PIP: A Database System for Great and Small
Expectations

Oliver Kennedy and Christoph Koch
Department of Computer Science
Cornell University, Ithaca, NY, USA
{okennedy, koch}@cs.cornell.edu

Abstract— Estimation via sampling out of highly selective join
queries is well known to be problematic, most notably in online
aggregation. Without goal-directed sampling strategies, samples
falling outside of the selection constraints lower estimation
efficiency at best, and cause inaccurate estimates at worst. This
problem appears in general probabilistic database systems, where
query processing is tightly coupled with sampling. By committing
to a set of samples before evaluating the query, the engine wastes
effort on samples that will be discarded, query processing that
may need to be repeated, or unnecessarily large numbers of
samples.

We describe PIP, a general probabilistic database system
that uses symbolic representations of probabilistic data to defer
computation of expectations, moments, and other statistical
measures until the expression to be measured is fully known.
This approach is sufficiently general to admit both continuous
and discrete distributions. Moreover, deferring sampling enables
a broad range of goal-oriented sampling-based (as well as exact)
integration techniques for computing expectations, allows the
selection of the integration strategy most appropriate to the
expression being measured, and can reduce the amount of
sampling work required.

We demonstrate the effectiveness of this approach by showing
that even straightforward algorithms can make use of the added
information. These algorithms have a profoundly positive impact
on the efficiency and accuracy of expectation computations,
particularly in the case of highly selective join queries.

I. INTRODUCTION

Uncertain data comes in many forms: Statistical models,
scientific applications, and data extraction from unstructured
text are all forms of uncertain data. Measurements have
error margins while model predictions are often drawn from
well known distributions. Traditional database management
systems (DBMS) are ill-equipped to manage this kind of
uncertainty. For example, consider a risk-management appli-
cation that uses statistical models to evaluate the long term
effects of corporate decisions and policies. This application
may use a DBMS to store predictions and statistical measures
(e.g., error bounds) of those predictions. However, arbitrary
queries made on the predictions do not translate naturally into
queries on the corresponding statistical measures. A user who
requires error bounds on the sum of a join over several tables
of predictions must first obtain a formula for computing those
bounds, assuming a closed form formula even exists.

Probabilistic database management systems [3], [4], [21],
[51, [11], [17], [18], [10], [20] aim at providing better sup-
port for querying uncertain data. Queries in these systems

preserve the statistical properties of the data being queried,
allowing users to obtain metrics about and representations
of query results. The previously mentioned risk-management
application, built on top of a probabilistic database, could
use the database itself to obtain error bounds on the results
of arbitrary queries over its predictions. By encoding the
statistical model for its predictions in the database itself, the
risk-management application could even use the probabilistic
database to estimate complex functions over many correlated
variables in its model. In effect, the application could compute
all of its predictions within the probabilistic database in the
first place.

Few systems are general enough to efficiently query prob-
abilistic data defined over both discrete and continuous distri-
butions. Those that are generally rely on sampling to estimate
desired values, as exact solutions can be hard to obtain. If
a query contains a selection predicate, samples violating the
predicate are dropped and do not contribute to the expectation.
The more selective the predicate, the more samples are needed
to maintain consistent accuracy. For example, a query may
combine a model predicting customer profits with a model
for predicting dissatisfied customers, perhaps as a result of
a corporate decision to use a cheaper, but slower shipping
company. If the query asks for profit loss due to dissatisfied
customers, the query need only consider profit from customers
under those conditions where the customer is dissatisfied
(ie, the underlying model may include a correlation between
ordering patterns and dependence on fast shipping).

Without knowing the likelihood that customer A is satisfied,
the query engine must over-provision and waste time generat-
ing large numbers of samples, or risk needing to re-evaluate the
query if additional samples are needed. This problem is well
known in online aggregation, but ignored in general-purpose
(i.e., both discrete and continuous) probabilistic databases.

Example 1.1: Suppose a database captures customer orders
expected for the next quarter, including prices and destinations
of shipment. The order prices are uncertain, but a probability
distribution is assumed. The database also stores distributions
of shipping durations for each location. Here are two c-tables
defining such a probabilistic database:

Order ‘ Cust ShipTo Price Shipping ‘ Dest Duration
Joe NY X3 NY X5
Bob LA X3 LA X4

We assume a suitable specification of the joint distribution p of

the random variables X1, ..., X, occurring in this database.
Now consider the query
select expected_sum(O.Price)

from Order O, Shipping S
where 0.ShipTo = S.Dest
and O.Cust = ’"Joe’

and S.Duration >= 7;

asking for the expected loss due to late deliveries to customers
named Joe, where the product is free if not delivered within
seven days. This can be approximated by Monte Carlo sam-
pling from p, where q represents the result of the sum aggregate
query on a sample, here

q(¥) = { 3“

In a naive sample-first approach, if xo > 7 is a relatively
rare event, a large number of samples will be required to
compute a good approximation to the expectation. Moreover,
the profit x1 is independent from the shipping time xo. Despite
this, samples for x1 are still discarded if the constraint on x4
is not met.

i) Z 7
otherwise.

A. Contributions

Selective queries exemplify the need for contextual in-
formation when computing expectations and moments. This
paper presents PIP, a highly extensible, general probabilistic
database system built around this need for information. PIP
evaluates queries on symbolic representations of probabilistic
data, computing a complete representation of the probabilistic
expression to be evaluated before an expectation or moment is
taken. To our knowledge, PIP is the first probabilistic database
system supporting continuous distributions to evaluate queries
in this way.

PIP’s approach encompasses and extends the strengths of
discrete systems that use c-tables such as Trio [21], MystiQ
[4], and MayBMS [1], as well as the generality of the
sample-first approach taken by MCDB [10]. It supports both
discrete and continuous probability distributions, statistical
dependencies definable by queries, expectations of aggregates
and distinct-aggregates with or without group-by, and the com-
putation of confidences. The detailed technical contributions
of this paper are as follows.

o We propose PIP, the first probabilistic database system
based on c-tables to efficiently support continuous prob-
ability distributions.

o We show how PIP acts as a generalizable framework for
exploiting information about distributions beyond simple
sampling functionality (e.g., inverse cdfs) to enhance
query processing speed and accuracy. We demonstrate
this framework by implementing several traditional sta-
tistical optimizations within it.

o We propose a technique for identifying variable indepen-
dence in c-table conditions and exploit it to accelerate
sampling.

o We provide experimental evidence for the competitive-
ness of our approach. We compare PIP with a reim-
plementation of the refined sample-first approach taken

by MCDB by using a common codebase (both systems
are implemented on top of Postgres) to enable fair
comparison. We show that PIP’s framework performs
considerably better than MCDB over a wide range of
queries, despite applying only a relatively straightforward
set of statistical optimizations. Even in the worst case,
PIP remains competitive with MCDB (it essentially never
does more work).

II. BACKGROUND AND RELATED WORK

The estimation of probabilities of continuous distributions
frequently devolves into the computation of complex integrals.
PIP’s architecture allows it to identify cases where efficient
algorithms exist to obtain a solution. For more complex prob-
lems not covered by these cases, PIP relies on Monte Carlo
integration [14], a conceptually simple technique that allows
for the (approximate) numerical integration of even the most
general functions. Conceptually, to compute the expectation of
function ¢(Z), one simply approximates the integral by taking
n samples ¥y, ..., %, for X from their distribution p()?) and
taking the average of the function evaluated on all n values.

