), where r is
the function with r(x) = k for all x ∈ N. We freely combine these notations
and use them for ST−(·, ·) and NST(·, ·) instead of ST(·, ·), too.

If we think of the external memory tape of an (r, s)-bounded Turing machine
as representing the incoming stream, stored on a hard disk, then admitting
the external memory tape’s head to reverse its direction might not be very
realistic. But as we mainly use our model to prove lower bounds, it does not
do any harm either. We mainly see head reversals as a convenient way to
simulate random access. Random access can be introduced explicitly into our
model as follows: A random access Turing machine is a Turing machine M
which has a special internal memory tape that is used as random access address
tape, i.e., on which only binary strings can be written. Such a binary string is
interpreted as a positive integer specifying an external memory address, that
is, the position index number of a cell on the external tape (we think of the
external tape cells being numbered by positive integers). The machine has a
special state qra. If qra is entered, then in one step the external memory tape
head is moved to the cell that is specified by the number on the random access
address tape, and the content of the random access address tape is deleted.

2 It is convenient for technical reasons to add 1 to the number rev(ρ) of changes of
the head direction. As defined here, r(n) bounds the number of sequential scans of
the external memory tape rather than the number of changes of head directions.
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Definition 3.2 Let q, r, s : N → N. A random access Turing machine M
is (q, r, s)-bounded, if it is (r, s)-bounded (in the sense of an ordinary Turing
machine) and, in addition, every run ρ of M on an input of length n involves
at most q(n) random accesses.

Recall that the random access address tape is part of the internal memory
of a random access Turing machine. Hence a (q, r, s)-bounded random access
Turing machine only has random access to the first 2s(n) memory cells of the
external memory tape. Noting that a random access can be simulated with
at most 2 changes of the direction of the external memory tape head, one
immediately obtains:

Lemma 3.3 Let q, r, s : N → N. If a problem can be solved by a (q, r, s)-
bounded random access Turing machine, then it can also be solved by an
(r + 2q, O(s))-bounded Turing machine.

In the subsequent parts of this paper, we will concentrate on ordinary Turing
machines (without random access). Via Lemma 3.3, all results can be trans-
ferred from ordinary Turing machines to random access Turing machines.

3.2 The class ST(r, s) for trees

We make an analogous definition to ST(r, s) for trees instead of strings:

Let τ be a set of tag names. Recall from Section 2 that Treesτ denotes the set
of all unranked τ -trees.

Definition 3.4 (ST(r, s) for trees)
Let r : Treesτ → N and s : Treesτ → N.

(a) A Turing machine M is (r, s)-bounded, if every run ρ of M on an input
string Doc(T ), for all T ∈ Treesτ satisfies the following conditions:
(1) ρ is finite,
(2) 1 + rev(ρ) ≤ r(T ),
(3)

∑u
i=1 space(ρ, i) ≤ s(T ), where u is the number of internal tapes of

M .
(b) A tree-language T ⊆ Treesτ belongs to the class ST(r, s), if there is a

deterministic (r, s)-bounded Turing machine M such that, for all T ∈
Treesτ , we have T ∈ T if, and only if, M accepts the string Doc(T ).
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T belongs to the class ST−(r, s), if the Turing machine M does not ever
write anything onto its external memory tape.

4 Lower bounds for the ST model

In this section, we prove our main lower bound results. In Subsection 4.1,
we set up our general framework for deriving lower bounds for the ST model
from communication complexity lower bounds. As an immediate consequence,
in Subsection 4.2, we prove a tight lower bound for the disjointness problem.
In the following two subsections, we apply this lower bound method to two
problems of practical relevance, the sorting problem and the problem of com-
puting joins in an XML context. We close this long section with a technical
result, which establishes a strict hierarchy of complexity classes based on the
number of head reversals.

4.1 A reduction lemma

The following lemma provides a convenient tool for showing that a problem
L does not belong to ST(r, s). The lemma’s assumption can be viewed as a
reduction from a communication problem to the problem L. The lemma’s proof
is based on the simple observation that during an (r, s)-bounded computation,
only O(r(n) ·s(n)) bits can be communicated between the first and the second
half of the external memory tape.

Lemma 4.1 Let N be an infinite subset of N and let
(

Fn : An × Bn → {0, 1}
)

n∈N

be a sequence of communication problems (defined on arbitrary finite sets
An, Bn) for which a lower bound

comm-compl(Fn) = Ω(n)

holds.
Let Σ be an alphabet and let λ : N → N such that the following is true: For
every n ∈ N there are functions fn : An → Σ∗ and gn : Bn → Σ∗ such that
for all X ∈ An and Y ∈ Bn the string fn(X)gn(Y ) has length 6 λ(n).

Then we have for all r, s : N → N with r(λ(n)) · s(λ(n)) ∈ o(n), that there is
no (r, s)-bounded deterministic Turing machine which accepts a string of the
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form fn(X)gn(Y ) if, and only if, Fn(X, Y ) = 1.

Proof: For the sake of contradiction let us assume that there is an (r, s)-
bounded Turing machine M which accepts a string of the form fn(X)gn(Y )
if, and only if, Fn(X, Y ) = 1. Since M is (r, s)-bounded, on an input string
of length N , M ’s internal memory tapes always have length 6 s(N), and the
external memory tape head can pass any particular external memory tape
position p for at most r(N) times.

Let n ∈ N and let X and Y be arbitrary elements from An and Bn, respec-
tively. From the lemma’s assumption we know that the string fn(X)gn(Y ) has
length N 6 λ(n) and that fn(X)gn(Y ) ∈ L if, and only if, Fn(X, Y ) = 1.

In particular, any internal memory tape configuration during a run of M on
fn(X)gn(Y ) can be represented by a bit-string of length d · s(λ(n)), for a
suitable constant d.

