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ABSTRACT

There has been much recent interest in XML publish/subsays-
tems. Some systems scale to thousands of concurrent quartes
support a limited query language (usually a fragment of KRa®).
Other systems support more expressive languages, but doailet
well with the number of concurrent queries. In this paperpne
pose a set of novel query processing techniques, referesMas-
sively Multi-Query Join Processing techniques, for processing a
large number of XML stream queries involving value joins rove
multiple XML streams and documents. These techniques enabl
the sharing of representations of inputs to multiple joeusqd the
sharing of join computation. Our techniques are also apple

to relational event processing systems and publish/sibessys-
tems that support join queries. We present experimentaltse®
demonstrate the effectiveness of our techniques. We aeetabl
process thousands of XML messages with hundreds of thossand
of join queries on real RSS feed streams. Our techniqueyaia
than two orders of magnitude speedup compared to the naive ap
proach of evaluating such join queries.
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H.2 [DATABASE MANAGEMENT ]: Query processing

General Terms
Algorithms, Experimentation, Design, Performance
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1. INTRODUCTION

XML has become the primary standard for data exchange on the
Internet and for enterprise applications. The rapid emergef
Web Services in particular has underlined the need to stpffor
cient XML processing in distributed environments. A crliciam-
ponent of Web Service based architectures are messagerdroke
They manage large numbers of subscriptions, or queriesethat
press the interest of subscribers — both users and applisatihe
subscriptions are matched in real-time wébent streams (or for
short, streams) of incoming XML documents, created by ghbli
ers like applications behind a Web Service interface, nemgces,
or blog writers. Because of its close relationship to tiadal pub-
lish/subscribe (pub/sub) systems, we will use the tXivii pub-
lish/subscribe system to refer to this class of message brokers. In
the setting of processing XML streams, events and docunaeats
interchangeable terms.

It is crucial for XML pub/sub systems to be both expressive an
scalable. Expressiveness refers to the ability of the glagryuage
to support a wide variety of queries. The downside of greater
pressiveness is that complex queries are more difficult eam
ment efficiently. For applications like message brokeramgXML
pub/sub system has to scale in terms of the nhumber of subscrip
tions and the stream rate of incoming messages, while prayid
sufficient functionality to express all relevant subsdops.

There has been much recent work on XML pub/sub systems that
can efficiently process a large number of XML subscriptionsro
streaming XML documents [5, 10, 13, 16, 17, 25]. These system
support a proper subset of XPath 1.0, typically limited tonvard
axes (child and descendant), predicate evaluation anccaittiop-
erator . However, they are unable to express a large class of im-
portant queries: queries that correlateltiple input events to de-
tect complex patterns in real-time. This class has beergrezed
as being highly important for event processing [27, 12]. \&fer
to these queries aater-document queries.

Inter-document querigsin different XML documents based on
values in their nodes, either attributes or text. An intecutinent
query is capable of joining multiple documents in either $hene
XML stream, or across multiple streams. For example, foritoon
ing blogs and news articles, users might be interested i fdst-
ings by the same author or about the same topic that appdanwit
a short time of each other and are above some reputatiorhdides
Inter-document queries are also building-blocks for marevgr-
ful queries like finding all electronics product announcetsdhat
“create above-average attention in the blogosphere.” terprises,
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Figure 1: A book announcement documenti1
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Figure 2: A blog article documentd2

related events containing information about the qualitgervice
that customers receive need to be processed to monitor izoroel
with service level agreements. There has been some emevgikg
on XQuery stream processing [21, 15]. XQuery can express joi
queries, but none of the existing systems scales to a langbeu
of concurrently running queries.

Example. We illustrate our approach with a running example.
For ease of exposition, we consider processing of a singlé. XM

S/lbook->x1[./[author->x2][.//title->x3]

Q1 FOLLOWED BY{x2=x5 AND x3=x6, T1}
Sl/iblog->x4[./lauthor->x5][.//title->x6]
S//book->x1[.//author->x2][.//category->X7]

Q2 FOLLOWED BY{x2=x5 AND x7=x8, T2}
S//blog->x4[.//author->x5][.//category->x8]
S/Iblog->x4[./[author->x5][.//title->x6]

Q3 FOLLOWED BY{x5=x5" AND x6=x6’, T3}
S/iblog->x4'[.//author->x5"[.//title->x6"]

Table 2: XSCL Formulations of queries in Table 1

anywhere from a few hundred to millions of concurrently \aeti
subscriptions for streams that can have high arrival rates.only
way to achieve this kind of scalability is by effective mdtiiery
optimization (MQO).

Unfortunately, MQO for inter-document queries is a veryleha
lenging problem. As even the simple queries in Table 1 itaist
the join condition consists both of tree patterns (e.g. dentify
the author nodes and title nodes) and node value compalisans
equality of author name text for book announcement and htieg a
cle). This can create a wide variety of conditions withdittppar-
ent commonality. To address this issue, we propose to disaeb
query intotree pattern components andvalue comparison compo-
nents. The tree pattern components are expressible in the simpler
XPath fragments supported by existing XML pub/sub systékes |
YFilter [13]. This enables us to leverage existing XML puli's
technology for efficient discovery of tree pattern compdsek/n-
fortunately this does not suffice, because the main perfiocabot-
tleneck in practice is the evaluation of the value comparisom-
ponents, as is confirmed by our experimental section.

We show that value comparison components, which have only
very limited structure information, almost always can bsailibed
by a small number afuery templates. This is guaranteed for XML
documents that have a fairly regular schema, which is comimon
practice [11], and for documents with a small number of npdes

streamS that includes book announcements and RSS feed itemswhich is often the case for individual RSS feed items. Evan fo

for blog articles. Our techniques can be easily extendedcalle
multiple XML streams. Two example documents are shown in Fig
ures 1 and 2. The superscript of each element node denoteslgs
id as defined by pre-order traversal of the XML tree. The dashe
ovals connected to leaf nodes with dashed lines represernexi
values of the leaf nodes in this document.

other XML streams, in practice the number of value compariso
components is small, because only a few of the possible cempa
isons are semantically meaningful. (E.g., it is unlikelgtth query
would ever compare the author name with the ISBN of a book.)
This observation gives us a powerful handle on MQO. Withasx d
secting join conditions, each different condition would/éao be

Table 1 shows three example queries. Query Q1 looks for a book implemented and executed individually, similar to a nesteps

announcement followed by a blog article from one of its atgho

join whose outer loop iterates over all queries and whoseriluop

that promotes this book. Q2 tries to find a book announcement evaluates the join predicates. Our dissection approaatcéesia

followed by a blog article from one of its authors following on
material in the book. Q3 checks for blog cross-postings.

partitioning of the query set into a small nhumber of equinate
classes, one for each query template. Now we only need a per-

XML message brokers are used for applications ranging from template implementation and can take advantage of saitede

tens of publishers and subscribers, in small enterprisdsjridreds
of thousands of users in Internet scale RSS feed monitoong f

processing of all queries that belong to the same templatendp-
ping this into a relational join problem, we can take advgetaef a

blogs and news. Hence an XML pub/sub system has to processwealth of expertise in relational query processing.

Q1 | Return a book announcement, followed by a blog artigle
from one of its authors with the same title as the book

Q2 | Return a book announcement, followed by a blog artigle
from one of its authors on the same category as the bpok.

