Infoscience

Conference paper

Energy Consumption Comparison Between Macro-Micro and Public Femto Deployment in a Plausible LTE Network

We study the energy consumptions of two strategies that increase the capacity of an LTE network: (1) the deployment of redundant macro and micro base stations by the operator at locations where the traffic is high, and (2) the deployment of publicly accessible femto base stations by home users. Previous studies show the deployment of publicly accessible residential femto base stations is considerably more energy efficient; however, the results are proposed using an abstracted model of LTE networks, where the coverage constraint was neglected in the study, as well as some other important physical and traffic layer specifications of LTE networks. We study a realistic scenario where coverage is provided by a set of non-redundant macro-micro base stations and additional capacity is provided by redundant macro-micro base stations or by femto base stations. We quantify the energy consumption of macro-micro and femto deployment strategies by using a simulation of a plausible LTE deployment in a mid-size metropolitan area, based on data obtained from an operator and using detailed models of heterogeneous devices, traffic, and physical layers. The metrics of interest are operator-energy-consumption/total-energy-consumption per unit of network capacity. For the scenarios we studied, we observe the following: (1) There is no significant difference between operator energy consumption of femto and macro-micro deployment strategies. From the point of view of society, i.e. total energy consumption, macro-micro deployment is even more energy efficient in some cases. This differs from the previous findings, which compared the energy consumption of femto and macro-micro deployment strategies, and found that femto deployment is considerably more energy efficient. (2) The deployment of femto base stations has a positive effect on mobile-terminal energy consumption; however, it is not significant compared to the macro-micro deployment strategy. (3) The energy saving that could be obtained by making macro and micro base stations more energy proportional is much higher than that of femto deployment.

Related material