Let Q denote M ’s set of states. Using M , one obtains a communication proto-
col Pn that computes the function Fn(·, ·) as follows: Alice’s input X ∈ An is
represented by the string fn(X), whereas Bob’s input Y ∈ Bn is represented
by the string gn(Y ). Let p := |fn(X)|. Alice starts the protocol by starting the
Turing machine M on input “fn(X) · · ·” and letting it run until the first time
M tries to access the external memory tape position p+1. Then she sends the
current state and internal memory tape configuration of M to Bob. That is,
she sends

(

log |Q| + d · s(λ(n))
)

bits of information. Now, Bob has all the

information needed to continue the execution of M on input “· · · gn(Y )” until
the first time M tries to access the external memory tape position p. Then,
Bob sends the current state and internal memory tape configuration of M to
Alice. Alice and Bob continue in this manner until the Turing machine M
stops, deciding whether or not fn(X)gn(Y ) belongs to L and hence providing
one of the players with the desired information whether or not Fn(X, Y ) = 1.

Since M passes the external memory tape position p for at most r(λ(n)) times,
the above protocol Pn computes the function Fn(·, ·) by exchanging at most

r(λ(n)) ·
(

log |Q| + d · s(λ(n))
)

bits of information. However, since r(λ(n)) · s(λ(n)) ∈ o(n), we can find, for
every constant c > 0, an n0 ∈ N such that, for every n > n0,

r(λ(n)) ·
(

log |Q| + d · s(λ(n))
)

< c · n.

Then, the above protocol Pn computes Fn with o(n) bits of communication,
contradicting the assumption that comm-compl(Fn) = Ω(n). �
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From the above reduction lemma and the communication bounds of Theo-
rem 2.2 we immediately obtain:

Lemma 4.2 Let Σ be an alphabet.

(a) For every n0 ∈ N let there be an n > n0 and functions fn, gn : 2{1,. . ,n} →
Σ∗ such that for all X, Y ⊆ {1, . . , n} the string fn(X)gn(Y ) has length
O(n).

Then, for all r, s : N → N with r(n) · s(n) ∈ o(n), there is no (r, s)-
bounded deterministic Turing machine which accepts a string of the form
fn(X)gn(Y ) if, and only if, X ∩ Y = ∅.

(b) For every m ∈ N and n := m · logm let there be functions fn, gn that map
m-element subsets of {1, . . , m2} to strings in Σ∗, such that for all m-
element sets X, Y ⊆ {1, . . , m2} the string fn(X)gn(Y ) has length O(n) =
O(m · logm).

Then, for all r, s : N → N with r(n) · s(n) ∈ o(n), there is no (r, s)-
bounded deterministic Turing machine which accepts a string of the form
fn(X)gn(Y ) if, and only if, X ∩ Y = ∅.

Proof: (a): From Theorem 2.2(a) we know that comm-compl(Disjn) = Ω(n).
Therefore, Lemma 4.2(a) immediately follows from Lemma 4.1 for Fn := Disjn
and An := Bn := 2{1,. . ,n}.

(b): From Theorem 2.2(c) we know that

(∗) comm-compl(Disjm2,m) = Ω(m · logm).

We consider N := {m · logm : m ∈ N} and let, for every n = m · logm,

An := Bn := {Z ⊆ {1, . . , m2} : |Z| = m}

and

Fn := Disjm2,m.

From (∗) we know that comm-compl(Fn) = Ω(n). Now, Lemma 4.2(b) imme-
diately follows from Lemma 4.1. �

4.2 Disjointness

Every n-bit string x = x1 · · ·xn ∈ {0, 1}n specifies a set

S(x) := {i : xi = 1} ⊆ {1, . . , n}.
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Let LDisj consist of those strings x#y where x and y specify disjoint subsets
of {1, . . , n}, for some n > 1. That is,

LDisj :=
{

x#y : exists n > 1 with x, y ∈ {0, 1}n and S(x) ∩ S(y) = ∅
}

.

From Lemma 4.2(a) one easily obtains:

Proposition 4.3 Let r : N → N and s : N → N.
If r(n) · s(n) ∈ o(n), then LDisj 6∈ ST(r, s).

Proof: For every n ∈ N we choose functions fn, gn : 2{1,. . ,n} → {0, 1,#}∗ as
follows: For every X ⊆ {1, . . , n} let fn(X) := x# and gn(X) := x, where
x = x1 · · ·xn ∈ {0, 1}n is the (unique) n-bit string with S(x) = X. Then, for
all n ∈ N and all X, Y ⊆ {1, . . , n} we have

fn(X)gn(Y ) ∈ LDisj ⇐⇒ X ∩ Y = ∅ ,

and |fn(X)gn(Y )| = 2n+ 1. Assuming that r(n) · s(n) ∈ o(n), we obtain from
Lemma 4.2(a) that LDisj 6∈ ST(r, s). �

Remark 4.4 The bound given by Proposition 4.3 is tight, as it can be easily
seen that LDisj ∈ ST(r, s) for all r, s : N → N with r(n) · s(n) ∈ Ω(n). (If
s(n) > log n, then the Turing machine does not even need to write anything
onto the external memory tape.)

4.3 Sorting

In this subsection, we prove upper and lower bounds for the problem of sorting
a given sequence of bitstrings. Formally, we identify sequences of (possibly
empty) strings over the alphabet {0, 1} with strings over {0, 1,#} and consider
the function FSort : {0, 1,#}∗ → {0, 1,#}∗ defined by

FSort(x1# . . .#xm) = xπ(1)# . . .#xπ(m),

where m > 0, x1, . . . , xm ∈ {0, 1}∗, and π is a permutation of {1, . . . , m} such
that xπ(1) 6 . . . 6 xπ(m) in the lexicographical order.