In general, even taking a sample from a complicated PDF
is difficult. Constraints imposed by queries break traditional
Monte Carlo assumptions of normalization on p(X) and re-
quire that the sampling technique account for them or lose pre-
cision. A variety of techniques exist to address this problem,
from straightforward rejection sampling, where constraint-
violating samples are repeatedly discarded, to more heavy
duty Markov-chain Monte Carlo (MCMC, cf. e.g., [6]) style
techniques such as the Metropolis-Hastings algorithm [13],
[6].

Recently, a paper on the MCDB system[10] has promoted an
integrated sampling-based approach to probabilistic databases.
Conceptually, MCDB uses a sample-first approach: it first
computes samples of entire databases and then processes
queries on these samples. This is a very general and flexible
approach, largely due to its modular approach to proba-
bility distributions via black box sample generators called
VG Functions. Using Tuple-Bundles, a highly compressed
representation of the sampled database instances, MCDB
shares computation across instances where possible during
query evaluation.

Conditional tables (c-tables, [9]) are relational tables in
which tuples have associated conditions expressed as boolean
expressions over comparisons of random variables and con-
stants. C-tables are a natural way to represent the deterministic
skeleton of a probabilistic relational database in a succinct and
tabular form. That is, complete information about uncertain
data is encoded using random variables, excluding only spec-
ifications of the joint probability distribution of the random
variables themselves. This model allows representation of
input databases with nontrivial statistical dependencies that are
normally associated with graphical models.

For discrete probabilistic databases, a canon of systems has
been developed that essentially use c-tables, without referring
to them as such. MystiQ [4] uses c-tables internally for query
processing but uses a simpler model for input databases. Trio

[21] uses c-tables with additional syntactic sugar and calls
conditions lineage. MayBMS [1] uses a form of c-tables called
U-relations that define how relational algebra representations
of queries can encode the corresponding condition transfor-
mations.

ORION [18] is a probabilistic database management sys-
tem for continuous distributions that can alternate between
sampling and transforming distributions. However, their rep-
resentation system is not based on c-tables but essentially
on the world-set decompositions of [2], a factorization based
approach related to graphical models. Selection queries in this
model may require an exponential blow-up in the representa-
tion size, while selections are efficient in c-tables.

A. C-tables

A c-table over a set of variables is a relational table!
extended by a column for holding a local condition for each tu-
ple. A local condition is a Boolean combination (using “and”,
“or”, and “not”) of atomic conditions, which are constructed
from variables and constants using =, <, <, #, >, and >.
The fields of the remaining data columns may hold domain
values or variables.

Given a variable assignment 6 that maps each variable to a
domain value and a condition ¢, 6(¢) denotes the condition
obtained from ¢ by replacing each variable X occurring in it
by 6(X). Analogously, A(Z) denotes the tuple obtained from
tuple ¢ by replacing all variables using 6.

The semantics of c-tables are defined in terms of possible
worlds as follows. A possible world is identified with a
variable assignment 6. A relation R in that possible world
is obtained from its c-table C'r as

R:={0(f) | (t,¢) € Cr.0(¢) is true }.

That is, for each tuple (£, ¢) of the c-table, where ¢ is the
local condition and # is the remainder of the tuple, 6() exists
in the world if and only if 6(¢) is true. Note that each c-
table has at least one possible world, but worlds constructed
from distinct variable assignments do not necessarily represent
different database instances.

B. Relational algebra on c-tables

Evaluating relational algebra on c-tables (and without the
slightest difference, on probabilistic c-tables, since probabili-
ties need not be touched at all) is surprisingly straightforward.
The evaluation of the operators of relational algebra on mul-
tiset c-tables is summarized in Figure 1. An explicit operator
“distinct” is used to perform duplicate elimination.

Example 2.1: We continue the example from the introduc-
tion. The input c-tables are

Corder = {| (Joe, NY, X4), true), ((Bob, LA, X3), true) [}
CShipping = {‘ ((NK X2)7 true)a ((LA, X4)7 tme) |}

'In the following, we use a multiset semantics for tables: Tables may
contain duplicate tuples. Sets transformations are defined in comprehension
notation {| - | - [} with € as an iterator. Transformations preserve duplicates.
We use W to denote bag union, which can be thought of as list concatenation
if the multisets are represented as unsorted lists.

Copry = @AY [(7, ¢0) € Crl}
¥[r] denotes v with each reference to

a column A of R replaced by 7. A.

Crry = {(FA0)| (7 ¢)€Crl
Crxs = {(M80AY)|(7,0) € Cr,(5.¢) € Cs |}
Crus = CrWCs
Caistinet(ry = { (7 \/{¢ | (7, ¢) € Cr}) | (7)) € Crl}
Cr-s = {oAY)|(7,6) € Clistinct(R)»

if (7,7) € Caistinct(s) then ¢ := -7
else ¢ := true [}

Fig. 1. Relational algebra on c-tables.

The relational algebra query is

TPrice (UShipTo:Dest<
O Cust="'Joe’ (Order) X ODuration>7 (Shipping))) .

We compute
OCust='Joe! (Order) = {| ((Joe, NY, X1), true) |}

C

UDurationz'?(Shipping) =

{| ((NY, X2)5X2 > 7)v ((LAa X4)7X4 > 7) |}

T Gust=" Joe! (Order) x ODuration>7 (Shipping) =
{| ((Joe, NY7 Xla NK X2)7 X2 > 7)7
((Joea NY7 Xla LAa X4)7 X4 2 7) |}

C. Probabilistic c-tables, expectations

A probabilistic c-table (cf. [7], [11]) is a c-table in which
each variable is simply considered a (discrete or continuous)
random variable, and a joint probability distribution is given
for the random variable. As a convention, we will denote the
discrete random variables by X and the continuous ones by Y.
Throughout the paper, we will always assume without saying
that discrete random variables have a finite domain.

We will assume a suitable function p()? = 7Y = 7)
specifying a joint distribution which is essentially a PDF on
the continuous and a probability mass function on the discrete
variables. To clarify this, p is such that we can define the
expectation of a function ¢ as

R
q]ZZ/y /y p(#9) - 4@ 9) dj = - - 3 a(Fi,3i)
Z 1 n i=1

given samples (Z1,%1),. .., (Zn, ¥,) from the distribution p.

We can specify events (sets of possible worlds) via Boolean
conditions ¢ that are true on a possible world (given by
assignment) 6 iff the condition obtained by replacing each
variable = occurring in ¢ by 6(x) is true. The characteristic
function x4 of condition (event) ¢ returns 1 on a variable
assignment if it makes ¢ true and returns zero otherwise. The
probability Pr[¢] of event ¢ is simply E[x].

The expected sum of a function h applied to the tuples of
a table R,

select expected_sum(h(x)) from R;

can be computed as

B h@| =E[Y xeh®] = Y B[xe(ho)]

ieER (t,¢)eCRr (t,¢)€CRr

(the latter by linearity of expectation). Here ¢(&,%) denotes
the tuple ¢, where any variable that may occur is replaced by
the value assigned to it in (&, 7).