Q3 | Return a pair of blog postings by the same author
and with the same title.

Table 1: Examples of Inter-Document Queries

The query dissection into tree pattern and value comparison
components naturally leads tawao-stage approach to query pro-
cessing. Our system has two major components—x&ath Evalu-
ator for processing all tree pattern components andoheProces-
sor for evaluating the value comparison components (see FRure
For an incoming XML document, first the XPath Evaluator is in-
voked to evaluate the tree patterns. It produces a set oinggaaf
variables defined in these patterns. These bindings aneadfto
as XPath witnesses, or witnesses for short. Second, the Join Pro-
cessor uses the witnesses to perform value joins on a p@iatm
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Figure 3: Two-Stage Query Processing

basis. In this scheme, the XPath Evaluator can be viewed as-an
cess method or accelerator for efficiently “retrieving” thitnesses
for the join processing stage. As mentioned above, we car-lev
age existing XML pub/sub technology for the XPath Evaluatuad
hence focus on the Join Processor in this paper.

Our contributions. The problem we address in this paper is
to efficiently process a large number of continuous interutioent
queries against incoming XML streams. Our main contrimgio
are as follows.

e We propose noveMassively Multi-Query Join Processing
techniquelfor efficiently evaluating a large number of inter-

Each query in XSCL consists of three clauseEL ECT, FROM
andPUBLISH. TheSELECT clause specifies how to construct the
output XML stream of the query, and is similar to the XQuB-
TURN clause. Thé?UBLISH clause assigns a name to the query’s
output stream, so that other queries can refer to it as thpirti
For example, the querySELECT * FROM blog” outputs every
event from input stream blog. This query can be alternatiweilt-
ten as “blog”, since in XSCL th8ELECT clause can be omitted,
defaulting toSELECT *. From a query optimization point of view,
the most relevant construct is tRROM clause. It specifies the join
condition for the query’s input streams, using a varietypémtors
from two groups—traditional XPath operators and join ofeEsa

XPath operators. Tree patterns in XML documents can be ex-
pressed with the same XPath operators that are used bynexisti
XML pub/sub systems. In particular, the following axis cgters
can be used: / (child), // (descendant), @ (attribute) argdrgd-
icate). These operators have the usual XPath semantics.akVe c
apply these operators to a particular XML stre@ray placing the
stream name before them. For exam@&blog//title outputs the

document queries over streams of XML documents. The titles of blog articles from strear®.

key to achieving scalability is to dissect join conditionsoi

Join operators. In addition to the operators drawn from XPath,

tree pattern and value comparison components. This leads toxSCL has two join operators, which make it significantly more
a two-stage processing approach in which both storage andexpressive than the previously used XPath fragments. Thep

computation can be shared effectively among queries.

e We develop a compact representation for the results of the

first processing stage, the tree pattern witnesses prodyced

the XPath Evaluator, for efficient access during the second

processing stage. (Section 3)

erators are used for inter-document queries. The fiGIN, is
equivalent to the time-based window join operator in thatiehal

data stream processing literature [19]. It has two paramsgieed
andT, thejoin predicate andtime constraint, respectively. The ex-
pression AJOIN{ pred, T} B produces an output event when there

is an event produced by expression A and an event produced by

« We propose a scalable Join Processor for the second stage€XPression B occurring withiii’ time units of each other, and they
The main idea is to map the problem into a relational frame- together satisfy predicatered. Subexpressions A and B are com-

work which facilitates sharing of join processing cost asro
different queries. (Section 4)

e We present query optimization techniques for the Join Pro-
cessor to further improve performance. Here we take advan-

tage of the relational formulation, e.g., for view matdrat
tion. (Section 5)

posed from XPath operators only. We refer to thenXBath query
blocks, or query blocks for short. We will usually user to denote
a query block. In this paper we assupred contains only equal-
ity predicates. Efficiently processing a large number ofjiraity
predicates is left as future work.

The second join operatdfOLLOWED BY, corresponds to the
sequencing operator in event processing systems [8, 12, 127]
has the same two parameters)@N and can be used in the same

» We evaluate the performance of our join processing tech- context. The only difference is thEBOLLOWED BY is “forward-

niques through an extensive set of experiments in Section 6.

We discuss related work in Section 7 and conclude in Section 8

2. XSCL QUERY LANGUAGE

The XPath fragments that form the query language for exgstin
XML pub/sub systems like YFilter are not expressive enoumh f
inter-document queries. It is possible to express theseegum
XQuery, but that is a much more general language with maniy add
tional features (and complications), which are not relevanthis
discussion. Some of the inter-document queries would laok u
necessarily complex in XQuery, obscuring the query stmecand
optimization opportunities.

looking.” Expression AFOLLOWED BY{pred, T} B only pro-
duces an output result when there is an event produced bgexpr
sion A followed by (i.e., with timestamp value greater tham)
event produced by expression B withilhtime units, and they to-
gether satisfy predicajared.

Notice that the time constraint parameferequires XML docu-
ments to have timestamps. They can be assigned either bylbhe p
lishers (event sources) or by the XML pub/sub system itSdtis
choice is application dependent. A detailed discussionam tio
manage timestamps is beyond the scope of this paper and éras be
examined in related work [26].

All our techniques extend to tuple-based window joins [28],
whereT expresses a window constraint in terms of the number of

To be able to express inter-document queries in a natural andevents rather than timestamps.

compact manner, we define the XML Stream Conjunctive Lan-
guage, or XSCL for short. XSCL adds join operators to the KPat
operators used by previous XML pub/sub systems. It can lveade
as a fragment of XQuery, i.e., all XSCL queries can be cordert
into equivalent XQuery expressions. Due to space consirain
omit the formal language definition, which is not necessany f
grasping the features relevant to this discussion.

1This term is grammatically correct since “Massively” refap
“Multi-Query”, rather than to “Join.”

Variable binding construct. In the FROM clause, we can also
bind XML element nodes obtained through XPath operators in
query blocks to variables through the use of &&& clause. These
variables can be referred to in join predicates inFROM clause,
and in theSELECT clause for output construction. (This is similar
to SQL'sAS clause.)

Examples.Table 2 shows the XSCL formulation of the example
queries from Table 1, using Ti as the window constraint fagrgu
Qi. Three points should be noted for the XSCL formulatiorisstF



the semantics of the equality operator in XSCL is defined asaleq
ity of the string values of the nodes, where the string valia o
node is defined by XPath semantics.

Second, in thdFOLLOWED BY predicatepred of an XSCL
query, it is possible to apply the standard XPath operatkes/|
/I and [] to variables bound in the query blocksROLLOWED
BY. However, we can show that any XSCL query can be rewrit-
ten into a form where predicates inside f@LLOWED BY part
of the query do not contain any XPath operators and only @onta
value joins that involve pairs of variables bound in the twptit
query blocks ofFOLLOWED BY. We say that an XSCL quenry
is in value-join normal formif ¢ has this property. In the remain-
der of this paper we assume queries are in this normal foriso,Al
when two variables (in two different queries or in the samergu
have exactly the same definition, we assume the two variaoes
of the same name. Our assumptions are without loss of gémeral
since these effects can be achieved through rewrite tecbsidur-
ing query insertion. The three queries presented in Tabléfi} f
our assumptions.