Observe first that FSort can trivially be solved by a (1, n)-bounded Turing
machine which copies the entire input into its internal memory, sorts the
input strings in internal memory, and then writes the sorted sequence onto its
write-only output tape.
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Concerning lower bounds let us first consider the decision problem associated
with FSort, where the task is to decide whether the input sequence x1# · · ·#xm

is sorted in lexicographically ascending order: By applying a linear communi-
cation lower bound for the “(lexicographical) less-than”-predicate on bitsrings
[46], it is easy to obtain a lower bound stating that even the restriction of this
decision problem to inputs consisting of just two strings of length n cannot be
solved by an (r, s)-bounded Turing machine with r(n) · s(n) ∈ o(n).

However, just deciding whether two long strings are sorted, may not be what
we have in mind when we think about “the sorting problem”. In the following,
we show that with a little more effort we also obtain a tight linear lower bound
for the problem of sorting many “short” strings. We always denote the size of
the input string x1# . . .#xm by n, that is, we have n = m− 1 +

∑m
i=1 |xi|.

For a function ℓ : N → N, we let F ℓ
Sort be the restriction of FSort to input strings

x1# . . .#xm with |xi| ≤ ℓ(n) for 1 ≤ i ≤ m. Of course, any lower bound result
for F ℓ

Sort also holds for the general sorting problem FSort. We start with the
following lower bound for F ℓ

Sort.

Lemma 4.5 Let ℓ, r, s : N → N such that s(n) ≥ ℓ(n) ≥ 2 logn and r(n) ·
s(n) ∈ o(n). Then F ℓ

Sort cannot be computed by an (r, s)-bounded deterministic
Turing machine.

Proof: The proof is by a reduction from the disjointness problem Disjm2,m

to the sorting problem F ℓ
Sort.

Let N = {(k+1)·2k+2−1 : k ∈ N}. For n = (k+1)·2k+2−1 ∈ N and m = 2k,
let An and Bn both be the set of all m-element subsets of {1, . . . , m2} and
Fn = Disjm2,m : An × Bn → {0, 1}. Then comm-compl(Fn) = Ω(m · logm) =
Ω(n) by Theorem 2.2(c).

For every i ∈ {1, . . . , m2}, let b(i) be the binary representation of i−1 padded
with zeroes to a string of length 2k. We define functions fn : An → {0, 1,#}∗

and gn : Bn → {0, 1,#}∗ by

fn({i1, . . . , im}) = b(i1) 0 # . . .# b(im) 0# ,

gn({i1, . . . , im}) = b(i1) 1 # . . .# b(im) 1 ,

where we assume that i1 < . . . < im. Then for all X ∈ An, Y ∈ Bn the string
fn(X)gn(Y ) has length (2k + 1) · 2m+ 2m− 1 = (2k + 2) · 2 · 2k − 1 = n.

Hence by the Reduction Lemma 4.1, there is no (r, 3s)-bounded Turing ma-
chine that accepts a string fn(X)gn(Y ) if and only if the setsX, Y ⊆ {1, . . . , m2}
are disjoint (for all k ∈ N with n = (k + 1) · 2k+2 − 1 and m = 2k).
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Now suppose for contradiction that F ℓ
Sort can be computed by an (r, s)-bounded

Turing machine S. We shall construct an (r, 3s)-bounded Turing machine T
that on input fn(X)gn(Y ) decides whether the sets X, Y are disjoint. Let us
write fn(X)gn(Y ) as x1# . . .#xm#y1# . . .#ym and observe that the length
of the binary strings xi, yi is (2k + 1) ≤ 2 · log n ≤ ℓ(n). Hence fn(X)gn(Y ) is
an instance of F ℓ

Sort.

The crucial observation is that the sets X and Y are disjoint if and only if
there is no string z such that z0, z1 ∈ {x1, . . . , xm, y1, . . . , ym}. Furthermore,
if there is such a string z, then z0 and z1 will be written on the output tape
successively by the sorting machine.

Thus our machine T proceeds as follows: It simulates S; at any point it keeps
the last two strings written by S to the output tape in internal memory. If
during the course of the computation, it detects strings z0 and z1, it rejects
(because then X and Y are not disjoint). Otherwise, it accepts after the sim-
ulation is completed.

Altogether, T is an (r, 3s)-bounded Turing machine which, on input fn(X)gn(Y )
decides whether the sets X and Y are disjoint. As argued above, however, such
a machine cannot exist, and thus the proof of Lemma 4.5 is complete. �

The next lemma provides an upper bound that matches the lower bound of
Lemma 4.5.

Lemma 4.6 Let ℓ, s : N → N such that s(n) ≥ ℓ(n) and s(n) ≥ logn. Then

F ℓ
Sort can be computed by an

(

n/s(n), O(s(n))
)

-bounded deterministic Turing

machine (that does not need to write anything onto its external memory tape).

Proof: Suppose that the input is x1# . . .#xm. Let n be the length of the
input, ℓ := ℓ(n), and s := s(n). For pairwise distinct indices i1, . . . , ik ∈
{1, . . . , n}, we say that strings xi1 , . . . , xik form an interval, if xi1 ≤ . . . ≤ xik

and for each j 6= i1, . . . , ik either xj ≤ xi1 or xj ≥ xik . The size of the interval
is

∑k
j=1 |xij |.

We describe an (n/s,O(s))-bounded Turing machine that sorts the input. In
each scan of the external memory tape, the machine reads an interval of size
at least s into the internal memory, sorts it, and writes it to the output tape.
This is done in such a way that the intervals of successive scans are successive.

To obey the memory restrictions, the scans are implemented as follows: After
each scan, the machine stores the largest input string y written to the output
tape so far and the number q of times y has been written to the output tape
so far (remember that the input strings need not be distinct). Then in the
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next scan, it successively reads new input strings into the internal memory,
ignoring all input strings smaller than y and also the first q copies of y. As
soon as the size of the strings in internal memory is at least s+ ℓ, the machine
discards the currently largest string in internal memory whenever it finds a
smaller one. Thus after a scan, there is an interval of size between s and s+ℓ in
internal memory (except for the last scan, where the interval may be smaller).
After the scan, the strings in internal memory are sorted and written to the
output tape. A copy of the largest string y′ and the number q′ of times it has
been written to the output tape so far is kept in the internal memory.