Example 2.2: Returning to our running example, for Cr =
{l (1,22 > 7) [}, the expected sum of prices is

> /1 --~/x4p(f) - X (T) - t(Z).Price dj =

(t,p)eCRr z
/ / P(E) - Xxo7() - 21 df
xry Ta

Counting and group-by. Expected count aggregates are
obviously special cases of expected sumaggregates where h
is a constant function 1. We generally consider grouping by
(continuously) uncertain columns to be of doubtful value.
Group-by on nonprobabilistic columns (i.e., which contain no
random variables) poses no difficulty in the c-tables frame-
work: the above summation simply proceeds within groups of
tuples from Ci that agree on the group columns. In particular,
by delaying any sampling process until after the relational
algebra part of the query has been evaluated on the c-table
representation, we find it easy to create as many samples as
we need for each group in a goal-directed fashion. This is a
considerable strong point of the c-tables approach used in PIP.

III. DESIGN OF THE PIP SYSTEM

Representing the uncertain components of a query’s output
symbolically as a c-table makes a wide variety of integration
techniques available for use in evaluating the statistical charac-
teristics of the expression. If our risk-management application
assumes a general model of customer profit and customer
satisfaction that relies on queries to create correlations between
them, the sampler can detect this lack of dependency, estimate
profit and probability of dissatisfaction separately, and com-
bine the two afterwards. Even with relatively straightforward
integration techniques, additional knowledge of this form has
a profoundly positive impact on the efficiency and accuracy
with which expectations of query results can be computed.

Accuracy is especially relevant in cases where the integral
has no closed form and exact methods are unavailable. This
is the case in a surprising range of practical applications,
even when strong simplifying assumptions are made about the
input data. For example, even if the input data contains only
independent variables sampled from well-studied distributions
(e.g., the normal distribution), it is still possible for queries
to create complex statistical dependencies in their own right.
It is well known, at least in the case of discrete and finite
probability distributions, that relational algebra on block-
independent-disjoint tables can construct any finite probability
distribution [15], [9].

Computing probabilities,
moments, and statistical tests

C

Query Evaluation \

T

Data Store '/

Query plans on c-tables |

(Probabilistic) c-tables

(Succinct, interchangeable J
representation of joint distributions

of random variables

Fig. 2. Pip Query Engine Architecture
A. Symbolic Representation

PIP represents probabilistic data values symbolically via
random variables defined in terms of parametrized probability
distribution classes. PIP supports several generic classes of
probability distributions (e.g., Normal, Uniform, Exponen-
tial, Poisson), and may be extended with additional classes.
Variables are treated as opaque while they are manipulated
by traditional relational operators. The resulting symbolic
representation is a c-table. As the final stage of the query,
special operators defined within PIP compute expectations and
moments of the uncertain data, or sample the data to generate
histograms.

These expectation operators are invoked with a lossless
representation of the expression to be evaluated. Because the
variables have been treated as opaque, the expectation oper-
ator can obtain information about the distribution a variable
corresponds to. Similarly, the lossless representation allows
on-the-spot generation of samples if necessary; There is no
bias from samples shared between multiple query runs.

Developers can (but need not) provide supplemental infor-
mation (e.g., functions defining the PDF and the CDF) about
distributions they extend PIP with. The operator can exploit
this additional information to accelerate the sampling process,
or potentially even sidestep it entirely. For example, if a query
asks for the probability that a variable will fall within specified
bounds, the expectation operator can compute it with at most
two evaluations of the variable’s CDF.

Because the symbolic representation PIP uses is lossless,
intermediate query results or views may be materialized. Ex-
pectations of values in these views or subsequent queries based
on them will not be biased by estimation errors introduced
by materializing the view. This is especially useful when a
significant fraction of query processing time is devoted to
managing deterministic data (eg, to obtain parameters for the
model’s variables). Not only can this accelerate processing
of commonly used subqueries, but it makes online sampling
feasible; the sampler need not evaluate the entire query from
scratch to generate additional samples.

Example 3.1: Consider the running example in the context
of c-tables. The result of the relational algebra part of the
example query can be easily computed as

R ‘ Price ‘ Condition
TV [Ya=7

without looking at p. This c-table compactly represents all data

still relevant after the application of the relational algebra part
of the query, other than p, which remains unchanged. Sampling
from R to compute

select expected_sum(Price)

is a much more focused effort. First, we only have to consider
the random variables relating to Joe; but determining that
random variable Y, is relevant while Y, is not requires
executing a query involving a join. We want to do this query
first, before we start sampling.

Second, assume that delivery times are independent from
sales volumes. Then we can approximate the query result by
first sampling an Yy value and only sampling an Y7 value
if Yo > 7. Otherwise, we use 0 as the Y7 value. If Yo > 7
is relatively rare (e.g., the average shipping times to NY are
very slow, with a low variance), this may reduce the amount
of samples for Yy that are first computed and then discarded
without seeing use considerably. If CDFs are available, we
can of course do even better.

from R;

B. Random Variables

At the core of PIP’s symbolic representation of uncertainty
is the random variable. The simplest form of a random
variable in PIP consists of a unique identifier, a subscript (for
multi-variate distributions), a distribution class, and a set of
parameters for the distribution.

For example, we write

[Y = Normal(u,?)]

to represent a normally distributed random variable X with
mean £ and standard deviation 2. Multivariate distributions
may be specified using array notation. For instance,

[Y[n] = MV Normal(p, o2, N)]

Thus, when instantiating a random variable, users specify
both a distribution for the variable to be sampled from, and a
parameter set for that distribution. As a single variable may
appear simultaneously at multiple points within the database,
the unique identifier is used to ensure that sampling process
generates consistent values for the variable within a given
sample.

Rather than storing random variables directly, PIP employs
the equation datatype, a flattened parse tree of an arithmetic
expression, where leaves are random variables or constants.
Because an equation itself describes a random variable, albeit
a composite one, we refer to equations and random variables
interchangeably. Observe that while we limit our implementa-
tion to arithmetic operators, any non-recursive expression may
be similarly represented. The equation datatype can be used
to encode any target expression accepted by PostgreSQL.

Random variable equations can be combined freely with
constant expressions, both in the target clause of a select
statement and in the where clause. All targets including
random variable equations are encoded as random variable
equations themselves. All where clauses including random
variable equations are encoded as c-table conditions, the
context of the row. As this allows a variable to appear several
times in a given context, the variable’s identifier is used as

part of the seed for the pseudorandom number generator used
by the sampling process.

C-table conditions allow PIP to represent per-tuple uncer-
tainty. Each tuple is tagged with a condition that must hold
for the variable to be present in the table. C-table conditions
are expressed as a boolean formula of afoms, arbitrary in-
equalities of random variables. The independent probability,
or confidence of the tuple is the probability of the condition
being satisfied.

Given tables in which all conditions are conjunctions of
atomic conditions and the query does not employ duplicate
elimination, then all conditions in the output table are con-
junctions. Thus it makes sense to particularly optimise this
scenario [1]. In the case of positive relational algebra with the
duplicate elimination operator (i.e., we trade duplicate elimi-
nation against difference), we can still efficiently maintain the
conditions in DNF, i.e., as a simple disjunction of conjunctions
of atomic conditions.