Third, when theSELECT clause is omitted for a join query, we
construct the output XML tree in a default way as follows. We
create a new root node and make the root element nodes from
the two query blocks its children. For example, for query Q1
each output XML tree has two subtrees under the root, where
the first subtree corresponds to the output of XPath exmmessi
/Ibook[.//author][.//title] given by the first query bloclkand the
second subtree corresponds to the output of XPath expressio
/Iblog[.//author][./title] given by the second query blo

Expressiveness of XSCLIt is easy to show that XSCL is more
expressive than conjunctive queries [3]. When the join lgrap
an XSCL query is cyclic, it is therefore NP-hard to find an op-
timal query evaluation plan (join ordering) in general. &irwe
would like to process a large number of continuous XSCL @seri
this makes our problem even harder. Hence instead of atigcki
the general conjunctive query processing problem, we E®pm
efficient solution that is applicable to a very large and pcatly
important subset of the problem instances.

3. STAGE 1: FROM XSCL QUERIES TO
VALUE JOINS

Recall that the two-stage query processing scheme separate
XSCL query processing into XPath tree pattern processirdy an
value join processing. Given a set of input XSCL queries, we
take all the (single-document) tree patterns correspanimguery
blocks in these queries, and insert them into the XPath Btalu
with the goal of returningvitnesses that represent single-document
variable bindings. For each eventwe first invoke the XPath Eval-
uator to produce all its witnesses, and then value-join titreasses
from e with withesses from events earlier in the stream. Due to
space constraints, we omit the proof that this two-stageyque-
cessing scheme yields correct query results.

In this section we describe the first of the two stages of our mu
tiple XSCL query processing, XPath Processing, and focusoan
to efficiently represent the witnesses produced by the XPuasi
uator (Section 3.1).

For ease of exposition, we make simplifications to the query
structures in the following discussion. First, we considety
XSCL queries with a singleEOLLOWED BY operator, where the
two corresponding query blocks will match two different XML
documents in order to produce a query output. Second, wenassu
that the predicate of BOLLOWED BY operator is a conjunction
of simple equality predicates on string values. In the foilg,

each such simple equality predicate is referred to aal@e join
predicate or value join for short. We also assume that value joins
occur only between leaf nodes of tree patterns. Last, warassu
all queries read a single input stream. Our techniques caxbe
tended to handle queries involving multifOLLOWED BY or
JOIN operators with more complex predicates than conjuncts, and
more than one input stream.

3.1 XPath Processing and Output Represen-
tation

Given an input XML document, the XPath Evaluator can benefit
from existing XML pub/sub technology for efficient discoyesf
tree patterns. How do we represent these witnesses for ¢thade
stage value-join processing, while preserving tree strecinfor-
mation in them? One extreme design point for representingtiXP
witnesses is a relational schema storing each valid cortibimaf
all the variable bindings involved in an XPath query blockheT
other extreme design point would be to completely shred tite w
nesses into a binary relation of individual bindings of ahtées, as
described below.

For a given XPath query block, we derive avariable tree pat-
tern, which extends the standard notion of an XPath tree patigrn [
by associating each tree node with a variable name. We tleaecr
a binary relation for each pair of a parent and a child nodénén t
tree pattern.

This binary relation factors out redundant informatioris linal-
ogous to normalization of relational schemas based onifuradt
multi-value and join dependencies. In addition, the regmé&stion
for witnesses of one query block will be easy to share amoherot
query blocks that bind to the same XML element nodes. Thus in
this paper we decided to examine in-depth this way of reptaxe
witnesses; a full exploration of this design space is futuek.

To reduce the number of relations, instead of using a birary r
lation for each edge in the variable tree patterns, we usaghesi
relation of four attribute¢var 1, var2, nodel, node2) to
store the pairs of variable bindings falt edges in the variable tree
patterns. Each tuple in this relation storesnimdel andnode2
a binding consisting of a pair of node ids, and this bindingeo
sponds to a pair of variables whose names are storediii and
var 2. We denote this relation &;,w , which stands for “binary
representation of witnesses”.

There are other pieces of information that need to be stared f
value join processing in the second stage. We encode theat in r
lations as follows. Note thaR::,w stores bindings of pairs of
variables from the currently processed stream documene idh
and timestamp of this document are stored in the singlettation
Raoersw With schema doci d, ti nestanp). For example,
suppose event; in Figure 1 has document idl and timestamp
t1. When it is the current document being processeg,.rsw
contains one tupléd1, t1). Similarly, binary relationR .15
stores the docid, timestamp pairs of previous documents.

The representation of bindings from previous stream dooisne
is very similar to Ryinw, and they are all stored in a relation
Ryin. However, since the bindings could come from different doc-
uments, the schema &t,;,, extends that ofR;,, 1y with an addi-
tionaldoci d attribute. Its schema is therefafeoci d, var 1,
var2, nodel, node2).

In addition to storing the bindings of variable pairs in thesetpat-
tern, we also need to store the string values of nodes thaamed
to variables, so that we can evaluate the value joins on tirgst
values of these variable bindings in the Join Processor. tdre s
the string values of nodes from the current stream documhité w
avoiding redundancy, we use a binary relatif,.i with schema



(node, strVal) for this purpose. Nodes that are not bound to Xy X4 varl vard

any variable will not be stored in this relation. Similanye store
the string values of nodes bound in previous stream docugient
arelationR4,.. Its schema igdoci d, node, strVal), ex-
X2 ~_ f )\/\Xi _ / X6 var2! \\il_':;\/
el

tending that ofR4,.w with adoci d attribute.  vars /varé
Example continued. Consider again our running example with

Queries Q1, Q2, and Q3 shown in Table 2. Assume that the docu-

mentd1 shown in Figure 1 has been processed. Then Tables 4(b)

and 4(c) show the contents of relatioRs;,, and Raoc. Figure 4: Join Graph of Figure 5: Query Template Q
Query Q1 in Table 2 for Q1, Q2 and Q3 in Table 2

4. STAGE 2: PROCESSING VALUE JOINS

In this section we propose novel techniques for processimge between the two (leaf) nodes corresponding:tandy. We call
number of value joins. A straightforward way would be to eval such an edge walue join edge. For example, the value join edge
ate theFOLLOWED BY operator for each XSCL query separately. petweenz, andzs in Figure 4 corresponds to the join predicate

This strategy is not scalable for two reasons. First, thereiop- z2 = x5 in QL.

portunity for sharing of computation among multiple qusri€ec- A query template (or atemplate for short) Q of Q, is a graph
ond, this one-query-at-a-time processing imposes a speeifted- isomorphic to its join graph with different node labels désed as
loop style join strategy, where the “outer loop” iterategioeach follows. Each node: in Q is labeled by a uniquely namedeta-
query, and the “inner loop” completes the join processingliat variable, whose value is the label af's corresponding node in
query. With set-oriented query processing strategies, amesig- the join graph ofQ; i.e., the name ob's corresponding variable in
nificantly improve performance. the queryQ). Each edge i€ is also uniquely labeled.