Clearly, n/s scans suffice. The internal memory size required is O(s), because
s ≥ ℓ and s ≥ logn. The latter is needed for storing the multiplicities q. �

In summary, Lemma 4.6 and Lemma 4.5 directly lead to the following theorem
which, intuitively, states that sorting is possible if, and only if, the product of
the number of head reversals and the internal memory size is at least as big
as the input size.

Theorem 4.7 Let ℓ, r, s : N → N such that s(n) > ℓ(n) > 2 logn.

(a) If r(n) · s(n) ∈ Ω(n), then F ℓ
Sort ∈ ST−(r, s).

(b) If r(n) · s(n) ∈ o(n), then F ℓ
Sort 6∈ ST(r, s).

It is straightforward to see that by using Merge-Sort, the sorting problem F ℓ
Sort

can be solved using O(logn) scans of external memory and internal memory
of size O(ℓ(n)), provided that three external memory tapes are available. In
[21], this logarithmic bound is shown to be tight, for arbitrarily many external
tapes. Note that Theorem 4.7 gives an exponentially stronger lower bound for
the case of a single external memory tape.

4.4 Joins

Let τ be the set of tag names { rels, rel1, rel2, tuple, no1, no2, 0, 1 } .
Recall from Section 2 that the alphabet Στ consists of two letters, 〈a〉 and
〈/a〉, for each tag name a ∈ τ . In the following, we will sometimes write 〈a/〉
as abbreviation of the string 〈a〉 〈/a〉.

We represent a pair (A,B) of finite relations A,B ⊆ N2 as a τ -tree T (A,B)
whose associated XML document Doc(T (A,B)) is a Στ -string of the following

form: For each number i ∈ N let Bin(i) = b
(i)
ℓi · · · b(i)0 be the binary representa-
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tion of i. For each pair (i, j) ∈ {1, . . , n}2 let Doc(i, j) :=

〈tuple〉 〈no1〉 〈b(i)ℓi
/〉 · · · 〈b(i)0 /〉 〈/no1〉 〈no2〉 〈b(j)ℓj

/〉 · · · 〈b(j)0 /〉 〈/no2〉 〈/tuple〉 .

For each finite relation A ⊆ N2 let t1, . . , t|A| be the lexicographically ordered
list of all tuples in A. We let Doc(A) := Doc(t1) · · · Doc(t|A|) . Finally, we
let

Doc(T (A,B)) := 〈rels〉 〈rel1〉 Doc(A) 〈/rel1〉 〈rel2〉 Doc(B) 〈/rel2〉 〈/rels〉.

It is straightforward to see that the string Doc(T (A,B)) has length

O
(

(|A| + |B|) · logm
)

,

if A,B ⊆ {1, . . . , m2}2.

We write A ⊲⊳1 B to denote the join of A and B on their first component,
i.e., A ⊲⊳1 B := { (x, y) : ∃z A(z, x) ∧B(z, y) } . We let

TRels :=
{

T (A,B) : A,B ⊆ N2, A,B finite
}

TEmptyJoin :=
{

T (A,B) ∈ TRels : A ⊲⊳1 B = ∅
}

TNonEmptyJoin :=
{

T (A,B) ∈ TRels : A ⊲⊳1 B 6= ∅
}

.

Lemma 4.8 TNonEmptyJoin can be filtered from TRels by an XQuery query.

Proof: We can choose the XQuery query Q :=

for $x in /rels/rel1/tuple/no1,

$y in /rels/rel2/tuple/no1

where deep-equal($x,$y) return <tuple></tuple>

The first line of this query iteratively binds the variable $x to all subdocuments
enclosed by <rels><rel1><tuple><no1> tags (and the corresponding closing
tags), which encode the binary representation of the first component of the
tuples in the first relation A. The second line iteratively binds the variable
$y to all subdocuments enclosed by <rels><rel2><tuple><no1> tags, which
encode the binary representation of the first component of the tuples in the
second relation B. The third line returns <tuple></tuple>, if the two values
are equal.

Hence the result of Q on the tree T (A,B) consists of one “tuple”-node for
each tuple in A ⊲⊳1 B. In particular, Eval(Q, T (A,B)) is empty if, and only if,
A ⊲⊳1 B = ∅. �
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Lemma 4.9 Let r, s : Treesτ → N.
If r(T ) · s(T ) ∈ o

(

size(T )
)

, then TEmptyJoin 6∈ ST(r, s).

Proof: We use Lemma 4.2(b). For finite X, Y ⊆ N let

AX := { (i, 1) : i ∈ X } and BY := { (i, 2) : i ∈ Y } .

Obviously, AX ⊲⊳1 BY = ∅ if, and only if, X ∩ Y = ∅.

For every m ∈ N and n := m · logm we choose functions fn, gn : 2{1,. . ,m2} →
Σ∗

τ via

fn(X) := 〈rels〉 〈rel1〉 Doc(AX) 〈/rel1〉

gn(Y ) := 〈rel2〉 Doc(BY ) 〈/rel2〉 〈/rels〉 .

Then, for all m-element sets X, Y ⊆ {1, . . , m2}, the string fn(X)gn(Y ) =
Doc(T (AX , BY )) has length O(m · logm) = O(n), and

fn(X)gn(Y ) ∈ Doc(TEmptyJoin) ⇐⇒ X ∩ Y = ∅.

From Lemma 4.2(b) we obtain for arbitrary r′, s′ : N → N with r′(n) · s′(n) ∈
o(n) that there is no (r′, s′)-bounded Turing machine which accepts exactly
those strings of the form fn(X)gn(Y ) where X ∩ Y = ∅. Noting that

size(T (AX , BY )) = O
(

|Doc(T (AX , BY ))|
)

= O(|fn(X)gn(Y )|) = O(n) ,

one then obtains for arbitrary r, s : Treesτ → N with r(T ) · s(T ) ∈ o
(

size(T )
)

that TEmptyJoin 6∈ ST(r, s). �

From Lemma 4.8 and Lemma 4.9 we immediately obtain a lower bound on
the worst-case data complexity for filtering relative to an XQuery query:

Theorem 4.10 The tree-language TNonEmptyJoin

(a) can be filtered from TRels by an XQuery query,
(b) does not belong to the class ST(r, s), whenever r, s : Treesτ → N with

r(T ) · s(T ) ∈ o
(

size(T )
)

.

