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Abstract

Magnetohydrodynamic (MHD) equilibrium states with a three-dimensional helical core that display the
characteristics of a saturated ideal internal kink mode are computed to model snake structures that have been
observed in the JET tokamak (Weller et al 1987 Phys. Rev. Lett. 59 2303). The equilibrium states are calculated
with a peaked pressure profile and a weak to moderate reversed core magnetic shear with a minimum safety factor
¢min Near unity in the neighbourhood of the mid-radius of the plasma. Snake equilibrium states are computed in
the range 0.94 < gmin < 1.03. This range aligns with linearly unstable ideal MHD internal kink solutions of the
purely axisymmetric branch of the equilibrium states. The energy difference between the bifurcated axisymmetric
and helical snake equilibrium solutions is minimal. One very important novelty is that the helical structures are
computed with an equilibrium code developed for three-dimensional (3D) stellarator applications in a tokamak

context and cannot be obtained with standard Grad—Shafranov equation solvers.

(Some figures in this article are in colour only in the electronic version)

Snake structures have been reported in the JET tokamak with
pellet injection [1] and also spontaneously due to central
impurity accumulation [2]. The standard theoretical picture
proposed for the formation of snakes is described by assuming
that a pellet is ablated inside the ¢ = 1 rational magnetic
island (or that impurities accumulate at this same place in
the spontaneously generated snakes) [3]. We provide an
alternative perspective. The pellet ablates on-axis, causing
the plasma to cool locally. This displaces the plasma
current channel radially outwards producing a hollow current
profile with the minimum value of ¢ (the safety factor which
corresponds to the inverse rotational transform) approaching
unity off-axis. Under these conditions, the plasma becomes
unstable to an ideal internal magnetohydrodynamic (MHD)
kink mode which quickly saturates. The large density due to
the pellet provides the allure of the snake. The spontaneous
snake occurs because the impurities accumulate on axis that
radiate cooling the plasma centre leading to similar conditions
as with pellet injection. In this work, we demonstrate that
three-dimensional (3D) snake equilibria exist in theory even
with an imposed axisymmetric plasma boundary. It should be
noted that it has been difficult to distinguish snake structures
from multiple harmonic modes in JET experiments [4].

0029-5515/11/072002+06$33.00

The application of stellarator equilibrium codes to
tokamaks was pioneered by Garabedian where the NSTAB
code obtained bifurcated solutions with local 3D structures
near low-order rational surfaces that were interpreted as
indicators of magnetic island formation [5]. The calculations
we undertake are more global in character. We have previously
applied the procedure to compute 3D helical equilibria to
model TCV [6] and MAST [7] in which the sawteeth disappear,
but continuous mode structures [8,9] and long-lived modes
[10] remain in which we prescribe the plasma mass or pressure
profles that are very flat in the plasma core as reported in
these experiments. Saturated internal kinks have been reported
in NSTX [11] and sawteeth change from kink-like to quasi-
interchange modes in DIII-D as the plasma boundary is varied
from oval to bean-shaped [12]. These phenomena could also be
potentially described with the model we propose. ITER hybrid
scenario equilibria with similar profiles are also predicted to
develop 3D internal structures [13]. The snake equilibria, on
the other hand, have more peaked pressure profiles.

The formulation of 3D MHD states is based on the
minimization of the plasma energy W in which the magnetic
flux surfaces are constrained to be nested with a single

© 2011 IAEA, Vienna Printed in the UK & the USA
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magnetic axis. The static conditions can be described by

v Jff e

where the magnetic field strengthis B, 1o = 47 x 107 H/m is
the permeability of free space, p| is the parallel pressure which
is expressed as a function of the radial variable s (0 < s < 1)
and B, while T" is the adiabatic index. We solve the inverse
equilibrium problem for the cylindrical coordinates given by
the distance from the major axis R = R(s, u, v) and the height
off the mid-plane Z = Z(s, u, v) where 0 < u < 27 denotes
the poloidal angle and 0 < v < 27/ L is the toroidal angle with
L the number of field periods around the torus. The variation
with respect to an artificial time variable ¢ yields
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This can be solved by applying a steepest descent energy
minimization scheme as described in the VMEC [14,15]
and ANIMEC [16] codes. The last integral in equation (2)
corresponds to the motion of the plasma boundary. For
the applications considered in this work, the plasma—vacuum
interface is fixed, thus this term vanishes. The MHD forces are
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where B = B-Vu and B’ = B-Vv. The F, force

corresponds to the binormal (normal to the field line on a
flux surface) component of the momentum balance at the
equilibrium state and is given by