Thus, we would like to group the join processing of multiple  For example, Q1 in Table 2 belongs to the query template de-
queries so that computation can be shared among them, anea mo noted asQ, which is shown in Figure 5. Q2 and Q3 in Table 2

efficient join strategy compared to one-query-at-a-timelmaused.  also belong to the same query template. The six nodes intikiyq
However, since join operators in different queries coulceas dif- template are labeled fromar 1 to var 6. The value of the meta-
ferent variables and have different join conditions, itraeethat variablevari isxi for1 <4 < 6. The correspondence between
set-oriented processing of multiple queries is extremelsdtto nodes and edges in the query template and each query is sbviou
achieve. For example, edgpl connectingvar 1 andvar 2 in the template

The key insight here is that with the right query plan, two dif  corresponds to the structural constraift / x2 in Query Q1.
ferent queries can still share processing. In this sectiade-

fine the notion of query templates, and present the querysfgtan 4.2 Sharing Templates With Graph Minor
value-join processing based on query templates. Intljtitee ) . .
In Section 4.1, we require that the query templ@ef a query

XSCL queries are partitioned into equivalence classesdbase . - L .
Q@ be isomorphic to its join graph. However, we can show that if

which query templates they belong to. The join processingllof - L :
the XSCL ies belonaing to th t lat we derive a simplified query templa®’ of ) from the graph mi-
€ quernes belonging 1o tne Same query tempiass can how nor [24] of the join graph ofy through a set of reduction rules

be shared. Therefore, instead of performing joins indigitjufor bel he ioi . | il be th hi
each XSCL query, we now perform a join for each set of XSCL elow, the join processing resu t @ will be the same a@. T IS
enables more queries to share the same query templaterfqrii

ueries belonging to the same query temptate. .
g ging query pf cessing.

4.1 Query Template Based Join processing Given the join graph of), we compute its minor via the follow-

Due to space constraints, we give only an informal presientat ing reduction rules. First, we recursively remove the leafes that
. - ’ nformal presient do not participate in any value joins from the join graph. teve
of the ideas illustrated by examples, emphasizing intaitiather b P y J Join graph. i

th . The f | definiti f ; late baséali remove the nodes that are not the descendants of the leastaom
an rigor. The tormal definiions of query témpiate basen poo- ancestors of the remaining leaf nodes. Finally, we remdwbade
cessing, as well as its proof of correctness, can be foundiin o

online technical report [18]. intermediate nodes that have only one child in the modifiéa jo

. . graph. The resulting join graph contains only leaf nodes plaga-
F O?nggs(gsL que?Q with ?}No query bloik_s c_?nbr:ecéed by a ticipate in value joins, as well as the intermediate nodatdte the
visualize it as a gorg?)rha ?(re’f:rlig d Etic? g;c;:]yg?ap;ln illist?atégvt?ycan least common ancestors of some of the leaf nodes. We degve th
Figure 4. Each query block is represented by a tree pattenmeid query template of) from the resulting join graph.

The intuition is that since the structural constraints facteindi-
by solid, bold edges, referred to asuctural edges. Each node . : )
in the tree pattern is labeled by the name of a variable boond i vidual guery blockiir have been evaluated by the XPath Evalua

the corresponding query block . For example, the root node torin Stage 1, the value join processing stage need onikdhec

of the left-hand-side tree pattem in Figure 4 is labeled:bythe value constraints, as well as a subset of the structuralticonts
name of the variable bound to //book in Q1. There are two tpbes Involving those leaf nodes that satisfy the value constsaiThe

. . . . correctness of this approach is proved in [18].
structural edge.s’ representing child axis and descendémnt Ia_or The number of different query templates depends on the maxi-
ease of exposition, we assume only descendant axes aratgrese

the XSCL queries we deal with. For each equality predi y mum number of value join predicates in the query workload, bu

h . not on the number of queries registered with the system, #ven
in the FOLLOWED BY predicate 0fQ, we draw a dashed edge these queries have very different tree patterns or seemuateq

2Mathematically speaking, instead of performing join ondrigi- diffgrgnt nodgs. For example, for queries with three valisesjin
nal XSCL query space, we now perform join on the quotient epac the join predicate of onEOLLOWED BY operator, we show all

of the XSCL queries defined by the equivalence relation induc 16 possible query templates in Figure 6. The first 6 templates
by query templates. the dashed box correspond to the query templates for quagies




[ #VJ | #QT(flat schema) #QT(complex schema)

1 1 1

2 3 3

3 6 16
4 16 <230

Table 3: Number of Query Templates with respectd to Number
of Value Joins

Algorithm 1 Join Processing Algorithm
Require: Current stream document

1: Invoke the XPath Evaluator id to produceRpinw, Raoew
andRgocrsw
2: for all query template® in the systendo
3:  Evaluate the corresponding conjunctive query to prodece
sults of XSCL queries belonging to templae
4: Maintain join state with Algorithm 2

fined on a “flat” XML document schema with two tree levels, such

as the schema of the blog articles illustrated in Figure Dlera
shows the relationship between the number of value joirnded
in the queries and the number of different query templatethfzse
queries. We leave it as future work to derive a closed-fonrmfda
for the exact relationship.

In the remainder of this section, we will explain our join pro
cessing techniques based on query templates. Our teckngne

Algorithm 2 Maintain Join Stat&R4.c, Rbin, aNd Raocrs

Require: Rioew , Rpinw and Raocrsw produced by the XPath
Evaluator when processing the current stream document

1: Sethoc to Rdoc U (RdocW X Ttimestamp (RdocTSW))
2: SetRyin 10 Ryin, U (RbinW X Ttimestamp (RdocTSW))
3. SetRaocrs 10 Raoers U RaoeTsw

Ryoc(docid,  Ryeew(nodes, Ryoe(docid, Ryoew(node6,
L1 —strVal— ,—strVal'— X
node2, strVal) strVal) node3, FtrVﬂl ) strYal )
¥ g 33 3
g3 g 332 g
LSI-1 2 o = =1
Roi(dokid, varl,  Rymw(vark, var5,  Ren(docid, varl,  Ryw(var4, var6,
var2, nodel, node2) node4, node5)  var3, nodel, node3) node4, node6)
~~_—nodel AN 7,,,,7 **”": node4————
Varg, | ke \&‘v ar©
V. L A e
L3 "2 s

R1(qid, varl, var2, var3, var4, var5, var6, wl)

Figure 7: Relational Conjunctive Query CQr For XSCL
Query Template Q in Figure 5

Raocw joined on their string value attributes in the body of
CQr. For example, for edge; of query templateQ in Fig-
ure 5, we put a copy oR4..(doci d, node2, strVal) and
Raioew(nodeb, strVal) joined on string valuest r Val in
the body ofCQr. For each structural edge in the query tem-
plate, we put a copy oy OF Rpinw in CQr body, depend-

ing on whether this edge appears on the LHS or RHS tree pattern
in the query template. We do not need to evaluate in the body
of CQr the tree pattern parts of the XSCL queries, since these

be decomposed into two parts. First, we encode all the irderm
tion needed in join processing as relations, so that we camdge

techniques from relational join processing (Section 4$&cond,
for each query template, we create a relational conjuncfiery
with which we evaluate all XSCL queries belonging to thatrgue
template at once (Section 4.4). Our query template basegjor
cessing algorithm for each documehis given as Algorithm 1.

4.3 Representing Join Graphs As Relations

The information needed in join processing includes the join

graphs of the XSCL queries, and the XPath witnesses fromuthe ¢

rent stream document as well as from previous stream dodsmen
that participate in the join. We have shown in Section 3.1 how

to encode XPath witnesses from the current and previouarstre
documents in relationByinw , Raoew s Raocsw s Rbin, Rdoc @nd

RaocTs. We now describe how to encode the join graphs of XSCL

queries based on query templates as relations.