Let us note that the above bound is “almost tight” in the following sense: The
problem of deciding whether A ⊲⊳1 B = ∅ and, in general, every FO-definable
problem belongs to ST(1, n) — in its single scan of the external memory
tape, the Turing machine simply copies the entire input on one of its internal
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memory tapes and then evaluates the FO-sentence by the straightforward
algorithm for FO-model-checking, which works with LOGSPACE w.r.t. data
complexity (cf. e.g. [1]).

4.5 A hierarchy based on the number of scans

This subsection’s main result is

Theorem 4.11 For every fixed k ∈ N and all classes S of functions from N
to N such that O(logn) ⊆ S ⊆ o

( √
n

(lg n)3

)

we have

ST(k, S) & ST(k+1, S) and ST−(k, S) & ST−(k+1, S).

The proof of this theorem is based on the following result due to Duris, Galil
and Schnitger [11], who prove an exponential gap between k- and k+1-round
communication complexity. They consider functions

f : {0, . . , 2m−1} → {0, . . , 2m−1},

encoded as list of binary representations of the values f(0), f(1), . . . , f(2m−1),
and prove a lower bound on the k-round communication complexity of the
language Lk+1, consisting of the encodings of functions f where

f(f(· · ·f(f
︸ ︷︷ ︸

k+2

(0)) · · · )) = 2m−1 .

The precise definition of Lk+1 is as follows:

Definition 4.12 For every k ∈ N, let

Lk+1 := { w0w1 · · ·w2m−1 : m ∈ N, wi ∈ {0, 1}m,

and there exist j1, . . , jk+1 such that

w0 = j1, wji
= ji+1, wjk+1

= 2m−1 } .

Theorem 4.13 (Duris, Galil, Schnitger [11]) For every k > 1, the fol-
lowing is true for all sufficiently large n ∈ N:

comm-complk+1(Fk+1,n) 6 (k+1) · log n , but

comm-complk(Fk+1,n) >
√

n

36·k4·(log n)3
,
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where the function Fk+1,n : {0, 1}n × {0, 1}n → {0, 1} is given via

Fk+1,n(x, y) :=







1 , if xy ∈ Lk+1

0 , otherwise.

In fact, Duris et al. [11] prove an even stronger result, namely that their lower
bound applies for all k-round protocols, even if communication complexity is
measured as the minimum complexity over all arbitrary partitions of the input
bits into two parts of equal size.

By using Theorem 4.13, we can show the following stronger variant of Theo-
rem 4.11:

Theorem 4.14 For every fixed k > 1,

ST−(k+1, O(logn)) ∩ NST(1, O(logn)) 6⊆ ST
(

k, o
( √

n

(log n)3

))

.

Proof: We use Theorem 4.13 and let

L′
k+1 := { 1m#w0 · · ·w2m−1 : m ∈ N, wi ∈ {0, 1}m, w0 · · ·w2m−1 ∈ Lk+1 } ,

where Lk+1 is the language fixed in Definition 4.12.

From the definition of Lk+1 it is straightforward to see that L′
k+1 belongs to

ST−(k+1, O(logn)) — the Turing machine just has to store the current index
i ∈ {0, . . , k+1} and the corresponding string wji

on its internal tapes and
move the external tape head to the block of index ji+1 := wji

. To recognize
L′

k+1, this requires at most k changes of the direction of the external tape
head, internal space O(log k + log n) = O(logn) (since k is a constant), and
no writing on the external memory tape.

A nondeterministic Turing machine with internal space Ω(log n) does not even
need a single reversal of the external tape head — it can simply guess the
strings wj1, . . , wjk+1

on one of its internal tapes and verify their “correctness”
while scanning the external tape from left to right. This is possible in space
O(logn), because k is constant and the length of each of the strings wj is
m, which is logarithmic in the input length n = Ω(2m). Therefore, L′

k+1 ∈
NST(1, O(logn))

Assume, for the sake of contradiction, that L′
k+1 ∈ ST

(

k, o
( √

n

(log n)3

))

via a

Turing machine M that is (k, s)-bounded, for some function s : N → N with

s(n) ∈ o
( √

n

(log n)3

)

. Then, in the same way as in the proof of Lemma 4.2, M
leads to a k-round protocol Pn, for all n ∈ N, that computes the function
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Fk+1,n from Theorem 4.13 and has cost at most d · k · s(n), for a suitable

constant d (depending on M , but not on k or n). Since s(n) ∈ o
( √

n

(log n)3

)

, we

can find sufficiently large n such that d · s(n) <
√

n

36k5(log n)3
. Consequently, for

such n we have comm-complk(Fk+1,n) 6 d · k · s(n) <
√

n

36k4(log n)3
, contradicting

Theorem 4.13. This completes the proof of Theorem 4.14. �

Finally, note that Theorem 4.11 is an immediate consequence of Theorem 4.14.
Let us mention that a generalization of Theorem 4.11 from constants k to
functions r : N → N can be found in [23].

Remark 4.15 On the other hand, of course, the hierarchy for the ST− classes
collapses, if internal memory space is at least linear in the size of the input:
For every r : N → N and for every s : N → N with s(n) ∈ Ω(n), we have

ST−(r, s) ⊆ ST−(1, n+ s(n)) and ST−(r, O(s(n))) = DSPACE(O(s(n))).

Note, however, that the same statement for ST instead of ST− does not seem
to be true, because during an (r, s)-bounded computation in which writing to
the external memory tape is allowed, the external memory tape could get as
long as n+ r(n) · 2O(s(n)), which is too large for DSPACE(O(s(n))).