Without loss of generality, the model can be limited to
conditions that are conjunctions of constraint atoms. Gener-
ality is maintained by using bag semantics to encode dis-
junctions; Disjunctive terms are encoded as separate rows,
and the DISTINCT operator is used to coalesce terms. This
restriction provides several benefits. First, constraint validation
is simplified; A pairwise comparison of all atoms in the clause
is sufficient to catch the inconsistencies listed above. As an
additional benefit, if all atoms of a clause define convex and
contiguous regions in the space Z, ¢/, these same properties are
also shared by their intersection.

C. Condition Inconsistency

Conditions can become inconsistent by combining contra-
dictory conditions using conjunction, which may happen in
the implementations of the operators selection, product, and
difference. If such tuples are discovered, they may be freely
removed from the c-table.

A condition is consistent if there is a variable assignment
that makes the condition true. For general boolean formulas,
deciding consistency is computationally hard. But we do not
need to decide it during the evaluation of relational algebra
operations. Rather, we exploit straightforward cases of in-
consistency to clean-up c-tables and reduce their sizes. We
rely on the later Monte Carlo simulation phase to enforce the
remaining inconsistencies.

1) The consistency of conditions not involving variable
values is always immediately apparent.

2) Conditions X; = ¢; A X; = ¢o with constants ¢; # co
are always inconsistent.

3) Equality conditions over continuous variables Y; = (-),
with the exception of the identity Y; = Y;, are not
inconsistent but can be treated as such (the probability
mass will always be zero). Similarly, conditions Y; #
(+), with the exception of Y; # Yj, can be treated as
true and removed or ignored.

4) Other forms of inconsistency can also be detected where
efficient techniques to do so are known.

Algorithm 3.2: Checking the consistency of a condition

1) consistencyCheck(ConditionSet C')
2) foreach Discrete condition [X = c1] € C

3) if 3[X = c2] € C s.t. c1 # c2, return Inconsistent.
4) foreach Continuous variable group K (See Section 1V-A)
5) initialize bounds map Sp s.t. So[X] = [—o0, 0] VX € K
6) while Sy # St_1 (incrementing t > 0 each iteration)
7 let S¢ = Si—1
8) foreach equation £ € K
9) if at most 1 variable in E is unbounded
(use the bounded variables to shrink variable bounds)
10) foreach X, S¢[X] = Si—1[X]| Ntightenn (X, E, St)

(Where N = the degree of E)
(computing bounds from some equations may be slow)

11) if tighteny has not been defined, skip E.
12) if 3X s.t. S¢[X] = 0, return Inconsistent.
13) if no Eqns were skipped return Consistent. else return Consistent.

1) tighteni(Variable X, Equation E, Map S)
(example of variable bounding for degree 1 polynomial)
2) Express E in normal form aX +bY +cZ 4 ... >0
3) if a > 0, return [—(b-max(S[Y])+c-max(S[Z]) +...)/a, 0]
4) if a < 0, return [—oo, —(b-max(S[Y])+c-max(S[Z])+...)/qa]

Strong consistency guarantees returned by this algorithm are marked in bold,
while weak ones are marked in italics.

With respect to discrete variables, inconsistency detection
may be further simplified. Rather than using abstract repre-
sentations, every row containing discrete variables may be
exploded into one row for every possible valuation. Condition
atoms matching each variable to its valuation are used to
ensure mutual exclusion of each row. Thus, discrete variable
columns may be treated as constants for the purpose of consis-
tency checks. As shown in [1], deterministic database query
optimizers do a satisfactory job of ensuring that constraints
over discrete variables are filtered as soon as possible.

This sampling algorithm is presented in Algorithm 3.2.
Due to space constraints only tighten, is presented in this
paper, but all polynomial equations may be handled using a
similar, albeit more complex enumeration of coefficients. The
PIP implementation currently limits users to simple algebraic
operators, thus all variable expressions are polynomial. How-
ever, since consistency checking is optional, more complex
equations can simply be ignored.

D. Distributions

As variables are defined in terms of parametrized distri-
bution classes, PIP’s infrastructure is agnostic to the imple-
mentation of the underlying distributions. When defining a
distribution, programmers need only include a mechanism
for sampling from that distribution, much like [10]’s VG
Functions. However, PIP is not limited to simple sampling
functionality. If it is possible to efficiently compute or estimate
the distribution’s probability density function (PDF’), caumu-
lative distribution function (CDF’), and/or inverse cumulative
distribution function (CDF~!), these may be included to
improve PIP’s efficiency.

Distribution specific values like the PDF, CDF and in-
verse CDF are used to demonstrate what can be achieved
with PIP’s framework. Further distribution-specific values like
weighted-sampling, mean, entropy, and the higher moments
can be used by more advanced statistical methods to achieve
even better performance. The process of defining a variable
distribution is described further in Section V.

Though PIP abstracts the details of a variable’s distribution
from query evaluation, it distinguishes between discrete and
continuous distributions. As described in Section II, existing
research into c-tables has demonstrated efficient ways of
querying variables sampled from discrete distributions. PIP
employs similar techniques when it is possible to do so.

IV. SAMPLING AND INTEGRATION

Conceptually, query evaluation in PIP is broken up into
two components: Query and Sampling. PIP relies on Postgres
to evaluate queries; As described in Section II, a query
rewriting pass suffices to translate c-tables relational algebra
extensions into traditional relational algebra. Details on how
query rewriting is implemented are provided in Section V.

As the query is being evaluated, special sampling operators
in the query are used to transform random variable expressions
into histograms, expectations, and other moments. Both the
computation of moments and probabilities in the general case
reduces to numerical integration, and a dominant technique
for doing this is Monte Carlo simulation. The approximate
computation of expectation

1 n
Blxg - (hot)l = =+ 3" pli) - xolih) - h(t(G) (D
i=1

faces a number of difficulties. In particular, samples for which
X 1s zero do not contribute to an expectation. If ¢ is a very
selective condition, most samples do not contribute to the
summation computation of the approximate expectation. (This
is closely related to the most prominent problem in online
aggregation systems [8], [16], and also in MCDB).

Example 4.1: Consider a row containing the variable

[Y = Normal(u = 5,0% = 10)]

and the condition predicate (Y > —3) and (Y < 2). The
expectation of the variable Y in the context of this row is not
5. Rather the expectation is taken only over samples of Y that
fall in the range (—3,2), (coming out to approximately 0.17).

A. Sampling Techniques

a) Rejection Sampling: One straightforward approach to
this problem is to perform rejection sampling; sample sets
are repeatedly generated until a sufficient number of viable
(satisfying) samples have been obtained.

However, without scaling the number of samples taken
based on E[xs|, information can get very sparse and the
approximate expectations will have a high relative error.
Unfortunately, as the probability of satisfying the constraint
drops, the work required to produce a viable sample increases.
Consequently, any mechanism that can improve the chances
of satisfying the constraint is beneficial.

b) Sampling using inverse CDFs: As an alternative to
generator functions, PIP can also use the inverse-transform
method [12]. If available, the distribution’s inverse-CDF func-
tion is used to translate a uniform-random number in the range
[0,1] to the variable’s distribution.