For each query templat®@, we use a relatiorkRr to encode
the join graphs of XSCL queries belonging to this templatee T
schema contains one attribuiged for storing the query id. Also,
it contains one attributear i for each node in the query template
labeled byvar i , the name of a meta-variable. Finally, it contains
one attributeM for storing the window length of the join operator.
Each query belonging to the templaawill be encoded as a tuple

in relation Rr. For example, the schema and content of relation

Ry for the three queries in Table 2 belonging to join templ3tim
Figure 5 is shown in Table 4(a).

4.4 Conjunctive Query For Each Template

For each XSCL query templat@, we create a relational con-
junctive query, denoted &SQr, so that the XSCL queries belong-
ing to Q can be evaluated all at oncedQr.

We present the conjunctive queries in Datalog. For a given

query templateQ, here is how we creat€'Qr. For each
value join edge in templat&®, there is a copy ofR4.. and

structural constraints have been evaluated in the XPathu&es,
and their results have been storedRp.,.iw and Ry;,,. For exam-
ple, for edgepl of query templateQ in Figure 5, we put a copy
of Ryinw(docid, varl, var2, nodel, node2) in the
body of CQr. This completes the construction 61+ body.

The head of the conjunctive queyQr is a relation denoted
as R+, Whose schema contaigg d, doci d1, W , as well as
one attribute for each node involved in the conjunctive gu&ior
example, the schema @&,.:r for query templateQ in Figure
5is(qid, docidl, nodel, node2, node3, node4,
node5, node6, w ),wherenodei storesthe binding node id
of an XSCL query variable whose named is stored as valuaiin
in the template. For each tuple in this relatiorgdel through
node3 values come from documemtoci d1. node4 through
node6 values come from the current document.

Below we give the Datalog representation of the conjunctive
query for query templat@ in Figure 5.

Routr(qid, docid, nodel, node2, node3, noded, nodeb, node6, wl) :—
Rgoc(docid, node2, strVal), Ryip (docid, varl, var2, nodel, node2),
Raoew (nodeb, strVal), Ryinw (vard, vars, noded, nodes),
Ryoc(docid, node3, strVal'), Ry;p (docid, varl, var3, nodel, node3),
Raoew (nodeb, strVal’), Ry;nw (vard, var6, node4, node6),
Rr(qid,varl, var2, var3, vard, vars, var6, wl)

This conjunctive quenC'Qr is visualized in Figure 7. In this
figure, each node is a relation in the body@f)r. There is an
edge between two relations, if there is a join between thetre T
edge is labeled by the set of attributes on which the twoicglat
are joined. In the visualization of the conjunctive querg place
the relations in three levels, denoted as L1, L2 and L3. Tlatioas
in level L1 are copies oRg,. and R4..w . The relations in L2 are
copies of Ry, and Rpinw . In level L3, there is always only one
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Figure 6: 16 Query Templates With 3 Value Joins

Table 4: Rselations involved in Section 4.4.1

(a) Rr for Query Templat& in Figure

(b) Raoc After Processingl1

[gid]varl[var2 |var3|var4Jvar5]var6 [w | [docid ] node ] strVal
Q1 x1 X2 x3 x4 x5 X6 T1 di 0 -
Q2 x1 X2 X7 x4 x5 x8 T2 di 2 Danny Ayers
Q3 x4 x5 X6 x4 x5 x6 T3 di 3 Andrew Watt
di 4 Beginning RSS and Atom Programming
di 5 Scripting & Programming
di 6 Web Site Development
(¢) Rpin After Processingll (d) Raoew Of d2
| docid [ varl [ var2 [ nodel | node2 | | node | strval |
d1i x1 X2 0 2 0 -
di x1 X2 0 3 2 Danny Ayers
di x1 x3 0 4 3 Beginning RSS and Atom Programming
dl x1 X7 0 5 4 Book Announcement
di x1 X7 0 6 5 Scripting & Programming

(e) RbinW of d2

(f) Content of R,.+7 After Processingi2

[varl [ var2 | nodel [ node2 |

[gid ] docidl | nodel | node2 | node3 | node4 | node5 | node6 | w ]

Algorithm 3 Producing Query Results FroRy.:7
Require: Input relationsRou:7, Riocrsw and Ryocrs

1: Letthe single tuple iR4ocrsw bed2
2: for all tuplesa in Rou:r do

3:  Find atupledl in Riocrs With d1.docid = a.docidl
4:  if 0 < d2.timestamp — d1.timestamp < a.wl then
5 Construct an output XML document for the query with id

a.qid based on the specification of BELECT clause

relation Ry for the query templat@. The relations in level L1, L2
and L3 are joined together to produg -

To produce final query outputs frofi,..7, we invoke Algo-
rithm 3, which iterates over tuples iR,.:r. For each tuple, we
first make sure that the temporal constraint of its corregdpan
query is satisfied (Line 3). Note that the temporal constrai@
check in Algorithm 3 corresponds to that 8OLLOWED BY op-
erator. If the temporal constraint is satisfied, we then pcedan
output XML document according to the specification of Bie-
LECT clause in that query. This process of producing query result
from Ro..1 is straightforward. We therefore do not discuss it fur-
ther and focus only on the conjunctive query)+ that produces
relation R, for each query templat@.

After query results have been generated for the current-docu

x4 x5 0 2 Q1 di 0 2 4 0 2 3 T1
x4 X6 0 3 Q2 di 0 2 5 0 2 5 T2
x4 X8 0 4
x4 x8 0 5

ment, in Line 1 of Algorithm 1, we maintain the join state cistis
ing of relationsRgoc, Rpin and Raocrs With Algorithm 2. After-
wards, we can discard the relatioR$,cw, Rpinw andRgocTsw ,

and start processing the next stream document.

4.4.1 Query Processing Example

Let us now walk through the query processing steps for gsierie
Q1, Q2, Q3 in Table 2 against the sequence of two docum#nts
andd2 shown in Figure 1 and 2, which have timestampand¢2
(t1 < t2) respectively.

When documentdl comes into the system, sind@q,. and
Ryir, are initially empty,d1 does not produce any query result.
Raoew s Roinw @nd Rgocrsw are then merged int@Raoc, Roin
and Rq..Ts respectively, with theloci d value of each new tu-
ple in R4 and Ry;,, Set tod1l. The content ofR4,. and Ry;,, at
the end of processing this document is shown respectivelglite
4(b) and 4(c).R4ocTs contains only one tuple,(d1,¢1)}.

When documendi2 arrives, we show the content & ;.. and
Ryinw produced by the XPath Evaluator in Table 4(d) and 4(e).
RaocTsw contains one tupl¢(d2, t2)}.

Now we want to joiNR4oc, Rpin, Raoew , Rpinw, and Ry to
produceR,..r. The content oRR,.:7 is shown in Table 4(f).

Finally, we invoke Algorithm 3 to produce one output XML doc-
ument each for query Q1 and Q2. According to XSCL semantics,
the two output XML documents produced by Q1 and Q2 have ex-



actly the same content. The root of the output document has tw (Raoew Mnode2=node Rbinw ). In sum, only the tuples ifk; and

subtrees, where the first subtree corresponds to the subtrtzl

at thebook element ind1, and the second subtree corresponds to

the subtree rooted at i og element ind2.