5 Tight bounds for filtering and query evaluation on trees

This section establishes tight bounds for the worst case data complexity of
Core XPath evaluation and filtering.

5.1 Lower bound

We need the following notation: We fix a set τ of tag names via

τ :=
{

root, left, right, blank
}

.

Let T1 be the τ -tree from Figure 1. Note that T1 has a unique leaf v1 labeled
with the tag name “left”. For any arbitrary τ -tree T we let T1(T ) be the τ -tree
rooted at T1’s root and obtained by identifying node v1 with the root of T and
giving the label “left” to this node. Now, for every n > 2 let Tn be the τ -tree
inductively defined via

Tn := T1(Tn−1).
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It is straightforward to see that Tn has exactly 2n leaves labeled “blank”. Let
x1, . . , xn, yn, . . , y1 denote these leaves, listed in document order (i.e., in the
order obtained by a pre-order depth-first left-to-right traversal of Tn). For an
illustration see Figure 2.

root

left

x1 blank

right

left

left

x2 blank

right

left right

blank y2

right

blank y1

x1

x2

x3

x4 y4

y3

y2

y1

ynxn

...
...

}

T1







T3







Tn







T2

Fig. 2. Tree T2 with nodes x1, x2, y1, y2 and tree Tn with nodes x1, . . , xn, y1, . . , yn.

We let τ01 := τ ∪ {0, 1}. For all sets X, Y ⊆ {1, . . , n} let Tn(X, Y ) be the
τ01-tree obtained from Tn by replacing, for each i ∈ {1, . . , n},

• the label “blank” of leaf xi by the label 1 if i ∈ X, and by the label 0
otherwise, and

• the label “blank” of leaf yi by the label 1 if i ∈ Y , and by the label 0
otherwise.

We let

TSets :=
{

Tn(X, Y ) : n > 1, X, Y ⊆ {1, . . , n}
}

,

TDisj :=
{

Tn(X, Y ) ∈ TSets : X ∩ Y = ∅
}

,

TNonDisj :=
{

Tn(X, Y ) ∈ TSets : X ∩ Y 6= ∅
}

.

Lemma 5.1 (a) There is a Core XPath query Q such that the following is
true for all τ -trees T ∈ TSets: Eval(Q, T ) 6= ∅ ⇐⇒ T ∈ TNonDisj.

(b) There is a FO-sentence ϕ such that the following is true for all τ -trees T :
T |= ϕ ⇐⇒ T ∈ TNonDisj.

Proof: (a): We can choose Q :=

/descendant::∗[child::right/child::right/child::1 ]/child::left/child::1

which selects all nodes x that are labeled 1 and for which there exists a node
z such that

(i) there exists a child z′ of z which is labeled “left” such that x is a child
of z′,

(ii) there exists a child z′′ of z which is labeled “right” and has a child z′′′

labeled “right” that has a child labeled 1.
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It is straightforward to check that for all T (X, Y ) ∈ TSets we have that
Q(T (X, Y )) consists of exactly those nodes xi for which both, xi and yi are
labeled 1. I.e., Q(T (X, Y )) = {xi : i ∈ X ∩ Y }.

(b): It is known that all Core XPath queries are definable in FO, provided
that trees are represented by structures where descendant and following-sibling
(i.e., the transitive closures of child and of next-sibling) are available as binary
relations (see Marx’s paper [27] and the references therein). However, in Sec-
tion 2 we chose to adopt the first-child /next-sibling representation (on which
FO is strictly weaker than on the descendant / following-sibling representa-
tion), and therefore the proof of (b) requires a different (but easy) argument:

The desired FO-sentence ϕ is chosen as ϕ := χ ∧ ∃xψ(x), where χ is a suit-
able FO-sentence expressing that the underlying tree T has the correct shape
(among other things, χ stipulates that T is binary, i.e., each node of T has at
most 2 children, that the first child of each node is labeled with one of the sym-
bols left, 0, or 1, and the next sibling of each node is labeled with the symbol
right). The FO-formula ψ(x) is obtained as a straightforward formalization of
the items (i) and (ii) in the proof of (a). �

Lemma 5.2 Let r, s : Treesτ → N.
If r(T ) · s(T ) ∈ o(depth(T )), then TNonDisj 6∈ ST(r, s).

Proof: We use Lemma 4.2(a). For every n ∈ N, let pn denote the position in
the string Doc(Tn) that carries the unique leaf of Tn carrying the label “left”.

For every n ∈ N we choose functions fn, gn : 2{1,. . ,n} → Σ∗
τ01

as follows: For
every X ⊆ {1, . . , n} let fn(X) be the prefix of Doc(Tn(X, Y )) up to position
pn, and let gn(Y ) be the suffix of Doc(Tn(X, Y )) starting at position pn + 1.
Then, the string fn(X)gn(Y ) = Doc(Tn(X, Y )) has length 10·n + 1, and

fn(X)gn(Y ) ∈ Doc(TDisj) ⇐⇒ X ∩ Y = ∅.

From Lemma 4.2 we obtain for arbitrary r′, s′ : N → N with r′(n) ·s′(n) ∈ o(n)
that there is no (r′, s′)-bounded Turing machine which accepts exactly those
strings of the form fn(X)gn(Y ) where X ∩ Y = ∅.

Noting that

depth(Tn(X, Y )) = 2n+ 2 = O(|Doc(Tn(X, Y ))|) = O(|fn(X)gn(Y )|)

one then obtains for arbitrary r, s : Treesτ → N with r(T ) ·s(T ) ∈ o(depth(T ))
that TNonDisj 6∈ ST(r, s). �

From Lemma 5.1 and Lemma 5.2 we directly obtain a lower bound on the
worst-case data complexity of Core XPath filtering:
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Theorem 5.3 The tree-language TNonDisj

(a) can be filtered from TSets by a Core XPath query,
(b) is definable by an FO-sentence (and therefore, also definable by a Boolean

MSO query and recognizable by a tree automaton), and
(c) does not belong to the class ST(r, s), whenever

r, s : Treesτ → N with r(T ) · s(T ) ∈ o(depth(T )).