This technique makes constrained sampling more efficient.
If the uniform-random input is selected from the range

[CDF(a), CDF(b)], the generated value is guaranteed to
fall in the range [a,b]. Even if precise constraints can not
be obtained, this technique still reduces the volume of the
sampling space, increasing the probability of getting a useful
sample.

c) Exploiting independence: Prior to sampling, PIP sub-
divides constraint predicates into minimal independent subsets;
sets of predicates sharing no common variables. When de-
termining subset independence, variables representing distinct
values from a multivariate distribution are treated as the set of
all of their component variables. For example, consider the one
row c-table of nullary schema (i.e., there is only a condition
column)

R | o
| (> A (Y1 Y] > Ys) A(A<6)

In this case, the atoms (Y7 > 4) and ([Y7 - Ya] > Y3) form one
minimal independent subset, while (A < 6) forms another.

Because these subsets share no variables, each may be
sampled independently. Sampling fewer variables at a time not
only reduces the work lost generating non-satisfying samples,
but also decreases the frequency with which this happens.

d) Metropolis: A final alternative available to PIP, is
the Metropolis algorithm [13]. Starting from an arbitrary
point within the sample space, this algorithm performs a
random walk weighted towards regions with higher probability
densities. Samples taken at regular intervals during the random
walk may be used as samples of the distribution.

The Metropolis algorithm has an expensive startup cost,
as there is a lengthy ‘burn-in’ period while it generates a
sufficiently random initial value. Despite this startup cost, the
algorithm typically requires only a relatively small number of
steps between each sample. We can estimate the work required
for both Metropolis and Naive rejection sampling.

Wmetropolis = Cburn in T [# Samples] : Csteps per sample

1

Whaive = ——5————
1 — Plreject]

- [# samples]

By generating a small number of samples for the subgroup,
PIP can generate a rough estimate of P[reject] and decide
which approach is less expensive.

B. Row-Level Sampling Operators

Evaluating a query on a probabilistic table (or tables)
produces as output another probabilistic table. Though the raw
probabilistic data has value, the ultimate goal is to compute
statistical aggregates: expectations, moments, etc. To achieve
this goal, PIP provides a set of sampling operators: functions
that convert probabilistic data into deterministic aggregates.

Example 4.2: Consider the c-tables

R|A| & S |

B | ¢
|5 [(1 >4) X

| (Y2 >2)

The query
select A » B as C from R, S;

produces the result table
r| ¢ |
15X | (1> A (Y2>2)

A human may find it useful to know that for a given possible
world, T contains one row with C equal to 5 - Y7 in worlds
described by variables Y1 > 4 and Yo > 2, and is empty in all
other worlds. However, analysis of large volumes of data in
this form requires the ability to summarize and/or aggregate.
Analyzing a table containing several hundred or more rows of
this form becomes easier if a histogram is available.

Sampling operators take in an expression to be evaluated
and the expression’s context, or boolean formula of constraints
associated with the expression’s row and output a histogram,
expectation, or higher moment for the expression under the
constraints of its context. As described in Section II, without
loss of generality, it is possible to express the context as a set
of conditions to be combined conjunctively.

This paper focuses predominantly on sampling operators
that follow per-row sampling semantics. Under these seman-
tics, each row is sampled independently. The aggregate in
question is taken for only over the volume of probability space
defined by the expression’s context for each row. For example,
in the case of Monte-Carlo sampling, samples are generated
for each row, but only samples satisfying the row’s context are
considered. All other samples are discarded. If the context is
unsatisfiable, a value of NAN will result.

The choice to focus on per-row sampling operators is
motivated by efficiency concerns. If the results table is larger
than main memory, the sampling process can become IO-
bound. Per-row sampling operators require only a single
pass (or potentially a second pass if additional precision is
required) over the results. While we do consider table-wide
sampling semantics out of necessity for some aggregates, the
development of additional table-wide techniques is beyond the
scope of this paper.

Note that the resulting aggregates are still probabilistic data.
For example, the expectation of a given cell is computed in the
context of the cell’s row; The expectation is computed only
over those worlds where the row’s condition holds, as in all
other worlds the row does not exist. In order to compute the
probability of satisfying the row’s condition, also referred to
as the row’s confidence, we define a confidence operator. If
the confidence operator is present, all conditions applying to
the row are removed from the result and the resulting table is
deterministic.

PIP’s sampling process, including all techniques described
above in Section IV-A is summarized in Algorithm 4.3.
Despite the limited number of sampling techniques employed,
this algorithm demonstrates the breadth of state available
to the PIP framework at sample-time. Independent group
sampling requires set of constraints. CDF sampling requires
distribution-specific knowledge. Metropolis sampling requires
similar knowledge, and also employs bounds on P[reject] to
make efficiency decisions. All of this information is available
to the expectation operator, making it the ideal place to imple-
ment these, as well as more advanced optimization techniques.

Algorithm 4.3: The expectation operator; Given an expression
and context condition, compute the expression’s expectation
given that the condition is true and optionally also compute
the probability P[C] of the condition being true. If sampling
is necessary, both values are computed with €, § precision.

1) expectation(Expression E, Condition C, Bool getP, Goal {¢,d})

2) let X = the set of variables in F/

3) let target = /2-erf (1 — €)

4) let N = 0; Sum = 0; SumSq =0 B

5) foreach variable group K € C's.t. 3IX € KAX € X

6) let Count[K| = 0; Sampler[X]| =Natural VX € K
7 consistencyCheck(K) (See Alg 3.2)

(save the bounds map S generated by consistencyCheck())
8) If inconsistent, return (NAN, 0)

(if a given variable has bounds, try to sample within those bounds)
9) foreach X s.t. S[X] # [—o0, 0] AX has CDF/CDF~! functions
10) Sampler[X] = CDF
11) (keep sampling until we have enough samples for €, J precision.)

12) while [target- (S“Tm)2 - %‘ + S“Tm] < [6 - Sum]
AND N < 1/delta

13) N = N+1
(We only need samples for variables in both E and C)
14) foreach variable group K € C's.t. IX € KAX € X
15) if Sampler[X] = Metropolis for any X € K
16) run metropolis over saved state for group K
17) else do...
18) Count[K] = Count[K]+1
19) if (Count[K] — N)/Count[K] > Metropolis Threshold
20) if all X have a PDF function
21) Sampler[X] = Metropolis VX € K
22) scan for start point to initialize Metropolis state for K
23) if unable to find a start point return (NAN, 0)
24) continue to next K (line 14)
25) else return (NAN, 0)
26) generate one instance of all X € K using Sampler|[X]
27) ... while samples do not satisfy K
28) update Sum = Sum + E[X], SumSq = SumSq + E[X]?

29) let Prob =[] #ﬂlﬂ VK not sampled via Metropolis

(We’ve gotten some work towards P[C] for free already)
(If the we actually care about it, we might have more work)
30) if getP = True
(Variables in C' but not E haven’t been processed yet)
(Also, Metropolis doesn’t give us a probability)

31) foreach variable group K € C
st. AX € KN [X € XV Sampler[X] = Metropolis]
32) if |K|vars =1 AND X € K has a CDF function
33) use CDF to integrate P[K]
34) else integrate by sampling as above (w/o metropolis)
35) update Prob = Prob- P[K]
36) return (S}f]m , Prob) (P is ignored if get P = False)

C. Aggregate Sampling Operators

Aggregate operators (eg. sum, avg, stddev) applied to c-
tables introduce a new form of complexity into the sampling
process: the result of an aggregate operator applied to a c-
table is difficult to represent and sample from. Even if the
values being aggregated is a constant, each row’s context must
be evaluated independently. The result is 2" possible outputs,
each with a linear number of conditions in the number of
rows. If the values being aggregated are variable expressions,
the result is an identical number of outputs, each containing
data linear in the size of the table.