F = q),(s)[a(oBu) _ 8(0B,4)]’ )
ou ov
where o > 0is the firehose stability parameter [16, 17]. Forthe
isotropic pressure conditions we address, py = p; = p and
o = 1/pp. Under these circumstances p(s) ~ M (s)[D'(s)]"
and we prescribe the plasma mass M. The toroidal magnetic
flux function is ® and prime (') indicates the derivative of a
flux surface quantity with respect to s. Fourier decomposition
in the angular variables u# and v is applied and a special
finite difference scheme is invoked for the radial discretization.
Matrix preconditioning is used in the accelerated steepest
descent scheme implemented. The flux surface averaged radial

Figure 1. The JET plasma boundary shape according to the formula
R, = Ry+acos(u+48sinu); Z, = Easinu with Ry = 2.96m,
a=1.25m, E = 1.68 and § = 0.3 (solid line). A Fourier
decomposition is given by the + symbols. The o symbols
correspond to a truncated Fourier set useful for analytic purposes.

force balance constitutes a diagnostic of the accuracy of the
equilibrium state that is achieved which is given by
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where

L 2w /L 2w
(A) = W/o dv/0 du./gA(s, u,v).

In our investigations, the field period number L is unity.
In an axisymmetric or helically symmetric configuration,
equation (6) corresponds to the flux surface averaged Grad—
Shafranov equation.

The equilibrium computation technique described has
been implemented in the ANIMEC code [16], an anisotropic
pressure version of the free boundary VMEC code [14, 15].
The JET plasma boundary is presented in figure 1. A Fourier
decomposition of this boundary yields amplitudes presented
in table 1.

The JET snake equilibria that have been reported in [1, 2]
occur in the range of toroidal magnetic field B; = 2-3.1T,
and toroidal plasma current [, = 3-4.2MA. We prescribe
plasma mass and toroidal current profiles for an equilibrium
within these ranges, specifically Iy = 3.85MA, B; = 3.1T
and volume averaged () = 2.3%. The pressure and inverse
rotational transform g-profiles are shown in figures 2 and
3, respectively. The minimum value of ¢ = 1.0004 is
located at /s >~ 0.4544. The details of the pressure profile
do not appear to be important for theoretical simulations
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Table 1. The Fourier amplitudes that describe a JET tokamak 9
plasma boundary.
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Figure 3. The g-profile for JET snake-like equilibrium calculations
g 0.2l as a function of /s.
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Figure 2. The pressure profile for JET snake-like equilibrium
calculations as a function of /s. 1075 ] i
of the snakes. However, the pressure profile applied has
an H-mode type pedestal because flat extended low shear 20 ‘ ‘ ‘ ‘
q-profiles, prevalent in this mode of tokamak operation, may 105 1 2 3 4 5
predispose the development of the snake in contrast with the # iterations x 10°

more conventional g-profiles of L-mode discharges.

MHD equilibrium computations using ANIMEC that
generate states with a 3D helical core structure with the
characteristics of the snake observed in JET usually require
more than 10000 iterations to achieve convergence. The
volume averaged horizontal force Fp as a function of
the number of iterations is displayed in figure 4. The
preconditioner is activated after 42 000 iterations. Following
an initial jump, the magnitude of F drops to machine-like
precision levels. If the preconditioner is turned on earlier
in the run, the solution will either revert to the axisymmetric
branch or it will oscillate between the axisymmetric and helical
branches without converging. The number of radial grid points
in our calculations is N, = 289. We would anticipate that the
normalized radial force balance, extracted from equation (6)
as a diagnostic for the equilibrium state, should achieve a
level of 107> for quadratic convergence. With the matrix
preconditioner active, the convergence is nearly quartic (with
force residual levels below 10~%) except at /s ~ 0.55 and at
the edge where it is closer to cubic.