5. QUERY OPTIMIZATION

We have presented the basic ideas of query template based jo

processing in Section 4. The result of these techniquexyriatgm
1, evaluates the conjunctive queries for different tengslande-

pendently as is shown in Line 1. It therefore leaves much room

for sharing computation among these query templates. Ad#o,
processing for the current XML event on the stream might iene
from remembering the results of processing previous XMLnéese
In this section, we propose view materialization as thetgmiuo
both these issues.

So far we have assumed that we keep as join state only

Raoc, Rvin @andR 415 . We have not considered materializing any
intermediate join results for the conjunctive quérg) of a query
templateQ. We now would like to explore the view materialization
spectrum with respect to join processing cost.

Let R; denote the result of joiningta,. and Ryi,. In one ex-
treme of the spectrum, adopted by the Algorithm 1, we do ndééma
rialize R; , and instead compute it frofs,. and Ry, for each in-
coming document. This is likely to result in redundant cotafian
in the join processing. In the other extreme of the spectwecan
try to materialize the entir&; , and keep it up to date after process-
ing each incoming document. The materializatiolRpf makes the
join processing for each input document less expensive. adery
the view maintenance cost &; is likely to be high, since in or-
der to maintainR; for each incoming document, we need to first
join Ry;nw and Rgocw together, whose result is denoted g,
and then merget, into the existingR; . Although Raocw Will
be small for each incoming document, the sizeRf,,w could
be proportional to the number of XSCL queries in the systerd, a
therefore the join result could be very large. Also, it may be
worth maintaining the entir&; , if we do not use such a material-
ized result in its entirety in processing future documews.would
therefore like to find a sweet spot in the materializatiorctpen to
minimize the sum of join processing and view maintenancéscos

Determining how much of?; to materialize requires a careful
study of howR; is used in query processing. The schemargf
is (docidl, varl, var2, nodel, node2, strVal),
where variablegar 1 andvar 2 bind respectively to nodesodel
andnode2 in documentdoci d1, andnodel is an ancestor of
node2. Also, strVal is a string value corresponding to node

Rr will participate in conjunctive query processing.

For each incoming XML event, we cannot avoid the cost of com-
puting Rr. However, it is possible to reduce the cost of computing
Ry, through materialization of join results for previous ewento
do so, we break ugR; into slices, where each slice is a set of tuples

. produced by the join of tuples iR4,. With a certain string value

and Ry:,. Specifically, we keep a “view cache” of slices Ry,
denoted a3/ C, where each cache entry is keyed on a string value
s, and stores in the value component a relatityn)s, computed by
EL,s = strval =s(Rdoc) Mnode=node2 Rpin. Similarly, we define
gR,s to beostrval =s (RdocW) Mnode=node2 Rpinw -

Whenever we perform a join between the set of tupleRip.
with a certain string value and Ry;,,, we first look up the view
cache with search key, to see whether it has been materialized.
The size of the view cache can be set according to the memory
constraint of the system. Cached entries can be replaceddsha
replacement policy appropriate for the workload, such ad LR

We incorporate the materialization based optimizatiorvaliato
Algorithm 1 to produce an improved algorithm, Algorithm 4s-E
sentially, Line 4 through Line 4 are newly added to compute th
slices of Rr, and Rg, in order to reduce the query processing cost
of Line 4. The computation of slices @t;, benefits from remem-
bering the partial result of processing previous XML eveimtpar-
ticular, slices ofR;. The union of these computed slices Bf
(resp.Rr) gives the result of the entitBy, (resp.Rr).

We then evaluate the conjunctive query for each query tem-
plate in Line 4 — 4. Note that we no longer need to access
Rbin, Rbinw , Rdoc and Rgocw - INStead, we access onlyz, and
Rr computed above. This enables sharing of join processing
among different query templates. For example, to processyqu
templateQ in Figure 5, we modify the conjunctive quetyQr
presented in Section 4.4 into the following query which ases
only R, Rr andRr.

RowtT (gid, docid, nodel, node2, node3, node4, nodeb, node6, wl) :—
Ry, (docid, varl, var2, nodel, node2, s),

Rpg(vard, vars, noded, nodeb, s),

Ry (docid,varl,var3, nodel, node3, s'),

Rpr(vard, var6, node4, node6, s'),

Rr(qid,varl,var2, var3, vard, vars, var6, wl)

Finally, we maintain the join state and view cache in Line 4 — 4
of Algorithm 4.

6. PERFORMANCE EVALUATION

node2. Recall this is because we assumed that value joins only ~We measure the performance of join processing and our opti-

happen at tree pattern leaf nodes; thafg,. and Ry;,, are joined
on Rg...node = Ry;,,.n0de2, and thereforst r Val in the result
corresponds to the string value of nauede?2.

Note that for each incoming document, we usually do not have t
accessll the tuples inR; . Instead, we only need to access those
tuples whose string values appear in the nodes from therdurre
stream document that are bound to variables. In other wavds,
will only access those tuples iR; whose string values are in the
result of Rioew Mstrval Rdoc. FOrmally, we denote this subset of
R; asRyp, defined byRaocw Mstrval (Rdoe Mnode=node2 Rpin)-

If we could materialize this part &t ; , then we could save the costs
of the joins that produce them in the join processing for anaiive
queryCQr’s. Also, this observation is symmetric betwep and
Ry. That is, those tuples iR ; whose string values correspond to
some nodes itR; will be accessed and participate in other joins.
This means we will have to compute those part&gf. Formally,
the subset oR ; that needs to be computedR®: = Raoc Mstrval

mization techniques at two levels. We generate a technarattp
mark through synthetically generated data of differentudeent
schema complexity, and we also measure the performancerof ou
techniques on real RSS data. We have written an XSCL tramslat
which translates XSCL queries into SQL queries that comadp

to the relational conjunctive queries described in Sectioimhese
SQL queries are then evaluated on an SQL engine. We choose Mi-
crosoft SQL Server 2005 Standard Edition in the experimasts
the Join Processor. All experiments were run on a Dual Cd¥e 3.
GHz Pentium D PC with 3.5 GB of RAM. The operating system
is Windows XP Professional. We repeat each experiment 1€stim
The standard deviation in all runs was well below 1%; we tfoeee
report only averages, omitting error bars from the graphs.

6.1 Technical Benchmark

In this first set of experiments, we evaluate a set of XSCLigser
that join two fixed input documents. We compare the perfogaan
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Algorithm 4 Improved Join Processing Algorithm With View

Cache

Algorithm 5 Maintain View Cachd’C

Require: Current stream documert

1: Invoke the XPath Evaluator id to produceRpinw, Raoew

andRgocTsw

2. Semi-joinRgocw With R4o. ONst rVal to obtain a seSTR 2:

of common string values

else

Noakw

V C with key s, and valueRy, s
Compute relatioRr,s by Er,s

© ®

Rr.s's andRg,s's computed above
11: Maintain join state with Algorithm 2
12: MaintainV'C with Algorithm 5

: for all distinct string values in ST R do
if there is an entry with key in view cacheV' C then
SetrelationR s to the value component of the entry

Compute relatiorR, s by €15, and insert an entry into

: for all query template® in the systendo
10: Evaluate the corresponding conjunctive quét§@r, with

Require: SetST R of common string values iR, and Rgocw

Require: The R.,s’s and Rg,s's computed when processing the

current document

1: for all string valuess in ST R do

SetRr s t0Rr,s U RR,s

3: Insert/Update the cache entry keyedsonmith value Ry, s

schema, referred to a§ anddz. The root node ini; is denoted

asng, and theN leaf nodes ind; are denoted as; throughny.