This added complexity, coupled with the frequency with
which they appear at the root of a query plan, makes them
an ideal point at which to perform sampling. As aggregates
compute expectations over entire tables, the probability of a
given row’s presence in the table can be included are included
in the aggregate’s expectation. This behavior is termed per-

table sampling semantics.

We begin with the simplest form of aggregate expecta-
tion, that of an aggregate that obeys linearity of expecta-
tion (E[f(y)] = f(E[y])), such as sum(). Such aggregates
are straightforward to implement: per-row expectations of
f(@)x(y) are computed, and aggregated (e.g., summed up).
Of note however, is the effect that the operator has on the
variance of the result. In the case of sum(), each expectation
can be viewed as a Normally distributed random variable with
a shared, predetermined variance. By the law of large numbers,
the sum of a set of [V random variables with equal standard
deviation o has a variance of -Z. In other words, when

N
computing the expected sum of)\Iﬁ variables, we can reduce
the number of samples taken for each individual element by
a factor of ——.

If the operator does not obey linearity of expectation (e.g.,
the max aggregate), the aggregate implementation is made
more difficult. Any aggregate may still be implemented naively
by evaluating it in parallel on a set of sample worlds instan-
tiated prior to evaluation. This is a worst-case approach to
the problem; it may be necessary to perform a second pass
over the results if an insufficient number of sample worlds are
generated. However, more efficient special case aggregates,
specifically designed to compute expectations are possible.

For example, consider the max() aggregate. If the target
expression is a constant, this aggregate can be implemented
extremely efficiently. Given a table sorted by the target expres-
sion in descending order, PIP estimates the probability that
the first element in the table (the highest value) is present.
The aggregate expectation is initialized as the product of
this probability and the first element. The second term is
maximal only if the first term is not present; when computing
the probability of the second term, we must compute the
probability of all the second term’s constraint atoms being
fulfilled while at least one of the first atom’s terms is not
fulfilled. Though the complexity of this process is exponential
in the number of rows, the probability of each successive row
being maximal drops exponentially.

Example 4.4: To illustrate this, consider the table (anno-
tated with probabilities)

R|A ¢ | Plg]
5| X>7] 07
4|v>7] 08
1| z>7] 03
0l Q>71 06

Based on the probabilities listed above,
E[max(A)]=5-0.74+4-084+1-0.3+0-0.6

However, if the desired precision is 0.1, we can stop scanning
after the second record since the maximum any later record
can change the result is 1 — (1 — 0.7) % (1 — 0.8) = 0.056.

V. IMPLEMENTATION

In order to evaluate the viability of PIP’s c-tables approach
to continuous variables, we have implemented an initial ver-

PIP
Rewriter)

Core

PIP Plugin

SQL Functions]

Integrator | Sampler

PIP
Datatypes

Fig. 3. The PIP Postgres plugin architecture

sion of PIP as an extension to the PostgreSQL DBMS as
shown in Figure 3.

A. Query Rewriting

Much of this added functionality takes advantage of Post-
greSQL’s extensibility features, and can be used “out-of-the-
box”. For example, we define the function

CREATE_VARIABLE(distribution[,params])
which is used to create continuous variables’>. Each call
allocates a new variable, or a set of jointly distributed variables
and initializes it with the specified parameters. When defining
selection targets, operator overloading is used to make random
variables appear as normal variables; arbitrary equations may
be constructed in this way.

To complete the illusion of working with static data, we
have modified PostgreSQL itself to add support for C-Table
constructs. Under the modified PostgreSQL when defining a
datatype, it is possible to declare it as a CTYPE; doing so has
the following three effects:

o CTYPE columns (and conjunctions of CTYPE columns)
may appear in the WHERE and HAVING clauses of a SE-
LECT statement. When found, the CTYPE components
of clause are moved to the SELECT’s target clause.

select «*
from inputs
where X>Y and Z like ’%foo’

18 rewritten to

select x, X>Y
from inputs
where Z like ’%foo’

o SELECT target clauses are rewritten to ensure that all
CTYPE columns in input tables are passed through. The
exception to this is in the case of special probability-
removing functions. If the select statement contains one
or more such functions (typically aggregates, or the conf
operator), CTYPE columns are not passed through.

select X,Y
from inputs
is rewritten to
select X,Y,inputs.phil, inputs.phi2, ...
from inputs

o In the case of aggregates, the mechanism by which
CTYPE columns may be passed through is unclear. Thus
If the select statement contains an aggregate and one or

2For discrete distributions, PIP uses a repair-key operator similar to that
used in [11]

Rctable ‘ A B ¢
X*x3 5 X>YAY >3
Y 3 Y <3VX<KY
LAV
Rint \ A (VatExp) B (integer) ¢1 (CTYPE) ¢2 (CTYPE)

X %3 5 X>Y Y >3
Y 3 Y <3 NULL
Y 3 X <Y NULL

Fig. 4. Internal representation of C-Tables

more input tables have CTYPE columns, the query causes
an error unless the aggregate is labeled as a probability-

removing function.

o UNION operations are rewritten to ensure that the num-
ber of CTYPE columns in their inputs is consistent. If one
input table has more CTYPE columns of a given type than
the other, the latter is padded with NULL constraints.

—— left (X,phil), right (X,phil,phi2)
select =
from left UNION right
is rewritten to
select =
from (select *,NULL AS phi2 FROM left
) UNION right

Note that these extensions are not required to access PIP’s
core functionality; they exist to allow users to seamlessly use
deterministic queries on probabilistic data.

PIP takes advantage of this by encoding constraint atoms
in a CTYPE datatype; Overloaded > and < operators return
a constraint atom instead of a boolean if a random variable
is involved in the inequality, and the user can ignore the
distinction between random variable and constant value (until
the final statistical analysis).

B. Defining Distributions

PIP’s primary benefit over other c-tables implementations is
its ability to admit variables chosen from arbitrary continuous
distributions. These distributions are specified in terms of gen-
eral distribution classes, a set of C functions that describes the
distribution. In addition to a small number of functions used
to parse and encode parameter strings, each PIP distribution

class defines one or more of the following functions.

e Generate (Parameters, Seed) uses a pseudorandom number
generator to generate a value sampled from the distribution. The seed
value allows PIP to limit the amount of state it needs to maintain;
multiple calls to Generate with the same seed value produce the same
sample, so only the seed value need be stored.

e PDF (Parameters, x) evaluates the probability density function of
the distribution at the specified point.

e CDF (Parameters, x) evaluates the cumulative distribution func-
tion at the specified point.

e InverseCDF (Parameters, Value) evaluates the inverse of the
cumulative distribution function at the specified point.

PIP requires that all distribution classes define a Generate
function. All other functions are optional, but can be used
to improve PIP’s performance if provided; The supplemental
functions need only be included when known methods exist

for evaluating them efficiently.

C. Sampling Functionality

PIP provides several functions for analyzing the uncertainty
encoded in a c-table. The two core analysis functions are conf()
and expectation().