In the following subsection we match this lower bound with a corresponding
upper bound.

5.2 Upper bounds

Recall from Section 2 and Definition 3.4 that, when provided as input for
an (r, s)-bounded Turing machine, a tree T ∈ Treesτ is represented by the
XML document Doc(T ) (as indicated in Figures 1 and 3), and that a tree-
language T ⊆ Treesτ belongs to the class ST(r, s) if and only if there is an
(r, s)-bounded Turing machine that accepts the XML documents Doc(T ) of
exactly those τ -trees that belong to T .

Further, recall that a tree-language T ⊆ Treesτ is definable by an MSO-
sentence if, and only if, it is recognizable by an unranked tree automaton,
respectively, if, and only if, the language {BinTree(T ) : T ∈ T } of associated
binary trees is recognizable by an ordinary (ranked) tree automaton (cf., e.g.,
[8,10,41,42]).

The following Theorem 5.4 shows that every tree-language T that is definable
by an MSO-sentence, can be recognized by a Turing machine that performs
a single (left-to-right) scan of its external memory tape and that requires
internal memory of size linear in the depth of the (unranked) input tree. The
Turing machine that we construct in the theorem’s proof, in fact, corresponds
to a pushdown automaton which simulates the run of a deterministic bottom-
up tree automaton and uses its stack for keeping information about the path
from the root to the currently visited node in the input tree. In the literature,
similar kinds of pushdown automata have already been used for efficient query
evaluation in various places, cf. e.g. [31,40].

Theorem 5.4 Let T ⊆ Treesτ be a tree-language. If T is definable by an
MSO-sentence (or, equivalently, recognizable by a ranked or an unranked finite

tree automaton), then T belongs to ST−
(

1, O(depth(·))
)

.

Proof: We proceed in two steps.

Step 1: We first show that T belongs to ST−
(

2, O(depth(·))
)

.
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Let B be a deterministic bottom-up binary tree automaton (for an introduction
see [42]) which accepts exactly the binary trees BinTree(T ) for T ∈ T . In the
following, we use the same notation as [25]; in particular, we assume that B’s
transition function has the form δB : Σ × (Q ∪ {⊥}) × (Q ∪ {⊥}) → Q. Here,
the special symbol ⊥ is used as a “pseudo-state” for non-existent children.

In the following, we describe a Turing machine which on input Doc(T ) simu-
lates the run of the automaton B on the binary tree BinTree(T ). Note that B
starts at the leaves of BinTree(T ) and note that these leaves are conveniently
accessible when reading the input XML document Doc(T ) from right to left
(i.e., backwards).

We may assume that the input XML document Doc(T ) consists of a well-
formed sequence of opening 〈a〉 and closing tags 〈/a〉, for tag symbols a ∈ τ . 3

We evaluate B as follows, using a stack of states of the automaton B. First we
scan the input XML document Doc(T ) to the end (without doing anything).
Then we reverse and scan it backwards. While scanning backwards, we do the
following for each symbol s ∈ Στ seen:

if s is a closing tag then
begin

if the previously read symbol was a closing tag or
there was no previous symbol (i.e., we are at the start of the backward scan) then
push(⊥);

end
else if s is an opening tag 〈a〉 then
begin

if the previously read symbol was a closing tag then
q1 := ⊥;

else
q1 := pop();

q2 := pop();
q := δB(a, q1, q2);
push(q);

end

Consider the example run of Figure 3: Just after having processed the opening
tag <12> of node v3, the stack contains the symbols ⊥, ρB(v1), ρ

B(v2), ρ
B(v3)

(where the final symbol is the top of the stack, and ρB(v) denotes the state
assigned to node v by the run ρB of the tree automaton B).

In general, it is easy to verify that whenever we are at a node v at depth d

3 Non well-formed input can easily be detected by putting opening tags on the
stack that we maintain in the algorithm below.
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(a) An unranked tree T :

1

2

5

3

6 7

11

13

12 v3

8 v2

4 v1

9 10

(b) The XML document Doc(T ):

<1><2><5></5></2><3><6></6><7><11><13></13></11><12></12></7><8></8></3><4><9></9><10></10></4></1>

(c) The binary first-child / next-sibling tree BinTree(T ):

1

2

3

4
5

6
7

8 9
1011

12

13

Here, the first-child and the
next-sibling relation are visual-
ized by simple arcs −→, respec-
tively by double arcs =⇒. The
dashed gray arcs indicate the
traversal order for the evaluation
of the bottom-up tree automa-
ton B (starting at the node la-
beled 10)

Fig. 3. An unranked ordered tree T , its XML document Doc(T ), and the binary
tree BinTree(T ).

in the unranked tree T (i.e., the Turing machine’s external memory head is
between the opening and the closing tag of v, and not between the opening
and closing tag of a descendant of v), there are d + 2 items on the stack.
Precisely, apart from the information on the tree automaton B’s state at the
child v′ of v (in T ) whose opening tag has just been read (in Doc(T )), the
stack contains, for each node u on the path (in T ) from the root to node v,
information on B’s state at the next sibling of u (respectively, the symbol ⊥
if u does not have a next sibling).

Thus the depth of the stack never exceeds depth(T )+2. Since every stack entry
consist of a single symbol, the space consumption of the internal memory tape
is bounded by depth(T ) + 2.

On termination of this ST−
(

2, O
(

depth(·)
))

algorithm, the stack will contain
precisely one symbol, namely the tree automaton B’s state at the root of
BinTree(T ). If this state belongs to B’s accepting states, then our Turing
machine accepts; otherwise it rejects the input document Doc(T ).
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Step 2: From ST−
(

2, O(depth(·))
)

to ST−
(

1, O(depth(·))
)

.