Similarly, the root node idl; is denoted asj, and theV leaf nodes
in d- are denoted as; throughn’y . These two documents have the
property that all leaf nodes in each document have diffestrirg

values, but each leaf nodg in d1 has the same string value as the

leaf noden/ in the corresponding position 2, for 1 < i < N.
Since our focus is measuring the performance of the joingsoc
sor, we need to comput o, Raocw , Rbin @nd Rpinw as the in-

of our join processing algorithm from Section 4, which we aten

as MMQJP in the figures, with a naive approach which sequbntia
evaluates th&OLLOWED BY operator in each XSCL query, de-
noted as Sequential. We run this experiment on XML documents

with different complexity in their schema.

Two-Level Document Schema. We first choose a document

puts to join processing. Given the properties of the two dusnts,

we compute these tables as follows. We ingértuples intoR ..
corresponding to théV leaves ind;, where each tuple stores the

information of node ID and the string value of a particulafla

di. Rpin also containgV tuples, where each tuple corresponds to
a particular parent, child pair ;. Similarly, we load information

of dz into R4oew andRyinw . Note that the tables generated above

are guaranteed to be supersets of the results returned bPtith

Evaluator on any number of XPath query blocks. We therefore d

schema that models the schema of an RSS feed item, shown bynot need to invoke the XPath Evaluator in this experiment.

the example in Figure 2. The schema has only two levels, wdlere
leaves are children of the root. L&t be the number of leaves in
the schema. parameters in this experiment and their defaluks

are shown in Table 5.

We generate each XSCL query by first selecting a set of vari-
ables bound in the LHS and RHS tree patterns of that queryein th
following way. We randomly pick an integer valdefrom 1 to

N with a Zipfian distribution. For the LHS tree pattern, there a
We then manually compose two documents conforming to this k variables bound to the leaf nodes in the document schema, de-
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Figure 17: Random Generation of XSCL Queries

[ Variable [ Default Value |
Number of XSCL queries 1000
Number of leaves in document scherha 6
Zipfian parameter 0.8

Table 5: Parameters (default values)

noted asy; throughvy, as well as a variable, bound to the root
node. vo is bound only to root node, in documentd;. The k
variablesv;(1 < i < k), are mapped té& different leaf nodes
n;j(1 < j < N) in documentd; chosen uniformly at random.
Similarly, there areé variablesv] throughv;, bound to leaf nodes
for RHS tree pattern, as well as a variabjebound to the rootuvy

is bound only ton in documentl,. Thek variablesv;(1 < i < k)
are randomly bound té different leaf nodes; (1 < j < N) in
d». We now generaté value joins for this query, where th&"
join has a string value equality predicate= v.. This finishes the
construction of query). The query construction is shown in Figure
17. Observe that based on this query generation approacimak-
imum number of query templates in our join techniques is tac
N, regardless of the actual number of XSCL queries generated.

First, we vary the number of XSCL queries, and show the result
in Figure 8. When the number of queries is small, the perfocaa
of MMQJP and sequential evaluation does not differ much. How
ever, MMQJP gains more than two orders of magnitude improve-
ment when the number of queries is large.

We then varyN, the number of leaf nodes in the document
schema. The result is shown in Figure 9. Note that accorditiget
way we generate XSCL queries, increasiNgwill result in more
query templates in MMQJP. The time cost of both approaches is
about 6 times larger a¥ = 12 compared taV = 4; recall from
Section 4 that the complexity of the query template does mot i

10

Figure 15: View Materialization on
Complex Document Schema

Number of Queries

Figure 16: Performance on RSS Stream
Processing

crease linearly withV.

We also vary the Zipfian parameter for generatingor each
query (queries with smaller k values are more likely to beegen
ated), and show the results in Figure 10. Paramktkas little
impact on the performance of MMQJP, since the number of query
templates remain the same under these Zipfian valuén the
other hand, the performance of sequential evaluation gy
a factor of 2 when the Zipfian value increases from 0.0 to 1e6, b
cause the queries are much simpler at a higher value of tlaenpar
eter of the Zipf distribution.

Three-Level Document SchemaWe repeat the same set of ex-
periments on a more complex document schema. This schema has
three levels of tree nodes, where the root and the interneedoales
all have a branching factor of 4, resulting in 16 leaf nodethia
schema. As in the previous setting, we manually compose twe d
umentsd; andd: conforming to this schema, with the property that
the string values of the leaf nodes in the correspondingipasiof
the two documents are identical.

In this setting, we have a new paramei€r denoting the max-
imum number of value joins per query. Its default value is 4. T
generate each query, we first randomly pick a valdem 1 to K
with Zipfian distribution. As in the previous setting, foreth HS
tree pattern, there akevariablesy; throughv, bound to leaf nodes
in the document schema. We pick uniformly at randowfifferent
leaf nodes frond; to be bound to thesk variables. variabley
in LHS pattern is bound to the root node of documént Now, to
form a more complex tree pattern compared to the previotinget
the nodes in the intermediate level of the document scheatath
along the paths between the root node and the leaf nodes é&dund
by v1 throughvy will be bounded by additional variables in the
LHS tree pattern. This adds additional structural joinshia ¢on-
junctive query for each query template. The constructiorRidS
tree pattern is similar. Finally, we generdt@alue join predicates
for the XSCL query, where thé" predicate is; = v!.

In this setup, we vary the number of queries, the maximum num-
ber of value joins per query, and the Zipfian parameter foegan
ing k. The results are shown Figures 11, 12 and 13, respectively.

When we vary the number of queries, the time cost of both ap-
proaches grows more than linearly. This is because as theetum
of queries grows, more query templates are involved. In MRIQJ
the number of query templates increases from 6 to 22 when the
number of queries grow from 10 to 100000. Still, MMQJP outper
forms sequential evaluation by two orders of magnitude vthere
are 100000 queries.

30nly when the Zipfian distribution is extremely skewed, some
query templates involving many value joins will not occur.



When we varyK, the maximum number of value joins per
XSCL query, we see that the time cost of MMQJP grows faster tha
sequential evaluation. This is because MMQJP is affectede mo
significantly by the increasing number of query templatehie T
numbers of query templates are 2, 6, 20 and 39Kor= 2, 3,4
and 5, respectively. Varying the Zipfian parameter in thisirsg
has a larger impact on the performance of sequential evafuat
compared to MMQJP, because similar as in the previous scenar
the numbers of query templates stay constant (around 2@yeah
many actual queries have a simpler structure.

6.2 Query Optimization

We presented query optimization techniques based on view ma
terialization in Section 5. We now evaluate its effectivenbased
on the synthetic workload described in the previous sect®ince
we are interacting with the database engine on the level df, SQ
it is difficult to cache slices oR?; as was described in Section 5.
Therefore, given the inpuRbm,%{bmw,Rdoc and Rgocw to the
Join Processor, we materialize the following relations:

R’uj (77/17 nllv S) - Rdoc(dlv nlv 8)7 RdocW(NIlv S)
Ry (dl,v1,v2,n1,n2,s) = Ryj(nl,nl’,s), Rpin(dl, vl,v2, nl, n2)
Rpr(vl,v2,nl",n2',s) = Ryj(nl,nl’,s), Ryinw (vl,v2,nl", n2")

We then evaluate the conjunctive query) for each query tem-
plate © based only onk;, and R, and we compare the join pro-
cessing cost of MMQJP without view materialization and tbstc
of MMQJP with view materialization. For the latter, we alsean
sure the time cost of computing.;, Rz and Rr, respectively.