3500 T T T T

PIP Exzxz
Sample First ===

3000

2500

2000

1500 |-

Execution time (s)

1000 [

005
Selectivity

Fig. 5. Time to complete a 1000 sample query, accounting for selectivity-
induced loss of accuracy.
300
Query PHase EXX= j j J
Sample Phase #wsza .
Sample First &7 /\
250 - B

(2985's)

iy

200 B

150 B

Execution time (s)

100 B

E. ofj. B
ReuSRe
REICKIRE

o}
ey o

O,/s,y ,

Fig. 6. Query evaluation times in PIP and Sample-First for a range of queries.
Sample-First’s sample-count has been adjusted to match PIP’s accuracy.

e conf () performs a conjunctive integration to estimate the probability
of a specific row’s condition being true. For tables of purely conjunctive
conditions, conf() can be used to compute each row’s confidence.

e aconf (), a variant of conf(), is used to perform general integration.
This function is an aggregate that computes the joint probability of all
equivalent rows in the table, a necessity if disjunctions are in use.

e expectation () computes the expectation of a variable by repeated
sampling. If a row is specified when the function is called, the sampling
process is constrained by the constraint atoms present in the row.

e expected._sum(), expected.max () are aggregate variants of ex-
pectation. As with expectation() they can be parametrized by a row to
specify constraints.

e expected-sum_hist (), expectedmax_hist () are similar to
the above aggregates in that they perform sampling. However, instead
of outputting the average of the results, it instead outputs an array of all
the generated samples. This array may be used to generate histograms
and similar visualizations.

Aggregates pose a challenge for the query phase of the PIP
evaluation process. Though it is theoretically possible to create
composite variables that represent aggregates of their inputs, in
practice it is infeasible to do so. The size of such a composite
is not just unbounded, but linear in the size of the input table.
A variable symbolically representing an aggregate’s output
could easily grow to an unmanageable level. Instead, PIP limits
random variable aggregation to the sampling phase.

VI. EVALUATION

As a comparison point for PIP’s ability to manage con-
tinuous random variables, we have constructed a sample-
first probabilistic extension to Postgres that emulates MCDB’s

tuple-bundle concept using ordinary Postgres rows. A sampled
variable is represented using an array of floats, while the tuple
bundle’s presence in each sampled world is represented using
a densely packed array of booleans. In lieu of an optimizer,
test queries were constructed by hand so as to minimize the
lifespan of either array type.

Using Postgres as a basis for both implementations places
them on an equal footing with respect to DBMS optimizations
unrelated to probabilistic data. This makes it possible to focus
our comparison solely on the new, probabilistic functionality
of both systems. However, to make the distinction from MCDB
(which is a separate development not based on Postgres) ex-
plicit, we refer to our implementation of the MCDB approach
as Sample-First.

We evaluated both the PIP C-Tables and the Sample-First in-
frastructure against a variety of related queries. Tests were run
over a single connection to a modified instance of PostgreSQL
8.3.4 with default settings running on a 2x4 core 2.0 GHz Intel
Xeon with a 4MB cache. Unless otherwise specified, queries
were evaluated over a 1 GB database generated by the TPC-
H benchmark, all sampling processes generate 1000 samples
apiece, and results shown are the average of 10 sequential
trials with error bars indicating one standard deviation.

First, we demonstrate PIP’s performance on a simple set of
queries ideally suited to the strengths of Sample-First. These
two queries (identical to Q1 and Q2 from [10]) involve para-
metrizing a table of random values, applying a simple set of
math operations to the values, and finally estimating the sum
of a large aggregate over the table.

The first query computes the rate at which customer pur-
chases have increased over the past two years. The percent
increase parametrizes a Poisson distribution that is used to
predict how much more each customer will purchase in the
coming year. Given this predicted increase in purchasing,
the query estimates the company’s increased revenue for the
coming year.

In the second query, past orders are used to compute the
mean and standard deviation of manufacturing and shipping
times. These values parametrize a pair of Normal distributions
that combine to predict delivery dates for each part ordered
today from a Japanese supplier. Finally, the query computes
the maximum of these dates, providing the customer with an
estimate of how long it will take to have all of their parts
delivered.

The results of these tests are shown as query ; and o,
respectively, in Figure 6. Note that performance times for
PIP are divided into two components: query and sample, to
distinguish between time spent evaluating the deterministic
components of a query and building the result c-table, and
time spent computing expectations and confidences of the
results. The results are positive; the overhead of the added
infrastructure is minimal, even on queries where Sample-
First is sufficient. Furthermore, especially in Q2, the sampling
process comprises a relatively small portion of the query;
additional samples can be generated without incurring the
nearly 1 minute query time.

PIP —— '
Sample First =—x-—

RMS Error
o
T

0.001
1 10 100 1000

Number of Samples

@
Fig. 7.
an average selectivity of 0.05.

The third query Q3 in Figure 6 combines a simplified form
of queries (1 and ()o. Rather than aggregating, the query
compares the delivery times of ()2 to a set of “satisfaction
thresholds.” This comparison results in a (probabilistic) table
of dissatisfied customers that is used in conjunction with
(1’s profit expectations to estimate profit lost to dissatisfied
customers. A query of this form might be run on a regular
basis, perhaps even daily. As per this usage pattern, we pre-
materialize the component of this query unlikely to change on
a daily basis: the expected shipping time parameters.

Though PIP and Sample-First both take the same amount
of time to generate 1000 samples under this query, the query’s
selectivity causes Sample-First to disregard a significant frac-
tion of the samples generated; for the same amount of work,
Sample-First generates a less accurate answer. To illustrate
this point, see Figure 7(a). This figure shows the RMS error,
normalized by the correct value in the results of a query for
predicted sales of 5000 parts in the database, given a Poisson
distribution for the increase in sales and a popularity multiplier
chosen from an exponential distribution. As an additional re-
striction, the query considers only the extreme scenario where
the given product has become extremely popular (resulting in
a selectivity of e=5-2% = 0.005).

RMS error was computed over 30 trials using the alge-
braically computed correct value as a mean, and then aver-
aged over all 5000 parts. Note that PIP’s error is over two
orders of magnitude lower than the sample-first approach for
a comparable number of samples. This corresponds to the
selectivity of the query; as the query becomes more selective,
the sample-first error increases. Furthermore, because CDF
sampling is used to restrict the sampling bounds, the time
taken by both approaches to compute the same number of
samples is equivalent.

A similar example is shown in Figure 7(b). Here, a model
is constructed for how much product suppliers are likely to be
able to produce in the coming year based on an Exponential
distribution, and for how much product the company expects
to sell in the coming year as in Q1. From this model, the
expected underproduction is computed, with a lower bound of
0; the selection criterion considers only those worlds where

PIP —— '
Sample First =—x-—

RMS Error

0.1

1 10 100 1000
Number of Samples

(b)

RMS error across the results of 30 trials of (a) a simple group-by query Q4 with a selectivity of 0.005, and (b) a complex selection query Q5 with

demand exceeds supply. For the purposes of this test, the
model was chosen to generate an average selectivity of 0.05.
Though the comparison of 2 random variables necessitates the
use of rejection sampling and increases the time PIP spends
generating samples, the decision to drop a sample is made
immediately after generating it; PIP can continue generating
samples until it has a sufficient number, while the Sample-First
approach must rerun the entire query.

Note the relatively large variance in the RMS error of
the Sample-First results these figures, particularly the first
one. Here, both the selectivity and the price for each part
vary with the part. Thus, some parts become more important
while others become harder to sample from. In order to get
a consistent answer for the entire query Sample-First must
provision enough samples for the worst case, while PIP can
dynamically scale the number of samples required for each
term.