The contours of constant pressure at four cross sections
thatencompass half a toroidal transit are shown in figure 5. The
helical core internal structure is visible, while the edge region
of the plasma retains axisymmetric character. The internal

Figure 4. The volume averaged horizontal force Fy evolution with
the number of iterations.

plasma energy functional 1iop + B?/2 on the same four cross
sections is displayed in figure 6 and shows that its magnitude
scales roughly as the inverse distance from the major axis
squared. This indicates that the internal helical flux surface
structure does not alter the mod- B lines which are very similar
from one toroidal cross section to the next. This is expected
atlow (8) ~ 2%. An alteration of the mod-B contours would
arise primarily from the diamagnetic effect of the (shifted)
pressure on the magnetic field.

The equilibria that we calculate are static. In the
experiment, the snake structure was detected due to its slow
toroidal rotation. In figure 7, we present a 3D graphic of the
normalized pressure as a function of the distance from the
major axis R and the toroidal angle which is similar to the
standard view of the snake (e.g. compare with figure 1 of [1] or
[2]). The toroidal angle plays the role of time and the pressure
that of the emissivity in the experimental description [1, 2].

We vary the toroidal current from 3.75 to 4.09 MA
(keeping its profile fixed) to test the sensitivity of the snake
structures we compute with respect to the value of gpi,. This
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Figure 5. The contours of constant pressure at four toroidal cross sections that span half the way around the torus at toroidal angles v = 0,

v=m/3,v=2r/3andv = 7.
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Figure 6. The distribution of constant plasma energy functional o p + B?/2 at 4 toroidal cross sections that span half the way around the

torus at toroidal angles v =0, v =n/3,v =2n/3 and v = 7.
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Figure 7. The normalized pressure wop as a function of R and the
toroidal angle v reveals the typical picture of a snake structure. In
this reference equilibrium state g, = 1.004.

yields a sequence of equilibria with g, descending from 1.03
to 0.94 with displaced helical core snake structures. In effect, a
bifurcated set of equilibrium solutions are obtained. The initial
conditions are identical for each case except for the guess of the
position of the magnetic axis. If a sufficient helical distortion is
chosen, the helical 3D snake solution is triggered. Otherwise,
the axisymmetric solution branch is found. A comparison of
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Figure 8. The equilibrium energy oW for the bifurcated helical
and axisymmetric branches as a function of the total toroidal
current 27 J.

the internal energy oW as a function of the toroidal current
for the two solutions is presented in figure 8 which shows
that the difference only corresponds to a small fraction of
a per cent. At high current (~4 MA), the snake-like helical
branch has slightly lower energy. This corresponds to cases
with gmin < 1. When gpin > 1, the axisymmetric branch
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Figure 9. The magnetic axis helical distorsion parameter éy as a
function of gy, which corresponds to the minimal value of the
inverse rotational transform.

has slightly lower energy. Nevertheless, we would like to
emphasize that the difference is so minuscule that we cannot
categorically state that one or the other constitutes a favoured
equilibrium solution. To compare the results obtained further,
we define a parameter that describes the helical deformation
of the magnetic axis as

8

VR =0+ 2, (s = 0)
H:

a

, (N

where Ry (Zy;) corresponds to the (im = 0,n = 1) Fourier
amplitude of R(Z) at the magnetic axis and ¢ = 1.61m is
the effective plasma minor radius. We plot y as a function of
Gmin 1n figure 9. The reference equilibrium state with 3.85 MA
toroidal current we have previously described corresponds to
the data point with g, closest to unity. Each point on the
curve in figure 9 represents an equilibrium state with a snake-
like internal structure. A very relevant feature of the model we
propose is that changes within the range 0.94 < gmin < 1.03
throughout a discharge could alter the size of the snake, but it
would still persist. In the experimental discharges, sawteeth
crashes are observed that shrink the size of the snake without
suppressingit[1,2]. The ¢ = 1island must survive a sawtooth
event according to the standard model of the snake [3]. The
predictions of our model, on the other hand, are much more
robust inasmuch as they allow g, to rise almost to 1.03 before
the 3D helical deformations vanish. This constitutes a very
clear and defining distinction between the two descriptions
of the snake development. Furthermore, we conjecture that
small oscillations in the g-profile within a discharge can lead to
successive neighbouring equilibrium states described with our
model in which the dimensions/amplitudes of the snake would
appear to fluctuate. The conditions of a growing snake [2, 3]
can also be adequately handled with the model we propose if
we envision that g, slides slowly towards unity either from
above or below.

