Files

Abstract

We present DBToaster, a novel query compilation framework for producing high performance compiled query executors that incrementally and continuously answer standing aggregate queries using in-memory views. DBToaster targets applications that require efficient main-memory processing of standing queries (views) fed by high-volume data streams, recursively compiling view maintenance (VM) queries into simple C++ functions for evaluating database updates (deltas). While today's VM algorithms consider the impact of single deltas on view queries to produce maintenance queries, we recursively consider deltas of maintenance queries and compile to thoroughly transform queries into code. Recursive compilation successively elides certain scans and joins, and eliminates signifcant query plan interpreter overheads. In this demonstration, we walk through our compilation algorithm, and show the signifcant performance advantages of our compiled executors over other query processors. We are able to demonstrate 1-3 orders of magnitude improvements in processing times for a nancial application and a data warehouse loading application, both implemented across a wide range of database systems, including PostgreSQL, HSQLDB, a commercial DBMS 'A', the Stanford STREAM engine, and a commercial stream processor 'B'.

Details

Actions

Preview