Returning to Figure 6, Queries Q3 and ()4 have been run
with PIP at a fixed 1000 samples. As Sample-First drops all
but a relatively small number of samples corresponding to
the selectivity of the query, we run Sample-First with a corre-
spondingly larger number of samples. For Query 3, the average
selectivity of 0.1 resulted in Sample-First discarding 90% of
its samples. To maintain comparable accuracies, Sample-First
was run at 10,000 samples.

We expand on this datapoint in Figure 5 where we evaluate
(4, altered to have varying selectivities. The sample-first tests
are run with Selectivity times as many samples as PIP to
compensate for the lower error, in accordance with Figure
7(a). Note that selectivity is a factor that a user must be aware
of when constructing a query with sample-first while PIP is
able to account for selectivity automatically, even if rejection
sampling is required.

It should also be noted that both of these queries include
two distinct, independent variables involved in the expectation
computation. A studious user may note this fact and hand
optimize the query to compute these values independently.
However, without this optimization, a sample-first approach
will generate one pair of values for each customer for each
world. As shown in the RMS error example, an arbitrarily

Sar‘nple First ——t

Error

0 10 20 30 40 50 60 70 80 90 100
Cumulative Distribution

Fig. 8. Sample-First error as a fraction of the correct result in a danger-
estimation query on the NSIDC’s Iceberg Sighting Database. PIP was able to
obtain an exact result.

large number of customer revenue values will be discarded and
the query result will suffer. In this test, customer satisfaction
thresholds were set such that an average of 10% of customers
were dissatisfied. Consequently sample-first discarded an aver-
age of 10% of its values. To maintain comparable accuracies,
the sample-first query was evaluated with 10,000 samples
while the PIP query remained at 1000 samples.

As a final test, we evaluated both PIP and our Sample-
First implementation on the NSIDC’s Iceberg Sighting
Database[19] for the past 4 years. 100 virtual ships were
placed at random locations in the North Atlantic, and each
ship’s location was evaluated for its proximity to potential
threats; Each iceberg in the database was assigned a normally
distributed position relative to its last sighting, and an exponen-
tially decaying danger level based on time since last sighting.
Recently sighted icebergs constituted a high threat, while
historic sightings represented potential new iceberg locations.
The query identified icebergs with greater than a 0.1% chance
of being located near the ship and estimated the total thret
posed by all potentially nearby icebergs. The results of this
experiment are shown in Figure VI. PIP was able to employ
CDF sampling and obtain an exact result within 10 seconds.
By comparison, the Sample-First implementation generating
10,000 samples took over 10 minutes and produced results
deviating by as much as 25% from the correct result on a
typical run.

VII. CONCLUSION

The use of symbolic representations can be exploited to
significantly reduce query processing time and improve query
accuracy for a wide range of queries, even with only straight-
forward algorithms. For the remaining queries, we have shown
that the overhead created by the symbolic representation has
only a negligible impact on query processing time. This,
combined with PIP’s extensibility, make it a powerful platform
for evaluating a wide range of queries over uncertain data.

We have shown that symbolic representations of uncertainty
like C-Tables can be used to make the computation of

expectations, moments, and other statistical measures in prob-
abilistic databases more accurate and more efficient. The
availability of the expression being measured enables a broad
range of sampling techniques that rely on this information and
allows more effective selection of the appropriate technique for
a given expression.

Acknowledgments: This material is based upon work supported by the
National Science Foundation under Grant 1IS-0812272. Any opinions, findings
and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science
Foundation (NSF).

REFERENCES

[11 L. Antova, T. Jansen, C. Koch, and D. Olteanu. “Fast and Simple
Relational Processing of Uncertain Data”. In Proc. ICDE, 2008.

[2] L. Antova, C. Koch, and D. Olteanu. “10106 Worlds and Beyond:
Efficient Representation and Processing of Incomplete Information”. In
Proc. ICDE, 2007.

[3] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. “Evaluating Probabilis-
tic Queries over Imprecise Data”. In Proc. SIGMOD, pages 551-562,
2003.

[4] N. Dalvi and D. Suciu. “Efficient query evaluation on probabilistic
databases”. VLDB Journal, 16(4):523-544, 2007.

[5] A.Deshpande and S. Madden. “MauveDB: supporting model-based user
views in database systems”. In Proc. SIGMOD, pages 73-84, 2006.

[6] W. Gilks, S. Richardson, and D. Spiegelhalter. Markov Chain Monte
Carlo in Practice: Interdisciplinary Statistics. Chapman and Hall/CRC,
1995.

[7]1 T. J. Green and V. Tannen. “Models for Incomplete and Probabilistic
Information”. In International Workshop on Incompleteness and Incon-
sistency in Databases (IIDB), 2006.

[8] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In
SIGMOD Conference, pages 171-182, 1997.

[9] T. Imielinski and W. Lipski. “Incomplete information in relational
databases”. Journal of ACM, 31(4):761-791, 1984.

[10] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. M. Jermaine, and P. J. Haas.
“MCDB: A Monte Carlo approach to managing uncertain data”. In Proc.
ACM SIGMOD Conference, pages 687-700, 2008.

[11] C. Koch. “MayBMS: A system for managing large uncertain and
probabilistic databases”. In C. Aggarwal, editor, Managing and Mining
Uncertain Data, chapter 6. Springer-Verlag, Feb. 2009.

[12] A. M. Law and W. D. Kelton. Simulation Modeling and Analysis.
McGraw-Hill Book Company, 1982.

[13] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.Teller, and
E. Teller. Equation of state calculations by fast computing machines.
Journal of Chemical Physics, 21(6), June 1953.

[14] N. Metropolis and S. Ulam. The monte carlo method. Journal of the
American Statistical Association, 44(335), 1949.

[15] C. Ré and D. Suciu. Materialized views in probabilistic databases:
for information exchange and query optimization. In VLDB ’07:
Proceedings of the 33rd international conference on Very large data
bases, pages 51-62. VLDB Endowment, 2007.

[16] F. Rusu, F. Xu, L. L. Perez, M. Wu, R. Jampani, C. Jermaine, and
A. Dobra. The dbo database system. In SIGMOD Conference, pages
1223-1226, 2008.

[17] P. Sen and A. Deshpande.
Tuples in Probabilistic Databases”.
2007.

[18] S. Singh, C. Mayfield, S. Mittal, S. Prabhakar, S. E. Hambrusch, and
R. Shah. “Orion 2.0: native support for uncertain data”. In Proc. ACM
SIGMOD Conference, pages 12391242, 2008.

[19] N. Snow and I. D. C. D. C. for Glaciology. International ice patrol (iip)
iceberg sightings database. Digital Media, 2008.

[20] D. Z. Wang, E. Michelakis, M. Garofalakis, and J. M. Hellerstein.
“BayesStore: Managing large, uncertain data repositories with proba-
bilistic graphical models”. In VLDB ’08, Proc. 34th Int. Conference on
Very Large Databases, 2008.

[21] J. Widom. “Trio: a system for data, uncertainty, and lineage”. In
C. Aggarwal, editor, Managing and Mining Uncertain Data. Springer-
Verlag, Feb. 2009.

“Representing and Querying Correlated
In Proc. ICDE, pages 596-605,