Internal ideal MHD kink modes can be nonresonantly
unstable in an axisymmetric circular cross section tokamak
with weak reversed central shear and 0 < g, — 1 < 0.014
[18]. We verify that the axisymmetric branch of the sequence

0 | | | | |

Qnin

Figure 10. The magnitude of the ideal MHD internal kink
eigenvalue A = —w? as a function of gy, in the axisymmetric
branch of the JET equilibrium configurations. The mode is
dominantly m = 1, n = 1 (m(n) is the poloidal (toroidal) mode
number). The last points (gmi, ~ 1.025) coincide with the existence
of a helical state in figure 9.

of configurations we have investigated in figure 9 is linearly
unstable to the internal kink mode using the TERPSICHORE
code [19,20]. Crucially, we find that the point of marginal
stability with respect to the dominant m = 1, n = 1 mode
in the axisymmetric equilibrium state aligns very closely with
the point of vanishing helical excursion of the magnetic axis
of the equilibrium calculation near guin =~ 1.03 as shown
in figure 10. This is consistent with the stabilization of the
quasi-interchange mode when g, becomes sufficiently large
[21]. The most unstable axisymmetric equilibrium occurs
for gmin near unity. At the lower end of the range, with
respect to gmin, in Which we compute snake equilibria with
ANIMEC, the TERPSICHORE code predicts linear unstable
ideal MHD modes but with significantly reduced magnitudes,
consistent with the persistence of a classical internal kink
mode under such conditions [21]. This constitutes the basis
of our conjecture that the snake could be the result of the
saturated state of this mode which could become the novel
helical equilibria we have identified.

We have successfully computed MHD equilibrium states
that reproduce snake-like structures for a JET tokamak
configuration with an imposed axisymmetric boundary. The
equilibrium is characterized by an internal 3D helical core
with features similar to a saturated ideal m = 1,n = 1
internal kink mode. Central magnetic shear reversal with
a minimum value of ¢ near unity is a critical aspect in the
generation of the helical equilibrium. At (8) = 2.3%,
equilibrium snake structures are computed in the range 0.94 <
gmin < 1.03. The axisymmetric branches of the JET
equilibria in this range are unstable to linear ideal MHD
internal m = 1,= 1 kink modes. The domain of finite
helical axis excursion in the bifurcated equilibrium states
coincides with that of linear ideal internal kink instability in
the axisymmetric equilibrium states. The energy differential
between the bifurcated snake and axisymmetric solutions is
too small to definitively suggest a preferred equilibrium state.
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The standard theoretical description that a magnetic island
formed about the ¢ = 1 rational surface is a necessary feature
of a snake appears not to be a strict qualifying condition.
Although it is possible that magnetic islands could be linked
to the development of the snake, we believe that it would
be difficult to distinguish experimentally the internal ideal
kink-like equilibrium structure we compute from a g = 1
island. In addition, the existence of such helical equilibria,
with a snake-like structure, could explain why the snake, once
formed, is very robust and hardly affected by sawtooth crashes
for example [1, 2].

A free boundary equilibrium description could facilitate
the calculations of 3D helical structures by liberating the
axisymmetric constraint imposed on the exact shape of the
plasma. The condition of nested magnetic flux surfaces
in our model preclude the generation of equilibrium states
with magnetic islands. Saturated tearing modes could be
investigated with more general, yet more computationally
intensive and time consuming, codes [18,22-27].

The authors greatly appreciate the contributions of
Dr S.P. Hirshman to the development of the 3D equilibrium
solvers we have applied. They are indebted for the suggestions
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this work and the standard description of the snake that
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like to thank Professor Francis Troyon for his support and
encouragement of this research. This investigation was
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opinions expressed herein do not necessarily reflect those of
the European Commission
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