The experiments are performed on both the two-level and the
three-level document schema. We use the default valuedl foa-a
rameters above, except that we set the number of querie90900
The results on the two-level and the three-level documdmtrsa
and shown respectively in Figure 14 and 15.

Since according to the experiment setu,, and R4, only
contain information for a single documeiat,, the materialization
costs ofR,;, R, and Rr are small compared to the join process-
ing cost. However, we expect that the materialization cos® o
could potentially be large in real stream settings, siRgg, might
contain many tuples produced by the XPath Evaluator fromipre
ous events. Therefore the benefit of materializing sliceB pffor
computingR,, instead of recomputing, from scratch when pro-
cessing each event should be significant. Also, in this éxjset,
we assume we can afford the space to materialize the eRiire
In practice we may only be able to materialize some sliceB of
in which case view cache replacement policies may be indolas
was mentioned in Section 5.

The results show great benefits from evaluating conjunctive
queries by first materializing these relations. This is ey
true for the case of the three-level document schema, where w
have significantly more query templates compared to theléwel
schema (22 templates for complex schema versus 6 for théesimp
schema). Materializing these relations enables sharirwipu-
tation among the conjunctive queries for different quergptates;
therefore, the more query templates we have, the more benefit
receive from view materialization.

6.3 XSCL Queries over RSS Streams

We evaluate the performance of MMQJP and sequential evalu-
ation of XSCL queries over (RSS and Atom) feed streams. The
feeds we use in this experiment are collected from 418 chsnne
over a period of time from June to October in 2006. There are a
total of 225K items in the feed. Each feed item has a simple doc
ument schema similar to the schema in Figure 2. Specifidally,
has five leaf nodes tagged em ur | , channel _url ,title,
ti mest anp anddescri pti on.
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We randomly generate queries in the same way as in Section
6.1. We assign a time window @b to all the generated queries.
This means in processing the 225K feed items, no feed itehavil
discarded from the join state.

Processing XSCL queries over streams involves both thehXPat
Evaluator and the Join Processor. We evaluated the XPath ex-
pressions corresponding to the XPath query blocks we gekra
on YFilter, an instance of the XPath Evaluator, and we fourad t
time cost of XPath processing over the entire stream in ¥Fil
about 15 seconds, which is significantly less than the tins¢ ico
join processing (using either MMQJP or sequential evatumfi
Therefore, the join processing is the bottleneck of theal/XSCL
query processing, and in the following text we focus on meagu
the cost of join processing.

To run stream processing experiments on a relational dsgaba
we perform the following operations for each feed item. trine
issue bulk load statements to load the data of the curredtifem
into Ryinw andRaocw . The way we generatBy;»w and Raoew
is similar to the way we described in Section 6.1. We do nduite
the loading cost in our numbers, since that cost will be gégk in
a real main memory based implementation. Next, we evalbate t
conjunctive gqueries, and measure their costs. We then matee d
from Rpinw t0 Rpin, and Raoew 10 Raoe With SQL statements,
however for the same reason as before we also do not incligle th
cost in our overall numbers. We run MMQJP with and without
view materialization and also compare to Sequential. Wertepe
total time cost of evaluating conjunctive queries over ladl tems
in the web feed stream.

According to the this setup, there are five different queng-te
plates in MMQJP. For each feed item, SQL Server needs to-evalu
ate the SQL queries correspondingd@)r for eachQ defined in
Section 4.4. This means over a streantafvents, the number of
queries to evaluate for MMQJP will B&S. However, since there is
a fixed overhead in the order of tens of milliseconds in sutimgit
an SQL query to a secondary-storage based relational dataia
gine, a measurement of the total cost of evaluating thés8QL
queries will not reflect the real throughput of a publish&aribe
system. Therefore, instead of evaluating the conjunctiverigs
for query templates once for each feed item, we batch thepjain
cessing by loading a set of feed items if;,w and Rgocw at
one time and perform the joins. This significantly reducestéttal
number of SQL queries to evaluate. Due to space constrawets,
omitted the details for this step.

The throughput of MMQJP compared to sequential evaluation
while varying the number of queries is reported in Figure 16.
MMQJP demonstrates impressive throughput with a large eamb
of queries. View materialization helps further by enablétgring
of computation among different query templates. The thinpug
of MMQJP with or without view materialization stays flat aftbe
number of queries grow beyond 10000, since there are only tho
sands of distinct queries according to our query generatbeme
— after generating 10000 queries, almost all queries gestblater
on are duplicates. This is consistent with our assumptiautab
the workload. Note that we recompufty, from scratch for every
batch in this experiment, since we did not materialize slifeR ; .
Therefore, we expect the throughput of MMQJP with view niater
alization to be even higher if that is done. The experimemsilts
where we vary the parameter of the Zipf distribution are Eimi
and we thus omit them from the paper due to space constraints.

“The YFilter implementation we use is based on Java; still its
XPath evaluation cost is much smaller compared the joinga®c
ing cost measured in SQL Server.



7. RELATED WORK

XML Stream Processing. Our work is the first to address both
expressiveness in query language and scalability in systeragh-

put for XML publish/subscribe systems. There has been alarg
body of work on XML query processing, each addressing parts

of these challenges [10, 16, 13, 22]. YFilter [13], XPush][17
and XSQ [25] are based on variants of finite-state automaid, a
support a significant portion of XPath 1.0 for stream process
They however do not support queries joining multiple docorser

streams. Other XML pub/sub work on more expressive XML query

languages has focused on specific optimizations for a srmaitn
ber of queries [21, 20, 6]. Our MMQJP techniques can potiyntia
be combined with these optimization techniques in an XML-pub
lish/subscribe system. Examining this is part of our futucek.
Other Related Work. Traditional pub/sub systems [4, 28, 14]

sacrifice expressiveness to achieve high performance. Xor e
ample, Le Subscribe [14] is a highly scalable pub/sub system

More recently, Cayuga [12] and SASE [27] propose statefbt pu
lish/subscribe systems for complex relational event msicg.
Data streams have attracted considerable attention inatabase
community in recent years. Existing DSMSes concentrateron p
cessing of complex relational queries and do not exploreimul
query optimization in depth [7, 23, 9, 2, 29].

8. CONCLUSIONS

We have presented Massively Multi-Query Join Processing

(MMQJP) techniques, which efficiently process large nuralmr
continuous inter-document queries over XML streams. Thoug
elaborated in this paper, it is easy to see that our appraaalso
applicable to continuous query processing over relatistiahms.

There are many avenues for future work. First, we would like

to build an expressive publish/subscribe system based oQ§M
techniques, capable of processing both relational and Xtxlams
with alarge number of continuous queries. Second, in ttpepae
have explored a sweet spot in the expressiveness/scalaipbc-
trum between XPath and XQuery stream processing; in thegutu
we would like to push this sweet spot towards supportingelarg
subsets of XQuery in stream settings.
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