Just as a binary bottom-up tree automaton on the first-child /next-sibling
representation of (unranked) τ -trees can be computed, so can a binary tree
automaton B be computed that works on a last-child / previous-sibling binary
tree representation.

We can evaluate B in one single forward scan of the input by taking the algo-
rithm of Step 1, and exchanging every occurrence of “opening tag” by “closing
tag” and vice versa. Now we need only one forward scan to check whether B
accepts.
Altogether, the proof of Theorem 5.4 is complete. �

Recall that every Core XPath query is equivalent to a unary MSO query.
Thus a Core XPath filter can be phrased as an MSO sentence on trees. From
the Theorems 5.4 and 5.3 we therefore immediately obtain a tight bound for
Core XPath filtering:

Corollary 5.5 (a) Filtering from the set of unranked trees with respect to

every fixed Core XPath query Q belongs to ST−
(

1, O(depth(·))
)

.

(b) There is a Core XPath query Q such that, for all r, s : Treesτ → N with

r(T ) · s(T ) ∈ o
(

depth(T )
)

, filtering w.r.t. Q does not belong to ST(r, s).

Next, we provide an upper bound for the problem of computing the set
Eval(Q, T ) of nodes in an input tree T matching a unary MSO (or Core XPath)
query Q. We first need to clarify what this means, because writing the subtree
of each matching node onto the output tape may require a very large amount
of internal memory (or a large number of head reversals on the external mem-
ory tape), and this gives us no appropriate characterization of the difficulty
of the problem. We study the problem of computing, for each node matched
by Q, its index in the tree, in the order in which they appear in the document
Doc(T ). We distinguish between the case where these indexes are to be writ-
ten to the output tape in ascending order and the case where they are to be
output in descending (i.e., reverse) order.

In [36] it is shown that Boolean attribute grammars on ranked trees, a formal-
ism that captures the unary MSO queries, can be evaluated in two passes of
the data. Independently, [25] describes a technique for evaluating unary MSO
queries in two scans of the data. This technique is related to the nondetermin-
istic version of query automata of [32,35] and the selecting tree automata of
[12]. The first scan is a backward bottom-up tree automaton scan that writes
the states computed for the nodes visited onto an external memory device,
that the second scan, a forward scan during which a top-down determinis-
tic tree automaton is evaluated, reads. In this sense, the following theorem
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already was implicit in [36,25].

Theorem 5.6 For every unary MSO or Core XPath query Q, the problem of
computing, for input trees T , the nodes in Eval(Q, T )

(a) in ascending order belongs to ST
(

3, O(depth(·) + log(size(·)))
)

.

(b) in reverse order belongs to ST
(

2, O(depth(·) + log(size(·)))
)

.

Proof: (a): Recall that every Core XPath query can be expressed as a
unary MSO query. As explained above, every unary MSO query Q can be
evaluated by a pair A and B of a bottom-up and a top-down deterministic
tree automaton, where A runs on BinTree(T ) and B runs on the modified
version of BinTree(T ) in which each node is labeled with A’s state at this
node. A node belongs to the result of the unary query Q, if B’s state at this
node belongs to a particular set of selecting states (for details see [25,12]).

Our Turing machine for evaluating Q on an input document Doc(T ) makes
use of these automata A and B as follows: After scanning to the end of the
input (without doing anything), it performs a backward scan during which
it computes the run of A, in the same way as described in the first part
of the proof of Theorem 5.4. Now, however, on the external memory tape
the corresponding states of A are stored by replacing the opening tag 〈a〉
of node v on the tape by a symbol 〈a q = ρA(v)〉. (This is again a single
tape symbol as both Σ and the state set of A are fixed.) At the end of this
backward scan, the external memory tape contains, for each node v, the state
ρA(v) computed by the run of A attached to it. Note that in the algorithm of
the proof of Theorem 5.4, ρA(v) always gets available when the head on the
external memory tape is on the position of the opening tag of node v, so we
need no further buffer space besides the space occupied for the stack.

Then we perform a third scan, a forward scan during which we compute the
run of B. As B is a deterministic top-down tree automaton, the state of a
node depends only on the state and the label of its parent. As B runs on
the first-child /next-sibling representation of unranked trees, we have always
ρB(v) available as soon as we have read the opening tag of node v. As described
above, the state ρB(v) indicates whether v is in the query result. To be able to
output the indexes of the selected nodes during the forward scan, we maintain
a counter (initialized with 0) and during the scan, whenever we see an opening
tag we increment it by one. Thus, whenever we decide that a node is part of
the output, we write the current value of the counter — which is the index of
the node in document order — to the output tape. This gives us the nodes
matching the query in ascending order. To maintain this counter in internal
memory, of course log(n) bits suffice, where n denotes the size of the input
tree.
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(b): Using the same ideas as in the proof of Theorem 5.4 (changing the au-
tomata from running on first-child /next-sibling to last-child / previous-sibling
trees, we can compute the indexes of nodes matching a unary MSO query in
reverse order (i.e., we output the node indexes while traversing the data back-
wards). �

Note that this bound is tight: From Corollary 5.5(b) we know that, for some
Core XPath query Q, not even filtering (i.e., checking whether Eval(Q, T ) is

empty) is possible in ST(r, s) if r(T ) · s(T ) ∈ o
(

depth(T )
)

.

Remark 5.7 The proof of Theorem 5.6 requires (i) to scan the external mem-
ory tape both forward and backward, and (ii) to store states of the bottom-up
automaton used in the proof construction of Theorem 5.4 on the external tape.
If the query is considered fixed (data complexity), states are constant-size and
can replace symbols of the input; but this means that we need to allocate
space enough to store a state into each tape position of the input. The results
of [25] only readily yield automata A whose state space is of size doubly expo-
nential in the size of the given query (in the query language of the framework,
monadic datalog). If we want to use this technique, we need Turing machines
whose external tape alphabet is of size doubly exponential in the size of the
given query.
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